Amortized Analysis of Balanced Quadtrees

Huck Bennett *

Chee Yap[†]

October 16, 2013

Abstract

Quadtrees are a well-known data structure for representing geometric data in the plane. A quadtree is called *balanced* if any two adjacent leaf boxes differ by at most one in height. In this paper, we analyze quadtrees which maintain balance as an invariant with each split operation, called a balanced split. Our main result shows that the balanced split operation has an amortized cost of O(1) time.

1 Introduction

Quadtrees [dBCvKO08, Sam90] are a well-known data structure for representing geometric data in two dimensions. Although the term "quadtree" is often overloaded to encompass many generalizations [Moo95], here we only consider the basic case corresponding to an aligned subdivision of a square. In this case there exists a natural one-to-one correspondence between quadtree nodes and boxes in the underlying subdivision. We refer the reader to Chapter 14 in [dBCvKO08] whose quadtree nomenclature we follow.

Two boxes (or associated nodes in a quadtree) are *adjacent* if the boxes share an edge, but have disjoint interiors. Two boxes that are adjacent are called *neighbors*.

We follow [dBCvKO08] in calling a quadtree *balanced* if any two adjacent leaf boxes differ by at most one in height. The motivation for balanced quadtrees comes from multiple domains, including good mesh generation [dBCvKO08] and motion planning [WCY13].

One important motivation is to maintain pointers to adjacent boxes to ensure efficient neighbor queries. Since a box can have $\Theta(n)$ neighbors in a tree of size n, we must not maintain explicit pointers to each neighbor. We associate 4 pointers with each node which point to adjacent boxes u.D ($D \in \{N, S, E, W\}$), one in each of the 4 compass directions. Box u.D has depth at most depth(u), and shares the D-edge of u; it is uniquely determined if we require its depth to be maximum, subject to these properties. With such pointers, we can easily list all the neighbors of a box in O(1) time per neighbor.

Besides neighbor queries, our quadtrees are dynamic and support the split operation at any specified leaf u. After splitting, the box at u is divided into four congruent subboxes which become children of u (u is no longer a leaf).

This leads to the following result:

Lemma 1. In the worst case a sequence of n splits, starting from the trivial quadtree of one node, has complexity $\Omega(n \log n)$.

This result says that the amortized cost of splits is $\Omega(\log n)$. It raises the question: is it possible to ensure amortized O(1) time for splits? This paper gives a positive answer, provided we maintain balance after each split.

This paper makes two primary contributions:

- It introduces a quadtree variant that maintains neighbor pointers with each box, and maintains balance as an invariant between splits. This allows for performing the neighbor_query operation in worst-case O(1) time.
- It shows that maintaining balance with each split requires amortized O(1) additional splitting operations.

We also discuss our implementation of the data structure and its applications in motion planning.

1.1 Related Work

A recent paper [LSS13] defines a slightly different model for balanced quadtrees, and claims that it is

^{*}Department of Computer Science, New York University. hbennett@cs.nyu.edu

[†]Department of Computer Science, New York University. yap@cs.nyu.edu

	Balanced	Standard
neighbor_query	O(1)	O(d)
bsplit/split	Amortized $O(1)$	O(1)
balance	(Maintained as invariant)	O((d+1)n)
point_query	O(d)	O(d)
Space used	O(n)	O(n)

Table 1: Comparison of the balanced quadtrees described in this paper with standard quadtrees. All costs are worstcase except for splitting balanced quadtrees. We achieve improvements to the **neighbor_query** and **balance** operations at the cost of **split** requiring amortized rather than worst-case O(1) time.

possible to maintain balance in this model in *worst-case* O(1) time per split. We discuss this claim and present a family of examples that show that a class of related local balancing algorithms cannot ensure balance in worst-case O(1) time in our model.

2 Main Results

Table 1 compares the cost of standard operations on quadtrees. We use n to denote the number of nodes in and d the depth of a quadtree T.

The following well-known theorem says that an arbitrary quadtree can be balanced using O(n) splits and O((d+1)n time:

Theorem 1 (Theorem 14.4 in [dBCvKO08], Theorem 3 in [Moo95]). Let T be a quadtree with n nodes. Then the balanced version of T has O(n) nodes and can be constructed in O((d+1)n) time.

We analyze the case where we balance after each split instead of performing an arbitrary number of splits before balancing. Let a *balanced split* operation bsplit(B) be a split of B followed by a balance of the resulting tree.

Intuitively a single splitting operation does not unbalance a quadtree much, so only a few additional splits should be required to rebalance a tree after one split. To show this formally one might try applying the analysis given by Theorem 1 to a sequence of balanced splits $\mathtt{bsplit}(B_1), \ldots, \mathtt{bsplit}(B_n)$. However that analysis only gives a worst-case linear time bound of O(i) for balancing after the *i*th split in a sequence $\mathtt{split}(B_1), \ldots, \mathtt{split}(B_n)$ where B_1 is the root box. It implies that a sequence of balanced splits $\mathtt{bsplit}(B_1), \ldots, \mathtt{bsplit}(B_n)$ takes $\sum_{i=1}^n O(i) = O(n^2)$ time, or an amortized bound of O(n) per \mathtt{bsplit} . Our main result is Theorem 2 which says that we can get a much better amortized bound by maintaining balance as an invariant:

Theorem 2. The total cost of any sequence of n balanced splits, starting from the trivial quadtree of one node, is O(n).

Proof Outline: The proof requires the analysis of what we call a forcing chain, $B_1 \rightarrow B_2 \rightarrow \cdots \rightarrow B_k$, of boxes where $depth(B_{i+1}) = depth(B_i) - 1$. In this case a split of B_1 will force the entire chain to split. We show that bsplit(B) causes at most two such chain splits for any box B. The charging of these chain splits is subtle: in the worst case, we only have to pay directly for the splits of B_1 , B_k and some suitably identified B_i (1 < i < k). The remaining splits can be charged to nodes in the quadtree.

Remark 1. Theorem 2 is stronger than Theorem 1 and implies it as a corollary.

References

- [dBCvKO08] Mark de Berg, Otfried Cheong, Mark van Kreveld, and Mark Overmars. *Computational Geometry: Algorithms and Applications*. Springer, Third edition, 2008.
- [LSS13] Maarten Löffler, Joseph A. Simons, and Darren Strash. Dynamic planar point location with sub-logarithmic local updates. In Frank Dehne, Roberto Solis-Oba, and Jörg-Rüdiger Sack, editors, WADS, volume 8037 of Lecture Notes in Computer Science, pages 499– 511. Springer, 2013.
- [Moo95] Doug Moore. The cost of balancing generalized quadtrees. In Symposium on Solid Modeling and Applications, pages 305–312, 1995.
- [Sam90] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.
- [WCY13] Cong Wang, Yi-Jen Chiang, and Chee Yap. On soft predicates in subdivision motion planning. In Proceedings of the twenty-ninth annual Symposium on Computational Geometry, SoCG '13, pages 349–358, New York, NY, USA, 2013. ACM.