
Analytic Root Clustering:

A Complete Algorithm using Soft Zero Tests⋆

Chee Yap⋆⋆, Michael Sagraloff, and Vikram Sharma

1 Courant Institute of Mathematical Sciences
New York University

New York, NY 10012, USA
yap@cs.nyu.edu

2 Max-Planck Institute of Computer Science
Saarbrücken, Saarland, Germany

msagralo@mpi-inf.mpg.de
3 Institute of Mathematical Sciences

Chennai, India
vikram@imsc.res.in

Abstract. A challenge to current theories of computing in the continua
is the proper treatment of the zero test. Such tests are critical for ex-
tracting geometric information. Zero tests are expensive and may be
uncomputable. So we seek geometric algorithms based on a weak form
of such tests, called soft zero tests. Typically, algorithms with such
tests can only determine the geometry for “nice” (e.g., non-degenerate,
non-singular, smooth, Morse, etc) inputs. Algorithms that avoid such
niceness assumptions are said to be complete. Can we design complete
algorithms with soft zero tests? We address the basic problem of deter-
mining the geometry of the roots of a complex analytic function. This is
formalized as the root clustering problem, and we provide a complete
(δ, ǫ)-exact algorithm based on soft zero tests.

1 Introduction: Soft Zero Tests

Almost a century ago, mathematicians and logicians began to develop a theory
of computation. It led to the highly successful theory of recursive functions and
its higher analogues [15]. Subsequently, in the hands of computer scientists, the
lower analogues (at the subrecursive levels) were developed. This is Complexity
Theory as we know it today [8]. The lower analogues turn out to have a richer
and harder theory: thus, the P versus NP is easily resolved at the higher level.
The main line of this development, especially in computer science, is largely
about computing over a discrete universe like strings or natural numbers. The
issues of computing in the continua, or its surrogate, the real line (R) is side-
stepped by this development. One approach to the continua is to use abstract

⋆ This paper was presented at an invited Special Session on “Computational Com-
plexity in the Continuous World” at Computability in Europe (CiE2013), July
1-5, Milan, Italy.

⋆⋆ This work is supported by an National Science Foundation Grant #CCF-0917093.

2

computational models that have operations on continua data, given as primitives.
Examples include Theoretical Computer Science under the Real RAM Model,
the Algebraic School [2], and also Information-Based Complexity (IBC) [18].
But a more foundational approach is to consider computational models which
(at least in principle) truly operate at the bit level, like Turing machines. The
analytic school of real computation [19,10] is the main representative.

It is apparent that computing over a discrete universe is vastly different than
computing over the continua. For instance, the fall-back method of “brute force
search” in discrete computation is not an option in the continua. Indeed, brute
force searches in the continua typically do not halt. From the perspective of
Exact Geometric Computation (EGC), current models of continua computing
are lacking [22]. The touchstone is the Zero Problem, deciding if a real constant
is zero. Current models lead to one of two conclusions about the Zero Problem:
(A) the problem is undecidable, or (B) the problem is trivial by fiat (zero test
is a primitive in the model). Our approach in [22] allows the zero problems to
have a range of complexity, consistent with what is observed in practice.

The EGC viewpoint is motivated by practical and correct implementation
of continua algorithms. It is the most successful approach in computational ge-
ometry, and implemented in libraries such as LEDA, CGAL, Core Library (see
references in [7,22]). Nevertheless, there are barriers when we address non-linear
and/or non-algebraic problems. We are therefore motivated to study weaker no-
tions of exactness in geometric computation. In particular, we explore models
of real computation in which only the non-zero sign of real constants can be
decided: given a numerical constant x (represented implicitly in some way) we
can only to ask whether x > 0 or x < 0, but not x = 0. See [21, Section VI].
In terms of programming constructs, we allow guarded statements of the form
“if x > 0 then do ...” (but there is no immediate else-clause because the failure
of “x > 0” does not allow us to conclude that x ≤ 0). The test x > 0 is im-
plemented by iterative approximation of x, a paradigm is nicely captured in the
subdivision framework (e.g., [21]). We call these soft zero tests (see Section
6), and they embody the well-known dictum in numerical computation: never
compare a quantity to zero. A realistic theoretical model for such computation
is the numerical pointer machine [22] based on Schönhage’s pointer machines.

What kind of geometric information can we compute using “soft algorithms”,
i.e., with soft zero tests? Clearly, in practice most computational scientists use
such algorithms. But we are interested exact algorithms that guarantee the
correct geometry. A striking example is Plantinga and Vegter’s soft algorithm
[13] for computing isotopic approximations of curves and surfaces. We recently
[21] gave a soft algorithm for the Voronoi diagram of polygonal objects. Both
these examples had to assume “nice” inputs: the curves and surfaces must be
non-singular [13], the Voronoi diagram must be non-degenerate [21]. Algorithms
that avoid niceness assumptions on inputs are said to be complete. So the
main challenge of this paper is design soft algorithms that are also complete.
One way to get obtain soft-and-complete algorithms is to exploit algebraic zero
bounds. For analytic problems, such bounds are not readily available and we

3

must weaken the exact geometry criteria using the backwards error idea from
numerical analysis. Informally, we propose to compute “an ǫ-correct output for
some δ-perturbation of the input”. The precise usage of these δ, ǫ parameters
will depend on the problem, but generally they lead to the concept of (δ, ǫ)-
exactness. In summary, our specific goal is to construct (δ, ǫ)-exact algorithms
that uses only soft zero tests, and are complete.

In this paper, we achieve this goal for one of the simplest geometric problems
in the continua: determining the geometry of zeros of a complex analytic func-
tion f [11]. One formulation of this classical problem is called root isolation,
defined as follows: given an input function f and a region of interest B0 ⊆ C,
to compute a maximal set D = {Di : i = 1, . . . , n} of pairwise disjoint disks,
each containing exactly one distinct root of f in B0. For algebraic polynomials,
algebraic techniques such as Sturm, Descartes, Continued Fraction methods are
available [5]. With soft zero tests, our analytic techniques cannot distinguish be-
tween a root of multiplicity k and a cluster of k roots. Hence we normally require
f to be “nice”, namely, has simple roots only. With our completeness goal, we
must allow multiple roots. So we now associate a multiplicity µi ≥ 1 with each
output disk Di, meaning that Di contains a “cluster” of µi roots (counted with
multiplicity). Thus the exact root isolation problem is transformed into the root
clustering problem.

All proofs are provided in an Appendix.

¶1. Related Work. A classic reference for the geometry of roots is Marden [11].
Rahman and Schmeisser [14] is a comprehensive modern account. There is a
large literature on exact root isolation for polynomials and its complexity (see
[5] and references therein). For analytic functions, Giusti et al [6] noted that “in
contrast to polynomials, few algorithms are known for locating and approximat-
ing clusters of zeros of analytic functions”. Their paper [6] contains a review of
what is known, and they provided an analysis of Newton iteration (generalized
to multiple roots with Schröder’s iteration) using a generalization of Smale’s
α-theory. Like Rump [16], many papers (e.g., [12]) focus on predicates for con-
firming analytic root clusters; they do not necessarily synthesize these predicates
into a global method for locating root clusters. Yakoubsohn [20] uses only exclu-
sion methods (but without root confirmation) and ǫ cut-offs for analytic zeros;
he further provided complexity analysis. Another approach to analytic zeros is
to use subdivision combined with the argument principle (e.g., [9,3]). Algo-
rithms for roots of polynomials using argument principle are also known, but
their complexity are suboptimal in this case. Intuitively, they are suboptimal
because of unnecessary exact root determination in each subdivision box.

2 Conditions for Root Clustering

We address two basic questions. First, when does the set of roots in a disk D
form a meaningful cluster? Second, what computational properties of the input
function f allow us to construct effective and exact root clustering algorithms?

4

¶2. What is a root cluster? For a disk D ⊆ C, let r(D) and m(D) denote its
radius and center, and for α > 0, let αD denote the disk centered at m(D) with
radius αr(D). Suppose f : C→ C is an analytic function. Define τ(µ) :=min{1+
µ, 3}. A disk D ⊆ C is isolating for f(z) if there is an µ ≥ 0 such that both
D and τ(µ)D contain exactly µ roots of f (counted with multiplicity). If µ = 0,
then D is called an exclusion disk. If µ ≥ 1, the non-empty set of roots in D is
called a (root) cluster. The following shows that our clusters are natural, and
are determined only by the “geometry of the roots”.

Lemma 1. Let C0 be a root cluster of f . Then there is a unique unordered tree
T (C0) rooted at C0 whose set of nodes are the root clusters contained in C0.
Parent child relation in T (C0) is defined using the relation: C ⊆ C′ ⊆ C0 iff C
is a descendent of C′.

A collection D = {D1, . . . , Dn} of pairwise disjoint isolating disks is called
an isolating system for f in B0 if (1) each Di has at least one root and
m(Di) ∈ B0, and (2) each root of f in B0 is in some Di. Call D an ǫ-isolating
system in case each Di ∈ D has radius at most ǫ. Note that roots outside B0

but within distance ǫ from the boundary of B0 are allowed to appear in D.
We now formalize the root clustering problem: given an analytic function

f : C → C, a closed square box B0 ⊆ C and ǫ > 0, to compute an ǫ-isolating
system for f in B0. We may omit the ǫ parameter if ǫ =∞.

¶3. On Box Functions and (δ, ǫ)-Approximations. Unlike algebraic polynomi-
als, it is a non-trivial issue to specify an input analytic function f . In prac-
tice, functions are parametrized by numerical parameters. E.g., polynomials are
parametrized by coefficients, and hypergeometric functions by their hyperge-
ometric parameters. Such functions may be composed using standard opera-
tions. These parameters may be arbitrarily approximated (e.g., the coefficients
are algebraic numbers). Based on these parameters, we assume that f and all
its higher derivatives are effectively approximated by (a) box functions and (b)
(δ, ǫ)-approximations, as explained next.

Let f : Rd → R be a function. Write |x| for the∞-norm of x ∈ Rd. Following
[22], real numbers are approximated by elements of the set F = {m2n : m,n ∈ Z}
of dyadic numbers; also, let F denote the set of closed intervals with endpoints
in F. (a) A box function for f , usually denoted f , is f : Fd → F such
that, for any sequence of boxes Bi ⊆ Fd (i = 1, 2, . . .) that strictly converges
to a point α ∈ Rd as i → ∞, then f(Bi) → f(α). Box functions are easy to
construct using interval arithmetic. (b) A (δ, ǫ)-approximation of f is

f̂ : Fd+1 → F
2 (1)

such that,4 for all x ∈ F
d and p ∈ F, if x′ = x± 2−f̂0(x;p), then

f(x′) = f̂1(x; p)± 2−p.

4 We write “a = b ± ǫ” to mean that |b − a| ≤ ǫ, and write “[a ± ǫ]” for the interval
[a− ǫ, a+ ǫ].

5

Here, f̂(x; p) is written as the pair (f̂0(x; p), f̂1(x; p)) ∈ F2. By Heine-Borel,

the existence of f̂ implies the existence of box functions f . We can view

δ := 2−f̂0(x;p) and ǫ := 2−p as the input and output perturbation bounds. The
function f is clearly continuous if it has a (δ, ǫ)-approximation, corresponding to
the standard definition of continuity: for all ǫ > 0, there exists δ > 0, such that
if x′ = x± δ then f(x′) = f(x)± ǫ.

These definitions extend to a complex function f : C→ C provided we view
it as the function f = (fx, fy) : R2 → R2. Then a (δ, ǫ)-approximation of f

is just a pair (f̂x, f̂y) where each f̂i (i = x, y) is a (δ, ǫ)-approximation of fi.
But we can combine the δ and ǫ parameters of the individual fi’s and obtain
f̂ = (f̂x, f̂y) : F

3 → F3.
What are examples of parametrized family of function with such properties?

Most elementary functions can be viewed as hypergeometric functions with ra-
tional parameters; for this class, we have shown (δ, ǫ)-algorithms ([4]), and more-
over, the derivatives of a hypergeometric function is effectively derived from its
parameters. Suppose we view f(z) as the function F (a; z) where a are the pa-
rameters that specify f , and F is continuous in these parameters. Our notion of
(δ, ǫ)-approximation can now be applied to F , leading to algorithms in which f
itself is perturbed. Our algorithm below could be viewed this way.

3 Predicates for Root Clusters

To provide a complete method for localizing roots, we need a predicate Ck(D) to
confirm that a given disk D ⊆ C contains k roots of f , counted with multiplicity.
Rump [16] reviewed this problem, giving 10 different predicates. We will be
focusing on one of these predicates, from Pellet [11,14].

Fix an analytic function f : C → C. For integer k ≥ 0 and reals r,K ≥ 1,
define the predicate

Ck(m, r,K) : |fk(m)|rk > K
∑

i6=k

|fi(m)| ri (2)

where fi(m) := f(i)(m)
i! (coefficients of zi in the Taylor expansion of f(z) at m).

The constant K will be important later when discussing soft versions of these
tests. When K = 1, just write “Ck(m, r)” for Ck(m, r,K). Note that C0(m, r)
(i.e., k = 0) is exclusion predicate of [17].

Lemma 2. If Ck(m, r) holds then the complex disk Dm(r) ⊆ C contains exactly
k roots of f .

When f is a polynomial, we obtain Pellet’s theorem [11]:

Theorem 1 (Pellet (1881)). If Q(z) =
∑n

i=0 qiz
i with qnq0 6= 0 and |qk|zk −∑

i6=k |qi|z
i has two real positive roots r < R, then Q has exactly k roots in D0(r)

and there are no roots in the annulus D0(R) \D0(r).

Rump observed that Pellet’s method is among the best of his 10 methods;
the main limitation is that the size of its coefficients tend to overflow machine
precision (his experimental setup is limited to machine precision).

6

¶4. Effective Analytic Version Ck Test. For an analytic function f , the Ck test
is not effective. For this, we need the complex form of Taylor’s Theorem with Re-
mainder. This seems to be a little known result5 due to Darboux (1876). A more
general statement with proof is conveniently provided by Batra [1, Appendix].

Theorem 2 (Darboux). Let f : D0 → C, analytic in an open disk D0 be
given, and let a, b ∈ D0. Then there exists 0 ≤ Θ ≤ 1 and ω ∈ C, |ω| ≤ 1 such
that for h := b− a and ξ := a+Θ(b − a) it holds true that

f(b) =
k∑

ν=0

fν(a)h
ν + ωhk+1fk+1(ξ).

Now we introduce the interval version of the Ck test of (2) above:

Ck(m, r,K) : |fk(m)|rk > K

(
k−1∑

i=0

|fi(m)| ri + | fk+1(Dm(r))| rk+1

)
. (3)

Again, “ Ck(m, r)” refers to Ck(m, r, 1). Here, fk+1(D) is some box function
for fk+1(z). Note: we use the absolute value | fk+1(· · ·)| of the output box. The
analogue of Lemma 2 can be shown using Darboux’s theorem:

Lemma 3. If Ck(m, r) holds, then Dm(r) contains exactly k roots counted
with multiplicities.

4 Exact Algorithm for Root Clustering

We give a simple version of our root clustering algorithm, assuming the exact
evaluation of the predicates Ck and Ck and ignoring fine tuning that may be
important in practice. Our algorithm uses the classic subdivision paradigm (e.g.,
[21]). This may be viewed as the repeated subdivision of an initial box B0 ⊆ C,
each box being subdivided (“split”) into four congruent subboxes, until all the
boxes satisfy some predicate. If X is a box or disk with center mX and radius
rX , then we write “Ck(X)” instead of Ck(mX , rX).

Define the function firstC(B,N) to return the smallest k = 0, . . . , N such
that D(2k ·B) is isolating and contains k roots; otherwise, firstC(B,N) returns
−1. To verify that D(2k ·B) is isolating, we can check the predicates Ck(2k ·B)
and Ck(τ(k)2k ·B). Alternatively, in case f is a polynomial, we can check that
Ck(2k · B) and Ck(τ(k)2k ·B) holds.

Our algorithm’s input has the form (f,B0, N) where f is analytic and B0 is
a closed square box such that D(B0) has at most N roots. For instance, if f is
a polynomial, we can choose N to be its degree. For general analytic functions,
this N may be first estimated by numerical integration. Our algorithm has three
queues Q0, Q1 and D. Queue Q0 contains boxes in arbitrary order, Q1 is a
max-priority queue containing box-integer pairs (B, k), with k as the priority.

5 Thanks to Prashant Batra for bringing this to our attention.

7

Queue D is the output, and contains (B, k) pairs in arbitrary order. Each (B, k)
represents an isolating disk 2k · D(B) containing k roots. A pair (B, k) and
(B′, k′) is said to be in conflict if their isolating disks intersect.

Exact Root Clustering Algorithm

Input: f : C→ C, B0 ⊆ C, N ≥ 1, as described.
Output: An isolating system D for f in B0.

Q0 ← {B0}, Q1 ← ∅, D ← ∅ ⊳ Initialize Queues
0. while (Q0 is non-empty)

B ← Q0.pop()
k ← firstC(B,N)

1. If k < 0, split B and push its 4 children into Q0.
2. elif 1 ≤ k ≤ N , Q1.push(B, k)
3. while (Q1 is non-empty)

(B, k)← Q1.pop()
4. If (B, k) does not conflict with any pair in D,
5. D.push(B, k)

Return D

Theorem 3. The Exact Root Clustering Algorithm halts, and produces an iso-
lating system for the roots of f in B0.

We easily modify this algorithm to compute an ǫ-isolating systems: Let
the precision p ∈ F is given as input, p := lg(1/ǫ). Replace firstC(B,N) by
firstC(B,N, p) which returns−1 if r(B) > 2−p = ǫ. Otherwise, it return firstC(B,N)
as before. If when ǫ is small enough, we isolate only the roots in B0.

5 Applications of Soft Zero Tests

The preceding algorithm is exact but not effective as it assumes the exact evalu-
ation of Ck or Ck in firstC. Such algorithms are often deemed sufficient (cf. the
papers in ¶1, Related Work). It is assumed that a numerical implementation of
the algorithm can invoke error analysis to tell us the circumstances under which
the output is correct. Unfortunately, this falls short of the usual standard for
algorithms in theoretical computer science. The solution we will now provide
is to replace the above predicates by their soft versions, denoted C̃k and C̃k,
respectively.

¶5. Soft Zero Test. First consider the following soft zero test: given two numer-
ical expressions A and B, both non-negative and at least one positive, determine
either the non-zero sign of A−B, or that A,B are relatively equal in the sense
that 1

2A < B < 2A. Observe that if A,B are relative equal but A 6= B, then the
output is non-deterministic: both the (correct) non-zero sign of A−B or relative

8

equality are possible outputs. Write (A)p to mean any p-bit approximation of A,
i.e., (A)p = A ± 2−p. We are allowed to compute any p-bit approximation of A
and B for this problem. Here is our Soft Zero Test procedure: start with p = 1.
We halt if one of the following two conditions hold:

(I) |(A)p − (B)p| > 21−p.
(II) |(A)p − (B)p| ≤ 21−p and max{(A)p, (B)p} ≥ 7 · 2−p.

If (I) holds, output the sign of (A)p−(B)p, and if (II) holds, output “RELATIVE
EQUALITY”. Otherwise, we double p and repeat.

Theorem 4. The Soft Zero Test procedure halts and is correct.

We apply the soft zero test to implement soft predicate C̃k(m, r) (the case

of C̃k(m, r) is similar). Recall that we know (δ, ǫ)-approximations f̂i : F
3 → F3

of each Taylor coefficient function fi(z), i ≥ 0, (see (1)). To decide C̃k(m, r),
let us write the predicate (3) as the inequality A > B where A := |fk(m)|rk, and

B = E+F , with E :=
∑k−1

i=0 |fi(m)|ri and F := | fk+1(Dm(r))| rk+1. It is easy to

compute (A)p, (E)p+1 and (F)p+1 using the f̂i’s. Note that F is an interval, say
[a, b], and our approximation amounts to widening the output interval by at most
2−p, (F)1+p ⊆ [a−2−1−p, b+2−1−p]. So (B)p = (E)p+1+(F)p+1. Therefore, we
could apply our soft zero test to determine the non-zero sign A−B, or determine
the “RELATIVE EQUALITY” of A,B. If A−B is positive, we output success
for our soft predicate C̃k(m, r), and otherwise failure.

Lemma 4.
(a) If the soft C̃k(m, r) succeeds, then exact Ck(m, r) succeeds.

(b) If exact Ck(m, r, 2) succeeds, then soft C̃k(m, r) succeeds.

We now describe our Soft Root Clustering Algorithm. Basically, we use
the soft C̃k instead of the exact Ck in the Exact Root Clustering Algorithm.
These predicates are used within the function firstC(B,N). But there is an
important twist: we must now test if the disks D(4k · B), not D(2k · B), are
isolating for k = 0, 1, . . . , N . With this modification, Thm. 6 (below) and

Lemma 4(b) implies halting. Finally, by exploiting our (δ, ǫ)-approximations f̂i :
F3 → F3 of the Taylor coefficients, we can turn this into a (δ, ǫ)-algorithm in
the sense that we also compute a δ∗ > 0 such that for all δ∗-perturbations of
the input, our ǫ-output remains correct. Recall that the ǫ input parameter is not
explicitly described, but it is easy to take this into account. This yields:

Theorem 5. The Soft Root Clustering Algorithm is a complete (δ, ǫ)-algorithm
for the root clustering problem that is based on soft zero tests.

6 Analysis of Ck Test

Suppose the analytic function f(z) has a root α of multiplicity k ≥ 0. So
f (k)(α) 6= 0 and f (j)(α) = 0 for j = 0, . . . , k − 1. Then

f(z) =
∑

i≥0

fi(α)(z − α)i =
∑

i≥k

fi(α)(z − α)i.

9

Notation: In the analysis of this section, we let m denote a point near α, and
let r := |m−α| (the “radius”). If E,F are numerical expressions that depend on
r, we shall write “E ≃ F” to mean that, as r → 0, we have E = F (1 ± o(1)).
Also “E . F” means E < F as r → 0. Likewise, “E = O(F)” means there is a
constant K > 0 such that E ≤ K ·F for all r small enough. These notations are
illustrated in the statement of the next lemma.

Lemma 5. For j ≥ 0:

|fj(m)|rj ≃

{
|fk(α)|rk

(
k
j

)
if j ≤ k

O(rj) if j > k

In our application, instead of using radius r = |m− α|, we need to consider
cr for some constant c > 0:

Lemma 6.
k∑

j=0

∣∣∣∣
fj(m)(cr)j

fk(m)(cr)k

∣∣∣∣ ≃
(
1 +

1

c

)k

.

This follows from the previous lemma by summation.
By separating out the fk term in the previous lemma, we get:

Lemma 7. If c ≥ k, then

k−1∑

j=0

|fj(m)| (cr)j . |fk(m)|rk
(
kck−1(e − 1)

)
.

Theorem 6. Let Di = Dmi
(ri) (i ≥ 0) be a sequence of disks, Di+1 ⊆ Di, that

converges to a point α. Let α have multiplicity k ≥ 0, and c be any constant
greater than (e− 1)kK.
(1) The test Ck(mi, cri,K) succeeds for i large enough.
(2) If f is a polynomial, the test Ck(mi, cri,K) succeeds for i large enough.

7 Conclusion

There is increasing interest in numerical, evaluation-based approaches to ex-
act geometric algorithms: from root isolation to topology of curve and surfaces.
Such algorithms are realistic, practical, and have adaptive complexity. It is part
of the trend towards symbolic-numeric computation. Until now, the evaluation
algorithms for isolating the roots of a function f have two limitations: (1) they
require f to have simple roots, and (2) they assume that f is a polynomial. In
this paper, we have produced a evaluation-based algorithm for its generalization
to root clustering. Our algorithm (1’) allows f to have multiple roots and (2’)
applies to analytic functions. In the future, we plan to produce complexity anal-
ysis as well as implementation of our algorithms. We pose as a general challenge
to produce similar soft-but-complete algorithms for other geometric problems.

10

References

1. P. Batra. Globally convergent, iterative path-following for algebraic equations.
Math. in Computer Sci., 4(4):507–537, 2010. Special Issue.

2. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer-Verlag, New York, 1998.

3. M. Dellnitz, O. Schütze, and Q. Zheng. Locating all the zeros of an analytic
function in one complex variable. J. Comput. Appl. Math., 138(2):325–333, 2002.

4. Z. Du and C. Yap. Absolute approximation of the general hypergeometric func-
tions. In Proc. 7th Asian Symp. on Computer Math. (ASCM), pp. 246–249, 2005.
KIAS, Seoul, Dec 8–10, 2005.

5. I. Z. Emiris, V. Y. Pan, and E. P. Tsigaridas. Algebraic and numerical algorithms.
In M. J. Atallah and M. Blanton, eds., Algorithms and Theory of Computation
Handbook, vol. I, chap. 17. CRC Press Inc., Boca Raton, Florida, 3nd edn., 2012.

6. M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn. On location and approxima-
tion of clusters of zeros of analytic functions. Found. Comp. Math., 5(3):257–311,
2005.

7. D. Halperin, E. Fogel, and R. Wein. CGAL Arrangements and Their Applications.
Springer-Verlag, Berlin and Heidelberg, 2012.

8. L. A. Hemaspaandra and M. Ogihara. The Complexity Theory Companion.
Springer-Verlag, 2002.

9. T. Johnson and W. Tucker. Enclosing all zeros of an analytic function - a rigorous
approach. J. Comput. Appl. Math., 228(1):418–423, June 2009.

10. K.-I. Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer
Science. Birkhäuser, Boston, 1991.

11. M. Marden. The Geometry of Zeros of a Polynomial in a Complex Variable. Math.
Surveys. American Math. Soc., New York, 1949.

12. X.-M. Niu, T. Sakurai, and H. Sugiura. A verified method for bounding clusters
of zeros of analytic functions. J. Comput. Appl. Math., 199(2):263–270, Feb. 2007.

13. S. Plantinga and G. Vegter. Isotopic approximation of implicit curves and surfaces.
In Proc. Symp. on Geometry Processing, pp. 245–254, New York, 2004. ACM Press.

14. Q. I. Rahman and G. Schmeisser. Analytic Theory of Polynomials. Oxford Uni-
versity Press, 2002.

15. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York, 1967.

16. S. M. Rump. Ten methods to bound multiple roots of polynomials. J. Computa-
tional and Applied Mathematics, 156:403–432, 2003.

17. M. Sagraloff and C. K. Yap. A simple but exact and efficient algorithm for complex
root isolation. 36th ISSAC, pp. 353–360, 2011. June 8-11, San Jose, California.

18. J. Traub, G. Wasilkowski, and H. Woźniakowski. Information-Based Complexity.
Academic Press, Inc, 1988.

19. K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.
20. J.-C. Yakoubsohn. Numerical analysis of a bisection-exclusion method to find zeros

of univariate analytic functions. J. of Complexity, 21(5):652–690, 2005.
21. C. Yap, V. Sharma, and J.-M. Lien. Towards Exact Numerical Voronoi diagrams.

In 9th Int. Symp. of Voronoi Diagrams in Sci. and Eng. (ISVD)., pp. 2–16. IEEE,
2012. Invited Talk. June 27-29, 2012, Rutgers U., NJ.

22. C. K. Yap. Theory of real computation according to EGC. In Reliable Imple-
mentation of Real Number Algorithms: Theory and Practice, No. 5045 in LNCS,
pp. 193–237. Springer, 2008.

11

APPENDIX: Proofs

The proofs of the theorems of Sections 4 and 5 will make forward references to
the lemmas of Section 6.

Section 2: Conditions for Root Clustering

Lemma 1. Let C0 be a root cluster of f . Then there is a unique unordered
tree T (C0) rooted at C0 whose set of nodes are the root clusters contained in C0.
Parent child relation in T (C0) is defined using the relation: C ⊆ C′ ⊆ C0 iff C
is a descendent of C′.
Proof. We show that if C,C′ are distinct root clusters, then they are either dis-
joint or one is included in the other. In proof, suppose C∩C′ contains k ≥ 1 roots
(counted with multiplicity). We must show that C is contained in C′ or vice-
versa. By way of contradiction, assuming there is no containment relationship.
Then C and C′ each have at least k+1 roots. By definition, C (C′) is contained
in an isolating disk D (D′). Wlog, let r(D) ≥ r(D′) and C has µ ≥ k + 1 ≥ 2
roots. Thus τ(µ) = 3. Clearly D ∩D′ is non-empty, and so D′ ⊆ 3D = τ(µ)D.
But there are no roots in τ(µ)D \D, and so all the roots of D′ are contained in
D. Thus C′ ⊆ C, contradiction. Note: this also shows that the set of nodes of
T (C0) is a natural set of clusters. Q.E.D.

Section 3: Predicates for Root Clusters

Lemma 2. If Ck(m, r) holds then the complex disk Dm(r) ⊆ C contains exactly
k roots of f .
Proof.

Define g(z) := fk(m)(z−m)k. Then Ck(m, r) implies that for ζ on the bound-
ary of Dm(r), we have

|g(ζ)| = |fk(m)|rk > |f(ζ)− g(ζ)|.

Therefore, by Rouché’s theorem g(z), and f(z) have the same number of roots
in Dm(r). Clearly, g(z) has m as a root with multiplicity k, which implies that
f(z) also has exactly k roots in Dm(r).

Q.E.D.

Lemma 3. If Ck(m, r) holds, then Dm(r) contains exactly k roots counted
with multiplicities.
Proof.

Define g(z) := fk(m)(z −m)k. So for ζ on the boundary of Dm(r), we have

|g(ζ)| = |fk(m)|rk >

k−1∑

i=0

|fi(m)|ri +max |fk+1(Dm(r))|rk+1 .

12

But by triangular inequality the RHS of the inequality above is greater than

|f(ζ)− g(ζ)| = |
k−1∑

i=0

fi(m)(z −m)i + ωfk+1(ξ)(z −m)k+1|,

where ω and ξ are as in Darboux’s theorem. Thus, |g(ζ)| > |f(ζ)− g(ζ)| and by
Rouché’s theorem g and f have the same number of zeros in Dm(r), namely k.

Q.E.D.

Section 4: Exact Algorithm for Root Clustering

Theorem 3. The Exact Root Clustering Algorithm halts, and produces an
isolating system or the roots of f in B0.
Proof. Upon termination, the queue Q1 contains a collection of pairs (Bi, ki),
representing isolating disks 2kiD(Bi). Why is this an isolating system? Note
that a box B is discarded if C0(B) holds. This is implicit in Lines 1–2, since we
only process a box if k 6= 0. It follows that at the start Line 3, every root in B0

is in some cluster of the queue Q1 (by Thm. 6). Lines 4–5 discards a box (B, k)
if it conflicts with some (B′, k′) that is already in D. Since k′ ≥ k (as Q1 is a
priority queue), it means the roots in 2k · D(B) are contained in 2k′ · D(B′).
Thus the final D represents an isolating system for f in B0. It remains to prove
termination. Only the first while-loop (Line 0) has an issue. Suppose there is
an infinite path (Bi : i ≥ 0) in the (implicit) subdivision tree. This means that
firstC(Bi, N) < 0 for all i. Suppose Bi → α ∈ C as i→ ∞. If α is a k-fold root
of f , Thm. 6 implies that the tests Ck(2k ·Bi) and Ck(τ(k)2k ·Bi) succeeds for
i large enough. This contradict the assumption that firstC(Bi, N) < 0 for all i.

Q.E.D.

Section 5: Applications of Soft Zero Tests

Theorem 4. The Soft Zero Test procedure halts and is correct.
Proof.We show that (II) implies 1

2A < B < 2A. Let ǫ := 2−p. Then |(A)p − (B)p| ≤
2ǫ implies |A− B| ≤ 4ǫ. Also max{(A)p, (B)p} ≥ 7ǫ implies min{(A)p, (B)p} ≥
5ǫ, and so min{A,B} ≥ 4ǫ. Wlog, A ≤ B. Then A ≤ B < B + 4ǫ ≤ 2B. Hence
1
2A < B < 2B. It remains to prove termination. There are two possibilities: (1)
AB 6= 0 and (2) AB = 0. First consider AB 6= 0: if A = B, then (II) will hold
when p ≥ 3− lgA. Otherwise A 6= B, then (I) will hold when p > 1− lg |A−B|.
For possibility (2), assume WLOG that A = 0. Then we see that (I) will hold
when p > 2− lgB. Q.E.D.

Lemma 4.
(a) If C̃k(m, r) succeeds, then Ck(m, r) succeeds.

(b) If Ck(m, r, 2) succeeds, then C̃k(m, r) succeeds.
Proof. (a) The test Ck(m, r) succeeds iff A > B (for the appropriate A,B). .
In our soft version, when we output success, it means we have verified A > B.

13

(b) The exact tests Ck(m, r, 2) and Ck(m, r) can be written as A > 2B and
A > B (respectively). Suppose A > 2B holds. In the soft version, the test A > B
can only fail under one of two ways: either (i) A < B or (ii) A,B are relatively
equal. But if A > 2B, both (i) and (ii) cannot hold. Hence the soft version must
succeed, as claimed. Q.E.D.

Theorem 5. The Soft Root Clustering Algorithm is complete (δ, ǫ)-algorithm
for the root clustering problem that is based on soft zero tests.
Proof. Two details remain:
(1) Why does the soft algorithm halt? According to Thm. 6 says that the test
Ck(m, cr,K) will eventually succeed if we choose c ≥ (e − 1)kK. For K = 2,

we can choose c = 4k. Next, Lemma 4(b) tells us that if Ck(m, 4r, 2) succeeds,

then eventually C̃k(m, 4r) will succeed.
(2) We want an (δ, ǫ)-algorithm in the sense that we also compute a δ∗ > 0 such
that for all δ∗-perturbations of the input, our ǫ-output remains correct. Our goal
is to compute q∗ where δ∗ = 2−q∗ . Recall that we use the (δ, ǫ)-approximations

f̂i : F
3 → F2 to evaluate the Taylor coefficients fi(m) for i ≥ 0. In each call to

f̂i, we obtain a q ∈ F, corresponding to the precision of the parameters of the
function fi and the argument m. I.e., 2−q is the perturbation of fi We update
q∗ to be the minimum of all the q’s obtained in this way. Q.E.D.

Section 6: Analysis of Ck Test

Lemma 5. For j ≥ 0:

|fj(m)|rj ≃

{
|fk(α)|rk

(
k
j

)
if j ≤ k

O(rj) if j > k

Proof. By differentiating the Taylor expansion f(m) =
∑

i≥0 fi(α)(m − α)i, we
get

fj(m) =
f (j)(m)

j!
=

{∑
i≥k fi(α)

(
i
j

)
(m− α)i−j if j ≤ k,∑

i≥j fi(α)
(
i
j

)
(m− α)i−j if j > k.

fj(m)(m − α)j =

{∑
i≥k fi(α)

(
i
j

)
(m− α)i if j ≤ k,∑

i≥j fi(α)
(
i
j

)
(m− α)i if j > k.

|fj(m)|rj =





rk
∣∣∣fk(α)

(
k
j

)
+
∑

i>k fi(α)
(
i
j

)
(m− z)i−k

∣∣∣ if j ≤ k,

rj
∣∣∣
∑

i≥j fi(α)
(
i
j

)
(m− z)i−j

∣∣∣ if j > k
{
≃ rk |fk(α)|

(
k
j

)
if j ≤ k,

= O(rj) if j > k.

Q.E.D.

14

Lemma 6.
k∑

j=0

∣∣∣∣
fj(m)(cr)j

fk(m)(cr)k

∣∣∣∣ ≃
(
1 +

1

c

)k

.

Proof. For j = 0, . . . , k,

∣∣∣ fj(m)(cr)j

fk(m)(cr)k

∣∣∣ = cj−k
∣∣∣ fj(m)rj

fk(m)rk

∣∣∣

≃ cj−k

(
rk|fk(α)|(kj)
rk|fk(α)|

)
(by previous lemma)

=
(
k
j

)
cj−k.

∑k

j=0

∣∣∣ fj(m)(cr)j

fk(m)(cr)k

∣∣∣ ≃
∑k

j=0

(
k
j

)
ck−j

=
(
1 + 1

c

)k
.

Q.E.D.

Lemma 7. If c ≥ k, then

k−1∑

j=0

|fj(m)| (cr)j . |fk(m)|rk
(
kck−1(e − 1)

)
.

Proof. Rewriting the previous lemma,

k∑

j=0

|fj(m)| (cr)j ≃ |fk(m)|(cr)k
(
1 + c−1

)k

≃ |fk(m)|rk(c+ 1)k.
k−1∑

j=0

|fj(m)| (cr)j ≃ |fk(m)|rk
(
(c+ 1)k − ck)

)

. |fk(m)|rk
(
kck−1

)


∑

i≥1

1/i!




= |fk(m)|rk
(
kck−1

)
(e − 1).

Q.E.D.

Theorem 6. Let Di = Dmi
(ri) (i ≥ 0) be a sequence of disks, Di+1 ⊆ Di,

that converges to a point α. Let α have multiplicity k ≥ 0, and c be any constant
greater than (e− 1)kK.
(1) The test Ck(mi, cri,K) succeeds for i large enough.
(2) If f is a polynomial, the test Ck(mi, cri,K) succeeds for i large enough.
Proof. (1) Note that ri ≥ |mi − α|, and all our asymptotic estimates in our
analysis for r = |m−α| can be applied here. We must show that Ck(mi, cri,K)

15

holds (ev. i). Here we write “ev. i” (read “eventually i”) to mean “for i large
enough”. Write Ck(mi, cri,K) as the predicate

|fk(m)|(cr)k > Ai +Bi

where Ai :=K
∑k−1

j=0 |fj(mi)|(cri)j and Bi :=K | fk+1(Dmi
(ri))| (cri)k+1. But

|fk(mi)|(cri)
k = |fk(mi)|(cri)

k

(
(e − 1)kK + (c− (e− 1)kK)

c

)

= K|fk(mi)|(cri)
k

(
k(e− 1)

c

)

︸ ︷︷ ︸
A′

i

+ |fk(mi)|(cri)
k

(
c− (e− 1)kK

c

)

︸ ︷︷ ︸
B′

i

By Lemma 7, the A′
i > Ai (ev. i). To compareBi and B′

i, since |fk(mi)| converges
to |fk(α)| > 0, there exist constants κ, κ′ > 0 such that

Bi ≤ κ(cri)
k+1 and B′

i ≥ κ′(cri)
k (ev. i).

This implies that B′
i > Bi for i large enough.

(2) When f is a polynomial, again we must show (ev. i)

|fk(m)|(cr)k > Ai +Bi

with Ai as before, but Bi :=K
∑

j≥k+1 |fj(mi)|r
i
i. Since the sum in Bi is finite,

Lemma 5 implies Bi = O(rk+1) as ri → 0. The result follows as before. Q.E.D.

	 Analytic Root Clustering: A Complete Algorithm using Soft Zero Tests

