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Abstract. Smale’s notion of an approximate zero of an analytic func-
tion f : C → C is extended to take into account the errors incurred in
the evaluation of the Newton operator. We call this stronger notion a
robust approximate zero and develop a corresponding robust point


estimate for such zeros: if z0 ∈ C satisfies α(f, z0) < 0.02 then z0 is a
robust approximate zero, with the associated zero z∗ lying in the closed


disc B
“


z0,
0.07


γ(f,z0)


”


. Here α(f, z) and γ(f, z) are standard functions in


point estimates.
Suppose f(z) is a L-bit integer square-free polynomial of degree d. Us-
ing our new algorithm, we can compute a n-bit absolute approxima-
tion of z∗


∈ IR starting from a robust approximate zero z0, in time
O(d lg(dL)M(d2(L + lg d)) + dM(dn)), where M(n) is the complexity of
multiplying n-bit integers. For a fixed polynomial f(z), this bound is
O(M(n)), which generalizes a well-known bound of Brent.


1 Introduction


Newton-Raphson method has been studied extensively in many settings. Given
an analytic function f : C → C and a point z ∈ C, let Nf (z) := z − f(z)/f ′(z)
denote the Newton operator. Consider the iteration zi+1 = Nf(zi), for i ≥ 0,
starting from a point z0 ∈ C. This sequence is well-defined provided f ′(zi) 6= 0
for all i ≥ 0. Kantorovich [KA64] developed convergence criteria for (zi)i≥0 that
are applicable when points in an entire neighborhood of z0 satisfy certain bounds.
Yamamoto [Yam85,Yam86] gives sharp bounds of this sort. A basic technique in
Kantorovich’s approach is the use of majorant sequences. Unfortunately, Kan-
torovich’s criteria are sometimes inconvenient to use. Smale [Sma86,BCSS98]
developed convergence criteria that are applicable to a single point z0 ∈ C. Such
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criteria are called point estimates. Following [BCSS98, p. 155], we call z0 an
approximate zero of f(z) if the sequence zi+1 = Nf(zi) is well defined for all
natural numbers i and there exists a root z∗ of f(z) such that for all i ≥ 0,


|zi − z∗| ≤ 21−2i |z0 − z∗|;


z∗ is called the associated zero. One such point estimate [DF95] says that if
α(f, z0) < 3− 2


√
2 ∼ 0.17157 then z0 is an approximate zero. Here α(f, z) is an


easily computed function defined in the next Section.
Variations, improvements and extensions are known. Kim [Kim86,Kim88] de-


rived comparable point estimates for slightly different1 notions of approximate
zeros than the one defined above. Shub and Smale [SS85,SS93] and Malajovich
[Mal93,Mal94] have developed such criteria for multivariate Newton methods in
affine and projective spaces. Malajovich further extended this to pseudo New-
ton iteration, i.e., Newton iteration using the Moore-Penrose inverse. Wang and
Zhao [DF95] improved Smale’s point estimate using Kantorovich’s approach,
and extended it to the Weierstrass method [Dur60,Ker66]. Petkovic and others
[PCT95,PHI98,Bat98] also obtained point estimates for the Weierstrass method.


The above results, except those of Malajovich, are developed in a setting
where the operations are assumed to be exact, i.e., Nf (z) can be computed
without error. Even when this is possible, such as the case where z is a rational
number and f(z) a polynomial with rational coefficients, it may be undesirable
because of inefficiency. In practice, the zi’s will be represented by floating point
numbers. In this paper, we assume the use of bigfloats, i.e., floating point num-
bers whose exponent and mantissas are arbitrary precision integers. Since Nf (z)
involves division, the use of approximation is essential in bigfloat computation.
Indeed, Newton iteration is uniquely suited for approximation because of its
known self-correcting behavior.


Bigfloat arithmetic is basically the multiple-precision arithmetic of Brent
[Bre76a,Bre76b]. Here, the fundamental results have been achieved by Brent
over 30 years ago. In particular, he shows that if f(x) is the zero of a nonlinear
equation F (y) = x, i.e., F (f(c)) = c, and if F (y) can be evaluated to n-bits
of relative precision in time O(M(n)φ(n)) where φ(n) is a positive monotone
increasing function, then f(x) can be approximated to s-bits of relative precision
in time O(M(s)φ(s)). Here M(n) is the complexity of multiplying two n-bit
integers. An important restriction on Brent’s complexity results is that the input
x as well as all intermediate approximate values must come from a bounded
range. When F (x) is a polynomial, we shall prove a global complexity bound for
approximating f(x) to absolute s-bits (Thm. 5).


Most error analysis of Newton iteration are based on asymptotic bounds
(e.g. [Bre76a,Bre76b,Mal93]). For implementation we need to know explicit con-
stants in these asymptotic bounds. In this paper all our error analysis is non-
asymptotic.


Although there is a large literature on the error analysis of Newton iteration
[Ypm83,Ypm84,Tis01,Hig96], these results do not address the point estimate


1 For that matter, Smale has used more than one variant in his papers.
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setting. To our best knowledge, the only result that develops point estimates in
presence of errors in computation is by Malajovich [Mal94]. There are several
differences between our work and Malajovich’s.


– We focus on the univariate case while Malajovich addresses the more general
case of multi-variate Newton. Consequently, our complexity bounds for the
univariate case are much stronger than Malajovich’s bound (when special-
ized to the univariate case). Indeed, Malajovich’s complexity statements (see
[Mal93, p. 2, Main Theorem and p. 79-80] or [Mal94, p. 2, and p. 8, Theorem
10]) contains terms that are polynomially bounded, but the explicit form of
the polynomial is not given.


– Malajovich assumes that each Newton step is computed to a fixed precision
s. In contrast, we follow Brent’s approach of doubling the precision at each
iteration. This has the advantage that the overall complexity is essentially
determined by the last iteration step (see [Bre76a,Bre76b]).


– Finally, Malajovich’s robust point estimate involves an extra parameter s
(the precision of the bigfloat computations steps above). In particular, he
shows that z0 and s should satisfy α(f, z0) <


1
32 and γ(f, z0)s < 1/384; the


definitions of α(f, z) and γ(f, z) used by Malajovich are different from the
ones we use, but it can be showed that his definition of α(f, z), which is
more relevant for us, is always greater than ours. Since s has to be at least
the precision with which we want to approximate the zero, this criterion
imposes additional constraints on the procedure for finding z0. In contrast,
our robust point estimate only requires α(f, z0) < 0.02, which is independent
of the desired final precision. Our approach guarantees convergence to the
root, unlike Malajovich’s approach where the distance between the iterates
and the root can only be upper bounded by 2−6s.


Contributions of this paper. Our main results are as follows:


1. We introduce a notion of robust approximate zero of an analytic function
f : C → C and give a corresponding robust point estimate for a value
z0 ∈ C to be a such a zero. This is shown in Section 3.


2. In Section 4, we derive explicit (i.e., non-asymptotic) bounds on the precision
necessary to carry out the steps of a robust Newton iteration.


3. In Section 5 we give an efficient method to estimate (to within a constant
factor) the distance of an approximate zero to its associated zero.


4. In Section 6, we give explicit complexity bounds for approximating a zero of a
square-free integer polynomial starting from a robust approximate zero. This
can be viewed as an extension of Brent’s complexity bound (for algebraic
roots) to the unbounded case.


Error Notation. We use two convenient notations for error bounds: we shall
write


[z]t (resp., 〈z〉t) (1)


for any relative (resp., absolute) t-bit approximation of z.
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The following meta-notation is convenient: whenever we write “z = z̃ ± ε” it
means “z = z̃ + θε” for some θ ∈ [−1, 1]. More generally, the sequence “±h” is
always to be rewritten as “+θh” where θ is an implicit real variable satisfying
|θ| ≤ 1. Unless the context dictates otherwise, different occurrences of ± will
introduce different θ-variables. E.g., x(1 ± u)(1 ± v) means that x = x(1 +
θu)(1 + θ′v) for some θ, θ′ ∈ [−1, 1]. The effect of this notation is to replace
inequalities by equalities, and to remove the use of absolute values.


BigFloat Model of Computation. As in Brent [Bre76b,Bre76a], we use bigfloat
numbers to approximate real or complex numbers. A (binary) bigfloat is a
rational number of the form x = n2m where n,m ∈ ZZ.


For an integer f , write 〈f〉 for the value f2−⌊lg |f |⌋. In the standard binary
notation, 〈f〉 may be written as σ(b0.b1b2 · · · bt)2, where σ ∈ {+,−} and f =
σ


∑t
i=0 bi2


t−i. We call 〈f〉 the “normalized value” of f . For example, 〈1〉 = 〈2〉 =
〈4〉 = 1, 〈3〉 = 〈6〉 = 1.5, 〈5〉 = 1.25, 〈7〉 = 1.75, etc. In general, for f 6= 0, we
have |〈f〉| ∈ [1, 2).


A bigfloat representation is a pair (e, f) of binary integers. The value of
this pair is denoted by


〈e, f〉 := f2e−⌊lg f⌋ = 〈f〉2e.


E.g., the value of 〈⌊lg |f |⌋ , f〉 is f . We say 〈e, f〉 is normalized if e = f = 0
or if f is odd. Clearly every bigfloat has a unique normalized representation.
We say 〈e, f〉 has precision t if |f | < 2t. The advantage of this representation
is that information about the magnitude is available in the exponent e, i.e.,
2e ≤ 〈e, f〉 < 2e+1, and is disjoint from the information about the precision
which is available in f . The bit size of 〈e, f〉 is the pair (lg(2 + |e|), lg(2 + |f |)).


Functions used in Error Analysis. Let f : C → C be any analytic function with


a simple root at z∗. We may assume f is fixed in this paper and Nf (z) = z− f(z)
f ′(z)


is its Newton iterator. For any z ∈ C we define the following functions:


– γ(f, z) := supk≥2


∣∣∣ f
(k)(z)
k!f ′(z)


∣∣∣
1/(k−1)


. We use γ∗ for γ(f, z∗), where z∗ is a simple


root of f(z).


– β(f, z) :=
∣∣∣ f(z)
f ′(z)


∣∣∣.
– α(f, z) := β(f, z)γ(f, z).
– ψ(x) := 1 − 4x+ 2x2. The roots of ψ are (2 ±


√
2)/2.


– u(z, w) := γ(f, z)|z − w|. For the special case where z = z∗, a root of f , we
use the succinct notation uw.


2 Weak and Strong Models of BigFloat Computation


We may distinguish two modes of using bigfloats. In the weak (bigfloat)
mode, one chooses some arbitrary but fixed precision bound on all the bigfloats
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to be used in the computation. This mode of computation can be regarded
as a generalization of the IEEE model implemented in hardware in modern
computers. Malajovich’s algorithms operate in the weak mode. In the strong
(bigfloat) mode, we use bigfloats without a priori precision bounds, and the
algorithms can actively manage the precision of each computation step. Brent’s
complexity results, as well as ours, are achieved in the strong mode. Although
our arithmetic model is essentially Brent’s, our treatment deviates from Brent
in three ways.


– Brent’s complexity analysis applies to floating point numbers in a bounded
range. For a floating point number 〈e, f〉, “bounded range” means |e| = O(1).
For unbounded floating point numbers, our complexity bounds depends on
lg(2 + |e|); this dependence can be either polynomial or exponential (see
appendix for instances of both) Our complexity results apply to unbounded
bigfloats. See also [CSY97].


– Brent uses the big-Oh notation in two ways: in error analysis and in complex-
ity estimates. Unfortunately, when implementing such algorithms, a big-Oh
error analysis does not tell us important constants needed in various places
of an algorithm. Therefore, we will use non-asymptotic error analysis
although our complexity analysis will continue to use asymptotics.


– Finally, our complexity model is based on Schönhage’s pointer machine
model [Sch80], rather than the standard multi-tape Turing machines. This
is because Turing machines are not robust enough for our complexity esti-
mates involving unbounded bigfloats. E.g., if a bigfloat 〈e, f〉 is represented
in the obvious way on a Turing tape, we cannot read f without scanning e.
This unnecessarily distorts the complexity of basic operations such as trun-
cation. Note that for pointer machines, we can multiply n-bit numbers in
time M(n) = O(n). We expressed complexity bounds in terms of M(n) so
that even if suboptimal multiplication algorithms are used, we can gauge
their effects on complexity.


We next give a brief analysis of Newton’s method in the weak mode. From
the standard error analysis for Newton iteration we can show ([BCSS98, p. 157,
Prop. 1(a)]) that for some z ∈ C if uz < 1 − 1√


2
then:


|Nf (z) − z∗| ≤ γ∗
ψ(uz)


|z − z∗|2. (2)


Define the weak Newton operator Ñf (z) := z − f(z)
f ′(z) (1 ± ε), i.e., when the


division in Newton iteration is carried to some fixed relative precision ε. Con-
sider the sequence of iterates z̃i := Ñ(z̃i−1), i ∈ IN, starting from z0. For such a
sequence we have the following:


Theorem 1. If β(f, z0) ≤ 0.08, uz0 ≤ 1
8 and ε ≤ 1


8 then the sequence (z̃i)
satisfies the following:


|z̃i − z∗| ≤ 21−2i |z0 − z∗|
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for i ≤ k and
|z̃i − z∗| ≤ 2−i|z0 − z∗|


for i > k, where k is such that |z̃i − z∗| ≥ ε, i ≥ k, and |z̃i − z∗| < ε, i > k.


Proof. Proof is by induction; the base case i = 0 clearly holds. Suppose the
hypothesis holds for i−1 then we have uezi−1


< uz0 < 1− 1√
2


and hence ψ(uezi−1
) >


ψ(uz0) ≥ 1
2 . Since uezi−1


< 1 − 1√
2
, we have the following:


|Ñf (z̃i−1) − z∗| ≤ γ∗
ψ(uezi−1


)
|z̃i−1 − z∗|2 +


|z̃i−1 − z∗|(1 − uezi−1
)ε


ψ(uezi−1
)


=
|z̃i−1 − z∗|
ψ(uezi−1


)
(ε+ uezi−1


(1 − ε)).


If i ≤ k then ε ≤ |z̃i−1 − z∗| and hence


|Ñf(z̃i−1) − z∗| ≤ |z̃i−1 − z∗|2
ψ(uezi−1


)
(1 + γ∗)


≤ |z̃i−1 − z∗|2
ψ(uz0)


(1 + γ∗).


Applying the induction hypothesis we get


|Ñf (z̃i−1) − z∗| ≤ 22−2i |z0 − z∗|2 1 + γ∗
ψ(uz0)


.


Using the assumption that β(f, z0) ≤ 0.08 and 8uz0 ≤ 1 we can show that
2|z0 − z∗| 1+γ∗


ψ(uz0 ) ≤ 1 and hence we get


|z̃i − z∗| = |Ñf (z̃i−1) − z∗| ≤ 21−2i |z0 − z∗|.


If i > k then from above we know that


|z̃i − z∗| ≤ |z̃i−1 − z∗|
ψ(uz0)


(ε+ uz0(1 − ε)).


Moreover, the restrictions on uz0 and ε imply that
ε+uz0 (1−ε)
ψ(uz0) ≤ 1


2 . Along with


the induction hypothesis we get the desired result. Q.E.D.


The import of the above theorem is the following: Suppose we are given
a n ∈ IN≥0, such that 2−n ≪ |ε|, and we want to compute 〈z∗〉n, then the
sequence of iterates z̃i have quadratic convergence till the time |z̃i−z∗| ∼ |ε| and
have linear convergence subsequently. Thus to guarantee quadratic convergence
throughout we have to choose ε := 2−n, the final precision with which we want to
approximate the root z∗. The above theorem is similar to [Mal93, Thm. 2,p. 9],
but differs because it guarantees convergence even when the iterates are closer to
the root than the precision ε. The following algorithm gives the implementation
details of this idea in the case of integer polynomials.
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Algorithm A’


Input: f(z) ∈ ZZ[z], n ≥ 0 and z0 such that uz0 ≤ 0.25.
Output: 〈z∗〉


n
, z∗ is the associated root of z0


1 Let ez0 := 〈z0〉n and i = 0.
2 do


δi :=
h


f(ezi)


f′(ezi)


i


n
.


ezi+1 := ezi − δi; 〈ezi+1〉n; i = i+ 1.
while(|δi| ≥ 2−n or δi 6= 0)


3 Return ezi.


Let f(z) be a fixed polynomial. Then the complexity of the above algorithm is
O(M(n) lg n) since each operation is done to precision n and because of quadratic
convergence the number of iterations are bounded by O(lg n). In Section 6, we
will give an algorithm which has a complexity of O(M(n)).


3 Robust Newton Iteration


Let f(z) and the corresponding Nf (z) be as defined above. Given z ∈ C and
C ∈ IR, let


Nf,i,C(z) := 〈Nf(z)〉2i+C , (3)


Equation (3) uses our error notation of (1): this means |Nf,i,C(z) − Nf (z)| ≤
2−2i−C . For any z0 ∈ C and C ∈ IR, a robust iteration sequence of z0
(relative to C and f) is an infinite sequence


(z̃i)i≥0 (4)


such that z̃0 = z0, and for all i ≥ 1,


z̃i = Nf,i,C(z̃i−1). (5)


We assume each z̃i ∈ C ∪ {∞}, and the relation (5) must be understood in the
following way: if z̃i−1 = ∞ or z̃i−1 is a critical point of f (i.e., f ′(z̃i−1) = 0),
then z̃i = ∞. We call the iteration sequence finite if each z̃i 6= ∞.


Our key definition is as follows: z0 is a robust approximate zero of f if,
there exists a zero z∗ of f , such that for all C satisfying


2−C ≤ |z0 − z∗|, (6)


whenever (z̃i)i≥0 is any robust iteration sequence of z0 (relative to C and f),
then the sequence is finite and for all i ≥ 0,


|z̃i − z∗| ≤ 21−2i |z0 − z∗|. (7)


Call z∗ the associated zero of z0.
Smale et al. [BCSS98, p. 156, Thm. 1] have shown the following:


Proposition 1. If z∗ is a simple zero of f(z), then z0 ∈ C is an approximate
zero of f with associated zero z∗ if


|z0 − z∗| ≤ 3 −
√


7


2γ(f, z∗)
.
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Here is our robust analogue:


Theorem 2. If z∗ is a simple zero of f(z), then z0 ∈ C is a robust approximate
zero of f with associated zero z∗ if


|z0 − z∗| ≤ 4 −
√


14


2γ(f, z∗)
.


Proof. Let uz = γ(f, z∗)|z − z∗| as above. We prove (7) by induction on i ≥ 0.
The result is clearly true for i = 0. Inductively, assume that z̃i satisfies (7). Then


uezi
≤ 21−2i


uz0 . Since uz0 ≤ 4−
√


14
2 , it is smaller than the both roots of ψ(x).


Hence
ψ(uezi


) ≥ ψ(uz0). (8)


Thus,
|z̃i+1 − z∗| = |Nf,i+1,C(z̃i) − z∗|


≤ |Nf (z̃i) − z∗| + 2−2i+1 |z0 − z∗| (from (6)).


From [BCSS98, p. 157, Prop. 1] we further get


|Nf (z̃i) − z∗| ≤ γ(f,z∗)
ψ(uezi


) |z̃i − z∗|2


≤ γ(f,z∗)
ψ(uz0 ) |z̃i − z∗|2 (from (8)).


From the inductive hypothesis we thus get,


|z̃i+1 − z∗| ≤ γ(f,z∗)
ψ(uz0) 22−2i+1 |z0 − z∗|2 + 2−2i+1|z0 − z∗|


=
uz0


ψ(uz0)2
2−2i+1 |z0 − z∗| + 2−2i+1|z0 − z∗|


≤ 21−2i+1 |z0 − z∗|,


since the assumption uz0 ≤ 4−
√


14
2 implies


uz0


ψ(uz0) ≤ 1
4 . Q.E.D.


Let the continuous function Γ : S → S be a contraction map on S ⊆ C
with contraction constant K < 1; this implies that there is a unique fixed point
z∗ ∈ S of Γ such that for all z ∈ S, the sequence (Γn(z))n≥0 converges to z∗.
We consider the inexact analogue of Γn(z):


Lemma 1. Let Γi,C(z) := 〈Γ (z)〉i+C (for C ∈ IR and i ≥ 0). If C ≥ − lg(|z −
z∗|), then the sequence


z̃i+1 :=Γi+1,C(z̃i),


starting from z̃0 := z0, converges to z∗ ∈ S, assuming z̃i ∈ S for each i.


Proof. Consider


|z̃i+1 − z∗| ≤ |Γ (z̃i) − z∗| + 2−(i+1)2−C


≤ |Γ (z̃i) − z∗| + 2−(i+1)|z0 − z∗| (2−C ≤ |z0 − z∗|)
≤ K|z̃i − z∗| + 2−(i+1)|z0 − z∗| (z̃i ∈ S)


≤ K2|z̃i−1 − z∗| +K2−i|z0 − z∗| + 2−(i+1)|z0 − z∗|
...
≤ (Ki+1 +Ki2−1 + · · · +K2−i + 2−(i+1))|z0 − z∗|
≤ (i+ 2)Gi+1|z0 − z∗|,
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where G :=max{K, 2−1} < 1. Thus |z̃i − z∗| tends to zero as i tends to infinity
and hence the sequence (z̃i)i≥0 tends to z∗ ∈ S, the fixed point of Γ . Q.E.D.


It is clear that the above lemma holds even if Γi,C(z) is defined as 〈Γ (z)〉2i+C .
The following shows that under suitable restrictions on z0 the robust iteration
sequence defined in (5) converges to a root z∗ of f . Let B(z,R) denote the closed
disc with center z ∈ C and radius R.


Lemma 2. Suppose there exist constants α0, u0 and C0 := 2(α0+u0)
ψ(u0)2


which sat-


isfy the following criteria:


1. 0 ≤ u0 < 1 − 1/
√


2,
2. C0 <


3
4 ,


3. α0 ≤ (3
4 − C0)u0, and


4. u0


ψ(u0)(1−u0)
≤ 4−


√
14


2 .


If z0 ∈ C is such that α(f, z0) < α0 then we have the following:
(a) Nf is a contraction map on B(z0,


u0


γ(f,z0)
) with contraction constant C0.


(b) z0 is a robust approximate zero of f , with the associated zero z∗ ∈ B(z0,
u0


γ(f,z0)
).


Proof. Part (a) is from [BCSS98, p. 164, Cor. 2]. To show part (b), consider the
robust iteration sequence (z̃i)i≥0 defined in (5). We show by induction on i ≥ 0
that z̃i ∈ B(z0,


u0


γ(f,z0)
); then applying Lemma 1 for Γ :=Nf , we know that there


exists a root z∗ ∈ B(z0,
u0


γ(f,z0)
) of f(z) to which the sequence (z̃i) converges.


The base case i = 0 follows since z0 ∈ B(z0,
u0


γ(f,z0)
). Inductively suppose


z̃i−1 ∈ B(z0,
u0


γ(f, z0)
), (9)


then we want


|z̃i − z0| ≤ u0


γ(f,z0)


⇐ |Nf (z̃i−1) − z0| + 2−2i


2−C ≤ u0


γ(f,z0)


⇐ |Nf (z̃i−1) − z0| + 2−2i |z0 − z∗| ≤ u0


γ(f,z0)


⇐ |Nf (z̃i−1) −Nf (z0)| + |Nf (z0) − z0| + 2−2i |z0 − z∗| ≤ u0


γ(f,z0)
.


Using the contraction property of part (a), the above statement follows if


C0|z̃i−1 − z0| + β(f, z0) + 2−2i |z0 − z∗| ≤ u0


γ(f, z0)
,


which holds if
β(f, z0) ≤ (1 − C0 − 2−2i


)
u0


γ(f, z0)
,


since z̃i−1, z
∗ ∈ B(z0,


u0


γ(f,z0)
). But α(f, z0) = γ(f, z0)β(f, z0), thus the above


statement follows if α(f, z0) ≤ (3
4 − C0)u0, since i ≥ 1. This is true since by


assumption C0 <
3
4 and α(f, z0) < α0 ≤ (3


4 − C0)u0.
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From Thm. 2 we know that any z ∈ B(z∗, 4−
√


14
2γ(f,z∗) ) is a robust approximate


zero. Thus z0 satisfying the condition α(f, z0) < α0 is a robust approximate zero
if


|z0 − z∗| ≤ 4−
√


14
2γ(f,z∗)


⇐ u0


γ(f,z0)
≤ 4−


√
14


2γ(f,z∗)


⇐ u0


ψ(u0)(1−u0)
≤ 4−


√
14


2 ,


where the last step follows from [BCSS98, p. 160, Prop. 3], u(z0, z
∗) ≤ u0 whence


ψ(u(z0, z
∗)) ≤ ψ(u0); ψ(x) is monotonically decreasing for x < 1− 1√


2
. Q.E.D.


One choice of constants that satisfy the above criteria is u0 = 0.07 and
α0 = 0.02.


Theorem 3 (Point estimate for robust approximate zero). Any z0 ∈ C
such that α(f, z0) < 0.02 is a robust approximate zero of f , with the associated
zero z∗ ∈ B(z0,


0.07
γ(f,z0)


).


4 Approximate Evaluation of Newton Iterator


In this section we determine the absolute precision with which to evaluate f
and f ′, and the relative precision with which to carry out the division at each
iteration step; let these be ei, Ei, and ̺i, respectively.


We will have recourse to the next two lemmas which apply to an analytic
function f .


Lemma 3. Let u = γ(f, z)|z − w| < 1 − 1√
2
. Then we have


ψ(u)


(1 − u)2
≤ |f ′(w)|


|f ′(z)| ≤ 1


(1 − u)2
.


Proof. The lower bound is proved in [BCSS98, p. 156]. For the upper bound:


|f ′(w)|
|f ′(z)| =


∣∣∣∣∣1 +


∞∑


k=2


f (k)(z)


f ′(z)(k − 1)!
(w − z)k−1


∣∣∣∣∣


≤ 1 +


∞∑


k=2


∣∣∣∣
f (k)(z)


f ′(z)(k − 1)!
(w − z)k−1


∣∣∣∣


≤ 1 +


∞∑


k=2


kuk−1


= (1 − u)−2,


since u < 1. Q.E.D.







11


Lemma 4. Let z be such that uz = γ(f, z∗)|z − z∗| < 1, where z∗ is a simple
root of f . Then


|z − z∗|(1 − 2uz)


1 − uz
≤


∣∣∣∣
f(z)


f ′(z∗)


∣∣∣∣ ≤
|z − z∗|
1 − uz


.


Proof. For the upper bound, see [BCSS98, p. 161, Lem. 4(b)]. For the lower
bound,


∣∣∣∣
f(z)


f ′(z∗)


∣∣∣∣ ≥ |z − z∗| −
∞∑


j=2


∣∣∣∣
f (j)(z∗)(z − z∗)j


f ′(z∗)j!


∣∣∣∣


≥ |z − z∗|1 − 2uz
1 − uz


.


Q.E.D.


Based upon the above lemmas we have the following:


Lemma 5. Let z ∈ C satisfy u = γ(f, z∗)|z−z∗| < 1− 1√
2
, where z∗ is a simple


root of f . Then


|z − z∗|(1 − 2u)(1 − u) ≤
∣∣∣∣
f(z)


f ′(z)


∣∣∣∣ ≤
|z − z∗|(1 − u)


ψ(u)
.


Proof. The upper bound follows since


∣∣∣∣
f(z)


f ′(z)


∣∣∣∣ =


∣∣∣∣
f(z)


f ′(z∗)


∣∣∣∣


∣∣∣∣
f ′(z∗)


f ′(z)


∣∣∣∣ ≤
|z − z∗|(1 − u)


ψ(u)
,


the last step uses the upper bound in Lemma 4 and the lower bound in Lemma 3.
Similarly, the lower bound follows from the lower bound in Lemma 4 and the
upper bound in Lemma 3. Q.E.D.


Let z0 ∈ C such that α(f, z0) < 0.02; then from Thm. 3 we know that z0


is a robust approximate zero with an associated root z∗ and uz0 ≤ 4−
√


14
2 , and


hence ψ(uz0) ≥ 1
2 . Let (z̃i)i≥0 be a robust approximate sequence starting from


z0, relative to a constant C satisfying (6); then ψ(z̃i) ≥ ψ(z0), and will often
make this substitution in the proof below.


The main result of this section is:


Theorem 4. Let z0 ∈ C be such that α(f, z0) < 0.02. Then to compute


〈Nf (z̃i)〉2i+1+C


it suffices to
(i) evaluate f(z̃i) to (κ+ 2i+1 + 4 + C) absolute bits,
(ii) evaluate f ′(z̃i) to (κ′ + 2i + 6 + C) absolute bits,
(iii) and perform the division in Nf to (κ+ 2i + 8 + C) relative bits.
Here, κ ≥ − lg |f ′(z0)|, and κ′ ≥ − lg(|f ′(z0)|γ(f, z0)).
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Proof. Let


z̃i+1 := z̃i −
f(z̃i) + ei
f ′(z̃i) + Ei


(1 + ̺i).


We will show that z̃i+1 = 〈Nf(z̃i)〉2i+1+C , where C is such that 2−C ≤ |z0 − z∗|.
Consider


|z̃i+1 −Nf (z̃i)| =


∣∣∣∣
f(z̃i) + ei
f ′(z̃i) + Ei


(1 + ̺i) −
f(z̃i)


f ′(z̃i)


∣∣∣∣


≤
∣∣∣∣
f(z̃i) + ei
f ′(z̃i) + Ei


− f(z̃i)


f ′(z̃i)


∣∣∣∣ +


∣∣∣∣
f(z̃i) + ei
f ′(z̃i) + Ei


̺i


∣∣∣∣


=


∣∣∣∣
f ′(z̃i)ei − f(z̃i)Ei
f ′(z̃i)(f ′(z̃i) + Ei)


∣∣∣∣ +


∣∣∣∣
f(z̃i) + ei
f ′(z̃i) + Ei


̺i


∣∣∣∣


=


∣∣∣∣
ei


(f ′(z̃i) + Ei)


∣∣∣∣ +


∣∣∣∣
f(z̃i)Ei


f ′(z̃i)(f ′(z̃i) + Ei)


∣∣∣∣ +


∣∣∣∣
f(z̃i) + ei
f ′(z̃i) + Ei


̺i


∣∣∣∣ (∗).


We will bound each of the three terms on the right hand side by 2−2i+1−C−2,
which will give us the desired result that z̃i+1 = 〈Nf (z̃i)〉2i+1+C . The constraints
in the lemma imply that


|ei| ≤ |f ′(z0)|2−2i+1−C−4, (10)


|Ei| ≤ |f ′(z0)|γ(f, z0)2−2i−C−6, and


|̺i| ≤ γ(z0)2
−2i−8−C .


Since α(f, z0) < 0.02 we know that |z0 − z∗| ≤ 0.07
γ(f,z0)


, or that γ(f, z0) < |z0 −
z∗|−1. Thus we have the following upper bounds


|Ei| ≤ |f ′(z0)||z0 − z∗|−12−2i−C−6, and (11)


|̺i| ≤ |z0 − z∗|−12−2i−C−8. (12)


Using the first of these bounds we bound the term |f ′(z̃i) + Ei|−1 that ap-
pears as the common denominator in (∗) above; intuitively, this should be a
constant multiple of |f ′(z0)|−1. Since z̃i ∈ B(z0,


0.07
γ(z0)


, from Lemma 3 we know


that |f ′(z̃i)| ≥ 1
2 |f ′(z0)|. Thus along with (11) we get


|f ′(z̃i) + Ei|−1 ≤ (|f ′(z̃i)| − |Ei|)−1 ≤ (
1


2
|f ′(z0)| − |f ′(z0)||z0 − z∗|−12−2i−5)−1


and applying (6) we have


|f ′(z̃i) + Ei|−1 ≤ 3|f ′(z0)|−1. (13)


We start with bounding the first term in (∗) above. From (10) and (13) we
get ∣∣∣∣


ei
(f ′(z̃i) + Ei)


∣∣∣∣ ≤ 2−2i+1−C−2
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as desired.
Consider the second term in (∗).


∣∣∣ f(ezi)Ei


f ′(ezi)(f ′(ezi)+Ei)


∣∣∣ ≤ |ezi−z∗|
ψ(uezi


)
|Ei|


|f ′(ezi)+Ei| (from Lemma 5)


≤ 22−2i |z0 − z∗| |Ei|
|f ′(ezi)+Ei| (from (7), and ψ(z̃i) ≥ 1


2 )


≤ 22−2i |z0 − z∗| 3|Ei|
|f ′(z0)| (from (13))


≤ 2−2i+1−C−2,


the last step follows from (11).
We now bound the last term in (∗). From (13) and (12) we get


∣∣∣∣
f(z̃i) + ei
f ′(z̃i) + Ei


̺i


∣∣∣∣ ≤ (|f(z̃i)| + |ei|)
2−2i−C−6


|f ′(z0)||z0 − z∗| .


Applying the upper bound in Lemma 4, followed by the upper bound in Lemma 3,
along with (7), and the fact that ψ(uezi


) ≥ 1
2 , |z∗ − z0|γ(z0) ≤ 0.07 we have


∣∣∣∣
f(z̃i) + ei
f ′(z̃i) + Ei


̺i


∣∣∣∣ ≤ (23−2i |f ′(z0)||z0 − z∗| + |ei|)
2−2i−C−3


|f ′(z0)||z0 − z∗| .


From (10) we further get


∣∣∣∣
f(z̃i) + ei
f ′(z̃i) + Ei


̺i


∣∣∣∣ ≤ (23−2i |f ′(z0)||z0 − z∗| + |f ′(z0)|2−2i+1−C−4)
2−2i−C−6


|f ′(z0)||z0 − z∗| .


Since 2−C ≤ |z0 − z∗|, we can cancel the terms |f ′(z0)| and |z0 − z∗|. Thus


∣∣∣∣
f(z̃i) + ei
f ′(z̃i) + Ei


̺i


∣∣∣∣ ≤ (23−2i


+ 2−2i+1−4)2−2i−C−6 ≤ 2−2i+1−C−2.


Thus each of the three terms in (∗) are bounded by 2−2i+1−C−2 proving the
theorem. Q.E.D.


Since we want to choose minimum values for κ and κ′, we let κ = − lg |f ′(z0)|,
and κ′ = − lg |f ′(z0)|γ(f, z0).


Our contribution here is a non-asymptotic estimate on the precision of the op-
erations mentioned; asymptotically, these bounds were already given by Brent.


5 Estimating the Distance between an Approximate Zero


and its Associated Root


Let z0 be a robust approximate zero with the associated zero z∗. To construct a
robust iteration sequence (5) converging to z∗, we need to determine a C ∈ ZZ
satisfying (6). In this section we compute tight bounds on |z0 − z∗| where z0
is an approximate zero (not just a robust approximate zero). We assume that
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α(f, z0) < 0.03. Then from [BCSS98, p. 160, Thm. 2] and [BCSS98, p. 166,
Remark 6], we know that z0 is an approximate zero satisfying Prop. 1.


We can use an inequality from Kalantari [Kal05]: for any z0 ∈ C,


|z0 − z∗| ≥ 1


2γ2(f, z0)
(14)


where


γ2(f, z0) := sup
k≥1


∣∣∣∣
f (k)(z0)


k!f(z0)


∣∣∣∣
1/k


. (15)


Hence it suffices to choose any C satisfying


C ≥ 1 + lg γ2(f, z0). (16)


The Kalantari function γ2(f, z0) is easily approximated in practice.
Since C controls the number of bits used in our robust iteration, it is desirable


for C to be as small as possible. We pose the problem of computing C up to
some additive constant K > 0. More precisely, compute any C which satisfies


0 ≤ C + lg |z0 − z∗| ≤ K. (17)


Kalantari’s estimate (16) is not known to satisfy (17). In short, we want a tight
estimate of the distance |z0−z∗| between z0 and its associated zero z∗. We could
use Turan’s proximity test [Pan97] to approximate the minimum and maximum
distances from any complex number to the zeros of a polynomial f(z) within
a constant factor, at the cost of O(d lg d) arithmetic operations, where d =
deg f(z). We do not use this test because it is limited to polynomials, and it
does not leverage the fact that z0 is an approximate zero.


Our solution exploits the property of approximate zeros, based on the tight


relationship between δ :=
∣∣∣ f(z0)
f ′(z0)


∣∣∣ (= β(z0)) and |z0 − z∗| as given in Lemma 5.


We now describe our algorithm:


Algorithm D


Input: f, z0 where α(f, z0) < 0.03
Output: n such that |f(z0)/f


′(z0)| = C′ · 2−n


for some 0.5 ≤ C′ ≤ 3.
1 n = 0.
2 Do


3 w ←
D


f(z0)


f′(z0)


E


n
4 n← n+ 1


5 while (|w| ≤ 2−n+1)
6 Return (n− 1)


Note that the value n returned by the algorithm satisfies the inequalities
〈
f(z0)


f ′(z0)


〉


n


≤ 2−n+1 (18)


and 〈
f(z0)


f ′(z0)


〉


n+1


> 2−n. (19)


The correctness of this Algorithm follows from the following lemma:
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Lemma 6. If n satisfies (18) and (19) then


2−n−1 < δ ≤ 3 · 2−n.


Proof. The inequality (18) implies
∣∣∣ f(z0)
f ′(z0)


∣∣∣ − 2−n ≤ 2 · 2−n or δ ≤ 3 · 2−n. The


inequality (19) implies
∣∣∣ f(z0)
f ′(z0)


∣∣∣ + 2−n−1 > 2 · 2−n or δ > 2−n−1. Q.E.D.


Note that α(f, z0) < 0.03 implies uz0 ≤ 3−
√


7
2 . Hence ψ(uz0) ≥ 1


2 , and the
above lemma gives us


δ


2
≤ |z0 − z∗| ≤ 2δ. (20)


We then conclude that Algorithm D produces the necessary constantC for robust
iteration:


Lemma 7. Let C :=n+2, where n− 1 is the value returned by Algorithm D on
an approximate zero z0, α(f, z0) < 0.03, with z∗ as the associated root. Then


2−C ≤ |z0 − z∗| ≤ 6.2−C+2.


Basically, Algorithm D is converting absolute precision into relative precision.
Algorithm D takes (− lg δ) + O(1) steps of evaluation. But using the geometric
search method in [AKY04], we can further reduce the number of evaluation steps
to 2 lg lg(1/δ)+O(1). For the purposes of this exposition we present the simpler
version, however, the complexity result below is based upon the geometric search
method.


6 Complexity of Approximating a Real Zero of a Real


Polynomial


Our results in the previous sections assume f(z) is an analytic function. In this


section we focus on the special case when f(z) =
∑d


i=0 aiz
i ∈ IR[z] is a square-


free polynomial that satisfies the following properties:


– ad = 1 and in general |ai| ≤ 2L − 1, for some L > 0. Thus the exponents of
ai are bounded by L.


– The coefficients of f(z) are represented as “blackbox” numbers that output
a desired approximation. More precisely, we assume that given a blackbox
number α, we can compute [α]n, a bigfloat, in time B(n). For instance, if α is
a bigfloat then we know from the appendix that B(n) = C0(n+lg(2+| lgα|)),
where C0 > 0 is independen of α; in case α is an algebraic number then Brent
has shown that B(n) = O(M(n)), where the constant in O depends upon α.


Thus the problem is: given a bigfloat z0, such that α(f, z0) < 0.02, compute
a n-bit absolute approximation to z∗ ∈ IR, the associated root of z0.


Our assumptions imply that z0 is a robust approximate zero. Thus starting
from z0 we apply robust Newton iteration till z̃i does not satisfy |z̃i− z∗| ≤ 2−n;
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from (7) we know that this is guaranteed once i ≥ lg(n+ 1 + lg |z0 − z∗|). From
Cauchy’s bound [Yap00, p. 148] we know that |z∗| ≤ 2L and without loss of
generality we assume that |z0| ≤ 2L. The assumption implies that |z0 − z∗| ≤
2L+1 and hence we require at most lg(n+L+ 2) steps of Newton iteration. The
complete algorithm which computes 〈z∗〉n, given z0, is as follows:


Algorithm B


Input: f(z) ∈ IR[z], n ≥ 0 and z0 where α(f, z0) < 0.02
Output: 〈z∗〉


n
, z∗ is the associated root of z0


1 Compute C satisfying (6) using Algorithm D above.
2 Compute κ = − log |f ′(z0)|, and κ′ = − log(|f ′(z0)|γ(f, z0))


Let ez0 := z0.
3 For i = 1, . . . , lg(n+ L + 2) do the following:


x := 〈f(ezi)〉2i+1+C+4+κ
.


y :=
˙
f ′(ezi)


¸
2i+6+C+κ′


.


ezi+1 := ezi −
h


x
y


i


2i+8+C+κ
.


4 Return ezi.


To bound the complexity of the above algorithm we need to bound the com-
plexity of Algorithm D.


Lemma 8. Let the bigfloat z0 be an approximate zero such that α(f, z0) < 0.02,
and |f(z0)| ≥ 2−∆, for some ∆. Then the geometric version of Algorithm D has
complexity


O(dM(∆)+d lg(dL+d lg d)M(dL+d lg d))+O(d lg(dL+∆)B(dL+d lg d+∆))


Proof. Let δ :=
∣∣∣ f(z0)
f ′(z0)


∣∣∣. As stated earlier the number of steps of the algorithm are


O(lg lg 1
δ ). From (20) and (14) we know that δ ≥ 1


4γ2(f,z0)
. Thus to bound lg 1


δ


we compute an upper bound on γ2(f, z0). Since we have assumed that |z0| ≤ 2L,
we can show that |f (k)(z0)| ≤ d!


(d−k)!2
L(d+1). Thus from (15) we get:


γ2(f, z0) ≤ sup
k≥1


(
d!


k!(d− k)!
2L(d+1)2∆


)1/k


≤ 2L(d+1)+∆ sup
k≥1


(
d


k


)1/k


= 2L(d+1)+∆d.


Thus lg 1
δ = O(dL +∆); since C = O(| lg δ|) we know that C = O(dL +∆) and


the same bound holds for κ in Thm. 4.
Consider the i’th iteration where we have to compute


〈
f(z0)
f ′(z0)


〉


2i
. This can


be achieved (see [Yap04, Lem. 11,p. 24]) if we compute 〈f(z0)〉k1 and 〈f ′(z0)〉k2 ,
where k1 ≥ 2i+2− lg |f ′(z0)| and k2 ≥ 2i+2−2 lg |f ′(z0)|+lg |f(z0)|, and do the
division to 2i+1 relative bits. But since ψ(z0) ≥ 1


2 , from Lemma 3 we know that


|f ′(z0)| ≥ |f ′(z∗)|
2 ; from [Yap00, p. 183] we also know that |f ′(z∗)| ≥ 1


dd−1.52Ld ,
thus − lg |f ′(z0)| = O(dL + d lg d). Since |z0| ≤ 2L, we can also show that
lg |f(z0)| = O(dL). It is not hard to see that the complexity of the i’th iteration
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is dominated by the complexity of computing 〈f(z0)〉k1 , k1 = 2i+O(dL+d lg d),
which is (see Appendix)


O(dM(2i + dL + d lg d) + dB(2i + dL + d lg d));


the complexity of evaluating 〈f ′(z)〉k2 is asymptotically the same and the division


takes O(M(2i + dL+ d lg d)). Hence the total complexity of Algorithm D is


O(lg(dL+∆))∑


i=0


O(dM(2i + dL+ d lg d) + dB(2i + dL+ d lg d)), (21)


that is


O(dM(dL+∆))+lg(dL+d lg d)O(dM(dL+d lg d))+O(d lg(dL+∆)B(dL+d lg d+∆)),


which can be simplified to the result mentioned in the lemma. Q.E.D.


Now we can bound the running time of Algorithm B:


Theorem 5. Let f(z) =
∑d


i=0 aiz
i ∈ IR[z] be a monic square-free polynomial


such that |ai| ≤ 2L − 1. Suppose we are given a bigfloat z0 such that α(f, z0) <
0.02 and |f(z0)| ≥ 2−∆. Then we can compute 〈z∗〉n, where z∗ is the associated
zero of z0, in time


O[dM(n) + dM(∆) + d lg(dL+ d lg d)M(dL + d lg d)]+


O[d lg(n+ L)B(n+ dL+ d lg d) + d lg(dL+∆)B(dL + d lg d+∆)].
(22)


If d, L are bounded then the complexity is O(M(n)).


Proof. We bound the running time of the iterative loop, i.e, step 3, in Algorithm
B. It is clear that the dominating complexity in step 3 is to compute


〈f(z̃i)〉2i+1+C+4+κ


at each i. From Lemma 8 we know that both C and κ are O(dL + d lg d). Let
sep(f, z∗) denote the distance from z∗ to the nearest root of f apart from itself.
Since z0 is a robust approximate zero, from Lemma 2(a) we know that z̃i−1 ∈
B(z0,


0.07
γ(f,z0)


). Thus


|z̃i| ≤ |z0| +
∣∣∣ 0.07
γ(f,z0)


∣∣∣
≤ |z0| +


∣∣∣ 0.07
ψ(uz0)(1−uz0)γ(f,z∗)


∣∣∣ ([BCSS98, p. 160, Proposition 3])


≤ |z0| + 1
γ(f,z∗) (since uz0 ≤ 4−


√
14


2 , ψ(uz0), (1 − uz0) ≥ 1
2 )


≤ |z0| + 2sep(f, z∗) (from [Kal05, p. 846], sep(f, z∗) ≥ 1
2γ(f,z∗) )


≤ |z0| + 2L+2 (from Cauchy’s root bound).


Since by assumption |z0| ≤ 2L, we have |z̃i| ≤ 2L+3; thus the exponent of z̃i,
for all i’s, is bounded by L+ 3.
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Thus, from the appendix we get the complexity of computing the desired
absolute approximation to f(z̃i) as O(dM(2i+1 + K) + dB(2i+1 + K)), where
K = O(dL + d lg d), and hence the total complexity of step 3 is


lg(n+L+2)∑


i=0


O(dM(2i+1 +K) + dB(2i+1 +K)) = O(dM(n+ L+ 2)) + lgKO(dM(K))


+ lg(n+ L+ 2)O(dB(n + dL+ d lg d)),


(23)


or O[dM(n) + d lgKM(K)] +O(d lg(n+ L)B(n+ dL+ d lg d)).
Combining this result with Lemma 8 we get the overall complexity of Algo-


rithm B as stated in (22). Q.E.D.


This result may be regarded as a generalization of Brent’s bounded precision
bound [Bre76a, Lem. 3.1]. For the special case when the coefficients of f(z) are
real algebraic numbers this lemma states that B(n) = O(M(n)). This observa-
tion gives us the following corollary of Thm. 5:


Corollary 1. Let f(z) =
∑d


i=0 aiz
i be a monic square-free polynomial whose


coefficients are real algebraic numbers satisfying |ai| ≤ 2L−1. Given z0 satisfying
α(f, z0) < 0.02 with associated root z∗, for any n, we can compute 〈z∗〉n in time


O[dM(n) + dM(∆) + d lg(dL + d lg d)M(dL + d lg d)]


where ∆ satisfies |f(z0)| ≥ 2−∆.


6.1 Complexity in case of an integer polynomial


If f(z) is an integer polynomial it is possible to simplify the results in Thm. 4
since now f(z) can be evaluated exactly at any bigfloat z, and hence we can
compute a C satisfying a tight inequality like that in Lemma 7. In particular, let


C := 3 − log
⌊[∣∣∣ f(z0)


f ′(z0)


∣∣∣
]


2


⌋
. Assuming that α(f, z0) < 0.02, which implies uez0 ≤


4−
√


14
2 and hence ψ(uez0) ≥ 1


2 , we can show from Lemma 5 that


|z0 − z∗|
8


< 2−C < |z0 − z∗|. (24)


Using this result we get the following simplification to Thm. 4.


Lemma 9. Let f(z) ∈ ZZ[z] and z0 be any bigfloat such that α(f, z0) < 0.02.
To compute 〈Nf (z̃i)〉2i+1+C, i ≥ 0, it suffices to perform the division in Nf to


2i + 5 relative bits.


Proof. Since we can now evaluate f(z̃i) and f ′(z̃i) exactly, we define


z̃i+1 := z̃i −
f(z̃i)


f ′(z̃i)
(1 + ̺i),
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where ̺i ∈ IR. But we want


|z̃i+1 −Nf(z̃i)| ≤ 2−2i+1−C−1,


which follows if
∣∣∣ f(ezi)
f ′(ezi)


̺i


∣∣∣ ≤ 2−2i+1−C and we compute 〈z̃i〉2i+1+C+1; the second


computation would be useful only in the first step since in the subsequent steps
the precision only increases. Applying Lemma 5, (24) and (7), along with the


observation that ψ(uezi
) ≥ ψ(uez0), we get |̺i| ≤ 2−2i−5 as a sufficient criterion


to guarantee 〈Nf(z̃i)〉2i+1+C . Q.E.D.


To make the algorithm more adaptive we will use a better stopping criterion


rather than using the for loop. Let δi :=
[
f(ezi)
f ′(ezi)


]


2i+5
.


Lemma 10. Let z0 be such that α(f, z0) < 0.02. If |δi| ≤ 2−(n+2) then |z̃i−z∗| ≤
2−n.


Proof. Let δ = f(ezi)
f ′(ezi)


. Then from the definition of δi we know that |δ| ≤ 2|δi|.
From Lemma 5 we also know that |z̃i− z∗| ≤ |δ|


(1−2uezi
)(1−uezi


) ; but the right hand


side is less than 2|δ|, since α(f, z0) < 0.02 implies uezi
≤ uz0 ≤ 4−


√
14


2 < 0.13.
Thus |z̃i − z∗| ≤ 4|δi| ≤ 2−n. Q.E.D.


Now we can simplify Algorithm B to the following.


Algorithm A


Input: f(z) ∈ ZZ[z], n ≥ 0 and z0 where α(f, z0) < 0.02
Output: 〈z∗〉n, z∗ is the associated root of z0


1 Ley C := 3− log
jh˛̨


˛ f(z0)


f′(z0)


˛̨
˛
i


2


k
.


Let ez0 := 〈z0〉C+3, i = 0.
2 do


δi :=
h


f(ezi)


f′(ezi)


i


2i+5
.


ezi+1 := ezi − δi.
i := i+ 1.


while(δi 6= 0 and |δi| ≥ 2−n−2).
3 Return ezi.


Let us assume that the coefficients of f(z) are L-bit integers. Let Li denote
the bit size of z̃i. We can further assume that L0, the bit size of the starting point
z0, is O(dL+ d lg d) since once we have isolated the root from its nearest critical


point, which is at least sep(f,z∗)
d from z∗, we are sure that Newton iteration will


converge from z0. This also implies that C = O(dL + d lg d).
It is clear that the most expensive step in Algorithm A is computing f(z̃i).


From the Appendix we know that this can be done in O(dM(dLi + L)). Since
by assumption C already dominates L, we know that Li+1 = O(2i + C). Thus
the overall complexity of the algorithm is


lg(n+L+2)∑


i=0


O(dM(d(2i + C))) = O(d lgCM(dC) + dM(dn)).


Since C = O(dL + d lg d), the above can be reduced to


O(d lg(dL)M(d2(L+ lg d)) + dM(dn)).
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7 Experiments


We compare the running times of the following two implementations of Newton’s
method:


– Full precision version where all the operations are done to a fixed pre-
cision, namely, the final precision with which we want to approximate the
root. This is the implementation of Algorithm A’ in Section 2. It is essentially
Malajovich’s algorithm.


– Robust version. This is the implementation of Algorithm A in the previous
Section.


For each of the polynomials below we will approximate a fixed root of that
polynomial to precision n = 1000, 5000, 10000, 20000, 40000 using the above two
versions. The starting point is chosen such that empirically it is both a robust
approximate zero and guarantees the quadratic convergence of the full version.
We did not apply the point estimate mentioned in Thm. 3, because these polyno-
mials have very large γ(f, z), which forces a very high accuracy for the starting
point. This shows that there is still a gap between the theory of point estimates
and their use in practice.


The initial approximation, around 20 digits of accuracy, for each of the roots
was obtained using the Mpsolve package of Bini and Fiorentino [BF00]; the poly-
nomials are also borrowed from the same resource. The description of most of
the polynomials is obvious from their names, except the mand31 and mand63
polynomials. These are the Mandelbrot polynomials of degree 31 and 63 respec-
tively; the degree n+1 Mandelbrot polynomial Mn+1(X) satisfies the recurrence
Mn+1(X) = XMn(X)2 + 1, where M0(X) = 1; the roots of these polynomials
lie on a fractal.


Table 1 shows the time in seconds taken by the two versions. Note that for
wilk40 the robust version always take the same time, because rounding produces
the exact root after a fixed number of steps. The last column shows the relative
running times of the two algorithms: theoretically, this should grow as lg(n).
Although this ratio is increasing with n, it seems to be smaller than expected.


The implementations were done using the Bigfloat package of Core Library
[KLPY99]. The code and the sequence of tests are available under the directory
progs/newton in the files newton.h and test.h. Our implementation exploits
a particular property of the BigFloat package in the Core Library, viz., the ring
operations (+,−,×) are error-free. This is in contrast to certain bigfloat pack-
ages, like gmp’s mpfr, where each operation is guaranteed up to some arbitrarily
specified precision. The workstation is Sun Blade 1000, 2x750 MHz UltraSPARC
III CPU, 8 MB Cache each, with 2 GB of RAM.


8 Conclusion


The key contribution of this paper is the development of the concept of robust
approximate zero and robust point estimates. We improve on Malajovich’s work
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by obtaining explicit complexity bounds and a stronger point estimate in the
univariate case.


We plan to extend the above work in the following directions: to multi-variate
Newton iteration, and to multiple zeros. For the latter problem, Yakoubsohn
[Yak03] has obtained results under the exact arithmetic setting.


Apart from the above directions one can derive the complexity of approx-
imating a simple zero of a non-linear equation, not just a polynomial, in the
unbounded robust setting; this would extend similar results by Brent in the
bounded bigfloat setting.


Acknowledgements The authors would like to thank an anonymous referee for
meticulous and invaluable feedback.
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Appendix : Big Float Computation


We review some basic facts about bigfloats The name “bigfloat” serves to dis-
tinguish this from the usual programming concept of “floats” which has fixed
precision. For a survey on bigfloat computation, see [YD95]. Our bigfloat model
is essential Brent’s multi-precision arithmetic model.


Consider a bigfloat number


x = 〈ex, fx〉 = fx2
ex−⌊lg |fx|⌋ = 〈fx〉2ex .


A restriction in Brent’s complexity model is that all bigfloats x used in a given
computation are bounded, i.e., ex = O(1) for any bigfloat x = 〈ex, fx〉. We are
however interested in unbounded bigfloats. For unbounded bigfloats, we found
it to be essential to adopt a more flexible computational model based on the
Pointer machines of Schönhage [Sch80] rather than Turing machines.


Theorem 6. Let x = 〈ex, fx〉, y = 〈ey, fy〉 be unbounded bigfloats, and n be a
positive natural number. Also, fxfy 6= 0.


1. We can compute [x]n in C0(n+ lg(2 + |ex|)) time.
2. We can compute [xy]n in C0(M(n) + lg(2 + |exey|)) time.
3. We can compute [x+ y]n in C0(n+ lg(2 + |exey|)) time provided xy ≥ 0 or


|x| > 2|y| or |x| < |y|/2. In general, computing [x+ y]n can be done in time
O(lg(2 + |fxfyexey|)).


4. An analogous statement holds for [x − y]n, where we replace xy ≥ 0 by
xy ≤ 0.


C0 is a constant that is independent of x and y.


Proof.


1. Truncation: To compute [x]n in O(n+lg(2+ |ex|)) time on a pointer model:
given the input n in binary and x = 〈ex, fx〉, we simply treat n as a binary
counter and count down to 0, it is well-known that this takes O(n) steps;
simultaneously, we output the most significant n-bits of fx. In other words,
this complexity does not depend on lg |fx|. We can also output ex in O(lg(2+
|ex|)) time.


2. Addition: We can easily check that xy ≥ 0 and |x| > 2|y| or 2|x| ≤ |y| in
O(2 + lg |exey|)) time. If so, we carry out


(a) Compute [x]n+2 and [y]n+2. This takes time O(n+ lg(2 + |exey|)).
(b) Compare ex and ey. This takes O(lg (2 + |exey|)). Let ex ≥ ey.
(c) Compute ex − ey. This takes O(lg (2 + |exey|)). Shift the decimal point


of y by min{ex − ey, n} bits; this takes O(n).
(d) Add the two fractional parts; this takes O(n). Since by assumption either


both the fractional parts have the same sign, in which case no cancel-
lation occurs, and if not then the most significant bit of x + y is to the
right of x or y, depending upon whether |x| ≥ 2|y| or vice versa.
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Thus the total complexity is O(n + lg (2 + |exey|)).
In general, i.e., when the above assumptions fail, the complexity will be
O(lg |fxfy|+lg (2 + |exey|)). this is because the mantissas may be equal and
catastrophic cancellation may occur.


3. Subtraction: Has the same complexity as addition, except that the assump-
tion xy ≥ 0 should be xy ≤ 0.


4. Multiplication: We carry these steps.


(a) Compute [x]n+2 and [y]n+2.
(b) Multiply the fractional parts of the truncations.


(c) Add the two exponents.


Thus the total complexity is O(M(n) + lg |exey|).


Q.E.D.


It is clear from the above arguments that the constants in the above results
are independent of the choice of x, y.


Evaluating a polynomial to absolute precision. Given f(x) =
∑d


i=0 aix
i, ai ∈ IR,


and s ∈ ZZ, let f̃ be the result of evaluating f(x) at x ∈ IR using Horner’s rule
where each operation is carried out with relative precision s. Given n ∈ ZZ, we
want to determine s = s(n) such that 〈f(x)〉n = f̃ . Here we assume that the
coefficients and x are blackbox numbers (see Section 6) and can be truncated in
time B(n). Let ei be such that 2ei ≤ ai < 2ei+1, ex such that


2ex ≤ x < 2ex+1 (25)


and


e :=max(e0, . . . , ed). (26)


Similar to Higham [Hig96, p. 105], we can show that


|f̃ − f(x)| ≤ γ2d+1


d∑


i=0


|ai||x|i


≤ γ2d+12
e+1


d∑


i=0


|x|i.


where γk := k2−s


1−k2−s . We want to choose s such that the right hand side in the


above inequality is less than 2−n. To do so, we consider the following cases:


1. When ex ≥ 0, i.e., |x| ≥ 1. Then we have


γ2d+1


∑d
i=0 |ai||x|i ≤ 2−n


⇐ 2e+3+d(ex+1)d(d+ 1)2−s ≤ 2−n if s ≥ 2 + lg d
⇐ s ≥ n+ e+ d(ex + 3) + 4 (∗).
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2. When ex < 0, i.e, |x| ≤ 1. Then


γ2d+1


∑d
i=0 |ai||x|i ≤ 2−n


⇐ γ2d+12
e+1(d+ 1) ≤ 2−n


⇐ 2e+3(d+ 1)2−s ≤ 2−n if s ≥ 2 + lg(1 + d)
⇐ s ≥ n+ e+ lg d+ 4 (∗∗).


The complexity of evaluation is evident from the following:


1. Compute [ai]s for i = 0, . . . , d and [x]s. This takes O(dB(s)) by our assump-
tion on ai and x.


2. Let us represent Horner’s evaluation recursively as Pi−1 = Pix+ai−1, where
Pd := ad. The most expensive step of this computation is the multiplication
of Pi and x; since both of have at most s bits of relative accuracy their
product costs O(M(s) + lg |ePi


ex|). It is straightforward to see that


|ePi−1 | ≤ |ePi
| + |ex| + |e|.


From this we get that |ePi
| ≤ (d − i + 1)(|ex| + |e|). Thus the complexity


of the ith step is O(M(s) + lg [|ex|(d− i+ 1)(|ex| + |e|)]). Summing this for
i = 0, . . . , d we get the complexity as O(dM(s)+d lg d+d lg(|ex|2 + |eex|)) =
O(d(M(s)).


Lemma 11. The complexity of evaluating a degree d polynomial f(x) ∈ IR[x] at
a point x ∈ IR to absolute precision n is


O(d[M(n+ e+ dmax{1, ex}) +B(n+ e+ dmax{1, ex})]),


where e and ex are defined in (25) and (26) respectively.


NOTE: The complexity of computing f ′(x) is the same, since only the bit-
size of the coefficients is increased to e + lg d, which can be subsumed by e +
dmax{1, ex}.


For the special case of evaluating integer polynomials we have the following:


Lemma 12. Given f(x) =
∑d


i=0 aix
i, where ai ∈ ZZ are L-bit integers, and x


a bigfloat, we can evaluate f(x) in time O(dM(dL′ + dL)) where L′ is the bit
size of x.


Proof. There are d algebraic operations involved in Horner’s method. At each
such operation the bit size increases by O(L′ + L) and hence the overall com-


plexity is
∑d


i=1O(M(i(L′ + L))) = O(dM(dL′ + dL)). Q.E.D.
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Polynomial Initial Approximation n Time by Time by T/t
Robust (t) Full (T)


1000 0.09 0.26 2.89
5000 1.27 3.00 2.76


chebyshev40 -0.99922903624072293 10000 3.64 11.39 3.12
20000 9.59 34.00 3.56
40000 27.39 107.00 3.92


1000 0.33 0.75 2.27
5000 5.14 15.17 2.95


chebyshev80 -0.862734385977791819 10000 14.64 46.00 3.18
20000 38.49 151.00 3.93
40000 112.22 444.00 3.96


1000 0.1 0.18 1.8
5000 1.32 3.00 2.68


hermite40 -8.098761139250850052 10000 3.64 11.40 3.13
20000 9.56 35.00 3.68
40000 27.31 107.00 3.94


1000 0.32 0.70 2.18
5000 5.11 14.68 2.87


hermite80 -1.364377457054006838 10000 14.75 46.00 3.16
20000 39.37 148.00 3.76
40000 110.68 447.03 4.04


1000 0.09 0.18 2
5000 1.38 3.00 2.56


laguerre40 0.0357003943088883851 10000 3.61 11.35 3.14
20000 9.87 35.00 3.64
40000 27.47 109.00 3.98


1000 0.34 0.70 2.06
5000 5.32 14.75 2.77


laguerre80 0.0179604233006983654 10000 14.68 46.00 3.17
20000 38.68 143.00 3.72
40000 112.56 445.00 3.96


1000 0.06 0.11 1.83
5000 0.80 2.05 2.56


mand31 -1.996376137711193750 10000 2.15 6.73 3.13
20000 5.57 21.00 3.78
40000 16.28 64.00 3.99


1000 0.20 0.43 2.15
5000 3.19 9.25 2.90


mand63 -1.999095682327018473 10000 8.86 29.00 3.30
20000 23.99 88.00 3.68
40000 67.60 275.00 4.07


1000 0.03 0.40 13.67
wilk40 11.232223434543512321 5000 0.03 5.00 16.67


10000 0.03 15.97
20000 0.03 46.00


Table 1.






