
Soft Subdivision Search
in Motion Planning, II:

Axiomatics

Chee K. Yap?

Department of Computer Science
Courant Institute of Mathematical Sciences

New York University
New York, NY 10012, USA

yap@cs.nyu.edu

Abstract. We propose to design motion planning algorithms with a
strong form of resolution completeness, called resolution-exactness.
Such planners can be implemented using soft predicates within the
subdivision paradigm. The advantage of softness is that we avoid the
Zero problem and other issues of exact computation. Soft Subdivision
Search (SSS) is an algorithmic framework for such planners. There are
many parallels between our framework and the well-known Probabilistic
Road Map (PRM) framework. Both frameworks lead to algorithms that
are practical, flexible, extensible, with adaptive and local complexity. Our
several recent papers have demonstrated these favorable properties on
various non-trivial motion planning problems. In this paper, we provide
a general axiomatic theory underlying these results. We also address the
issue of subdivision in non-Euclidean configuration spaces, and how exact
algorithms can be recovered using soft methods.

1 Introduction

Motion planning has been studied for over 30 years, and remains a central prob-
lem in robotics. Path planning is the most basic form of motion planning in which
we only consider kinematics, ignoring issues of timing, dynamics, non-holonomic
constraints, sensing and mapping. In the algorithmic study of path planning,
the problem is reduced to connectivity or reachability in some configuration
space. There are three main approaches here: Exact, Sampling and Subdivision.
Divergent paths have been taken: theoreticians favor the Exact Approach [2],
but practical roboticists prefer the Sampling and Subdivision Approaches [11,
9]. For two decades, the Sampling Approach has dominated the field. According
to Choset et al. [9, p.201], “PRM, EST, RRT, SRT, and their variants have
changed the way path planning is performed for high-dimensional robots. They
have also paved the way for the development of planners for problems beyond

? Plenary Talk at the 9th Int’l. Frontiers of Algorithmics Workshop (FAW 2015) in
Guilin, China, July 3-5. This work is supported by NSF Grants CCF-0917093 and
CCF-1423228.

2

basic path planning.” The premise of this paper is that subdivision has many
merits over sampling, and this power has not been fully exploited. But to open
up this exploitation, we need to give it a sound foundation. This paper will pro-
vide one such foundation. We formulate the Soft Subdivision Search or SSS
to unify and generalize our several recent papers [20, 12, 13, 21] in which we de-
signed and implemented subdivision planners for several classes of robots. These
SSS planners are relatively easy to design and implement. In our experiments,
they outperform random sampling methods.

To introduce our approach, we compare the notion of correctness according
to the three approaches. In the path planning problem, the robot R0 is fixed,
and each input instance is (Ω,α, β) where Ω ⊆ Rk (k = 2, 3) is a description of
the obstacles, and α, β ∈ Cspace(R0) are the start and goal configurations. In
exact algorithms, the planner must return a path if one exists, and must return
NO-PATH otherwise. In sampling, the input has an extra parameterN that bounds
the maximum number of samples; the planner is said to be “sampling complete”
if the planner returns a path with high probability when one exists and N is
sufficiently large. In subdivision, the input has an extra resolution parameter
ε > 0, and the planner is “resolution complete” if the planner returns a path
when the ε is small enough. Thus sampling and (current) subdivision planners are
similar in that their behaviors are only prescribed when there is a path. If there
is no path, nothing is prescribed. In computability, such one-sided prescription
of algorithmic behavior is well-known and is called “partial completeness”. To
make the completeness “total”, we [20] introduce the concept of resolution-
exact planners. Such a planner has an accuracy constant K > 1 (independent
of input) such that:

(P) If there is a path of clearance Kε, it returns a path.
(N) If there is no path of clearance ε/K, it returns NO-PATH.

Thus the NO-PATH output guarantees that there is no path of clearance Kε. But
the true innovation is the gap between the clearance bounds Kε and ε/K: our
planner could either return a path or NO-PATH when the optimal clearance lies
in this gap. This “indeterminacy”, unavoidable in some sense [20], has a big
payoff — resolution-exact planners can be implemented with purely numerical
approximations. As all the common fundamental constants1 of Physics are known
to no more than 8 digits of accuracy, and no robot dimension, actuator control,
sensors or environment is known to nearly such accuracy, we should not see this
indeterminacy as a limitation.

Our paper [25] is a companion to the present paper, providing background
and other motivations. It presents SSS alongside PRM [10] as two general algo-
rithmic “frameworks” based on a small number of subroutines and data struc-
tures. We get specific algorithms by instantiating these subroutines and data
structures. As framework, “PRM” can cover many of its known variants. These
two frameworks share many favorable properties, all lacking in exact algorithms.
But we claim one advantage of SSS over PRM: PRM has a halting problem which
SSS does not have. We clarify this remark: under the usual idea that NO-PATH

1 Except speed of light which is exactly known, by definition.

3

means “non-existence of paths”, PRM cannot halt when there is no path. But
suppose PRM adopts our viewpoint that NO-PATH means “no path of sufficient
clearance”. Now, PRM could halt2 but this amounts to exhaustive (exponential)
search. In effect, exponential search amounts to non-halting. But our subdivi-
sion approach need not suffer from exponential behavior because we are able to
eliminate large regions of the configuration space with a single test. Conceivably,
there are adaptive search strategies that guarantee polynomial size search trees.
For example, such results are known in our subdivision work on root isolation
[18, 6, 19]: here, the worst-case subdivision tree sizes is provably linear (resp.,
quadratic) in terms of tree depth for the problems of real (resp., complex) root
isolation.

¶1. Overview. In Section 2, we describe the SSS Framework. In Section 3,
we provide the abstract elements of SSS: configuration spaces are replaced by
metric spaces and Non-Euclidean spaces are subdivided via charts and atlases.
Section 4 proves properties of SSS planners that satisfy some general axioms.
Section 5 shows that exact algorithms can be recovered with SSS planners. We
conclude in Section 6. For reasons of space, some proofs are deferred to the full
paper. Figures 1 and 2 are in color.

2 The SSS Framework

What sets Subdivision Search apart from sampling or grid methods is that its
predicates are not point-based but region-based. Suppose each γ ∈ Cspace has
a classification as FREE, STUCK, or MIXED. Write C(γ) for the classification of γ.
We extend the classification to a set (or region) B ⊆ Cspace as follows: define
C(B) = FREE (resp., = STUCK) iff each γ ∈ B is FREE (resp., STUCK); otherwise

C(B) = MIXED. A classification function C̃ is a soft predicate (relative to C)

if it is conservative (i.e., C̃(B) 6= MIXED implies C(B) = C̃(B)) and convergent

(i.e., if limi→∞Bi → γ ∈ Cspace then C̃(Bi) = C(γ) for i large enough). Here
we write limi→∞Bi → γ to mean that {Bi : i ≥ 0} is a monotone decreasing
sequence of sets that converge to γ.

Let us now use soft predicates for path planning. Fixed a robot R0. The
motion planning input is (Ω,α, β, ε) as above. It is standard (and without much
loss) to also specify an initial box B0 ⊆ Cspace to confine our sought-for path.
Our main data structure is a subdivision tree, T . It is useful to initially imag-
ine Cspace ⊆ Rd, and T as the standard multidimensional version of quadtrees,
rooted at B0. But bear in mind our goal of extending Cspace to non-Euclidean
spaces, and B to non-box geometries. The SSS planner amounts to a loop that
“grows” T in each iteration by expanding some leaf until we find a path or con-
clude NO-PATH. There are two supporting data structures and three key routines:

2 To do this, it would have to detect (probabilistically) that the sampling is dense
enough, a non-trivial extension of the current PRM formulations.

4

– (Priority Queue) Q is a priority queue comprising3 those MIXED-leaves with
length `(B) (defined below) is at least ε.

– (Union-Find) D is a union-find data structure to maintain the connected
components of the FREE boxes. As soon as we find a new FREE box, we form
its union with the other adjacent FREE boxes. Boxes B,B′ are adjacent if
B ∩B′ is a d− 1 dimensional set.

– (Classifier) The routine C̃ is a soft predicate that classifies each node in T
as FREE/STUCK/MIXED.

– (Search Strategy) This is represented by the queue’s Q.getNext() that re-
turns a box in Q of highest priority.

– (Expander) The subroutine Expand(B) subdivides B into two or more sub-
boxes. These subboxes become the children of B in T . In general, Expand(B)
represents a splitting strategy because it may have to choose from one or
more alternative expansions.

– For γ ∈ Cspace, let Box(γ) denote any leaf in T that contains γ. Also,
Find(γ) denotes the box returned by the find operation of D when it is given
Box(γ). Thus, a path is found as soon as we discover Find(α) = Find(β).

Putting them together, we get our SSS framework:

SSS Framework
1. . Initialization.

While (C̃(Box(α)) 6= FREE)
If Box(α) has length < ε, Return (NO-PATH)
Else Expand(Box(α))

While (C̃(Box(β)) 6= FREE)
... do the same for β ...

2. . Main Loop:
While (Find(α) 6= Find(β))

If Q is empty, Return(NO-PATH)
B ← Q.getNext()
Expand(B)

3. Compute a FREE channel P from Box(α) to Box(β)

Generate and return the “canonical path” P inside P .

This framework has been used successfully to implement our disc and triangle
planners [20], and our 2-link planner [12] including an interesting variant where
self-crossing is not allowed [13]. Illustrating the power of subdivision and soft-
ness, we can easily generalize all these examples by fattening the robots and/or
the polygonal obstacles. Notice that such extensions would be difficult for exact
methods (to our knowledge, exact algorithms are unknown for such extensions).
Of course many variants of this framework has appeared in the subdivision liter-
ature; conversely, some of these algorithms can be recaptured within SSS. E.g.,

3 A simple variation (as in Djikstra or A-Star) is to further restrict Q to those boxes
that are adjacent to the connected component of FREE boxes that the configuration
α or β.

5

the hierarchical search of Zhu and Latombe [28], Barbehenn and Hutchinson
[1], or Zhang, Kim and Manocha (2008) [27]. One major difference is that these
papers expand along a “mixed channels” (i.e., path comprising FREE or MIXED

boxes). We could modify our getNext to achieve similar behavior; one advantage
of this approach is that NO-PATH could be detected before emptying the queue.
This abstract description hides an important feature of our technique: our com-
putation of C̃ is deeply intertwined with the expansion of T (see [8]). Steve
LaValle (insightfully) described this as “opening up the blackbox” of collision
testing.

3 Generalized Setting for SSS

Once the SSS framework has been instantiated with specific routines, we have
an SSS planner. How do we know that the planner is resolution-exact? Our
goal is to prove this under general “axiomatic” conditions. Designing a short
list of such axioms is very useful: first, it gives us a uniform way to check that
any proposed SSS algorithm is resolution-exact, just by checking the axioms.
We could for instance apply this to our previous planners [20, 12, 13]. Second,
because planning is a complex task, and we expect that SSS will suffer many
variants, we must know the boundaries of the variations. The axioms serve as
boundary markers.

The starting point is to replace Cspace by a metric space X, and replace
Cfree by an open set Y ⊆ X. Points in the boundary ∂Y of Y are said to
be semi-free. Let CY : X → {+1, 0,−1} denote the (exact) classifier for Y :
CY (γ) := +1/0/ − 1 iff γ belongs to Y/∂(Y)/X \ Y where Y is the closure
of Y . Note that we have performed a simple (non-essential) translation in our
classification values: FREE→ +1, MIXED→ 0, and STUCK→ −1.

We extend the classification of points to classification of sets. There are two
general ways to extend any function to a function on sets: let f : S → T be a
function. The set extension of f (still denoted f) is the function f : 2S → 2T

such that for B ⊆ S, f(B) = {f(b) : b ∈ B}. Here 2S denotes the power set
of S. Another general method applies to any geometric4 predicate g : S →
{+1, 0,−1}. The set extension of g (still denoted g) is the geometric predicate
g : 2S → {+1, 0,−1} such that for any definite value v ∈ {+1,−1}, g(B) = v iff
g(b) = v for all v ∈ B; otherwise g(B) = 0.

Although the set extension of the classifier CY : X → {+1, 0,−1} is appli-
cable to any subset B ⊆ X, in practice, we need B is be “nice” in order to
carry out our algorithm: B must be able to support subdivision, CY (B) must
be (softly) computable, and we should be able to discuss the limits of such sets,
limi→∞Bi. We next capture these properties using “test cells”.

4 A geometric predicate is a 3-valued function, with a distinguished value 0 called
the indefinite value. The others are called definite values. This is in contrast to
a logical predicate which is 2-valued.

6

¶2. Test Cells and Subdivision Trees. Consider an Euclidean set B ⊆
Rd. It is called a test cell if it is a full-dimensional, compact and convex poly-
tope. For d = 1 (d = 2), test cells are intervals (convex polygons). Our subdivi-
sion of the metric space X will be carried out using such test cells.

Let the width w(B) (resp., length `(B)) refer to the minimum (resp., max-
imum) length of an edge of B. The unique smallest ball containing B is called
the circumball of B; its center c(B) and radius r(B) are the circum-center and
circum-radius of B. Note that c(B) need not lie in the interior of B. The inner
radius r0(B) of B is the largest radius of a ball contained in B. Let ic(B) com-
prises the centers of balls of radius r0(B) that are contained in B. E.g., if B is
a rectangle, then ic(B) is a line segment. Clearly, ic(B) is convex. Its circum-
center c(ic(B)) is called the inner center of B, denoted c0(B). Unlike c(B), we
now have c0(B) in the interior of B. We use c0(B) as follows: for any α > 0, αB
will mean scaling B by a factor α relative to the center c0(B). If α > 1 (< 1)
this amounts to growing (shrinking) B. The inverse operation is denoted B/α.
Thus (αB)/α = B. The aspect ratio of B is ρ(B) := r(B)/r0(B) > 1.

By a subdivision of a test cell B, we mean any finite set of test cells
{B1, . . . , Bm} such that B =

⋃m
i=1Bi and dim(Bi ∩ Bj) < d for all i 6= j.

We denote the subdivision relationship as B = B1]B2] · · ·]Bm.
Let Rd denote some set of test cells. For instance, Rd may the set of all

boxes, or the set of all simplices. Let the function Expand : Rd → 2 Rd

return a
subdivision Expand(B) of B. In general, Expand is a non-deterministic function5

and we may call it an “expansion scheme”. Using an expansion scheme, we can
grow subdivision trees rooted in any B ∈ Rd, by repeated expansion at any
chosen leaf. We note some concrete schemes:

– Longest Edge Bisection: let Rd be simplices and Expand(B) returns a
subdivision of B into two simplices by bisecting the longest edge in B (see
[17]).

– Box Subdivision Scheme: let Rd be the set of all (axes-parallel) boxes
and Expand(B) return a set of 2i congruent boxes (for some i = 1, . . . , d).
This set is defined by introducing i axes-parallel hyperplanes through the
center of B. There are

(
d
i

)
ways to choose these hyperplanes. So there are

2d − 1 possible expansions.
– Dyadic Schemes: We call a scheme is dyadic if, for any test cell B, each

vertex of a subcell B′ ∈ Expand(B) is either a vertex of B or the midpoint
of an edge of B. The previous two examples are dyadic schemes. The signif-
icance of such schemes is that they can be exactly and efficiently computed:
recall that a dyadic number (or BigFloat) is a rational number of the form
m2n (m,n ∈ Z). The operations +,−,× on dyadic numbers are very efficient
and division by 2 is exact. Vertices of test cells in a dyadic subdivision tree
have the form

∑k
i=1 civi where ci are dyadic numbers and v1, . . . , vk are the

5 We use the notation in, e.g., [3]. This means there is a set, denoted set−Expand(B),
of subdivisions of B, and Expand(B) denotes (non-deterministically) any element
of this set. We assume set−Expand(B) is non-empty so that Expand(B) is a total
function.

7

vertices of the root. The bit size of the ci’s grows linearly with the depth,
not exponentially.

¶3. Subdivision Atlases for Non-Euclidean Spaces. Note that if we
have a point or ball robot in Euclidean space, then the resolution-exactness of
SSS algorithms is indeed trivial. But configuration spaces are rarely Euclidean.
Subdivision in non-Euclidean spaces is a nontrivial problem. Likewise, sampling
in such spaces is also a research issue (Yershova et al. [26]). Our approach is to
borrow the language of charts and atlases from differential geometry. Suppose
the metric space X has the property X = X1 ∪ X2 ∪ · · · ∪ Xm such that for
each Xt, we have an onto homeomorphism µt : Bt → Xt where Bt is a test cell,
and dim(µ−1t (Xt ∩Xs)) < d for all t 6= s. We call each µt a chart and the set
{µt : t = 1, . . . ,m} is called an subdivision atlas for X.

The subdivision of X is thus reduced to subdivision in each Xt, carried out

vicariously, via the chart µt. More precisely, let Expandt : Bt → 2 Bt be an
expansion scheme where Bt ⊆ 2Bt is a set of test cells, with Bt ⊆ Bt. Call
µt(B) := {µt(γ) : γ ∈ B} (B ∈ Bt) a test cell induced by µt. Let X denote
the set of induced test cells. Finally, let X denote the disjoint union of the

Xt’s (for all t = 1, . . . ,m) and let ExpandX : X → 2 X denote the induced ex-
pansion defined by ExpandX(µt(B)) = µt(Expandt(B)). We have thus achieved
subdivision in X. In the following, we might say “B/α” (scaling), “c(B)” (cen-
ter), etc. But it should be understood that we mean µ(B′/α), µ(c(B′)), etc.,
where B = µ(B′) for some test cell B′.

Call the intersection Xt ∩ Xs (s 6= t = 1, . . . ,m) an atlas transition if
dim(Xt ∩ Xs) = d − 1. For motion planning, recall that two cells are adjacent
if they share a face of codimension 1. Thus atlas transitions yield adjacencies
between cells in Xs and in Xt. Thus we have two kinds of adjacencies: those
that arise from the subdivision of test cells, and from atlas transitions.

¶4. Subdivision Atlases for S2 and SO(3) It can be shown that the
Cartesian product of two test cells is a test cell. This is important because
our space X is normally a Cartesian product X = XT × XR comprising a
translational (Euclidean) part XT and a rotational (non-Euclidean) part XR.
Test cells for XT are obvious, but we require some machinery for XR.

We now consider two non-Euclidean metric spaces, S2 and SO(3). We will
identify SO(3) with the unit quaternions, q = (a, b, c, d) = a+ ib+ jc+ kd with
a2 + b2 + c2 +d2 = 1. Then SO(3) is a metric space with a metric d(·, ·) given by
the angle d(q, q′) := cos−1(|q · q′|) between two unit quaternions q, q′ (see [26]).
Likewise, we can treat S2 as a metric space with the great circle distance.

We are interested in the 2-sphere S2 because the configuration spaces of
several simple rigid robots living in R3 is given by R3 × S2: a rod (1D), a
cone or bullet (3D), a disc (2D) and a ring (1D). See Figure 1(a). The ring is
interesting because it is the simplest rigid robot that is not simply-connected.
Despite the simplicity of their configuration spaces (being 5-DOF), it seems that
no complete exact planners have been designed for them. The reason seems to

8

be related to the difficulties of exact algorithms for the “Voronoi Quest” [22].
We are currently designing and implementing a resolution-exact planner for a
rod [21]. It would test the practicality of our theory. We can make the rod, ring
and disc into thick robots by taking their Minkowski sum with a 3D-ball. But
we expect that any SSS planner for thin robots will extend relatively easily to
thick analogues (similar to the situation in the plane [12]).

S−z

Rod Cone Disc Ring

Y

Z

S+x

S−y

S+y

S+z

S−xModel

of S2:

(a)

(b)

X

O
Fig. 1. 3D rigid robots with 5-DOF

Note that S2 is not a subgroup, but a quotient group of SO(3) (this is clear
from the Hopf fibration of SO(3) [26]). To create a subdivision atlas for S2,
let I3 = I × I × I be the 3-cube where I = [−1, 1]. Its boundary ∂I3 can be
subdivided into 6 squares denoted S±δ where δ ∈ {x, y, z}. See Figure 1(b).
For instance, S+z = {(x, y, 1) : x, y ∈ I} and S−z = {(x, y,−1) : x, y ∈ I}. We
obtain a subdivision chart of S2 by using 6 charts: µ±δ : S±δ → S2 where
µ±δ(q) = q/‖q‖ where ‖q‖ is the Euclidean norm. Note that µ±δ does not depend
on ±δ and so there is really only one function µ(q) for all the charts. The inverse
map µ−1 : S2 → ∂I3 is also easy: µ−1(γ) = γ/‖γ‖∞ where ‖q‖∞ is the infinity
norm.

Call this construction the cubic atlas for S2. We now construct a similar
cubic atlas for SO(3) (it was mentioned in Nowakiewicz [14]).

Begin with the 4-cube I4: it has eight 3-dimensional cubes as faces. After
identifying the opposite faces, we have four faces denoted C3

w, C
3
x, C

3
y , C

3
z (see

Figure 2). We define the chart: µt : C3
t → SO(3) given by µt(q) = q/‖q‖ (where

t = w, x, y, z). As noted above, we must keep track of the adjacencies that arise
from our atlas. In our case, this arise from from the identification of antipodal

9

Z

O

Y

Z

X

W

O

Y

X

W

O

Y

Z

X O

Y

Z

W

X

(c) Cz (d) Cy

(b) Cx(a) Cw

W

O

Y

Z

X

W

Fig. 2. The Cubic Atlas for SO(3)

points, q ∼ −q in S3. In our cubic model, this information is transferred to
identification of 2-dimensional faces among the C3

t ’s.
A chart µ : Bt → Xt is good if there exists a chart constant C0 > 0

such that for all q, q′ ∈ Bt, 1/C0 ≤ dX(µ(q),µ(q′))
‖q−q′‖ ≤ C0 where dX(·, ·) is the

metric in Xt. The subdivision atlas is good if there is an atlas constant C0

that is common to its charts. Note that good atlases can be used to produce
nice sampling sequences [26]: since our test cells are Euclidean sets, we can
exploit sampling of Euclidean sets. Alternatively, we can produce a “uniform”
subdivision into sufficiently test cells, and pick the center of each test cell as
sample point. The following is immediate:

Lemma 1. The cubic subdivision atlases for S2 and SO(3) are good.

¶5. Soft Predicates. We define soft predicates in the space X. Let Y ⊆ X.
We call C̃ : X → {+1, 0,−1} a soft classifier of Y if it satisfies two properties:

– (conservative) for all B ∈ X, C̃(B) 6= 0 implies C̃(B) = CY (µ(B)).

– (convergent) if q = limi→∞Bi then C̃(Bi) = CY (µ(q)) for i large enough.

For resolution-exactness, we need another property: a soft classifier C̃ is effec-
tive if there is an effectivity factor σ > 1 such that if C̃(B) = +1 then

C̃(B/σ) = +1. For instance, we see that effectivity of C̃ implies it is convergent.
Note we do not require CY (B) = −1 to imply CY (B/σ) = −1.

10

Given α, β ∈ X and Y ⊆ X, the exact planning problem is finding a path
from α to β in Y if they belong to the same connected component of Y , and
NO-PATH otherwise. The resolution-exact version will require a connection be-
tween the metric in configuration space X and the metric in physical space Rk.
For this purpose, recall the concepts of footprint and separation of Euclidean sets
(see [25, 20]): Our robot R0 lives in physical space Rk (k = 2 or k = 3) amidst

an obstacle set Ω ⊆ Rk. The footprint map is Fprint : Cspace → 2R
k

where
Cspace = Cspace(R0) is the configuration space. Intuitively, Fprint(γ) ⊆ Rk
is the physical space occupied by robot R0 in configuration γ. The clearance
function, C` : Cspace → R≥0 is given by C`(γ) := Sep(Fprint(γ), Ω), where
Sep(A,B) := inf {‖a− b‖ : a ∈ A, b ∈ B} is the separation between two Eu-
clidean sets in Rk. We say γ is free if C`(γ) > 0. A motion is a continuous
function π : [0, 1]→ Cspace; its clearance is inf {C`(π(t)) : t ∈ [0, 1]}. Call π a
path if it has positive clearance.

In our abstract formulation, we postulate the existence of a continuous func-
tion C` : X → R without reference to the underlying footprint or Ω. Moreover,
this is called a generalized clearance function because we now allow negative
clearance, interpreted as “penetration depth” (e.g., [8, 27]). Call C` a clearance
function for Y if Y = {γ ∈ X : C`(γ) > 0)}. We then consider interval functions
of the form

C` : X → R.

(Recall that R is a set of intervals.) We call C` a conservative approxi-
mation of C` if C`(B) 6= 0 implies C`(B) = C`(B) for all B ∈ X. We say
C` converges to C` if whenever γ = limi→∞Bi, then C`(Bi) = C`(γ) for i

large enough. Finally, C` is called a box function for C` if it is conservative
and convergent relative to C`.

Note that C` defines a classification function C̃ : X → {+1, 0,−1} where

C̃(B) = 0 iff 0 ∈ C`(B); otherwise, C̃(B) = sign(C`(B)) (either +1 or −1).
The following is immediate:

Lemma 2. Let C` : X → R be a clearance function for Y ⊆ X, and suppose
C` : X → R is a box function for C`.

Then the classification function C̃ : X → {+1, 0,−1} defined by C` is a soft
classifier of Y .

¶6. Soft Predicates for Complex Robots. An example of a robot with
complex geometry is the gear robot of Zhang et al. [27]. Such robots pose dif-
ficulties for exact algorithms. We show that soft predicates for complex robots
can be decomposed. Let G0 ⊆ R2 be the gear robot. We write it as a union
G0 = ∪mj=1Tj of triangles Tj . The free space of G0 can be written as the inter-
sections of the freespaces of Tj , provided the Tj ’s are expressed in a common
coordinate system. This proviso requires a slight generalization of the soft pred-
icate for triangles in [8]. The next theorem shows how to obtain a soft predicate
for G0 from those of the Tj ’s:

11

Theorem 1 (Decomposability of Soft Predicates). Suppose Y = Y1∩· · ·∩
Ym. If C̃i : X → {+1, 0,−1} is a soft classifier for Yi, then the following is a
soft classifier for Y :

C̃(B) :=

+1 if (∀j)[C̃j(B) = +1]

−1 if (∃i)[C̃i(B) = −1],
0 else.

If each C̃j’s has effectivity factor σ, then C̃(B) has effectivity factor σ.

Proof. We easily check that C̃(B) is safe. To show convergence, suppose
that Bi → p. CASE (+1): If p ∈ Y , then p ∈ Yj for each j. That means

C̃j(Bi) = 1 for i large enough. I.e., C̃(Bi) = 1 for i large enough. This proves

limi≥0 C̃(Bi) = +1 = C(p). CASE (-1): If p ∈ X \Y , then p ∈ X \Yj for some Yj .

This means C̃j(Bi) = −1 for i large enough, and therefore C̃(Bi) = −1 for i large

enough. Again, limi≥0 C̃(Bi) = −1 = C(p). CASE(0): Suppose p ∈ ∂Y . Then

p ∈ ∂Yj for some j and for all k 6= j, p ∈ Yk. That implies that C̃k(Bi) ∈ {+1, 0}.
Again, limi≥0 C̃(Bi) = 0 = C(p). This proves the softness of the predicate C̃(B).

Assume each C̃j has an effectivity factor σ > 1. Let Cj(B) be the exact
box predicate for Yj . Suppose C(B) is free. This means each Cj(B) is free. By

definition of effectivity, each C̃j(B/σ) is free. Hence C̃(B/σ) is free. Q.E.D.

4 Axiomatic Properties of SSS

We prove general properties of SSS planners using basic assumptions which we
call axioms. The proofs are instructive because they reveal how these axioms
and properties of SSS are used. We introduce 5 axioms, beginning with these
four:

– (A0: Softness)

C̃ is a soft classifier for Cfree = {γ ∈ X : C`(γ) > 0}.
– (A1: Bounded dyadic expansion)

The expansion scheme is dyadic, and there is a constant D0 > 2 such that
Expand(B) splits B into at most D0 subcells, each with at most D0 vertices,
with the ratio `(B)/w(B) at most D0.

– (A2: Clearance is Lipschitz)
There is a constant L0 > 0 such that for all γ, γ′ ∈ Cfree, |C`(γ)−C`(γ′)| <
L0 · dX(γ, γ′) where dX(·, ·) is the metric on X.

– (A3: Good Atlas)
The subdivision atlas has an atlas constant C0 ≥ 1.

Note that these axioms concern the clearance C` : X → R, the classifica-
tion C̃ : X → {+1, 0,−1} and the Expand scheme. We have no axioms about
getNext because the needed properties are embedded in the SSS framework,

12

namely getNext returns a MIXED-leaf with length `(B) ≥ ε if any exist. Recall
that in general, B ∈ X is induced via our charts µt, and so the metrics such as
`(B) and w(B) are induced from the Euclidean sets B′ where µt(B

′) = B, i.e.,
`(B) refers to `(µ−1t (B)) = `(B′), etc. Note that (A1) does not bound the aspect
ratio r(B)/r0(B) and these may be unbounded (slivers are allowed). (A2) relates
clearance to the metric on X: this is a non-trivial axiom in non-Euclidean spaces.
(A3) is necessary since subdivision of X is done via charts {µt : t = 1, . . . ,m}.

Theorem 2 (Halting under (A0),(A1)). Every SSS planner halts. When a
path is output, it is valid.

Proof. In any infinite path {Bi : i ≥ 0}, (A1) implies limi `(Bi)→ 0. Since we do
not subdivide a box if ”`(B) < ε”, halting is assured. At termination, we either
report a path or output NO-PATH. If we report a path, it meant we found a “free
channel” from B(α) to B(β). We check that SSS ensures that the channel is truly
free: the dyadic scheme (A1) ensures that test cells are computed exactly, and
thus adjacencies are computed without error. Each cell in the channel is classified
as FREE, and this truly free because (A0) ensures a conservative classifier C̃.
Finally, output paths are valid as they are contained in free channels. Q.E.D.

This theorem only gives a partial correctness result because it makes no
assertions about the NO-PATH output. Although our goal in (A0) is soft classifiers,

it is a useful preliminary to consider the case where C̃ is the exact classifier. In
this case, we say our planner is exact. This preliminary step is captured in the
next result:

Theorem 3 (Exact SSS). Assuming an exact SSS planner:
(a) If there is no path, the planner outputs NO-PATH.
(b) If there is a path with clearance ≥ 2C0D0εL0, the planner outputs a path.

Proof. Part(a) is essentially the contrapositive of the previous Halting theorem.
For part(b), let T be the subdivision tree at termination. The nodes of T are
induced cells of X. Each B ∈ X comes from an Euclidean test cell µ−1(B) ∈
Rd for some chart µ. Euclidean distance ‖ ·‖2 in µ−1(B) and the metric dX(·, ·)

of X are related via the chart constant C0. Let π : [0, 1]→ X be a path from α
to β with clearance 2C0D0εL0. By way of contradiction, suppose SSS outputs
NO-PATH. This implies that every mixed leaf satisfies `(B) < ε. Consider the
set A of leaves of T that intersect π[0, 1] (the range of π). If B ∈ A, there
exists t ∈ [0, 1] such that π(t) ∈ B. This implies B is either free or mixed. We
claim that B is free. If B is mixed, then `(µ−1(B)) < ε and there is a point
p′ ∈ B that is semi-free. Thus ‖p − q‖2 < D0ε for any two Euclidean points
p, q in µ−1(B). Using the chart µ, we conclude that dX(µ(p), µ(q)) < C0D0ε.
Therefore dX(π(t), p′) ≤ dX(π(t), c(B)) + dX(c(B), p′) < 2C0D0ε. By (A2),
|C`(π(t))−C`(p′)| < 2C0D0εL0. Thus C`(p′) > C`(π(t))− 2C0L0εL0 ≥ 0, i.e.,
p′ is free. This contradicts the assumption that p′ is semi-free; so B must be free.
Thus we obtain a channel of free cells from α to β using cells in A. The existence
of such a channel implies that our union-find data structure in SSS would surely
detect a path. Q.E.D.

13

Our goal is not to produce the sharpest constants but to reveal their roles in
our framework. This theorem reveals an indeterminacy: if the optimal clearance
lies in (0, 2C0D0εL0), the exact Planner may output either a path or NO-PATH.

¶7. Three Desiderata. The literature is typically partial as in Theorem 2
or assumes exactness as in Theorem 3. There are three desiderata beyond such
results. The first is to remove the exactness assumption. Second, we would like
to strength the hypothesis of Theorem 3(a) to “if there is no path with clearance
ε/K” for some input-independent K > 1. In other words, NO-PATH ought to
mean no path of “sufficient clearance”, a reasonable idea in view of the inherent
uncertainty of physical devices. Third, we may want to strengthen the conclusion
of Theorem 3(b) so that the output path has clearance ≥ ε/K.

The first desiderata calls for soft predicates. We say that the SSS planner
is effective if the soft predicate C̃ has an effectivity constant σ > 1. In appli-
cations, it is useful to assume that C̃ is isotone6 i.e., C̃(B) 6= 0 and B′ ⊆ B

implies C̃(B′) 6= 0. The proof of part(b) in the previous theorem can be extended
to show:

Theorem 4 (Effective SSS). Assume an SSS planner with effectivity σ > 1.
(a) If there is no path, the planner outputs NO-PATH.
(b) If there is a path with clearance ≥ C0D0ε(1 + σ)L0, the planner outputs a
path.

The indeterminacy gap is slightly widened to (0, C0D0ε(1 + σ)L0) by the soft
predicate.

The second desiderata amounts to asking for a resolution-exact planner. As
defined in the Introduction, such planners has an accuracy constant K > 1. So
we seek to narrow indeterminacy gap by raising the gap lower bound from 0 to
ε/K. The fundamental issue is to infer a lower bound on the clearance of a path
inside a free channel. This requires a new axiom:

– (A4: Translational Cells)
There is a constant K0 > 0 such that if B ∈ X is free, then its inner center
c0 = c0(B) has clearance C`(c0) ≥ K0 · r0(B). Such cells are said to be
translational.

Like (A2), axiom (A4) relates the clearance to the metric space (via the chart
µ). The “translational” terminology is based on the analogy that if X is purely
translational, then (A4) is true. But in fact, it will be true in all common motion
planning scenarios.

Theorem 5 (Resolution-Exact SSS).
Assuming (A0-A4), SSS planners are resolution-exact.

6 This term is from the interval literature. Though not strictly necessary, but it sim-
plifies some arguments.

14

This proof is more involved and will appear in the full paper. The third
desiderata requires that we strengthen condition (P) in the definition of resolution-
exactness as follows:

(P’) If there is a path of clearance Kε, then return a path of clearance ε/K.
See [25, 20] where (P’) is used. The combination of (P) and (N) implies that

whenever a path is output, we are assured that there exists a path of clearance
ε/K. So (P’) attempts to turn this existential guarantee into a constructive
guarantee. Unfortunately, this requires additional effort as in [25, 20]. We will
not attempt an axiomatic treatment to achieve (P’) here.

5 What about Exactness?

Can the SSS framework produce7 exact algorithms? The answer is yes, but as al-
ways, only in the algebraic case. First, here is a non-solution: using an exact SSS
planner with the resolution parameter ε = 0. Using an exact SSS re-introduces
the need for algebraic computation. By setting ε = 0, indeterminacy is removed,
but at a high price: if there is no path, then SSS will not halt. Even if there is
a path, SSS may not halt; but this could be fixed by imposing a “generalized
BFS” property on getNext. For these reasons, our normal formulation of SSS
requires ε > 0 and K > 1. We now present a solution within the SSS framework
using an effective soft predicate. The idea is to exploit the theory of constructive
zero bounds [24].

Proposition 3 If R0, Ω are semi-algebraic sets, and the parameters α, β are
algebraic, then there is an effectively computable number δ = δ(R0, Ω, α, β) > 0
such that: if there is a path from α to β, then there is one with clearance δ.

One way to derive such a δ is to use the general retraction theory in [23,
16, 15]: there is a “retract” V ⊆ Cfree = Cfree(R0, Ω) and a retraction map
Im : Cfree→ V with this property: for all α, β ∈ Cfree, we have that α, β are
path-connected in Cfree iff Im(α), Im(β) are path-connected in V . Here V is a
Voronoi diagram and we can subdivide V into semi-algebraic Voronoi cells. The
minimum clearance on V serves as δ, and this can be lower bounded using the
degree and height of the semi-algebraic sets [5]. The upshot is this:

Theorem 6. Suppose we have a resolution-exact planner with accuracy constant
K > 1. If we choose ε to be δ(R0, Ω, α, β)/K, then our SSS planner is exact: it
outputs NO-PATH iff there is no path.

6 Conclusion

In this paper, we described the SSS framework for designing resolution-exact
algorithms. We argued [25] that it shares many of the attractive properties of

7 We are indebted to Steve LaValle for asking this question at the IROS 2011 Workshop
in San Francisco.

15

the successful PRM framework. Subdivision algorithms are as old as the history
of path planning [4]. But to our knowledge, the simple properties of soft classifiers
have never been isolated, nor have concepts of resolution-limited computation
been carefully scrutinized. We believe focus on these “simple ideas” will open
up new classes of algorithms that are practical and theoretically sound. This has
implications beyond motion planning. Our work in SSS is not just abstract, as
we have validated these ideas in several non-trivial planners [20, 12, 13].

There are many open questions concerning SSS framework. Perhaps the
biggest challenge for SSS is the conventional wisdom that PRM can provide
practical solutions for problems with high degrees-of-freedom, while resolution
methods can only reach medium DOF, generally regarded as 5-8 DOF (Choset
et al. [9, p. 202]). Likewise, in Nowakiewicz [14], “[subdivision methods] are not
suitable for 6-DOF rigid body motion planning due to the large expected num-
ber of cells ... We believe that in high-dimensional spaces it has little practical
value.”

The other major challenge is a theoretical one: how to do complexity analysis
of adaptive subdivision in Motion Planning (cf. [18]). Here are some other topics:

– The current SSS framework detects NO-PATH by exhaustion. It is a challenge
to design efficient techniques (related to maintaining homology) to allow
fast detection of NO-PATH. A promising new work by Kerber and Cabello [7]
shows how to do this when Cspace = R2.

– Beyond kinematic spaces, subdivision in state spaces for kinodynamic plan-
ning seems quite challenging.

– Design and analysis of good adaptive search strategies, including the Voronoi
heuristic [23], or randomized or hybrid ones. E.g., efficient updates for dy-
namic A-star search [1] seems open.

ACKNOWLEDGMENTS. I am indebted to Yi-Jen Chiang, Danny Halperin,
Steve LaValle, and Vikram Sharma for many helpful discussions.

References

1. M. Barbehenn and S. Hutchinson. Toward an exact incremental geometric robot
motion planner. In Proc. Intelligent Robots and Systems 95., volume 3, pages
39–44, 1995. 1995 IEEE/RSJ Intl. Conf., 5–9, Aug 1995. Pittsburgh, PA, USA.

2. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Al-
gorithms and Computation in Mathematics. Springer, 2nd edition, 2006.

3. O. Beyersdorff, J. Köbler, and J. Messner. Nondeterministic functions and the
existence of optimal proof systems. Theor. Computer Science, 410(38–40):3839–
3855, 2009.

4. R. A. Brooks and T. Lozano-Perez. A subdivision algorithm in configuration space
for findpath with rotation. In Proc. 8th IJCAI - Volume 2, pages 799–806, San
Francisco, CA, USA, 1983. Morgan Kaufmann Publishers Inc.

5. W. D. Brownawell and C. K. Yap. Lower bounds for zero-dimensional projections.
In 34th Int’l Symp. Symbolic and Alge. Comp. (ISSAC’09), pages 79–86, 2009.
KIAS, Seoul, Korea, Jul 28-31, 2009.

16

6. M. Burr and F. Krahmer. SqFreeEVAL: An (almost) optimal real-root isolation
algorithm. J. Symbolic Computation, 47(2):153–166, 2012.

7. S. Cabello and M. Kerber. Semi-dynamic connectivity in the plane. In Algo-
rithms and Data Structure Symposium (WADS 2015), page To Appear, 2015. Also
arXiv:1502.03690.

8. Y.-J. Chiang and C. Yap. Numerical subdivision methods in motion planning, 2011.
Poster, IROS Workshop on Progress and Open Problems in Motion Planning. San
Francisco, Sep 30, 2011.

9. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Boston, 2005.

10. L. Kavraki, P. Švestka, C. Latombe, and M. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robotics
and Automation, 12(4):566–580, 1996.

11. S. M. LaValle. Planning Algorithms. Cambridge U. Press, Cambridge, 2006.
12. Z. Luo, Y.-J. Chiang, J.-M. Lien, and C. Yap. Resolution exact algorithms for

link robots. In Proc. 11th WAFR, 2014. 3-5 Aug 2014, Boǧaziçi Univ., Istanbul,
Turkey. To appear in a Springer Tracts in Advanced Robotics (STAR) volume.

13. Z. Luo and C. Yap. Resolution exact planner for non-crossing 2-link robot, 2015.
Submitted.

14. M. Nowakiewicz. MST-Based method for 6DOF rigid body motion planning in
narrow passages. In Proc. IEEE/RSJ International Conf. on Intelligent Robots
and Systems, pages 5380–5385, 2010. Oct 18–22, 2010. Taipei, Taiwan.

15. C. Ó’Dúnlaing, M. Sharir, and C. K. Yap. Retraction: a new approach to motion-
planning. ACM Symp. Theory of Comput., 15:207–220, 1983.

16. C. Ó’Dúnlaing and C. K. Yap. A “retraction” method for planning the motion of
a disc. J. Algorithms, 6:104–111, 1985.

17. M.-C. Rivara. Lepp-bisection algorithms, applications and mathematical proper-
ties. Appl. Numerical Math., 59(9):2218–2235, 2009.

18. M. Sagraloff and C. K. Yap. A simple but exact and efficient algorithm for complex
root isolation. In I. Z. Emiris, editor, 36th Int’l Symp. Symbolic and Alge. Comp.,
pages 353–360, 2011. June 8-11, San Jose, California.

19. V. Sharma and C. Yap. Near optimal tree size bounds on a simple real root isolation
algorithm. In 37th Int’l Symp. Symbolic and Alge. Comp.(ISSAC’12), pages 319 –
326, 2012. Jul 22-25, 2012. Grenoble, France.

20. C. Wang, Y.-J. Chiang, and C. Yap. On Soft Predicates in Subdivision Motion
Planning. Comput. Geometry: Theory and Appl., 2014. Special Issue for SoCG,
Rio de Janeiro, Brazil, Jun 17-20, 2013.

21. Z. Wei and C. Yap. Soft subdivision planner for a rod, 2015. In Preparation.
22. C. Yap, V. Sharma, and J.-M. Lien. Towards Exact Numerical Voronoi diagrams.

In 9th Proc. Int’l. Symp. of Voronoi Diagrams in Science and Engineering (ISVD).,
pages 2–16. IEEE, 2012. Invited Talk. June 27-29, 2012, Rutgers University, NJ.

23. C. K. Yap. Algorithmic motion planning. In J. Schwartz and C. Yap, editors,
Advances in Robotics, Vol. 1: Algorithmic and geometric issues, volume 1, pages
95–143. Lawrence Erlbaum Associates, 1987.

24. C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 41, pages
927–952. Chapman & Hall/CRC, Boca Raton, FL, 2nd edition, 2004.

25. C. K. Yap. Soft Subdivision Search in Motion Planning. In A. Aladren et al., editor,
Proceedings, 1st Workshop on Robotics Challenge and Vision (RCV 2013), 2013.

17

A Computing Community Consortium (CCC) Best Paper Award, Robotics Sci-
ence and Systems Conference (RSS 2013), Berlin. In arXiv:1402.3213.

26. A. Yershova, S. Jain, S. M. LaValle, and J. C. Mitchell. Generating uniform incre-
mental grids on SO(3) using the Hopf fibration. IJRR, 29(7), 2010.

27. L. Zhang, Y. J. Kim, and D. Manocha. Efficient cell labeling and path non-existence
computation using C-obstacle query. Int’l. J. Robotics Research, 27(11–12), 2008.

28. D. Zhu and J.-C. Latombe. New heuristic algorithms for efficient hierarchical path
planning. IEEE Transactions on Robotics and Automation, 7:9–20, 1991.

