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Abstract

Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We
have effectively shut ourselves off from half of the world of computing: a host of problems in Com-
putational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete
viewpoint is inadequate. The computational techniques in such problems are well-known to numerical
analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdi-
vision and approximation. By various case studies, I will indicate how our discrete/algebraic view of
computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a
new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical
model of computation, that allows us to incorporate iteration and approximation into our algorithms’
design. Some recent results give a peek into how this view of algorithmic development might look like,
and its distinctive form suggests the name “numerical computational geometry” for such activities.

You might object that it would be reasonable enough for me to try to expound the differential
calculus, or the theory of numbers, to you, because the view that I might find something of

interest to say to you about such subjects is not prima facie absurd; but that geometry is, after
all, the business of geometers, and that I know, and you know, and I know that you know, that I

am not one; and that it is useless for me to try to tell you what geometry is,
because I simply do not know.

— G.H.Hardy, in “What is Geometry?”

1925 Presidential Address to the Mathematical Association

1 Introduction

This article celebrates the scientific work of Professor Kurt Mehlhorn, a special friend and colleague. Few
computer scientists can match the impact that Kurt has had in computer science. Even to summarize the
scope of his work would be a daunting task. Since this essay is about numerics, I may let the numbers speak
for themselves: his current webpage lists 207 papers, 9 books and 6 software systems. I propose to only
highlight one aspect of Kurt’s experimental work, as it is a special tribute to say that any theoretician had
significant experimental contributions. Over twenty years ago, Kurt began a quest to put the corpus of data
structures and algorithms produced by the theoretical Computer Science community into code. That was
the birth of the software library known as LEDA [31, 32]. Indeed, around this time, computational geometry
witnessed a spurt of experimental geometric software development. But major software development requires
sustained effort over a long period of time which, as theoreticians, we may not have the constitution for.

∗This work is supported in part by NSF Grants CCF-043086 and CCF-0728977.
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Yet today LEDA is the basis of a successful commercial company. Like most large software, LEDA is the work
of many hands: Kurt’s collaborators include Stefan Näher with whom he wrote the LEDA book [30], Stefan
Schirra, Christian Uhrig, Christoph Burnikel and others.

¶1. What LEDA has Achieved. LEDA has implemented the best practical data structures and discrete
algorithms that have been developed in the last 40 years. But the unique part of LEDA lies in its collection
of geometric algorithms. Since the late 1980’s, computational geometers have become acutely aware of
numerical nonrobustness issues in geometric computation. Of all the areas of algorithms, we are especially
afflicted. Some have declared the problem intractable, even for problems as simple as the robust intersection
of two line segments. In retrospect, what is remarkable about Kurt’s foresight was his insistence, from the
very first, that LEDA must be fully reliable and practical, even for geometric algorithms. Twenty years ago,
that was a big wish for a geometric library. A few “robust geometric algorithms” were beginning to appear
in the literature, but nothing with which to stock an entire library. Each problem required special treatment,
and many approaches were contending to solve nonrobustness issues (see my survey in [54]).

I will classify these approaches into two camps: those wishing to make fast machine arithmetic reliable
and those wishing to compute exactly in order to achieve reliable software. Kurt’s approach falls under
the latter “exact” camp. Many researchers in our community did not think the exact camp could be
practical or could compete with machine floating point computation. To place yourself in context, by the
late 1980’s, machine floating point had become the dominant mode of numerical computation (and has
remained so today). Floating point arithmetic has become standardized, enjoys full industry support, and
has moved from software into standard hardware in the form of co-processors. This view is summed up
by Steve Fortune’s foreword in an Algorithmica special issue on implementation issues [22]: “Floating point
arithmetic has numerous engineering advantages: it is well-supported ... the Challenge is to demonstrate
that a reliable implementation can result from the use of floating point arithmetic.”

What about exact computation? It was (and still is) regarded as the domain of specialists and specialized
applications. Yu [59] wrote a thesis under Chris Hoffmann that concluded that exact computation will not be
practical for Boolean operations on polyhedral objects in the foreseeable future. But LEDA did find a general
and systematic solution to nonrobust geometry — not by implementing specialized “robust algorithms” for
each problem — but by introducing a general number type called Leda Real that has the remarkable property
that comparisons are error-free. According to the principles of exact geometric computation, this implied
that the geometry would be exact and hence free from nonrobustness issues. Now, if a computation involves
only rational operations, then this property might not appear impressive (just use a BigRational number
package, although you would still run into the efficiency bottleneck described by Yu). But Leda Real

included square-roots and later, arbitrary real algebraic numbers. Despite this, it remains practical for
all the common geometric problems. Today, such algorithms are reasonably competitive with nonrobust
machine-precision algorithms. Any programmer can implement a fully robust geometric algorithm (provided
the primitives are algebraic) using software such as LEDA. Superficially, it appears that the exact camp has
won in a healthy contest of ideas. But lurking behind this triumph, we see some ideas of the other camp are
also firmly embedded.

¶2. Exact Numerical Computation. How does Leda Real do this? There are five key ingredients, the
first two well-known and next three novel:

(1) You must use arbitrary precision — but use BigFloats (for efficiency, do not use BigRationals).

(2) Track errors automatically — use interval arithmetic. Interval arithmetic tells us when a comparison
between approximate values is valid.

(3) All numbers must have an exact representation — use expressions. This representation supports the
the ability to approximate each number to any desired absolute precision. Such approximations must
be available on demand.

(4) You must solve the zero problem, described later. In practice, we use some constructive zero
bounds which tell us when a numerical approximation is small enough that we may declare the exact
value to be zero. The BFMSS bound [11] from the LEDA group is one of the best zero bounds in this
area.
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(5) You should exploit adaptivity of numerical computations. A highly effective technique here is numerical
filters which can decide most comparisons quickly. Thus, through filters, the “engineering advantages
of floating point arithmetic” of Fortune is restored. Work from LEDA is in the vanguard of trying to
extend such techniques, from cascading filters to filtering of general algorithms [12, 23].

These ideas also appear in my earlier work on the Real/Expr [57], the precursor to Core Library.
Another major library founded on similar principles of exact numerical computation is the CGAL library
[21]. The computing principle that urges us to such a distinctive mode of computation is exact geometric
computation. But in this paper, I want to look at the broader implications; for this purpose, I call this mode
of computation exact numerical computation (ENC). Note that “numerical” often has the connotation
of inexactness, but no such inference is1 intended here. Of course, we will use numerical approximations, but
they are used to derive exact conclusions with the help of zero bounds. Actually, exactness in ENC cannot
be taken for granted: very little is known about the zero problem in transcendental cases [42]. In such
cases, as applied mathematicians know very well, we need carefully circumscribed conditions (smoothness,
Morseness, non-singularity, Lipschitz, etc) that allow exact solution. Another way to restore exactness is to
modify correctness in the sense of backwards error analysis. All these are within the parameters of ENC.

Exact computation is traditionally the domain of symbolic computation and computer algebra. Nev-
ertheless, ENC has no parallel in the computer algebra literature (e.g., [10] or [17, Chap. 4]). Algebraic
computation in computer algebra is greatly influenced by the great subject of algebraic number theory, fo-
cusing on algebraic and arithmetical properties of number fields Q(α) (e.g., [37]). But such approaches do
not have the flexibility and adaptivity necessary to be deployed in practical geometric computations. My
favorite illustration is the following: to compute a number of the form α =

∑100

i=1

√
ni (for positive integers

ni), standard computer algebra methods require the computation of a defining polynomial of α which gen-
erally has degree 2100, a daunting task. Yet, in a geometric application like computing Euclidean shortest
paths, we may have to handle thousands of such α’s. Using our ENC approach, most of these computations
can be dispatched quite routinely since we only need to construct an expression for each α. The comparison
of such α’s could be time consuming, but in practice we are saved by ENC’s adaptive complexity.

To sum up, I believe that LEDA represents an important achievement in computing history: through
the work of LEDA and related work in the computational geometry community, we now understand the
fundamental barriers to robust geometric computation and have identified key elements for solving this
problem in a systematic way. The existence of commercial libraries such as LEDA and CGAL prove that robust
geometric computation is a practical reality today. Kurt’s broad insights and leadership in this area have
played a major role in this achievement. To read some of Kurt’s thoughts on this area, I recommend2

his article [29]. The societal benefits of robust geometric computation are potentially immense: nonrobust
numerical computation has negative impact on programmer/researcher productivity (many of us experience
this), represents a huge economic cost [41], stands in the way of full automation in industry, and often plays
a role in dramatic disasters.

¶3. An Apology. The above quote from Hardy [25] expresses my own ambivalence about writing on
numerical computation, for I know that you know that I do not do much numerical computing. What little
I know is the combination of numerical computation with algebraic computation. It is this synthesis that I
will talk about. My praise of numerical computation represents a slow personal conversion that has grown
over time. When I told a colleague what I will write about, the reaction was — but surely computation is
discrete? I hope to show that there is a deeper issue at stake.

2 Return to the Continuum

What I have discovered over the years, as an unintended consequence of the pursuit of robust geometric
computation, is that numerical computation has many virtues that theoretical algorithms fail to recognize.
We have been enamored with discrete computation (which is good in itself) but to the exclusion of the
continuous. We feel that if a problem or algorithm is numerical, it is the domain of numerical analysts and

1There is an important and related issue of inexact data, which I do not address in this essay.
2It was written for another similar occasion, the festschrift of Thomas Ottmann.
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applied mathematicians. It is true that we should not be amateurs in what others can do better. But the
study of ENC has convinced me that some of these numerical concerns should be our concern.

¶4. Problems in Computational Science & Engineering Let me briefly clarify what I mean by the
“continuum”. In some literature, it refers to the real numbers R. But we may expand its reference to any
locally compact topological space such as Rn or C. By continuum problems3 we mean the problems of
computing functions whose domains and/or ranges are continua. Unfortunately, the theory of continuum
computing, often pronounced as “real computation”, is in its relative infancy because its foundations are
still very much in dispute [56]. We have no consensus similar to Church’s thesis in discrete computation.
This is an exciting opportunity for the computability and complexity theorist, but this is not my focus in
this essay.

First, I point out what we are missing out on by our totally discrete view of computing. I am especially
interested in problems arising in a constellation of subdisciplines, collectively known as Computational
Science & Engineering (CS&E). For any discipline X of science, mathematics, or engineering, it is possible
to identify a subdiscipline called “Computational X”. Thus we have computational biology, computational
physics, computer algebra, etc. In the earth, atmospheric and ocean sciences, the computational aspect is
so central that it is redundant to attach the “computational” prefix. There has been an explosive growth
in computational activities in CS&E. Keen observers of the scientific enterprise have identified the CS&E
phenomenon as representing a third pathway to scientific discovery. Alongside the two traditional pathways
based on theory (deduction) and experimentation (induction), we now have computation (simulation). In
many disciplines X, computer simulation is increasingly seen as an alternative to physical experimentation.
Computational labs vie with traditional wet labs to provide insights for X.

Where is the Computer Science in computational X? Taking a highly Computer Science-centric view,
imagine computational X as a collection of computational problems, and so CS&E is the union of these
collections. Let us also regard Computer Science as a collection of computational techniques. Then the
relationship between Computer Science and CS&E can be pictured as a matrix where each problem is
represented by a column, and each technique represented by a row. Each matrix entry has a numerical score
between 0 and 1, indicating the relevance of a technique to a problem. Of course, this is only a cartoon view
to make a point. In Table 1, I have further simplified the column space by identifying each computational
X with only one column.

Atmospheric Comput. Material Comput. · · · Electrical

Sciences Biology Science Physics Engineering

Huge Datasets 1.0 0.8 0.2 0.6 · · · 0.1

Optimization 0.2 0.2 0.5 0.2 · · · 0.3

Symbolic Computation 0.1 0.0 0.2 0.7 · · · 0.5

String Algorithms 0.0 0.8 0.0 0.2 · · · 0.0

Parallel Algorithms 0.5 0.2 0.2 0.4 · · · 0.1

.

.

.

.

.

.

.
.
.

Table 1. The CS&E Matrix.

Practitioners of Computational X tend to identify themselves with a particular column (as “column
scientists”), while computer scientists might view themselves doing row science. The glue that makes CS&E
coherent is Computer Science. When we develop algorithms in a particular row, we are often oblivious to
the applications. But by aligning our row activities to particular columns we may gain new insights for the
science of computing, and we would share in the advancement of X. This would be the “best practice”.

But the record of involvement of Computer Science in the Computational X’s shows an uneven record.
In areas such as computational biology, there is a great synergy, while in many others, the Computer
Science component is4 basically non-existent. This dichotomy is highly correlated with the division between
discrete and continuous computation. Computational biology can be reduced to discrete algorithms (strings
and trees), and it is easy for computer scientists to make contributions at this level of abstraction. But

3Sometimes called “continuous problems”, but this terminology is confusing, especially for geometric computation which is
inherently discontinuous.

4Just because Computational X uses computers does not mean that there is Computer Science development in it, any
more than there is carpentry in Computer Science although computer scientists use tables and wooden cabinets. David Bindel
reminds me that numerical analysis is present in these fields, and so it is clear that in this essay, I use “Computer Science” in
a narrow sense without including numerical analysis.
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Computer Science involvement falls off rapidly as the need for numerical computation increases. My general
thesis is that there is a large role for theoretical algorithms in such computation, and this ought to be most
clearly understood by those of us who work in the field of computational geometry.

¶5. Two Worlds of Computing. When I suggest that Computer Science should engage in the continuum
problems of CS&E, it invites a clash of two world views on computing. One view is motivated by computing
ideal mathematical objects and the other, by physical modeling. Most of us live exclusively in one of these
worlds and are oblivious to the other. General claims about computing from one perspective can be quite
wrong in the other. We cannot afford to fall into this trap, as we intend to work at their interface.

In the mathematical world view, the continuous makes perfect sense and its use in mathematical
modeling has been highly successful. Exact computation is also meaningful here, whether it is computing
arbitrarily accurate values of π or in automated proof of geometric theorems. The ideas of exact geometric
computation sit comfortably in this world. The algorithmic problems studied in theoretical computer science
are also exact ones.

The physical world view disdains exact computing, however. It is argued that the physical world is
discrete and nondeterministic. In other words, the continuous and deterministic world is a myth. When such
arguments are used to dismiss the reality of the other world of computing, they miss the point of myths,
whether in folklore or in science. We know that a “point mass” in Physics is a fiction, but try abolishing it
from Physics text books. The point (no pun intended) is that continuous models satisfy Occam’s Razor in
their description of many physical phenomena. Thus, the term “continuum mechanics” is no oxymoron even
when applied to the study of particle systems like fluids and gases.

Besides discreteness, the physical world view advances a related argument about finiteness. It is noted
that physical constants have limited accuracy and that current 64-bit machine precision seems more than
adequate for physical modeling, from the subatomic to astrophysical scales. There is a simple counter to this
thought: a well-known phenomenon in ENC is that in order to compute a value up to (say) 1-bit accuracy,
the intermediate computed values might require arbitrarily many bits of accuracy. In fact, it is remarkably
easy to run out into very high precision.

Many applied fields are ostensibly uninterested in exactness. It may be hard to see why such fields
might have any interest in exact computation, so let me provide some examples. In computer graphics, it is
arguably unnecessary to compute beyond the accuracy of screen resolution (this is analogous to the limited
accuracy of physical constants). Over the years, on quizzing experts in this field, I have been repeatedly
surprised by acknowledged5 nonrobustness issues. Or consider protein folding, an inherently approximate
process. Nevertheless, the folded protein may have several distinct minimal energy states: how could we
ensure that our numerical simulation has sufficient accuracy to be6 qualitatively correct? Or consider the
fact that approximate computation may be best modeled by an idealized mathematical model. Then, the
best policy might be to compute exactly, or to try to emulate exact computation. As another interesting
example, floating point computer arithmetic must ultimately rely on exact computation to solve the exact
rounding problem [58]. Therefore I believe that, like the myths of point masses and continuum mechanics,
exact computation has a role to play even in the approximate computations of CS&E.

¶6. Is Geometry Continuous or Discrete? Many continuum problems are geometric in nature. So
it is useful to understand the general character of geometric computation. Computational geometers have
much insight to offer in this regard, as they have had to grapple with this question as they confronted
nonrobustness in geometric computation.

Geometry comes in two main forms: analytic geometry and synthetic geometry. The former uses equations
and coordinates to define geometry while the latter (e.g., Euclidean geometry) proceeds from axioms. Inter-
estingly, Hardy [25] regards analytic geometry as mundane and considers synthetic geometry as the “higher
geometry”. But computationally, we see that analytic geometry is by far the more important (cf. [7]). In
automatic geometric theorem proving, for instance, the synthetic approach has had limited success, while
the analytic approach, especially influenced by Wu Wen-Tsun’s insights, has flowered today. Henceforth, I
focus exclusively on analytic geometry.

5You are unlikely to see these issues discussed in print.
6i.e., closer to the correct minimal energy state than to any others.
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Analytic geometry is the interplay of the continuous and discrete. The continuum enters in two ways.
To make this concrete, allow me to introduce a little framework. In the first place, geometric objects are
parametric objects. Geometric prototypes are points and lines in the plane. A point p is given by
Point(x, y) and a line ℓ is given as Line(a, b, c) : aX + bY + c = 0 where x, y, a, b, c ∈ R are numerical
parameters. These parameters might be constrained (e.g., a2 +b2 > 0). The parameter space of geometric
objects of each type is therefore a continuum. The space of points may be identified with the Euclidean
plane R2, and the space of lines is a subset of the projective space P2(R).

In general, we can treat more complex geometric objects, such as a convex polytope in Rn, as a cell
complex in the sense of algebraic topology. The (combinatorial) type of a geometric object can be
represented by a directed graph G with parametric variables X1, . . . ,Xm associated with its vertices and
edges, together a constraint predicate C(X1, . . . ,Xm). We will write G(X1, . . . ,Xm) for this type, with
C(X1, . . . ,Xm) implicit. An assignment of values ai ∈ R to each Xi is valid if the predicate C(a1, . . . , am)
holds. E.g., C(a, b, c) might say that a2 +b2 > 0. A valid assignment (a1, . . . , am) to G(X1, . . . ,Xm) is called
an instance, and we write “G(a1, . . . , am)” for the instance. All geometric objects with which we compute
can be put in this form (see [54]). For each type G(X1, . . . ,Xm), we obtain a parametric space comprising
all of its instances.

Suppose we have a surface S, viewed as a parametric object S = Surface(x) with parameters x ∈ Rm.
These parameters can be approximated by some x̃. If ‖x − x̃‖ ≤ ε, we call Surface(x̃) a parametric
ε-approximation of S. But we will see a (for us) more important kind of approximation.

The continuum enters geometry in a second way. Geometric objects such as points, hypersurfaces,
cell complexes, etc, must live in a common ambient space in order to interact. Each geometric object
G = G(a1, . . . , am) is associated with a subset λ(G(a1, . . . , am)) of its ambient space, say Rn (for some n).
Call λ(G) the locus of G; in practice, we often identify G with its locus. For instance, if G is a curve, its
locus is a 1-dimensional subset of Rn.

Two geometric objects S and T , not necessarily of the same type, living in a common ambient space,
are said to be ε-close if the Hausdorff distance between their loci is ≤ ε. Thus, we can approximate
continua, such as surfaces S, by discrete finite objects such as triangulations T , and we call T an explicit
ε-approximation of S. The explicitization problem is to compute an explicit ε-approximation T from
(the parameters of) S. For instance, a real function f : Rn → R can be explicitly approximated by a
triangulation T that approximates its graph gr(f) := {(x, f(x)) : x ∈ Rn}. Such approximations are central
to our concerns.

Interaction among geometric objects is captured by geometric predicates which define relationships
via loci. Thus, we have the OnLine(p, ℓ) predicate which holds if p lies on ℓ, or the LeftTurn(p, p′, p′′)
predicate which holds if we make a left turn at p′ as we move from p to p′ and then to p′′. Let R be a
set of geometric predicates, and let O1, . . . , Om be m sets of geometric objects, each set Oi having a fixed
type. For instance, let m = 2, O1 be a set of points, and O2 a set of lines. The sum total of the geometric
relationships defined by R on (O1, . . . , Om) constitute the “geometry” of (O1, . . . , Om) induced by R. The
field of computational geometry is concerned with computing, representing, and querying such geometries.

Geometric objects can also be constructed from other data: besides constructing the objects directly
from their numerical parameters (e.g., p ← Point(x, y) or ℓ ← Line(a, b, c)), we may construct them from
other geometric objects (e.g., p ← Intersect(ℓ, ℓ′) or ℓ ← Line(p, p′)). Such predicates and constructors
become the primitives for geometric computation as we shall see in the next section.

3 Abstract Computational Models

Computational Geometry is primarily concerned with discrete and combinatorial algorithms. These algo-
rithms are largely non-numerical. This last characterization must strike the casual observer as an anomaly.
Since geometric data arises from the continuum, surely numerical computations must be central to geomet-
ric computation? By nature, computation is discrete: each computational step (sequential or parallel) is a
discrete event that transforms the computational data in a well-defined (not necessarily deterministic) way.
Despite this discrete nature, we can develop computational models for continuum problems and geometric
applications. This paradox also appears in mathematical logic: we build theories of the continuum using a
logical language that is countable.
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Computation and mathematical logic have much more in common. In discussing computational models,
especially for continuum computation, we can take another page from logic. The language of any first
order theory is comprised of two parts: (A) a “logical part” that has the standard logical symbols such as
Boolean operators, equality, quantifiers and a countable set of variables; (B) an “extra-logical part” that7

has predicate and operator symbols which are unique to the particular theory (e.g., [46]). Standard rules of
logical deduction are supplemented by special axioms for the extra-logical parts of the theory.

We apply a similar approach to computation: each computational model can be divided into a logical part,
called the base model, and an extra-logical part. Because of the extra-logical part, such models are called
abstract (computational) models. The base model may be any standard computational model; Turing
machines and random access machines (RAM) [1] are commonly used. Typically, the base models are at least
equivalent to Turing machines. The choice of a base model determines the kind of data structures and type
of control structures of our algorithms. With Turing machines as the base model, we are making the choice
to have strings as our basic data structure. The extra-logical powers typically come from oracles (perhaps
countably many). To compute with real numbers, these oracles can represent real functions. Through these
oracles, we can access countably many real constants (like π, e) via special string encodings that the oracle
understands. Ko [27] uses such oracle Turing machines extensively in his work. Alternatively, in using RAMs
as the base model, we are choosing the ability to have random access to storage locations containing integers.
To compute with extra-logical objects such as real numbers, we allow the storage locations to store reals,
and provide corresponding real predicates and operators.

¶7. Abstract Pointer Machines. Thus we may speak of “abstract Turing machines” or “abstract
RAMs”. But I am especially partial to abstract pointer machines that use Schönhage’s pointer machines8

[43] as the base model. Pointer machines directly encode and manipulate structures called tagged graphs,
i.e., directed graphs whose edges (called pointers) have labels (called tags) taken from a finite set ∆ of
symbols. Its operations are instantly recognizable by computer scientists. In brief, its two main operations
are

Assignment : w ← v

Test : if (w ≡ v) goto L

where w, v ∈ ∆∗ and L is a natural number (a label of an instruction). A pointer machine, in bare form, is
a finite sequence of such instructions. If G is a tagged graph with a designated node called the origin, then
a string w ∈ ∆∗ yields a path that begins at the origin and ends at a node denoted [w]G. The last pointer
(edge) in the path w has a special role: execution of the assignment instruction “w ← v” will modify G by
re-directing the last pointer of w to point at [v]G. The test instruction “if (w ≡ v) goto L” is also easily
understood: the indicated goto is executed if [w]G = [v]G.

Such machines are naturally extended to operate on algebraic entities such as real numbers, which are
stored in the nodes of the graphs (see [56]). Abstract pointer machines are natural for geometric computation
which calls for the juxtaposition of combinatorial structures with real numbers. Imagine trying to encode
geometric structures into strings in an abstract Turing machine — a most unnatural thought.

In fact, the analogy to logic can be carried even further: just as modern logic does not require logical
languages to be associated with any particular model, we can also view our computational models to be
pure syntax, with certain syntactic rules. It is up to the application to provide models and “abstract
interpretations”. But this would take us beyond our immediate interest. So in the following, I assume that
each abstract computational model comes with a standard interpretation.

¶8. Classification of Abstract Models. Once we have an abstract computational model, we can discuss
computability and complexity. The simplest complexity model is to charge a unit cost for each operation. I
will categorize important abstract computational models from the literature into three classes:

• Analytic Models. In the field of computable analysis, models based on Type-2 Theory of Effectivity
(TTE) [53] or oracle TM’s [27] have been studied. I will shortly discuss numerical models that fall
under this classification.

7Also called the “non-logical” part.
8Also known as storage modification machines.
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• Algebraic Models. The real RAM [1] is an example. The BSS model of Blum-Shub-Smale [5] can be
seen as a real RAM with limited random access. Alternatively, it is a Turing machine whose tape cells
can store arbitrary real numbers. The extra-logical powers here are the ring operations (+,−,×, 0, 1)
and real comparison (<,=). More generally, we call an abstract model “algebraic” if the extra-logical
objects belong to algebraic structures like rings or fields, and the extra-logical functions or predicates
take only these objects as arguments. Note that the extra-logical operation exp(x) or sin(x) count as
“algebraic” in our sense. The Information-Based Complexity approach of Traub and Woźniakowski
[50] focus on algorithms in such algebraic models.

• Geometric Models. It is tedious to design geometric algorithms directly in the algebraic or analytic
models. So most geometric models use the real RAM as the base model, introduce higher level objects
such as points or surfaces, and assume geometrically meaningful predicates and constructors such as
those discussed earlier. For example, below we discuss a geometric constructor that shoots a ray to
obtain a sample point on a surface.

Abstract models are important and useful, regardless of whether they are realistic or not. I stress this
point because some have criticized algebraic models (e.g., BSS model) on account of unrealism. But it would
be untenable to develop most of the algorithms of computational geometry in an analytic or algebraic model.
The unique place9 of the Turing model is never challenged by any of these abstract models. The abstract
models serve other useful purposes, including providing a modular description of algorithms at various levels
of abstraction [56]. Thus, the algebraic model, not the standard Turing machines, is most appropriate for
describing Strassen’s matrix multiplication algorithm.

4 Case Studies in Abstract Models

Computational models greatly influence the kinds of algorithms we design. They can hide or accentuate
different computational issues. Of course, we know this. Nevertheless, we might gain some insights into
potential pitfalls by looking at four case studies.

¶9. CASE 1: Meshing or, Watch your Implementation Gap. Most physical simulations require
some kind of mesh. For our purposes, we may identify a mesh as a triangulation. I will consider a basic
problem in meshing: generating topologically correct ε-close meshes for implicit surfaces (see the survey
[6]). In case the surface is algebraic, a well-known algebraic approach to this problem uses some form of
cylindrical algebraic decomposition. As these algebraic techniques are expensive and non-adaptive, I will
focus on two adaptive approaches based on sampling and subdivision. They differ in their choice of abstract
models. Let S be a non-singular surface given by f(x, y, z) = 0.

In the sampling approach, we construct a mesh T from a finite set P of sample points on S. Typically,
T = T (P, S) is a subset of the Delaunay triangles of P . We incrementally add sample points to P until the
required ε-closeness criterion is achieved. Such algorithms are based on a geometric model that supports the
classical primitive of “ray shooting”. The primitive returns the first point p (if any) on S intersected by a
given ray. We then add p to the set P . If S is an algebraic surface, the sample points would have algebraic
number coordinates. Although it is possible to implement such a ray shooting model exactly (it reduces to
computing the first positive root of a polynomial), this is expensive and nontrivial to implement. Should
we implement exact ray shooting in order to approximate a surface? Probably not. Yet there is no known
analysis of sampling algorithms based on approximate sample points. This leaves an implementation gap
in what is otherwise a beautiful exact approach. The next section will expand on this example.

We turn to the subdivision approach. Typically, we wish to construct a mesh for the part of the
surface lying within some given box B0. We construct a quadtree rooted at B0 by repeated subdivision until
each leaf box satisfies some criterion. The well-known marching cube algorithm falls under this approach.
Subdivision methods are easy to implement and widely used in practice. I want to highlight an algorithm
of Plantinga and Vegter (PV) [36] which represents the first complete purely numerical algorithm for the

9Although the standard base models are equivalent by Church’s thesis, the Turing model captures complexity-theoretic
concepts such as space, time, nondeterminism, etc. much better than most. The pointer model is close to the Turing model in
this respect.
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meshing of non-singular surfaces in R3. This is no mean achievement, considering that there were been several
prior attempts (e.g., [49, 47, 40]) that fall short in one way or another. Unlike the sampling approach, this
numerical algorithm suffers no implementation gap: it is easy to implement using just a bigFloat number
package.

¶10. CASE 2: Transcendental Comparisons or, Can we really do this? The previous case study
points out the hidden cost of implementing abstract real RAM operations. In our second case, we see an
extreme example of this phenomenon. In 2003, while I was visiting the laboratory of Professor Doeksoo Kim
in Hanyang University, Korea, he demonstrated his geometric software for computing shortest paths between
any two points while avoiding a collection of n discs. In the real RAM model, it is an exercise to reduce this
problem to Dijkstra’s algorithm on a suitable graph. Of course, an effective implementation needs additional
techniques such as the ability to cull away most of the irrelevant discs for any particular query, but that
is another story. The implementation uses machine precision arithmetic and I casually suggested that to
produce guaranteed results, they might look into tools like LEDA or Core Library. But upon reflection, I was
greatly surprised to discover that I did not know how to solve it. That is because the shortest disc-avoiding
path γ between two points consists of an alternating sequence of straightline segments (σi) and circular arcs
(αj):

γ = (σ0, α1, σ1, α2, . . . , αm, σm).

This is illustrated by Figure 1 which shows two disc obstacles A,B, and two possible shortest paths from

p −p

q

A

B

Two Discs

Figure 1: Shortest path from p to q

p to q. Note that q is close to −p, so it is not obvious which is shorter. The length of σi is algebraic but
the length of αj is non-algebraic. So the length of γ is an algebraic number plus a transcendental value.
Dijkstra’s algorithm requires the comparison of two such lengths, and there were no known decision methods
here. Eventually, we were able to show the decidability of such comparisons [15] by appealing to Lindemann’s
theorem in transcendental number theory. Obtaining complexity bounds requires more work, depending on
Baker’s theory of linear form in logarithms. Although our story ended well, the initial fear that we might
have unwittingly invoked an uncomputable form of the real RAM is a lesson not easily forgotten. For our
next case, we turn to a problem where the computability remains open.

¶11. CASE 3: Discrete Morse Theory or, How to take the first step. A powerful research
methodology in algorithms is to develop discrete analogues of continuous theories. In recent years, discrete
forms of differential geometry, minimal surfaces, Ricci flows, etc. have been developed. Edelsbrunner, Harer,
and Zomorodian [20] developed a discrete Morse theory for triangulated surfaces. Given a triangulated
surface with a Morse function, we can compute its discrete Morse complex (which is a quadrangulation) in
a purely combinatorial way. They further used discrete Morse theory to compute a simplification hierarchy
that has many useful applications.
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In some applications, we do not begin with a triangulation, but with a smooth surface S with associated
height function. Suppose that we wish to compute its Morse complex. One approach is to first compute
a triangulation T of S, then compute a discrete Morse complex using the algorithm of Edelsbrunner et al.
Let us write T ≃ S if the discrete Morse complex of T is combinatorially equivalent to the usual Morse
complex of S. Unfortunately, we do not know how to compute a T such that T ≃ S. Another way to see
this difficulty is to ask the simpler problem: given a non-degenerate saddle point, how do we connect it to
its two maximas? The issue is to compute the integral lines correctly. No current (numerical) methods can
guarantee this. Assuming S is algebraic, we see that the critical points are algebraic and can be located
exactly. But the integral lines are probably nonalgebraic, and we have no a priori bounds on how close they
can get to other critical points.

In general, the problem is to compute a discrete analogue T of a continuum S such that “T ≃ S”, meaning
that the topological invariants of T are equal to the corresponding invariants of S. Once we have T , the
computability of its topological invariants is usually not in question. Computer scientists have gravitated
naturally to this discrete computation, but I suggest that we also look at the more fundamental question of
computing the transformation S 7→ T which is largely open.

This first step, the transition from continuous-to-discrete, amounts to solving an explicitization prob-
lem in the sense of ¶6. Surface meshing and computing the Morse complex are two examples. Such examples
are easily multiplied: computing discrete representations of vector fields, the numerical solution of partial
differential equations, etc. An interesting problem investigated by Nishida and Sugihara is the Voronoi
diagram of points in a flow field [34].

¶12. CASE 4: Numerical Halting Problem or, How to be Adaptive. Behind each explicitization
problem, you will find the zero problem, which I will now explain. For any set E of real expressions, we
define a corresponding zero problem, Zero(E): given e ∈ E, is the value of e equal to 0? Here, each
e ∈ E is an expression defined over some set Ω of partial functions on R, and e either denotes a unique value
val(e) ∈ R, or val(e) is undefined. Except in the case of algebraic expressions, the decidability of these zero
problems is generally open.

Consider the “sum of square-roots” problem. This is the zero problem for the set E0 comprising the
expressions e =

∑m
i=1

ai

√
bi where ai ∈ Z and bi ∈ N. Its complexity is a famous problem in computational

geometry (see Blömer [2, 3]). In this case study, I will illustrate the influence of abstract models in addressing
the zero problem. If your abstract model is the real RAM with the ability to extract square roots, then
Zero(E0) is trivial: explicitly evaluate the expression e =

∑m
i=1

ai

√
bi in 3m − 1 steps and perform the

needed comparison to 0 in one more step. But the real RAM is unrealistic when discussing square-roots. So
I turn to two other approaches, an algebraic one and an numerical one.

(1) Suppose you use the standard RAM that allows ring operations on arbitrary integers. To solve
Zero(E0), you can use a well-known algebraic method known as “repeated squaring”: in each stage of this
process, if you arrange so that one side has exactly those terms involving a given square root, then you can
eliminate this square root by squaring both sides of the two-sided equation. Unless you are extremely lucky,
you will need to perform m such stages. After the first log2 m stages, we expect to see terms which are
products of any subset of the original square roots (there are 2m such terms). So the complexity is at least
single exponential in m.

(2) Suppose you use some numerical model (the next section will provide one such) that supports approx-
imations of square roots to any desired precision. For simplicity, assume that approximations are given by
enclosing intervals. We can compute a potentially infinite sequence Ii = [ui, vi] (i = 0, 1, 2, . . .) of improving
approximations to val(e), where vi − ui ≤ 2−i. If ui > 0 or vi < 0 for any i, we can stop and conclude that
val(e) 6= 0. Thus, if |val(e)| 6= 0, this will stop within 1 − log2 min {1, |val(e)|} steps. What if val(e) = 0?
In general, we have no method of stopping. But for e ∈ E0, we can compute an a priori zero bound
β(e) ≥ 0 with the property that if val(e) 6= 0 then |val(e)| > β(e). In this case, if you have not concluded
that val(e) 6= 0 after − log2 min {1, β(e)} steps, you can declare val(e) = 0. Known bounds for β(e) imply
that after at most an exponential number of steps, we can declare that val(e) = 0. It is not known if this is
necessary.

This numerical approach gives rise to the numerical halting problem, the problem deciding when to
stop computing a potentially infinite sequence Ii (i = 0, 1, 2, . . .) of approximations. Like the classic halting
problem for Turing machines, this decision problem is asymmetrical: one case is easy, and the other is hard.
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If val(e) 6= 0, it is trivial to halt. If val(e) = 0, then it is highly non-trivial to halt.
Which method should we prefer? The algebraic method is non-adaptive (all-or-nothing) because, infor-

mally, with a measure-zero exception, it requires the worst case complexity bound. The numerical method
is adaptive because, again with a measure-zero exception, its complexity depends on |val(e)|. Some years
ago, I noted two other advantages of the numerical method:
(a) Typically, the zero problem is only a subproblem of the more general sign problem: given e ∈ E, we
want to know the sign of val(e), assuming val(e) is defined. The algebraic method of repeated squaring
requires nontrivial modifications in order to decide sign (there are numerous cases to consider) but signs
come for free with the numerical method.
(b) Suppose you need to perform n log n comparisons of the form ei : ej where 1 ≤ i < j ≤ n. This problem
arises in Fortune’s sweepline algorithm. This reduces to the sign problem for the expression ei − ej . Using
the algebraic approach, one must do repeated squaring for each comparison. Using the numerical approach,
we have a better option. Assume we have a bound B such that B ≤ β(ei − ej) for all i < j. Then you just
approximate each expression ei by some numerical value ẽi with error less than B/2. It turns out that B is
not too large so that the difficulty of this approximation is comparable to performing a repeated squaring
comparison. Now the comparison ei : ej is easily decided by comparing the approximations ẽi : ẽj (declare
val(ei) = val(ej) if |ẽi − ẽj | < B). So the algebraic approach requires n log n difficult computations, but the
numerical method only requires n difficult computations (to approximate each ẽi).

5 The Exact Numerical Model

Numbers are the fountainhead of analytic geometry. But we are trained to design algorithms exclusively in
abstract models that are devoid of numbers. This is the source of the implementation gaps we saw in our
case studies. The goal in this section is to develop a numerical computational model that avoids such pitfalls
while remaining useful for geometric algorithms.

Smale has observed that numerical analysis has no abstract computational models to investigate the
fundamental properties of numerical computation. The BSS model has been offered as a candidate for this
purpose [4] (see [5, Chap. 1]). For error analysis, numerical analysts use the standard arithmetic model (see
below) which falls short of a full-scale computational model. Perhaps numerical analysts see no need for a
general model because most of their problems do not involve geometry or complex combinatorial structures.
In the following exercise, I hope you will see some merit in taking up Smale’s challenge.

¶13. Duality in Numbers. Numbers in R are dual citizens: they belong to an algebraic structure (a
field), as well as to an analytic structure (a metric space). As in the particle-wave duality of light, numbers
seem to vacillate between its particle-like (algebraic/discrete) and wave-like (analytic/continuous) natures.
In many computations, we treat them exclusively as citizens of one or the other kingdom. But in order
to address the central problems of continuous computation, we need a representation of numbers which
expresses the dual nature of numbers.

Consider a concrete example: the number α =
√

15−
√

224 can be represented directly by the indicated
radical expression. This is exact, but for the purposes of locating its proximity on the number line (e.g., is α
in the range [0.01, 0.02]?), this representation alone is unsatisfactory. An approximation such as α = 0.0223
would be useful for proximity queries. But no single approximation is universally adequate. If necessary,
we should be able to improve the approximation to α = 0.02230498, and so on. Thus, the analytic nature
of α is captured by the potential to give arbitrarily good approximations for the locus of α. This is only a
potential because we cannot reach its limit in finite time. In the analytic approach to real computation, this
is the central concept [53, 27]. For us, this potential exists because we maintain an exact representation of α.
Thus, we need a dual representation of α, comprising the exact expression plus a dynamic approximation
process. Computationally, this is very interesting because iteration at run-time becomes necessary.

Of course, we have seen dual representations earlier in Leda Real. This representation can be generalized
to geometric objects. For instance, to represent an algebraic curve C in R3 exactly, we store a pair of
polynomials (f, g) in case the curve is defined by f = g = 0. To approximate the locus of C, we use any
suitable explicitization. A simple solution is a polygonal line P that is ε-close to C (for any desired ε).
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¶14. Some Virtues of Numerics. Let us next focus on numerics. I shall speak of “numerics” when I
want to view numbers only as analytical objects, and ignoring their algebraic nature. In numerical analysis,
they are fixed-precision floating point numbers, but for exact computation, we must transpose them to
BigFloats. BigFloats (or dyadic numbers) form the set F := {m2n : m,n ∈ Z} = Z

[
1

2

]
. Practitioners

instinctively know the virtues of numerics but it is easy for theoreticians to miss them. Implicit in our
discussion of virtues is a comparison with numerical computing that is based on other number systems with
more algebraic properties, for example Q or algebraic numbers. I do not claim to say anything new, but
it is useful to collect these thoughts in one place. What is perhaps new is the audience, since I am talking
numerics in the context of exact computation.

• Numerics is useful in exact computation. More precisely, approximations can often lead to the correct
decisions, and when combined with zero bounds, such approximations will eventually lead to the right
decisions. This is the sine qua non for exact computation.

• Numerics is relatively easy to implement. There is only one number type, the “real” numbers (which
in computing is translated into floating point numbers). If you compute with algebraic numbers,
the traditional approaches require data structures for manipulating polynomials and algorithms for
manipulating polynomials. Most implementers avoid this if they could.

Even the use of rational numbers Q for their analytical properties will introduce irrelevant algebraic
properties that are expensive to maintain. Trefethen gave a striking example of this from Newton
iteration [51]. There is a canonical reduced representation for elements of F and Q: the numerator and
denominator must be relatively prime. While performing a sequence of ring operations on a number,
it is necessary to reduce its representation periodically in order to avoid exponential growth. This is
computationally easy for F, but not for Q.

• Numerics are efficient. We know this for machine numerics, but even BigFloats are efficient. Essentially,
BigFloats are as efficient as BigIntegers, and we regard the complexity of BigInteger arithmetic as the
base line for exact computation.

• Numerics are easy to understand. This is an important consideration for implementations. For the most
part, the analytical properties we need are the metric properties and total ordering of real numbers.
In contrast, algebraic properties of numbers can be highly nontrivial (try simplifying nested radical
expressions).

• Numerical computation has adaptive complexity. We saw this in CASE 4. There are applications in
which the only possibility of obtaining any solution at all relies on adaptivity.

• Numerical approaches have wider applicability. Many problems of CS&E have no closed form solutions.
In such situations, numerical solutions remain viable. But even when closed form solutions exist, the
numerical solution might be preferred.

• In CS&E, the numerics may be an essential part of the solution. Such is the case with explici-
tization problems (¶6). An answer of the form “α ≈ 0.022” might be acceptable, but the form

“α =
√

15−
√

224” is unacceptable (even though it is exact). This is a blind spot if you exclusively
think in algebraic computational models.

¶15. Standard Numerical Model. Having established a place for numerics in exact computation, I will
now discuss how we can incorporate it into our computational model. The numerical analysts are experts in
this domain, so we first look at their treatment of numerics. The standard arithmetic model [26, p. 44]
of numerical analysis is the following: if ◦ ∈ {+,−,×,÷} is any arithmetic operation and x, y are floating
point numbers, then the corresponding machine operation ◦̃ satisfies the following property:

x◦̃y = (x ◦ y)(1± u)

where10 u is the unit round-off error, provided x ◦ y 6= 0. In the usual understanding, u is fixed. If we allow
u to vary, we essentially obtain the multiprecision arithmetic model of Brent [9, p. 242-3].

10In our error notation, any appearance of “±” should be replaced by the sequence “+θ” for some variable θ satisfying
−1 ≤ θ ≤ 1. E.g., 1 ± u translates to 1 + θu. Note that θ is an implicit variable.
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More generally, I assume that for each operation ◦̃, an arbitrary non-zero relative error u can be explicitly
given as an argument. Notice that the numerical analysts’ model is only about arithmetic. It is agnostic
about the nature of the base model. But to convert it into an abstract computational model, I choose pointer
machines as the base model. We thereby obtain the standard numerical model. This can be classified
as an analytic model.

¶16. Computational Ring. The standard numerical model is wonderful for developing the algorithms
of numerical analysis, and especially for performing backwards error analysis. But this model is problematic
for exact numerical computation (ENC) — it lacks the critical ability to decide zero. You can never be
sure that any computed quantity is exactly zero. Zero as an algebraic object has been abolished. We have
noted [56] that computing in the continuum puts a big “stress” on our computational models because we are
trying to simulate an uncountable set R using only a countable domain (N or finite strings). The algebraic
models [5] cope by making the zero problem trivial. The analytic models [53, 27] cope by making the zero
problem undecidable. The standard numerical model represents a third solution, by making the zero problem
meaningless.

To restore the place of zero, we must view BigFloats as an algebraic structure. In fact, it is useful to
generalize BigFloats by an axiomatic treatment: let D ⊆ R be a countable set that is a ring extension of
Z, and which is closed under division by 2. Further, there is a representation11 for D, viz., an onto partial
function ρ : {0, 1}∗ ≻D relative to which there are algorithms to perform the ring operations, division by
2, and exact comparisons in D (see [56]). Call D a computational ring. We note that D is dense in R,
and we have mandated a minimal amount of algebraic properties in D. Computational rings provide our
answer to the standard arithmetic model.

The smallest computational ring is the set of BigFloats F. In practice, an important computational ring
is Z[1

2
, 1

5
] (see [35]). But Q or real algebraic numbers are also examples. We now construct an abstract

pointer model in which elements of D are directly represented and the operations on D are available. The
fundamental objects manipulated by our pointer machines are numerical graphs, i.e., tagged graphs in
which each node stores an element of D. This constitutes our basic numerical model. Numerical graphs
can directly represent n×n matrices Dn×n, or polynomials with coefficients in D, etc. Under our classification
scheme ¶8, this is both an analytic and an algebraic model.

Trefethen observed [52, Appendix] that numerical analysis has an undeserved reputation of being “the
study of rounding errors”, when its true subject matter is “the study of algorithms for continuous mathemat-
ics”. I think this reputation is partly a function of the standard numerical model. What I found interesting
[56] is that numerical analysts inevitably design algorithms in some exact algebraic model (check any numer-
ical analysis text book). But they go on to address the implementation gap (¶9) between the exact model
and the standard numerical model. This is the error analysis.

¶17. Exact Numerical Machines. We could design algorithms directly in the basic numerical model,
but that would be programming in assembly language. So we explore some extensions of the basic numerical
model. My goal is to introduce the capabilities needed to implement the algorithm of Plantinga-Vegter
naturally. These capabilities will not affect computability, though they might affect complexity.

Functions will be the key abstraction for our model. Here, we see a major difference between algebraic
and analytic thinking. In algebraic thinking, functions are seen as holistic objects within an algebraic
structure, e.g., polynomials as elements of a ring. But in analytic thinking, functions are more versatile:
they are objects which we can evaluate (query) at run-time, compute approximations of, compose with other
functions, numerically differentiate, etc. In analytic complexity theory, functions viewed in this way are
modeled by oracles [27].

In the following definitions, let f : Rn → R be a real function.

• We say f is sign computable if the function sign(f) : Dn → {−1, 0, 1} where sign(f)(x) =
sign(f(x)) is computable by a basic numerical machine.

11Here, {0, 1}∗ is the set of binary strings. As ρ is a partial function, ρ(w) may be undefined for some w ∈ {0, 1}∗. If ρ(w)
is defined, then w is a “name” for the element ρ(w) ∈ D. Since ρ is onto, each element in D has at least one name. Our
algorithms on D must directly operates names. See Weihrauch [53] for the theory of representations.
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• Consider the approximations of functions. Any function of the form f̃ : Dn × N→ D where f̃(x, p) =
f(x) ± 2−p is called an absolute approximation of f . We say f is absolutely approximable if

there is a basic numerical machine that computes such an f̃ .

• We need interval functions: let I(D) denote the set of intervals with endpoints in D. For n ≥ 1, let
In(D) denote the n-fold Cartesian product of I(D). Each B ∈ In(D) is called an n-box.

• We say f : In(D)→ I(D) is a box function for f if it is an inclusion function (i.e., f(B) ⊆ f(B))
and whenever {Bi : i ∈ N} is a strictly monotone sequence of n-boxes with Bi properly containing
Bi+1, and ∩iBi is a point p, then ∩i f(Bi) = f(p). We say that f is box computable if there is a
basic numerical machine that computes such an f . It is easy to see that box computable functions
are (1) continuous and (2) absolutely approximable.

• We say f belongs to the class Ck (k ≥ 0) if each partial derivative of f up to order k exists and is
box computable. Thus C0 are just the box computable functions. Following [13], we say f is in the
class PV if f ∈ C1 and f is sign computable.

The above notions of computability are all relative to the basic numerical model. This avoids issues
of computability (cf. CASES 2 and 3). There are deeper issues which we do not take up, such as the

dependence of these notions on D. Our goal is to incorporate such functions as sign(f), f , and f̃ as
first class programming objects in our model. Recall that the basic numerical model operates on numerical
graphs. A function whose input and output are numerical graphs is called a semi-numerical function.

Our exact numerical model (ENM) extends the basic numerical model by having extra-logical objects
that are semi-numerical functions, and whose tagged graphs have nodes that can store either a semi-numerical
function or an element of D. We have a built-in predicate to test nodes for the type of its stored value (the
type is either D or a semi-numerical function). Suppose u, v, w ∈ ∆∗ and G is a tagged graph (¶7). If a
semi-numerical function F is stored in node [u]G and its argument is accessed through node [v]G, then we
can invoke an evaluation of F on this argument by executing the following instruction:

w ← EV ALUATE(u, v)

See [56] for similar details. If we like, we could provide functors to construct semi-numerical functions from
scratch, functors to compose two semi-numerical functions, etc. But for our simple needs here, we may
assume the semi-numerical functions are simply available (passed as arguments to our numerical machines,
like oracles).

¶18. From Smooth Surfaces to Singular Ones The preceding development was a build-up to state
the following result:

Theorem 1 (Plantinga-Vegter). There is an ENM algorithm which, given ε > 0, a box function and sign
function for some function f : R3 → R, and B0 ∈ I3(D), will compute an isotopic ε-close mesh for the
surface S : f = 0 provided S is non-singular and S ⊆ B0.

The statement of this theorem does not reveal the beauty and naturalness of the PV algorithm; to see
this, refer to their original paper [36]. It suffices to say that their method uses standard subdivision of the
box B0 and cleverly exploits isotopy. This result can be extended in several ways: First, the surface S need
not be confined within the box B0, but we must slightly relax the correctness statement on the boundary of
B0. Box B0 can be replaced by more complicated regions which need not be connected or simply-connected.
The function f is allowed to have singularities outside B0. See [13, 28] for these extensions in the plane.
Extensions of the PV algorithm to higher than 3 dimensions are currently unknown, but recently Galehouse
[24] introduced a new approach that is applicable in every dimension. All these extensions stayed within the
ENM framework.

What if the surface S is singular? We can use the PV algorithm as a subroutine to locate and determine
the singularities. This was done for the planar case in [13]. Let me sketch the basic idea: say S : f = 0 is
a curve with only isolated singularities (if f(X,Y ) is a square free polynomial, this will be the case). Now
apply the PV algorithm to F = f2 + f2

x + f2
y − δ where δ > 0. For sufficiently small δ, the curve Sδ : F = 0
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will be a nonsingular curve, i.e., a collection of ovals or infinite curves. Moreover, if the oval is sufficiently
small, we know that it isolates a singularity. Once we have isolated singularities in sufficiently small boxes,
we can run the PV algorithm on the original curve S but on a region that excludes these small boxes. We
can determine the degree of each singularity (i.e., how many open arcs of S have endpoints in the singularity)
by considering an annulus around its small box. All these can be carried out in the algebraic case, because
we have computable zero bounds.

¶19. Simple Real Root Isolation, or How to avoid zero. The PV algorithm makes the fairly strong
assumption that f is sign computable. For instance, we do not know whether this property holds for the class
of hypergeometric functions (with rational parameters). But such hypergeometric functions can be shown
to be box computable (cf. [19]). So it is desirable remove the sign computability condition all together.

I will now show this for the 1-D case (it will be the only technical result of this paper). In 1-D, meshing
amounts to real root isolation and root refinement for a function f : R → R. It is not hard to devise such
a root isolation algorithm, which we call EVAL (see [14], but the original algorithm is from Mitchell [33]).
EVAL depends on two interval predicates which we call C0 and C1:

C0(I) : 0 /∈ f(I),

C1(I) : 0 /∈ f ′(I).

Clearly, these predicates are computable if f ∈ PV . Given a BigFloat interval I0 in which f has only simple
roots, EVAL will return a set of isolating intervals for each of the roots of f in I0. We use a queue Q for
processing the intervals:

EVAL(I0):
Q← {I0}
While Q is non-empty

Remove I from Q
If C0(I) holds, discard I
Else if C1(I) holds,

(*) If f has different non-zero signs at end points of I, output I
(*) Else, discard I

Else
(**) If f(m) = 0, output [m,m] where m is the midpoint of I
(**) Split I into I ′, I ′′ at m, and put both intervals into Q

Termination and correctness are easy to see. We now modify EVAL so that f does not have to be sign
computable. There is a small price to pay, as there will be some indeterminacy at the boundary of the input
interval.

Lemma 2. There is an ENM algorithm which, given ε > 0, a box function f for f : R→ R, and [a, b] ∈ I(D),
will isolate all the real roots of f in some interval J where

[a, b] ⊆ J ≤ [a− ε, b + ε]

provided f has only simple roots in [a, b]. Moreover, there is at most one output isolating interval that
overlaps [a− ε, a] and at most one that overlaps [b, b + ε].

Proof. Observe that from the box function f , we can easily construct an absolute approximation function
f̃ for f . Thus, for each x ∈ D and p ∈ N, we have f̃(x, p) = f(x) ± 2−p. If |f̃(x, p)| > 2−p, then we know
the sign of f at x.

We modify the EVAL algorithm by omitting two lines marked (**) as we can no longer compute the sign
of f(m). We also replace the two lines marked (*) by the following subroutine: assume I = [a, b] is the input
to our subroutine. So C1(I) holds, and I has at most one root of f . The following subroutine will either
decide that I has no root or some J ⊆ [a− ε, b + ε] is an isolating interval:
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1. We dovetail the absolute approximations of f(a) and f(b)
with increasing precision until we see a non-zero sign of f(a) or of f(b).

⊳ This must halt because C1(I) holds.
2. Wlog, say we see the sign of f(a), and it is negative.

If f ′(I) < 0, then there are no roots in I. So assume f ′(I) > 0.
3. For i = 0, 1, 2, . . ., we check the predicate C1(Ji) where Ji = [b, b + ε2−i].

Halt at the first k ≥ 0 where C1(Jk) holds.
⊳ This must halt because f ′(b) > 0.

4. This means f ′(b) > 0 and f ′(b + ε2−k) > 0.
As before, do dovetailing to determine the sign of either f(b) or f(b + ε2−k).

5. If we know the sign of f(b), then I contains a root iff f(a)f(b) < 0.
The other case of knowing the sign of f(b + ε2−k) is similar.

One final detail: the isolating intervals which this modified algorithm outputs might be overlapping. To
clean up the intervals so that there is no ambiguity, observe that C1(I) holds at each output interval I.
Therefore, if two outputs I and J overlap, we see that I ∪ J has a unique root which is found in I ∩ J . So
we may replace I, J by I ∩ J . Q.E.D.

We should be able to extend the PV algorithm in 2- and 3-D by a similar relaxation of the conditions
on f . So what have we learned from this? It is (not surprisingly) that you can avoid the zero problem if
there are no singularities. So you could have developed this algorithm in the standard numerical model. But
should you have singularities (multiple roots in the 1-D case) this option is not available.

¶20. Towards Numerical Computational Geometry. Our exact numerical model satisfies the need
for higher level abstractions in designing algorithms. Such algorithms will have adaptive complexity because
of the use of numerics. Iterations is completely natural. As we saw in the PV Algorithm, domain subdivision
will be useful in such algorithms. Another feature is that, unlike standard numerical algorithms, we can
actively control the precision of individual operations. This can lead to a speedup [45, 44]. Another direction
is in producing numerical algorithms that are “complete”, i.e., do not have exceptional inputs for which the
algorithm fails. E.g., see [55, 13, 16]. Currently, most geometric algorithms based on numerical primitives
are “incomplete” because they are based on the standard numerical model.

Such algorithms represent a marked departure from the typical algorithms seen in computational geome-
try, and suggests the name “numerical computational geometry” for such activities. In fact, other researchers
in interval computation are also producing similar kinds of algorithms. See particularly the work of Ratschek
and Rokne [38, 39]. I think both lines of work may eventually converge, but the main gap between their view
and ours is located in the difference between using the standard numerical model and our exact numerical
model (cf. [40] and [28])

¶21. What about Complexity Theory? The most serious challenge for numerical computational
geometry is the development of a complexity analysis of adaptive and iterative algorithms. Of course,
the lack of analysis does not hamper the usefulness of such algorithms, but it discourages theoreticians from
looking at this class of algorithms. Previous work on adaptive complexity analysis has stemmed from analysis
of simplex algorithms in the 1980’s [8]. All such analyses have depended on probabilistic assumptions. The
acclaimed smoothed analysis of Spielman and Teng [48] tries to minimize such objections by “localizing” the
probabilistic assumptions to each input instance.

Recently, we introduced the concept of continuous amortization [14]. This yields an analysis of
adaptive complexity without probabilistic assumptions. The key idea is to bound the subdivision tree size in
terms of an integral. If the input domain is a box B, the number of subdivisions can be bounded by an integral
of the form I =

∫
x∈B

φ(x)dx. Amortization is a well-known computational paradigm and analysis technique
in discrete algorithms [18]. We can view the integral approach as a “continuous” form of amortization. We
applied this analysis to the EVAL algorithm ¶19, proving that the tree size is polynomial in the worst case
depth. This is a mark of adaptivity since in the worst case, tree size is exponential in depth. We believe
similar analyses are applicable to other subdivision algorithms.
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6 Conclusion

This essay began with the accomplishments of Kurt in experimental computational geometry, and the sig-
nificance of LEDA in the history of computing. I extracted from this work a unique mode of computation
(exact numerical computation), and extrapolated it to general computing, and to computational geometry
in particular. My motivation is to equip ourselves to address the host of interesting continuum problems
in CS&E. But none of us plan to turn into applied mathematicians or numerical analysts to address these
problems. Our strength is in exact/discrete thinking. We celebrate this, and rightly so. You probably agree
with me that our discrete/exact views can bring something new to the problems of CS&E. But to do this,
we need an analytic model of computation in which the exact views are captured. The clue lies in the
zero problem, but more generally the “explicitization problems” of continuous-to-discrete computation. I
described an exact numerical model that has many of the desired properties. This article (it turned out)
spent much time discussing computational models because, as our case studies show, the wrong model can
lead us astray. As a computer scientist, I have found extreme satisfaction in designing geometric algorithms
in the exact numerical model. Some of these algorithms also seem quite practical. Perhaps you will find the
same satisfaction.
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[3] J. Blömer. Simplifying Expressions Involving Radicals. PhD thesis, Free University Berlin, Department
of Mathematics, October, 1992.

[4] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation: A manifesto. Int. J. of
Bifurcation and Chaos, 6(1):3–26, 1996.

[5] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag, New
York, 1998.

[6] J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, and G. Vegter. Meshing of surfaces. In
J.-D. Boissonnat and M. Teillaud, editors, Effective Computational Geometry for Curves and Surfaces.
Springer, 2006. Chapter 5.

[7] J. Bokowski and B. Sturmfels. Computational Synthetic Geometry, volume 1355 of Lecture Notes in
Mathematics. Springer, 1989.

[8] K. H. Borgwardt. Probabilistic analysis of the simplex method. In J. Lagarias and M. Todds, editors,
Mathematical Developments Arising from Linear Programmng, volume 114, pages 21–34. AMS, 1990.
This volume also has papers by Karmarkar, Megiddo.

[9] R. P. Brent. Fast multiple-precision evaluation of elementary functions. J. of the ACM, 23:242–251,
1976.

17



[10] B. Buchberger, G. E. Collins, and R. Loos, editors. Computer Algebra. Springer-Verlag, Berlin, 2nd
edition, 1983.

[11] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation bound for real algebraic
expressions. In 9th ESA, volume 2161 of Lecture Notes in Computer Science, pages 254–265. Springer,
2001. To appear, Algorithmica.

[12] C. Burnikel, S. Funke, and M. Seel. Exact geometric computation using cascading. Int’l. J. Comput.
Geometry and Appl., 11(3):245–266, 2001. Special Issue.

[13] M. Burr, S. Choi, B. Galehouse, and C. Yap. Complete subdivision algorithms, II: Isotopic meshing of
singular algebraic curves. In Proc. Int’l Symp. Symbolic and Algebraic Computation (ISSAC’08), pages
87–94, 2008. Hagenberg, Austria. Jul 20-23, 2008.

[14] M. Burr, F. Krahmer, and C. Yap. Integral analysis of evaluation-based real root isolation, Feb. 2009.
Submitted, 2009.

[15] E.-C. Chang, S. W. Choi, D. Kwon, H. Park, and C. Yap. Shortest paths for disc obstacles is computable.
Int’l. J. Comput. Geometry and Appl., 16(5-6):567–590, 2006. Special Issue of IJCGA on Geometric
Constraints. (Eds. X.S. Gao and D. Michelucci). Also: Proc.21st SoCG, 2005, pp.116–125.

[16] J.-S. Cheng, X.-S. Gao, and C. K. Yap. Complete numerical isolation of real zeros in general triangular
systems. In Proc. Int’l Symp. Symbolic and Algebraic Comp. (ISSAC’07), pages 92–99, 2007. Waterloo,
Canada, Jul 29-Aug 1, 2007. DOI: http://doi.acm.org/10.1145/1277548.1277562. In press, Journal of
Symbolic Computation.

[17] H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1993.

[18] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press
and McGraw-Hill Book Company, Cambridge, Massachusetts and New York, second edition, 2001.

[19] Z. Du and C. Yap. Uniform complexity of approximating hypergeometric functions with absolute error.
In S. Pae and H. Park, editors, Proc. 7th Asian Symp. on Computer Math. (ASCM 2005), pages
246–249, 2006.

[20] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piecewise linear
2-manifolds. Discrete and Computational Geometry, 30(1):87 – 107, 2003.

[21] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schoenherr. The CGAL kernel: a basis for
geometric computation. In M. C. Lin and D. Manocha, editors, Applied Computational Geometry:
Towards Geometric Engineering, pages 191–202, Berlin, 1996. Springer. Lecture Notes in Computer
Science No. 1148; Proc. 1st ACM Workshop on Applied Computational Geometry (WACG), Federated
Computing Research Conference 1996, Philadelphia, USA.

[22] S. Fortune. Editorial: Special issue on implementation of geometric algorithms. Algorithmica, 27(1):1–4,
2000.
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