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Abstract

Quadtrees are a well-known data structure for rep-
resenting geometric data in the plane. A quadtree is
called balanced if any two adjacent leaf boxes differ
by at most one in height. In this paper, we ana-
lyze quadtrees which maintain balance as an invari-
ant with each split operation, called a balanced split.
Our main result shows that the balanced split oper-
ation has an amortized cost of O(1) time.

1 Introduction

Quadtrees [dBCvKO08, Sam90] are a well-known
data structure for representing geometric data in
two dimensions. Although the term “quadtree”
is often overloaded to encompass many generaliza-
tions [Moo95], here we only consider the basic case
corresponding to an aligned subdivision of a square.
In this case there exists a natural one-to-one corre-
spondence between quadtree nodes and boxes in the
underlying subdivision. We refer the reader to Chap-
ter 14 in [dBCvKO08] whose quadtree nomenclature
we follow.

Two boxes (or associated nodes in a quadtree) are
adjacent if the boxes share an edge, but have dis-
joint interiors. Two boxes that are adjacent are called
neighbors.

We follow [dBCvKO08] in calling a quadtree bal-
anced if any two adjacent leaf boxes differ by at
most one in height. The motivation for balanced
quadtrees comes from multiple domains, including
good mesh generation [dBCvKO08] and motion plan-
ning [WCY13].

One important motivation is to maintain point-
ers to adjacent boxes to ensure efficient neighbor
queries. Since a box can have Θ(n) neighbors in a
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tree of size n, we must not maintain explicit point-
ers to each neighbor. We associate 4 pointers with
each node which point to adjacent boxes u.D (D ∈
{N,S,E,W}), one in each of the 4 compass direc-
tions. Box u.D has depth at most depth(u), and
shares the D-edge of u; it is uniquely determined if
we require its depth to be maximum, subject to these
properties. With such pointers, we can easily list all
the neighbors of a box in O(1) time per neighbor.

Besides neighbor queries, our quadtrees are dy-
namic and support the split operation at any spec-
ified leaf u. After splitting, the box at u is divided
into four congruent subboxes which become children
of u (u is no longer a leaf).

This leads to the following result:

Lemma 1. In the worst case a sequence of n splits,
starting from the trivial quadtree of one node, has
complexity Ω(n log n).

This result says that the amortized cost of splits
is Ω(log n). It raises the question: is it possible to
ensure amortized O(1) time for splits? This paper
gives a positive answer, provided we maintain balance
after each split.

This paper makes two primary contributions:

• It introduces a quadtree variant that maintains
neighbor pointers with each box, and maintains
balance as an invariant between splits. This al-
lows for performing the neighbor query opera-
tion in worst-case O(1) time.

• It shows that maintaining balance with each split
requires amortized O(1) additional splitting op-
erations.

We also discuss our implementation of the data
structure and its applications in motion planning.

1.1 Related Work

A recent paper [LSS13] defines a slightly different
model for balanced quadtrees, and claims that it is
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Balanced Standard
neighbor query O(1) O(d)
bsplit/split Amortized O(1) O(1)

balance (Maintained as invariant) O((d+ 1)n)
point query O(d) O(d)
Space used O(n) O(n)

Table 1: Comparison of the balanced quadtrees described
in this paper with standard quadtrees. All costs are worst-
case except for splitting balanced quadtrees. We achieve
improvements to the neighbor query and balance opera-
tions at the cost of split requiring amortized rather than
worst-case O(1) time.

possible to maintain balance in this model in worst-
case O(1) time per split. We discuss this claim and
present a family of examples that show that a class
of related local balancing algorithms cannot ensure
balance in worst-case O(1) time in our model.

2 Main Results

Table 1 compares the cost of standard operations
on quadtrees. We use n to denote the number of
nodes in and d the depth of a quadtree T .

The following well-known theorem says that an ar-
bitrary quadtree can be balanced using O(n) splits
and O((d + 1)n time:

Theorem 1 (Theorem 14.4 in [dBCvKO08], Theo-
rem 3 in [Moo95]). Let T be a quadtree with n nodes.
Then the balanced version of T has O(n) nodes and
can be constructed in O((d + 1)n) time.

We analyze the case where we balance after each
split instead of performing an arbitrary number of
splits before balancing. Let a balanced split operation
bsplit(B) be a split of B followed by a balance of
the resulting tree.

Intuitively a single splitting operation does not un-
balance a quadtree much, so only a few additional
splits should be required to rebalance a tree after one
split. To show this formally one might try apply-
ing the analysis given by Theorem 1 to a sequence of
balanced splits bsplit(B1), . . . , bsplit(Bn). How-
ever that analysis only gives a worst-case linear
time bound of O(i) for balancing after the ith
split in a sequence split(B1), . . . , split(Bn) where
B1 is the root box. It implies that a sequence
of balanced splits bsplit(B1), . . . , bsplit(Bn) takes∑n

i=1 O(i) = O(n2) time, or an amortized bound of
O(n) per bsplit. Our main result is Theorem 2
which says that we can get a much better amortized
bound by maintaining balance as an invariant:

Theorem 2. The total cost of any sequence of n bal-
anced splits, starting from the trivial quadtree of one
node, is O(n).

Proof Outline: The proof requires the analysis of
what we call a forcing chain, B1 → B2 → · · · → Bk,
of boxes where depth(Bi+1) = depth(Bi)− 1. In this
case a split of B1 will force the entire chain to split.
We show that bsplit(B) causes at most two such
chain splits for any box B. The charging of these
chain splits is subtle: in the worst case, we only have
to pay directly for the splits of B1, Bk and some
suitably identified Bi (1 < i < k). The remaining
splits can be charged to nodes in the quadtree.

Remark 1. Theorem 2 is stronger than Theorem 1
and implies it as a corollary.
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