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Abstract

This thesis deals with the application of subdivision based algorithms to the prob-
lem of isolating the roots of a complex polynomial. We provide a comprehensive
comparison of the performance of three interval arithmetic based predicates (the in-
terval Newton, Krawczyk and Hansen-Sengupta operators) with predicates based on
complex analysis (the CEVAL algorithm and Yakoubsohn’s approach). In addition,
we include a treatment of the mathematical theory behind these operators.
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Chapter 1

Introduction

1.1 Polynomials and their roots

Consider a univariate polynomial p with coefficients ai in the complex field C, for z ∈ C :

p(z) =
n∑

i=0

aiz
i. (1.1)

The fundamental theorem of algebra then tells us that this polynomial of degree n will
have exactly n complex roots1 [43]. This gives us an alternate representation of the polynomial
p in terms of its roots αi :

p(z) =
n∑

i=0

aiz
i = an

n∏
i=1

(z − αi). (1.2)

The theorem however, is not constructive and does not tell us how to calculate these n roots,
just that their existence is guaranteed. Methods of calculating polynomial roots have therefore
been the subject of intense and detailed study throughout the history of mathematics.

The closed form expression2 for the roots of a quadratic (degree n = 2) polynomial has been
known since the middle ages, while the cubic and quartic polynomials (n = 3, 4) were solved
comparatively later in the mid 16th century [26]. In the 19th century, the Abel-Ruffini theorem
asserted that the roots of polynomials of degree n = 5 and above are incapable of a closed
form representation. This theorem along with the advent of the modern computer shifted the
focus of research in this area to methods that could be executed by a computer. A detailed and
comprehensive survey of advances in root finding techniques has been compiled by Victor Pan
[45], and for a general bibliography see [26].

A large fraction of these approaches fall under the category of Numerical methods i.e.,
methods that use approximations and iterative improvements to calculate or approximate roots.
The problem in this context is often thought of as being split into two separate subproblems,
root isolation and root refinement. Root isolation is the problem of calculating connected
finite bounded regions of C, each of which will contain exactly one root of the polynomial p. Root

1This is sometimes stated as : “Every non constant univariate polynomial whose coefficients are in the complex
field C has at least one complex root”. The form that we stated is a direct consequence of this form. Assume p
is a non constant polynomial of degree n > 1 that has at least one complex root, say α. We can then divide p
by (z − α) and apply the theorem to p/(z − α) which is also a non constant polynomial with coefficients in the
complex field, and so on to count n roots until we are left with the constant polynomial

2A closed form representation is a representation of the roots in terms of the coefficients of the polynomial

that uses a finite number of mathematical operations drawn from
n

+,−, ·,÷, n
√o

.
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refinement on the other hand, is the problem of producing successively better approximations
of the roots (often correct to a given target precision) from these isolating regions.

Our thesis deals with the problem of isolating roots using subdivision methods. A
subdivision based method can be viewed as a kind of a recursive search procedure among the
set of possible roots of the input polynomial. (Which is, in the general case C.) This search is
based on predicates that can either exclude parts of the search space, or include them in the
algorithm output. We present a detailed study of some of these predicates in this thesis.

1.2 Aims and Motivation

1.2.1 Aims

The aim of this work is to provide an empirical comparison between closely related subdivision
algorithms for isolating complex roots of a polynomial p. We compare three predicates based
on interval Newton methods with a predicate based on complex analysis.

Although interval Newton methods are traditionally viewed as methods for root refinement,
Moore has shown how such operators can also be used for root isolation when combined with
some form of generalised bisection [27]. Volker Stahl in [38] has provided a comprehensive
and detailed analysis of the application of interval arithmetic based bisection methods to the
solution of systems of non linear equations. Our work is a contribution along these lines, except
that we deal with the specific case of a non linear system arising out of the real and imaginary
parts u(x, y), v(x, y) of a complex polynomial p.

Each of the three operators we consider, the interval Newton operator due to Moore [28],
Krawczyk’s operator [24] and Hansen and Sengupta’s operator [15] are based on the Newton-
Raphson iteration. Theoretically, we have an order among these operators in terms of the
tightness of their output intervals. Here, we define the ordering “>” and say, for two operators
P , Q that P > Q iff P (X) ⊆ Q(X) for every interval vector X that they operate on, for a given
system of equations. We have, due to [34] :

Interval Newton > Hansen-Sengupta > Krawczyk.

The interval Newton operator is therefore the “strongest”, and we would expect it to succeed
more often on a given set of inputs than the other operators. However, these three operators
do not have equal computational costs. For instance, the interval Newton operator involves the
inversion of an interval matrix, while the other two operators do not. Our aim is to implement
all three of these operators on a common platform, and compare their practical performance
in isolating the roots of a wide variety of polynomials.

In addition to the three interval analysis based approaches above, Yakoubsohn introduced a
method to calculate ε-boxes (not necessarily isolating) around roots based on a complex analytic
predicate [10]. Yakoubsohn’s algorithm is based on a single “exclusion predicate” which certifies
that a given box does not contain any zeros. In contrast, Sagraloff and Yap [37] introduced
another algorithm for complex root isolation that has a similar exclusion predicate, but it also
has an “inclusion predicate” that certifies that a given box contains exactly one zero. The
algorithms in [37] were motivated by research [7, 36] in computing isotopic approximations to
hypersurfaces given as the zero set of a function f : Rn → R. Our aim is to compare the
efficiency of these approaches to each other, and to the interval arithmetic based operators
above.

Additionally, we aim to provide a writeup of the theory behind each of these operators and
to release our implementation as a part of the free and open source Core library [9].
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1.2.2 Motivation

Though it has been known (see [27, 38, 34]) that the interval arithmetic based operators above
can potentially be used as inclusion tests in a subdivision algorithm, we note that there has not
been an analysis of their performance in practice. Further, though the CEVAL algorithm has a
well developed complexity analysis, it is lacking a practical implementation. We are therefore
motivated by the need to fill this gap between theory and practice, and to look at whether the
theoretically strongest predicate also offers the best practical performance.

1.3 Contributions

• We implemented subdivision algorithms based on the Newton, Krawczyk and Hansen
Sengupta operators and measured their performance. Our experiments show that all three
of these predicates have very similar performance, and though in theory the Krawczyk
operator is the weakest test, it might be a viable practical choice because it is efficient
and easy to implement.

Further, our results show that the performance of all of these predicates degrade as the
degree of the polynomial increases beyond n = 20. Their performance is also much slower
than complex analytic predicates such as the CEVAL algorithm.

• We provide the first implementation of the CEVAL algorithm and measure its perfor-
mance. Our experiments show that it is very fast and robust on polynomials of degree
n < 90. Its speed is shown to be comparable to polynomial root finders based on com-
peting approaches, and as it provides stronger guarantees than Yakoubsohn’s exclusion
approach (i.e., that its output disks are isolating) with no significant performance draw-
backs, its use can be recommended.

• Though not directly related to the aims of this thesis, we contributed various improvements
to the CXY implementation [25]. Our performance profiling and improvements result in
the implementation running between 10 and 30 times faster than before. Our new data
structures and implementation will form the basis for future extensions of this algorithm.

• As a part of our work, we contributed libraries for interval arithmetic and basic complex
arithmetic operations to the Core Library. In addition, we implemented a wrapper layer
over the machine precision (standard) C++ data types to make their API consistent with
those of the GMP types. We made further contributions and bug fixes to the Core
Linear algebra library that we used in our implementation, such as the implementation
of the Bareiss algorithm (see Chapter 10 in [43]) for determinant calculation and matrix
inversion.

In addition to this, we contributed numerous bug fixes to Core, helped transition to gcc-4.2
and made Version 2.1 linkable as a shared library on all supported platforms.
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1.4 Structure of this thesis

This thesis is structured into three major sections.

Chapter 2: This chapter discusses the mathematical background behind each of these oper-
ators, and where appropriate provides a proof of their correctness. At the end of this chapter,
the reader will know why these operators work.

Chapter 3: In this chapter, we deal with implementation of these operators in C++. We also
provide a brief introduction to the implementation of programs that deal with numbers. At the
end of this chapter, the reader will know how these operators have been implemented.

Chapters 4, 5: These chapters detail how the operators perform against each other, and
against root isolation methods based on other approaches. At the end of these chapters, the
reader will know which of these operators performs the best, and the limitations and advantages
of using each of these approaches.
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Chapter 2

Background

2.1 Subdivision based methods

Subdivision based methods are employed in the solution of a wide variety of problems across
different areas of computer science. The basic idea behind them is simple. An initial region of
interest is recursively subdivided and subdivisions of it are included in (or excluded from) the
output set depending on whether they pass certain tests (or not). To explain this paradigm in
the context of complex root finding, we start with some definitions.

2.1.1 Definitions

¶1. Basics: A complex number z ∈ C is represented by z = x+ iy where x, y ∈ R are its real
and imaginary parts respectively, and i =

√
−1. To signify this relationship, we write x = Re(z)

and y = Im(z). Its magnitude is represented by |z| where |z| =
√

x2 + y2 and its argument
arg z = arctan (y/x) is assumed to lie between S1 = [0, 2π).

¶2. Box: Given z1, z2 ∈ C define the ordering “≤” by z1 ≤ z2 iff Re(z1) ≤ Re(z2) and
Im(z1) ≤ Im(z2). Let the ordering “<” be defined in the same way, with “<” replacing “≤”
throughout. Then, for a pair of complex numbers za and zb st. za ≤ zb , the box defined by
za and zb is the set of complex numbers B = {z : za ≤ z < zb}. It is obvious that B forms a
rectangle on the complex plane. The midpoint m(B) and the width w(B) of the box are defined
as follows:

m(B) := (za + zb)/2
w(B) := min {Re(zb)− Re(za), Im(zb)− Im(za)}

The width of B is chosen to be the minimum of the differences of the real and imaginary parts
of za and zb. In most cases we deal with square boxes and both differences are equal. Lastly,
the radius r(b) of a box B is defined as the radius of the circle that circumscribes B. This circle
will have its centre at m(B), and its radius (and that of box) is given by:

r(B) :=
1
2

√
(Re(zb)− Re(za))2 + (Im(zb)− Im(za))2 (2.1)

It is sometimes useful to view the definition of a box in terms of the Cartesian plane R2. The
definition of B now becomes:

B = {(x, y) : Re(za) ≤ x < Re(zb), Im(za) ≤ y < Im(zb)} (2.2)

5



A box is therefore the Cartesian product of a half-open x-axis interval [Re(za), Re(zb)), and a
half-open y-axis interval [Im(za), Im(zb)). This definition is used by methods that use ideas of
Real Analysis to operate on the box B.

¶3. Inclusion predicate (Cin(B)): An inclusion predicate is a binary valued operator on a
box B that returns true only if B is isolating. In other words, if Cin(B) holds then B must
contain exactly one root of p.

¶4. Exclusion predicate (Cout(B)): An exclusion predicate is a binary valued operator on
a box B that returns true only if B contains no roots of p. In other words, if Cout(B) holds
then B must contain no roots of p.

2.1.2 The generic subdivision algorithm

With these definitions in hand, we can start to define the generic subdivision algorithm. Recall
that we are interested in isolating all roots of p within a given box B0 ⊆ C. If Cin(B0) holds,
then B0 is isolating and our output will simply be {B0}. On the other hand, if Cout(B0) holds,
then B0 contains no roots, and we stop. If neither Cin nor Cout hold then we cannot make either
decision. The strategy in this situation is to subdivide B0 and recursively apply the inclusion
and exclusion predicates on the results of the subdivision. This simple idea constitutes the
algorithm ISOLATE(B0). Note that the implicit recursion in our explanation has been unrolled
into a queue (alternately a stack) Q. The correctness of the algorithm does not depend on this
choice.

For an excellent background on subdivision algorithms, see [25]. Much of the notation in
this section borrows from this work.

ISOLATE(B0):
INPUT : A box B0 ⊆ C
OUTPUT : A list L of isolating boxes contained in B0

1. Q← {B0}. L ← ∅.
2. While Q is non-empty
3. Remove B from Q.
4. If Cout(B) holds, discard B.
5. Else if Cin(B) holds:
6. Insert B into L.
7. Else
8. Subdivide B and insert the subdivisions into Q.

Completeness: We observe that the algorithm above is not guaranteed to halt unless Cout

and Cin are well behaved. Very roughly, the algorithm will terminate if there exists an ε st. for
every box B with w(B) ≤ ε : Cin(B) holds if B is isolating, and Cout(B) holds if B contains no
roots. Obviously, ε depends on the distribution and separation of the roots of f , but for a given
f we would like our predicates to make a decision (exclude/include) for the largest possible
boxes (largest possible ε), rather than suffer further subdivision before a decision is made.

Performance: The performance of the subdivision algorithm is crucially dependant on its
predicates. The exclusion predicate is meant to serve as a computationally inexpensive test
that can preclude large parts of our problem domain from further consideration and allow us
to concentrate our effort on regions of interest.
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Subdivision schemes: Note that the subdivision process above is not clearly defined and
there are multiple ways to subdivide a box B into smaller boxes. The only requirement is that
B is split into disjoint boxes that are subsets of B and whose union is B. The most frequently
used strategy is to split B into four equal sized boxes each of which are half the width of their
parent. Other possible schemes could be to split B into two either vertically or horizontally, or
to in some way use the calculations performed by Cin or Cout to determine the parameters for
the subdivision. We make this definition precise as we consider each specific approach in the
coming sections.

Roots at box boundaries: Our definition of the boxes on the Cartesian (or complex) plane
is such that the boxes are mutually exclusive. However, in reality many operators assume boxes
to be the Cartesian product of closed x and y axis intervals (especially those based on interval
arithmetic, see Section 2.2.1). This leads to obvious issues with roots on the boundaries of
boxes, for they might be included by both (closed) boxes that contain them, or by neither
depending on the predicate design. There is no general solution to such a problem, so we deal
with it specifically in the case of each of the predicates we consider (See Section 2.2.6).

Practical implementation: The practical details of implementing such algorithms are dealt
with in Chapter 3, but we make a few brief remarks here for the sake of completeness. To
insure against issues such as loss of precision when operating at a fixed precision level, this
algorithm is often run with an additional parameter that specifies the maximum allowed extent
of subdivision. This could be specified either as a lower bound on the box size, or a bound on
the depth of a given box from the root of the subdivision tree. Boxes that are unresolved even
after being maximally subdivided are marked as unresolved and are usually candidates for a
further stage of processing (usually, at higher precision levels using slower extended precision
arithmetic).

2.2 Interval arithmetic based predicates

We consider three closely related pairs of predicates based on interval arithmetic. As the
name suggests, it is an arithmetic in which the fundamental unit is an interval. The field was
pioneered by Ramon Moore to deal with issues related to computational accuracy and rounding.
An excellent introduction to interval arithmetic can be found in Moore’s seminal work [28]. Götz
Alefeld [3] was among the first mathematicians (along with Moore) to apply this system to the
solution of non linear equations. We present a brief introduction to interval arithmetic in the
next section.

2.2.1 Interval arithmetic

An interval I is an ordered pair of real numbers a, b with a ≤ b. The interval I (written
I = [a, b]) is the set

I = [a, b] = {x : a ≤ x ≤ b} (2.3)

An interval of the form [a, a] is said to be degenerate and is equivalent to the real number a.
Further, it is natural to define the midpoint m(I) and the width w(I) of an interval as:

m([a, b]) := (a + b)/2
w([a, b]) := (b− a)

7



An interval can be viewed as a representation of the result of a calculation along with the error
associated with that result. Here m(I) can be viewed as the approximate value of a calculation
with an error bound |ε| = w(I)/2. Alternately, an interval can be viewed as a pair containing
the upper and lower bound to an exact result. The set of all real intervals is often denoted by
I. Therefore, if I ∈ I then I = [a, b] for some a, b ∈ R and a ≤ b.

The standard arithmetic operations are defined on intervals in a natural way. Let � be one
one of {+,−, ·,÷}. Then

[a, b]� [c, d] = {x� y : a ≤ x ≤ b, c ≤ y ≤ d} (2.4)

The definition above makes it clear that the result interval is simply the set of results of an
operation, when the corresponding real number operation is applied to a pair of real numbers
one taken from each of the intervals involved. The definition in (2.4) leads to expressions for
these results in terms of the end points of the intervals as follows.

[a, b] + [c, d] = [a + c, b + d]
[a, b]− [c, d] = [a− d, b− c]
[a, b] · [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]
[a, b]÷ [c, d] = [a, b] · [1/d, 1/c] (0 /∈ [c, d])

Interval addition and multiplication is both commutative and associative, and the (degenerate)
intervals [1, 1] and [0, 0] are identities for multiplication and addition respectively.

Distributivity: Unlike most algebraic systems, the distributive law does not hold for Interval
arithmetic as a system. However, for any intervals I, J and K

I · (J + K) ⊆ I · J + I ·K (2.5)

This property is known as subdistributivity. In the case that I is degenerate however, dis-
tributivity does hold. We come back to this property and some if its ramifications in the next
section.

Exponentiation: Consider the obvious definition of exponentiation of an interval with an
exponent n ∈ N:

In = I · I · I..(n times).

Clearly, this might give us a wider result interval than is defined by (2.4). For instance, when
n is even and the interval I contains zero, the result interval will contain some subset of the
negative reals. However, for even n, we know that the result should be of the form [0, a]. We
can therefore obtain tighter bounds on the result interval by augmenting our definition with
special rules based on such properties. For example, when 0 ∈ I we have:

[a, b]n =
{

[0,max(an, bn)] : n = 2m,m ∈ N, 0 ∈ [a, b]
[an, bn] : n = 2m + 1,m ∈ N, 0 ∈ [a, b]

.

Through the rest of this thesis, we will mention specifically when such rules are used, otherwise
the standard interval arithmetic operations are assumed to apply.
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Division by zeroes: In our definition of the standard arithmetic operations, we did not define
the ÷ operation in the case that the divisor contained a zero. In some cases it is useful to define
this operation, though its results will be intervals of infinite length. Further, the result may be
expressed as the union of two disjoint intervals rather than a single result interval. Some authors
[17] refer to the system above augmented with these rules as Extended Interval arithmetic. For
instance, we have the rule:

[a, b]÷ [c, d] = [−∞, b/d] ∪ [b/c,∞] (2.6)

when b < 0, c < 0 and d > 0. These rules follow from the set theoretic definitions of these
operations given by (2.4). Note that even though the result interval is of infinite length, it
does provide us with useful information namely that the result is bounded away from (b/d) and
(b/c). A complete description of these rules is provided in [17].

2.2.2 Interval extensions of a function

Consider a real valued function f : R→ R. We look at how interval arithmetic can be used to
estimate the range of f over a finite subset of its domain. Let us assume we are interested in
finding the range of f(x) as x varies over the interval [a, b]. The range R (over [a, b]) is given by
R = {f(x) : a ≤ x ≤ b} (which we also denote by f([a, b])). We can then construct an interval
extension of f , denoted by f :

f : I → I (2.7)

such that f([a, b]) ⊆ f([a, b]). When f is a polynomial (or rational), an interval extension
can simply be constructed by replacing the real versions of the operators {+,−, ·,÷} with their
interval equivalents. Given the definition of these operations (2.4), it becomes clear that such
an extension will contain the range of f . Note that this extension is not unique.

Unlike real number arithmetic, interval arithmetic is not distributive (2.5), and different
schemes of evaluating a polynomial that differ in the order (or number) of multiplication and
addition operations might yield different results. Take for example f(x) = x(1−x); we estimate
its range over [1, 2] in two ways:

f(I) = I · (1− I) = [1, 2] · ([1, 1]− [1, 2]) = [1, 2] · [−1, 0] = [−2, 0],
f(I) = I − I2 = [1, 2]− [1, 2] · [1, 2] = [1, 2]− [1, 4] = [−3, 1].

Note that the second method, which used the fact that f(x) = x−x2 produced an interval that
was wider than the first. In most cases we are interested in the extension that produces the
tightest bound on the range of f .

Note that this concept is extensible to functions of the form g : R2 → R. The extension
g(I, J) will operate on a pair of intervals that form a box as defined in ¶2 and return an

interval that contains the range of g over that box.

2.2.3 Application to exclusion predicates

We have f , a polynomial defined on the complex numbers, whose zeroes we are interested in
isolating. Replacing z = x + iy we can rewrite f in the form

f(x, y) = u(x, y) + iv(x, y) (2.8)

where both u and v are real valued functions defined on the Cartesian plane. Our problem now
becomes the problem of finding the roots of the system of equations:

u(x, y) = 0,

v(x, y) = 0.
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Consider the interval extension u(X, Y ) where X is an x-axis interval and Y is a y-axis interval
associated with a box B. We then have:

Lemma 1. If 0 /∈ u(X, Y ) then u(x, y) has no zero in the box B defined by the closed intervals
X, Y .

Proof. Let I = u(X, Y ) such that 0 /∈ I. Then I must be of the form [a, b] where a ≤ b < 0
or 0 < a ≤ b. From the definition of an interval extension from Section 2.2.2, the range of u
must be a subset of I. In either case this is either strictly negative or strictly positive, and will
not contain a zero of u. Q.E.D.

Due to Lemma 1, and the fact that both u and v must be zero in order for f to be zero, we
now have an exclusion predicate that uses interval arithmetic and it is given by:

0 /∈ u(X, Y ) or 0 /∈ v(X, Y ). (2.9)

Note that we mentioned earlier than an interval extension for a function f is not necessarily
unique. In the context of (2.9), we would prefer an extension that produced result intervals
whose widths were as low as possible.

Converse of Lemma 1: The converse of Lemma 1 is not necessarily true. Consider a function
f and its interval extension f evaluated over an interval I. Now, if the range S of f over I
does not contain a 0, we have no guarantee that f(I) will not. Since S ⊆ f(I), f(I) can be
wider than S and may contain a zero even if S does not.

In our specific case, if interval extensions of u and v from (2.8) both contain zeroes when
evaluated over a box B we cannot claim that B contains a zero of f for the same reason.

Furthermore, we are interested in isolating zeroes, and a predicate of this form cannot tell
us anything about the number of zeroes in a given box. In the next few sections, we introduce
methods that help us do so.

2.2.4 Newton’s method and its interval form

In this section we present the Newton’s method for solving the system of non linear equations:

u(x, y) = 0, (2.10)
v(x, y) = 0, (2.11)

where f(z) = u(x, y)+iv(x, y). Consider the function u(x, y), if u is continuous and differentiable
in a neighbourhood of a point (a, b) then its (bivariate) Taylor series approximation (centred at
(a, b)) to the first degree is given by:

u(x, y) ≈ u(a, b) + (x− a)ux(a, b) + (y − b)uy(a, b).

Here ux and uy are the partial derivatives of u with respect to x and y respectively. We are
interested in finding zeroes of u and these are values of x, y for which u(x, y) = 0. Since we are
using an approximation of the functions entire Taylor series, we can try to estimate the zeroes
of u in the vicinity of (a, b) by setting u(x, y) = 0 above. The equation then becomes:

−u(a, b) = (x− a)ux(a, b) + (y − b)uy(a, b) (2.12)

Proceeding in a similar manner for v with the same initial point (a, b) and noting that the zeroes
that u and v share are the zeroes of the system specified by (2.10), we get:

−u(a, b) = (x− a)ux(a, b) + (y − b)uy(a, b),
−v(a, b) = (x− a)vx(a, b) + (y − b)vy(a, b).
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Since this is a system of linear equations in two variables x and y, we can rewrite this in the
form A · (x− x′) = b:[

ux(a, b) uy(a, b)
vx(a, b) vy(a, b)

]
·
[

(x− a)
(y − b)

]
= −

[
u(a, b)
v(a, b)

]
. (2.13)

This system of equations has a unique solution when A is invertible and this solution is given
by x = x′+A−1 ·b. This forms the basis for an iterative process to arrive at better refinements
of the roots of (2.10) in the vicinity of (a, b). This is in essence the Newton iteration (many
authors call it the Newton-Raphson iteration), and it is often written as:

xk+1 = xk − J(xk)−1 · f(xk). (2.14)

This is a rewrite of (2.13) generalised to a system of n equations in n variables where x =
(x1, x2, . . . , xn)T , f(x) = (f1(x), f2(x), . . . , fn(x))T , each fi : Rn → R and J(x) is the Jacobian
of the system given by:

J(x) =


∂f1(x)

∂x1

∂f1(x)
∂x2

... ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

... ∂f2(x)
∂xn

...
∂fn(x)

∂x1

∂fn(x)
∂x2

... ∂fn(x)
∂xn

 . (2.15)

The conditions for convergence and the order of convergence of this iteration to a root of f
are beyond the scope of this thesis, and can be found in Section 5.3 of [39]. Furthermore, we
are not concerned about the convergence of this iteration because we do not use it as is. We
will instead exploit some of its properties to construct a predicate that tests whether a box is
isolating or not.

The interval analogue of this operator is defined in the natural way. The first justification
for its use was provided by Moore [28]. Alefeld [2] and Hansen [16] independently came up with
a globally convergent version of this operator using extended interval arithmetic. (See [28] or
[34] for a detailed analysis of the same.) We stop at providing a brief description of the interval
analogue of this operator before turning our attention to its use as an inclusion test.

Let X = (X1, X2 . . . Xn) be a vector of intervals and the interval extension of the Jacobian
J(X) be defined using the interval extensions of each of the partial derivatives. Then, J(X)

will contain all J(x) for x ∈ X. Finally, let the vector of midpoints of each of the intervals in
X be denoted by xc. Then

N(X) = xc − J(x)−1 · f(xc), (2.16)

and the iteration is of the form
Xn+1 ← Xn ∩N(Xn). (2.17)

The motivation for this type of iteration is easier to understand if we consider the univariate
case where the iteration becomes

N(X) = m(X)− f(m(X))
f ′(X)

. (2.18)

We prove the following lemma due to Moore (Lemma 7.2 in [28]) along the same lines. The
proof is included here to provide an insight into why the iteration defined above might help us.

Lemma 2. If N(X) is defined by (2.18) for an interval X that contains a root x0 of f(x) of
multiplicity 1, and f and f ′ are both continuous over the interval X, then x0 ∈ N(X).

11



Proof. Let x0 ∈ X be a root of f(x). If the root lies at the mid point m(X) of X i.e,
x0 = m(X), then f(m(X)) = f(x0) = 0 and N(X) = [x0, x0] which proves the lemma for this
case.

Let us now assume that x0 > m(X), and consider the interval [m(X), x0] ⊂ X. Given the
continuity of f and f ′ and using the Mean Value Theorem, we have at some point y ∈ [m(X), x0]:

f ′(y) =
f(x0)− f(m(X))

(x0 −m(X))
,

and since f(x0) = 0 we get:

x0 = m(X)− f(m(X))
f ′(y)

.

Given the properties of f ′(X) we require f ′(y) ∈ f ′(X) and therefore x0 ∈ N(X). The case
where x0 < m(X) can be proved in a similar manner by the application of the Mean Value
Theorem to the interval [x0,m(X)]. Q.E.D.

The above proof gives us a rough justification of why the interval iteration defined by (2.16)
makes sense. In fact, with some stronger assumptions the rate of convergence of N(X) to a
root x ∈ X can be shown to be quadratic. (See for example [28])

Note that in its current form, the Newton iteration operates on an input interval or vector
of intervals (in the n dimensional case), and starting with an initial approximation converges
under certain conditions to a root in the neighbourhood of the first approximation. To use it
as an inclusion predicate, we require it to answer questions about the existence of a root in a
given box B, rather than trying to refine it based on an approximation. The next section deals
with how (2.16) can be used as an inclusion predicate.

2.2.5 The interval Newton operator as an inclusion test

We begin this section by making some statements about the Jacobian J(X). It is a matrix
whose every element is an interval, and which contains every J(x) as x varies over X. We say
J(X) is invertible if it does not contain a (real) singular matrix.

Lemma 3. If J(X) is invertible. and for any x,y ∈ X, if f(x) = f(y) then x = y.

Proof. Recall that f is a vector of functions (f1, f2 . . . fn)T . Consider each of these functions
fi. Define a function on the scalar t by

gi(t) = fi(ty + (1− t)x),

such that gi(0) = fi(x) and gi(1) = fi(y). Now, gi is continuous and differentiable as t varies
across the interval [0, 1] and by the Mean Value Theorem we must have:

fi(y)− fi(x) = g′i(ci)(1− 0),
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for some ci ∈ [0, 1]. However1, g′i(ci) = ∇fi((1 − ci)x + ciy) · (y − x) and fi(x) = fi(y) since
f(x) = f(y). This gives us:

0 = ∇fi((1− ci)x + ciy)(y − x).

Proceeding componentwise in the same manner, we have similar equations for each fi. Recog-
nising that ∇fi corresponds to the ith row in the Jacobian J(x) in (2.15) , we introduce the
notation Jm(c) for the Jacobian matrix obtained by evaluating the ith row of partial derivatives
at ci. We use the subscript m to signify that this Jacobian is associated with the application of
the Mean Value Theorem to a t interval associated with x, y. We also write this as Jm(x,y)
to strengthen this association. The i componentwise equations together give us:

0 = f(y)− f(x) = Jm(x,y) · (y − x). (2.19)

Now, each ci ∈ [0, 1] and as a consequence Jm(x,y) ∈ J(X) and since we know J(X) does
not contain a singular matrix, we must have y = x. Q.E.D.

An important thing that this lemma tells us is that if there exists a root x ∈ X i.e., f(x) = 0
then that root is necessarily unique. We now prove the central result of this section, one that
allows us to use the Newton operator N(X) of (2.16) as an existence test. To prove this, we
use a version of the Brouwer Fixed Point Theorem, which is stated below without proof. For
details see Sections 54,55 of Munkres’ excellent topology text [33].

Theorem 4 (Brouwer Fixed-Point Theorem). Every continuous function f from a convex com-
pact subset S of a Euclidean space to S itself has a fixed point.

We now state and prove the main result, which is due to Moore [28] (for part 2) and Nickel
[35] for the main result.

Theorem 5. Let X be a vector of intervals and f a vector of functions that are continuous and
differentiable over X. Further, let N(X) be defined by (2.16). Then:
(1) If N(X) ⊆ X, then f(x) = 0 has a unique root in X i.e., X is isolating.
(2) If N(Xi) ∩Xi = ∅ for any Xi, a component of X, then f(x) = 0 has no roots in X.

Proof. Consider the mapping P (x) = xc − Jm(x,xc)−1f(xc), where x,xc ∈ X and xc is the
centre of X as defined in (2.16). From the proof of Lemma 3, Jm(x,xc) ∈ J(X) and as a
consequence P (x) ∈ N(X) for all x ∈ X. Therefore, the range of P , P (X) ⊆ N(X). We now
have P (X) ⊆ N(X) ⊆ X.

Also, X is of the form
n∏

[ai, bi] and is a closed subset of the n-dimensional Euclidean space.
It is also bounded, since the intervals involved are finite and therefore2 it is compact.

1Note that here “·” is the scalar product of two vectors. This can be derived as follows. The differentiation
here g′

k(t) is with respect to t and we use the chain rule.

dgk

dt
=

X
i

∂fk

∂xi

dxi

dt

=
X

i

∂fk

∂xi

d

dt
(tyi + (1− t)xi)

=
X

i

∂fk

∂xi
(yi − xi)

= ∇fk(tx + (1− t)y) · (y − x)

2See Section 27 of [33], in particular Theorem 27.3.
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By the Brouwer Fixed Point Theorem, we have P , a mapping from a closed compact subset
of a Euclidean space to itself and it must necessarily have a fixed point, say x∗ with P (x∗) = x∗

and:
x∗ = xc − Jm(x∗,xc)−1f(xc).

This can be rewritten into:

Jm(x∗,xc) · (x∗ − xc) = −f(xc). (2.20)

This is the form of (2.19) and hence, the LHS of (2.20) above is equal to f(x∗)−f(xc). Therefore:

−f(xc) = Jm(x∗,xc) · (x∗ − xc)
= f(x∗)− f(xc)

and this implies f(x∗) = 0. The uniqueness of this zero is guaranteed by Lemma 3.
As for the second part of the theorem, observe from our proof above that the roots of f are

fixed points of P (x) as defined above. If the range of P (x) does not intersect X, then P cannot
have any fixed points in X and as a result neither can f have any roots in X. Q.E.D.

2.2.6 The interval Newton operator and the subdivision algorithm

The results above have been proved for the general n dimensional case, and are applicable to
our system of equations (2.10) which is of dimension n = 2. Recall the definition of a box from
¶2 is expressed in terms of two half-open intervals defined in (2.2). However, all of the theory
above was described in terms of closed intervals. To apply these operators, we will need to treat
boxes as the Cartesian products of closed x and y axis intervals, say [x1, x2]× [y1, y2].

Roots at boundaries: This change brings with it the problem of roots that lie on the (shared)
boundary of two boxes. It might be that our inclusion predicate classifies both boxes as isolating
the root that lies on their shared boundary. Even worse is the case of the root that lies on the
shared corner of four boxes. Subdividing boxes will not make the problem go away, because the
root will continue to be shared by some children of subdivided boxes. This is a problem that is
generally glossed over by existing literature in this area, and there are two general approaches
that we can take to solving it. Both of these approaches can be viewed as some sort of “fudge
factors” to deal with this corner case. However, we emphasise that despite their use the end
results are always isolating boxes.

• The first approach could be to subdivide the region to the maximal extent possible,
and then coalesce unresolved boxes (these will include boxes that share a root on their
boundary). Coalescing is performed by grouping together unresolved boxes that share a
common edge, and by constructing a minimal bounding box around these groups. We
can then run our subdivision algorithm with these bounding boxes as starting regions to
isolate roots that they are suspected to contain.

• The second approach could be to perturb boxes during the subdivision process. If we
suspect that a box shares a root on its boundary with another, during its next subdivision
we adjust its boundaries outward by a fixed ε, while at the same time adjusting the
boundaries of the corresponding neighbours inwards by the same amount.

Of the two, we choose the first approach due to the simplicity of its implementation. Our last
observation is that the number of boxes for which this will happen is bounded by 4n where
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n is the degree of the polynomial whose roots we are isolating. We provide examples of this
situation in Section 3.4.4.

It is crucial to note that neither of these approaches guarantees termination. In the first
case, our algorithm run on the coalesced boxes could itself complete with unresolved boxes.
Further, we might duplicate isolating regions if bounding boxes intersect. In the second case, it
is possible (though with a very low probability) that roots will continue to be at box boundaries
despite the perturbation.

In his thesis [38, Section 5.9.1, Algorithm 5.9.4], Stahl proposes a method to overcome this
issue of roots that lie on box boundaries. The main idea behind his approach is to dilate every
box B to obtain a dilated box B̂. The operators are then applied on this box until one of two
things happens:

• N(B̂) ∩B = ∅ in which case B will contain no roots of f .

• N(B̂) ⊆ B̂ which guarantees that B̂ is isolating. However, N(B̂) need not be a subset
of B. This appears to leave open the issue of two isolating boxes being generated around
the same root.

Setting aside the problem of roots on boundaries for now, we have a predicate for determining
if a box B is isolating:

1. If N(B) ∩B = ∅
2. Discard B
3. Else If N(B) ⊆ B
4. Insert B into the output.
5. Else
8. Subdivide B

With this complete, we move on to our next inclusion predicate.

2.2.7 The Krawczyk operator

The Newton method introduced above requires the inversion of an interval valued matrix, and
can therefore be relatively expensive to evaluate. Krawczyk provides an alternate formulation
that is almost equivalent to the Newton operator, but does not necessarily require a matrix
inversion. The Krawczyk operator is given by:

K(X) := y − Y · f(y) + {I − Y · J(X)}(X− y), (2.21)

where y ∈ X, Y is any nonsingular real matrix, and I the identity matrix. Here, y is typically
taken to be the mid point of X. Observe that that the term y − Y · f(y) does not involve any
intervals, and is very similar to the Newton operator with Y ≈ J(y)−1. The second half of the
expression involves non degenerate intervals i.e., Y · J(X) and X itself. This can be viewed
as an error estimate on y − Y · f(y) due to the use of Y as an approximation to J−1. Observe
that as Y becomes a better approximation of J(y)−1 the term {I − Y · J(X)} will get closer
to zero making the effects of the associated term negligible.

Krawczyk’s operator leads to the following analogue of the Newton iteration presented in
the previous section:

X(k+1) ← X(k) ∩K(X(k)), k = 0, 1, 2, . . . .
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We will show that if X contains a solution to f(x) = 0, then so does K(X). We will also discuss
an inclusion test based on this operator which is very similar to that of the previous section.
This is due to the work of Moore who provided a proof in [29].

Although the operator K(X) looks quite complex, it has a straightforward underlying func-
tion:

P (x) := x− Y · f(x), (2.22)

where Y is any nonsingular real matrix. This is a relaxed form of the Newton iteration defined
in (2.14) which requires Y = J(x)−1. We start by proving a property of P (x).

Lemma 6. Let X ⊆ Rn be a closed compact convex set. If P (X) ⊆ X then f(x) has a zero in
P (X).

Proof. Since f is continuous (as each fi is), P is continuous and maps X into itself. From
the Brouwer fixed point theorem, P has a fixed point x∗ ∈ X such that:

x∗ = x∗ − Y · f(x∗)

Knowing that Y is invertible, multiplying both sides of the equation by Y −1 gives us f(x∗) = 0.
Moreover, x∗ ∈ P (X). Q.E.D.

Lemma 7. Let X be convex. Then f(x)− f(y) ∈ J(X)(x− y) for all x,y ∈ X.

Proof. This is a direct consequence of (2.19) from Lemma 3. Q.E.D.

We now look at how P (x) is connected to K(X). This was Krawczyk’s intuition in his initial
work [24]. From the definition of P in Lemma 6, we have:

P (x) = x− Y f(x)
= x− Y f(x) + (y − Y f(y))− (y − Y f(y))
= y − Y f(y) + x− y − Y [f(x)− f(y)].

This is P (x) rewritten in terms of some fixed y ∈ X. This rewritten form holds for all x ∈ X,
and we can estimate the range of P (x) using its interval extension (and in turn that of f).
Recall that the range of P will be a subset of the interval extension P (X):

P (X) = y − Y f(y) + X− y − Y [f(X)− f(y)]
⊆ y − Y f(y) + [X− y]− Y ( J(X)[X− y]) (by Lemma 7)
= y − Y f(y) + {I − Y J(X)} [X− y]
= K(X).

We now turn our attention to how K(X) can be used as an inclusion predicate. The original
work of Krawczyk spoke about the applicability of his operator to the problem of refining roots,
rather than as an existence test. Its utility as an inclusion predicate was observed by Moore,
and is a theorem from his work [29]. Note that we state a stronger version than Moore (we
state that any solution of f(x) = 0 in X is actually in K(X)).

Theorem 8. Let y be a fixed real vector in the interval vector X, and let K(X) be defined as
in (2.21). Then:
(1) K(X) ⊆ X implies the existence of a zero of f in K(X).
(2) If K(X) ⊂ X then this zero is unique.
(3) If K(X) ∩X = ∅, then X has no zero of f .
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Proof. We have P (X) ⊆ K(X) (from our justification). This means that K(X) ⊆ X implies
P (X) ⊆ X. By Lemma 6, this implies f has a zero in P (X), and hence in K(X).

The proof for the second part is slightly more complex. In the corresponding proof for the
Newton’s method, we exploited the fact that the Jacobian did not contain a singular matrix.
This is not necessarily the case for the Krawczyk operator.

The complete proof for this part of the theorem can be found in Lemma 3, Theorem 2 in
[29]. The basic idea behind Moore’s proof is that when K(X) ⊂ X, the sequence of intervals
obtained by applying K(X) recursively to X converges to a single point, and that point will be
a root of f .

The proof for the last part of this theorem is along the same lines as the Newton operator
in Theorem 5. Q.E.D.

The predicate based on the Krawczyk operator takes the same form as that with the Newton
operator which is:

1. If K(B) ∩B = ∅
2. Discard B
3. Else If K(B) ⊂ B
4. Insert B into the output.
5. Else
8. Subdivide B

We now move on to the last of our inclusion tests, which is the Hansen-Sengupta operator.

2.2.8 The Hansen-Sengupta operator

We begin this section by recalling (2.19) in which we showed for any x,y in an interval vector
X that:

f(y)− f(x) = Jm(x,y) · (y − x), (2.23)

and that Jm(x,y) ∈ J(X). We are interested in finding those y for which f(y) = 0. Using this
in the above equation, for a fixed xc (usually the mid point of X) we have:

Jm(xc,y)(y − xc) + f(xc) = 0.

Finding the set of solutions of this equation is as hard as the original problem itself, but what
we can do is compute a superset of this solution set by replacing Jm(xc,y) with J(X). The
equation now becomes:

J(X)(y − xc) + f(xc) = 0. (2.24)

This is now a linear equation in y with interval coefficients since the elements of J are intervals.
Hansen and Sengupta in [17] observed that the Krawczyk operator tries to solve (2.24) only
approximately, and does not in general give sharp bounds on its solutions. In addition, they
proposed a new operator which produces sharper bounds on the solution. This is the subject
of the rest of our discussion.

Hansen observed in [15] that the solution of equation (2.24) could proceed along the lines of
the Gauss-Seidel elimination, as performed on a system with real coefficients. With Smith, in
[18] he also showed that sharper bounds on its solution in the interval case could be obtained
by premultiplying (or conditioning) (2.24) with a suitable matrix. This is usually chosen to be
the inverse of Jc(X), the (non interval) mid point of J(X). If this premultiplier is B say, the
equation then becomes:

A · (y − xc) = l,
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where A = B · J(X) and l = −B · f(xc). This remains a linear equation in y.
As per the Gauss Seidel method, we write A = U + D + L , where U and L are respectively

the strict upper and lower triangular matrices of A and D is its diagonal matrix. The Gauss
Seidel method is an iterative process, given by:

x(k+1) = (L + D)−1(b− Ux(k)),

for a linear equation Ax = b. Here, xk will converge to the solution of this linear system under
certain conditions. Also, note the form of this iteration allows us to proceed component-wise,
using values of x(k) that have already been calculated in the current iteration.

The Hansen-Sengupta operator is then a single step of the Gauss Seidel iteration:

Y = x−D−1
{
l + L(X′ − xc) + U(X− xc)

}
, X′ = Y ∩X. (2.25)

In (2.25), we emphasise the component-wise nature of this iteration. Whenever we calculate a
component Yi of Y we immediately update the value of X′ appropriately before we compute the
remaining components of Y. A difficulty arises when one of the diagonal elements of D contain
a zero, in which case D−1 is not defined. In this situation, Hansen and Sengupta recommend
the use of extended interval arithmetic to compute the result.

The use of this operator (which we denote by H(X)) as an inclusion test is justified along
the same lines as that of the Krawczyk and Newton operators. This is due to Moore and Qi
[30].

Theorem 9. Let H(X) be defined as above. Then:
(1) H(X) ⊆ X implies the existence of a zero of f in H(X).
(2) If H(X) ⊂ X then this zero is unique.
(3) If H(X) ∩X = ∅, then X has no zero of f .

Proof. The proof is along the same lines as the proofs for the Krawczyk / Interval Newton
operators and can be found in [34] or [30]. As before, the proof centres around the existence of
a fixed point of a mapping defined in such a way that all its fixed points are roots of f . Further,
[34] shows that this operator produces interval enclosures for the zeroes of f that are smaller
than (or as wide as) the enclosures produced by K(X) from the previous section. Q.E.D.

2.2.9 Summary

We have now defined and given the theoretical basis behind an interval arithmetic based exclu-
sion predicate, and three related interval arithmetic based inclusion predicates. Recall that all
three of these predicates have the same form; for a box B if P (B) ⊆ B (or P (B) ⊂ B) then
B is isolating. Here P (B) is one of K(B), N(B),H(B) defined by equations (2.21), (2.16) and
(2.25) respectively.

In addition, for all three of these operators we showed that if a box B contains a root, then
so does P (B). This allows us to replace B with B ∩ P (B) before subdividing it. Further, if
B ∩ P (B) = ∅ then B can be discarded. We now have a completely specified subdivision based
method that we can use to isolate the roots of a complex polynomial using interval arithmetic.

2.3 Complex analysis based predicates

In the previous section, we discussed a set of interval arithmetic based predicates that could
be used in our subdivision algorithm. Recall that these predicates transformed our problem
into that of solving a system of two non linear equations in two variables. We note that
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this transformation of the problem makes it more general. This is because complex polynomials
being holomorphic3 are continuous and differentiable in the complex plane, and this is a stronger
criterion than u and v being continuous and differentiable by themselves. For instance, the
derivatives of u and v are related via the Cauchy-Riemann equations:

ux = vy, uy = −vx.

Predicates designed using complex analysis can therefore take advantage of properties of f that
cannot be exploited by the methods of the previous section. On the other hand, those methods
are more general, and can solve any system of non linear equations, as long as each of the
constituent functions are continuous and differentiable.

We discuss in this section an exclusion predicate, which is due to Yakoubsohn and Dedieu
[10, 42] and an inclusion predicate which can be viewed as a sort of a “sign test” which is due
to Sagraloff and Yap [37].

2.3.1 The exclusion predicate

We start with the exclusion predicate. The predicate is based on the following function M(x, t)
as per Yakoubsohn [42]:

M(x, t) := |f(x)| −
∑
k≥1

|f (k)(x)|
k!

tk, (2.26)

where x ∈ C and t ∈ R+. This function is linked closely with the complex Taylor series of the
function f about the point x which is given by:

f(z) = f(x) +
f ′(x)(z − x)

1!
+

f ′′(x)(z − x)2

2!
. . .

f (k)(x)(z − x)k

k!
. . . .

From the triangle inequality, we can show that:

|f(z)| ≥ |f(x)| −
∑
k≥1

|f (k)(x)|
k!

|z − x|k = M(x, |z − x|). (2.27)

Also, from the definition of M(x, t) (2.26), M decreases as the value of t increases, as t ∈ R+.
We are now ready to show how this function can be used as an exclusion predicate.

For a box B, consider the function M(m(B), t) defined for a function f . It is related to the
Taylor series expansion of f about the centre of the box B. Keeping (2.27) in mind, we consider
the four corners of the box B. These are the points whose distance from the centre of the box
B is maximum, and this distance is equal to r(B). Since M(x, t) decreases with increasing t,
for any z ∈ B:

|f(z)| ≥M(m(B), |z −m(B)|) ≥M(m(B), r(B))

It follows that if M(m(B), r(B)) > 0, then |f(z)| > 0 over B and f cannot have a root in B.
Sagraloff and Yap in [37] use a slightly more generalised version of (2.26) to deduce additional
properties of B. They define, for an m ∈ C and K, r ∈ R+ the predicate T f

K :

T f
K(m, r) : |f(m)| > K

∑
k≥1

∣∣∣∣∣f (k)(m)
k!

∣∣∣∣∣ rk. (2.28)

3A holomorphic function is one that is (complex) differentiable in a neighbourhood of every element of its
domain
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If f is replaced by f ′, then the test (2.28) is turned into:

T f ′

K (m, r) : |f ′(m)| > K
∑
k≥2

∣∣∣∣∣f (k)(m)
(k − 1)!

∣∣∣∣∣ rk−1. (2.29)

Their notation reinforces the fact that T is associated with f . In their usage, m, r are usually
related to the midpoint and radius m(B), r(B) of some box B. Further, since we deal here with
a single function f whose roots we wish to isolate, they suggest that f can be made implicit in
the notation. Then, T f

K can simply be written as TK and T f ′

K as T ′K . We will use this notation
for the rest of this section. In this notation, our exclusion predicate becomes:

1. If T1(m(B), r(B)) holds:
2. Discard B

2.3.2 A simple inclusion predicate

Yakoubsohn and Dedieu in their work [42, 10] deal with that they call a “Bisection Exclusion
algorithm”. This can be viewed as a generalised subdivision algorithm that uses only an exclu-
sion predicate, and no inclusion predicate. They use the exclusion predicate T1(m, r) as defined
by (2.28) and a very simple “inclusion” predicate to include boxes:

w(B) ≤ ε, ε ∈ R+.

Note that this is a slight abuse of terminology. Unlike the other inclusion predicates that we
studied, this one does not guarantee that a box will be isolating.

However, its use with an exclusion predicate does guarantee that all roots of f (if any) will
lie within the union of the output boxes. In other words, most parts of the starting region B0

that do not contain roots of f will be discarded.
This method can therefore be viewed as an “approximate” method, since it makes no guar-

antees about roots. However, it has considerable utility in that it is straightforward and easy to
implement. Moreover, it will work on any analytic function, even one that has roots of multi-
plicity m > 1. Since no inclusion test is performed, except for a simple width comparison, it is
efficient as well. This can therefore be used as the first stage in an algorithm that can run elab-
orate and expensive tests on the output of this stage, which will in most cases be considerably
smaller than the starting region.

2.3.3 The 8-Point Test

Sagraloff and Yap in [37] introduce an inclusion predicate that can detect isolating regions
for complex polynomials with no repeated roots. Besides being cheap to evaluate, their
predicate is also easy to implement exactly. They call the combination of the 8-Point test
with the exclusion predicate of the previous section the CEVAL algorithm. We use this name
throughout this work as well.

We provide in this section a brief exposition of their work, though omitting details of their
proof beyond those that are necessary to understand the motivation behind this approach. We
start with some basics and a definition.

¶5. Basics: We introduce some basic definitions and ideas behind differentiation in the
complex plane. A complex valued function f(z) = u(x, y) + iv(x, y) is said to be differentiable
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in an open subset S of C at z ∈ S if

lim
h→0

f(z + h)− f(z)
h

(2.30)

exists. When the limit does exist, f ′(z) is the value of the limit. In the evaluation of the limit
(2.30) note that z + h can tend towards z from any direction in the open disk D(z, r) for some
r > 0 such that D(z, r) ⊂ S 4. This is the analogue of “left hand” and “right hand” limits in
real analysis. An important consequence of this property are the Cauchy-Riemann equations.
Though the equations are considered a basic result in complex analysis, their exposition here
will lend clarity to some of the other results in this section.

Using (2.30) and allowing h to tend towards zero along the x and y axis respectively (purely
real and purely imaginary), we have:

f ′(z) = lim
h→0

u(x + h, y)− u(x, y)
h

+ i
v(x + h, y)− v(x, y)

h
= ux + ivx (h ∈ R)

f ′(z) = lim
h→0

u(x, y + t)− u(x, y)
it

+ i
v(x, y + t)− v(x, y)

it

=
1
i
uy + vy = vy − iuy (h = it, t ∈ R).

These give us two equivalent forms for f ′(z) which are:

f ′(z) = ux + ivx = (1/i)uy + vy. (2.31)

Equating the real and imaginary parts of these forms gives us the Cauchy-Riemann equations.
In some sections, we treat u, v as functions of two variables x, y and define the gradient in the

natural way, ∇u = (ux, uy) and ∇v = (vx, vy). Since both u, v are continuous and differentiable
real valued functions in two variables, the Mean Value Theorem applies. To define it, we treat
a complex number z ∈ C as a vector in two dimensional space z = (Re(z), Im(z)). We then
proceed in a manner similar to Lemma 3 to state that there must exist a c ∈ [a, b] such that
u(b)− u(a) = ∇u(c) · (b− a) where a, b, c ∈ C are treated as vectors, the gradient ∇u is defined
as above and “·” denotes a scalar product of two vectors.

¶6. Disk: A disk in the complex plane is defined in the usual way. A disk D(m, r) with
m ∈ C, r ∈ R+ is the set of all complex numbers z such that |m − z| ≤ r. The disk is said to
be centred at m and has a radius of r. A disk associated with a box B is the disk with radius
r(B) centred at m(B). Obviously in this case B ⊂ D(m(B), r(B)). Also note that the test T f

K

defined in (2.28) can operate on a disk in the obvious way, using the centre and radius of the
disk. We refer to this application as TK(D) (and the corresponding T ′K(D)).

It is also useful to talk about some definitions relating to the boundary of a disk D. The
main compass points of D(m, r) are the 8 points m + r · eijπ/4 for j = 0, 1, . . . , 7. They
are given standard labels, and comprised of the cardinal points: N,S,E,W and the ordinal
points: NE, SE, SW, NW . The boundary of the disk D is divided into 8 arcs by these compass
points, each arc being described by:

Aj :=
{

m + reiθ : jπ/4 ≤ θ < (j + 1)π/4
}

j = {0, 1, . . . , 7} .

For instance, the arc A0 has E,NE as its end points and the arc A1 has NE, N and so on.
We now show some results regarding the existence and the number of roots in a disk D(m, r).

4For any open set in the complex plane, such a disk is guaranteed to exist.
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Lemma 10. For any disk D, if T1(D) from (2.28) holds, then D contains no zeroes of f .

Proof. The proof is exactly the same in the case of a box. In the case of a disk, the points
that are at a maximum distance from the centre lie on the perimeter of the disk. Q.E.D.

The second lemma is similar, but gives an upper bound on the number of roots a disk can
contain, and is due to Sagraloff and Yap (see Lemma 6,7,8 of [37]):

Lemma 11. For any disk D, if T ′√
2
(D) from (2.29) holds, then D contains at most one root of

f .

Proof. We will first illustrate how T ′√
2
(D) imposes restrictions on the range and behaviour

of f ′(z) across a disk D(m, r). Let L =
∑
k≥2

∣∣∣f (k)(m)
(k−1)! rk−1

∣∣∣. For some z1 ∈ D(m, r), we can use

the Taylor series expansion to write

f ′(z1) = f ′(m) +
∑
k≥2

f (k)(m)
(k − 1)!

(z1 −m)k−1,

and from the triangle inequality, |f ′(z1)− f ′(m)| ≤ L. The maximum value of |f ′(z1)− f ′(m)|
is exactly L, and the points at which this value is attained will lie on a circle of radius L centred
at m. Considering the triangle with vertices at f ′(m), f ′(z1) and the origin we have:

| arg f ′(z1)− arg f ′(m)| ≤ arcsin
(

L

f ′(m)

)
.

This follows from the fact that when the LHS reaches its maximum value, f ′(z1) will lie on
the circumference of the disk, and the triangle will be right angled at z1. From our predicate
T ′√

2
we have |f ′(m)| >

√
2L and as a consequence, we must have | arg f ′(z1) − arg f ′(m)| <

arcsin( 1√
2
) = π

4 . (Note that the “>” from T ′ makes the inequality strict). This tells us that for
any z1 ∈ D(m, r) , the argument of f ′(z1) can differ by at most π

4 from that of the centre m.
What this also implies is that for any two z1, z2 ∈ D(m, r) we must have

| arg f ′(z1)− arg f ′(z2)| < 2.
π

4
=

π

2
. (2.32)

From (2.31) we have arg f ′(z) = arctan vx
ux

= − arctan uy

ux
= − arg∇u(z). Applying this to

(2.32) we have:
| arg∇u(z2)− arg∇u(z1)| <

π

2
. (2.33)

We can now prove the main result by contradiction. Let z1, z2 ∈ D(m, r) be two zeroes in
the disk D(m, r). Now if z1 = z2, then f ′(z1) must necessarily be zero. However, T ′√

2
holds,

and therefore T ′1 must hold and f ′ cannot have a zero in D(m, r) so we can assume that z1 6= z2.
Now f(z1) = f(z2) = 0 implies that u(z1) = u(z2) = v(z1) = v(z2) = 0. From the Mean

Value Theorem, we must have some a, b ∈ [z1, z2] such that ∇u(a) · (z1−z2) = u(z1)−u(z2) = 0
and ∇v(b) · (z1 − z2) = v(z1) − v(z2) = 0. We conclude from the above that both ∇v(b) and
∇u(a) are perpendicular to (z1 − z2).

However, ∇v(b) = (vx(b), vy(b)) = (−uy(b), ux(b)). Also:

∇v(b) · ∇u(b) = −ux(b) · uy(b) + ux(b) · uy(b) = 0.

We then conclude that ∇u(b) is perpendicular to ∇v(b) and therefore it must be parallel to
(z1 − z2). This also makes it perpendicular to ∇u(a). This is a contradiction because the
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arguments of ∇u(z) evaluated at two points z1, z2 ∈ D(m, r) must necessarily be less than π
2

from (2.33). Q.E.D.

Both of these lemmas provide us more information about the number of roots in D but
neither of them can guarantee that D is isolating. For this purpose, Sagraloff and Yap introduce
the 8-point-test which is very roughly a sign change test. The test evaluates f at a fixed
number of points on the boundary of D and requires that the real and imaginary parts u, v of
f(z) = u(x, y) + iv(x, y) satisfy certain conditions in order for the disk D to be isolating.

The main concept behind the test is that of an arc crossing: u is said to have an arc
crossing at an arc Aj if its signs at the end points of Aj differ. (Or if u = 0 at one of the end
points). More specifically, let j ∈ {0, . . . , 7}. Then there occurs an arc-wise u-crossing of
D(m, r) at Aj if {

u(m + reijπ/4) · u(m + rei(j+1)π/4) < 0, or
u(m + reijπ/4) = 0.

(2.34)

The 8-point test applied to a disk D(m, r) is said to succeed if :

• There are exactly two arc-wise u crossings Aj and Ak and exactly two arc-wise v crossings
Aj′ and Ak′ on the boundary of D.

• The crossings interleave. We must have either j < j′ < k < k′ or j′ < j < k′ < k.

We can now state the inclusion test in its entirety. This is essentially Theorem 2 from [37] and
is stated here without a complete proof:

Theorem 12. Suppose T ′6(m, 4r) holds.
(i) If D(m, r) is isolating, then D(m, 4r) passes the 8-point test.
(ii) If D(m, 4r) passes the 8-point test, then D(m, 4r) is an isolating disk.

Proof outline. In Lemma 10 and Lemma 11 we showed how TK(D) and T ′K(D) impose
conditions on how |f(z)| and arg f(z) can vary across a disk D. It turns out that they in fact
impose stronger conditions than the ones we proved above. TK constrains the arc crossings of
u, v to certain specific areas of the boundary of D(m, r) and imposes an upper bound on the
difference between the arguments of those points. The proof structure for these properties is
largely geometric, and an exposition of the entire proof is beyond the scope of this thesis. A
full proof can be found in [37].

Note that if D(m, r) is isolating then D(m, 4r) is guaranteed to pass the 8-point test. How-
ever, if D(m, 4r) passes the 8-point test, then we can only make the (slightly weaker) statement
that the larger disk D(m, 4r) is isolating.

With our inclusion predicate in place, we now have a complete subdivision algorithm to
isolate the roots of a complex polynomial with no repeated roots. Note that this inclusion test
is less general than the exclusion test. While the exclusion test works for any analytic function
f , the inclusion test works only polynomials with no multiple roots.

It is clear that in this case, we do not suffer from the issue of roots shared between boundaries
of boxes as in Section 2.2.6. Instead, we deal with the notion of a root present in a disk D(m, 4r)
centred at the centre of a box B(m, r) that we assert is isolating. We might now ask what would
happen if two adjacent boxes passed the 8-point test. Clearly, their isolating disks will intersect.

We can deal with this by imposing stronger conditions on the 8-point test as per [37]. Refer
to Lemma 11, in which we showed that if T ′√

2
(m, r) holds, then D(m, r) has at most one root.

Now, if T ′√
2
(m, 8r) held for some box centred at m with radius r, then it would guarantee that

even if adjacent boxes were to pass the 8-point test, we can keep only the smallest of the disks
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arising from these boxes. This is because T ′√
2
(m, 8r) guarantees at most one root within the

disk D(m, 8r), and all D(mi, 4ri) resulting from the adjacent boxes will be contained within it.
With this we are ready to state the algorithm.

INPUT: A box B with centre m and radius r.
1. If T1(m, r) holds, discard B.
2. Else if T ′6(m, 4r) and T ′√

2
(m, 8r) hold:

3. If D(m, 4r) fails the 8-point test, discard B.
4. Else
5. If D(m, 4r) intersects with an existing output disk D′

6. Replace D′ with the smaller of D′ and D.
7. Else insert D(m, 4r) into the output.
8. Else
9. Split B into four equal children and insert them into Q.

The final point to note is that the output consists of a list of disks D(m, r) and not boxes. Also
for a box B, we can only state that D(m, 4r) is isolating, and that is a larger disk than the box.
This implies that the output is a set of disks whose centres are within the initial region B0,
and the roots they isolate need not necessarily lie within B0.

2.4 Other approaches

2.4.1 Introduction

This section discusses various other approaches to root finding that do not fit into the general
structure of subdivision based algorithms. We limit our discussion to methods that allow us
to isolate all roots of a given polynomial (including its complex roots) and not just those that
are real. For the problem of finding only real roots, a specialised set of methods are applicable
including those based on Descartes’ rule of sign or on Sturm sequences (See for example Chapters
6 and 7 of [43] or the excellent summary of history and recent progress in this area by Pan [45]).
Our discussion is further limited to approaches that are known to be stable and robust, and are
implemented in popular mathematical packages.

Note that the approaches below are discussed for the sake of completeness, and our main
motivation is to compare various subdivision based methods of root isolation. Our implemen-
tation efforts and results along those lines are discussed in subsequent chapters and the reader
can skip this section without any loss of continuity.

2.4.2 Weierstrass type iterations

This section discusses two approaches: The Weierstrass Durand-Kerner iteration [23] and the
closely related Aberth-Erlich iteration [1]. Both of these are simultaneous iterations meaning
that at each step of the iteration, successively better approximations of all roots of a polynomial
p are calculated. Both approaches start by computing initial estimates of the roots of p. The
problem of computing the initial root estimates is an area of research by itself, but even simplistic
estimates suffice. One such set of estimates for a polynomial of degree n are the n complex
roots of unity [4]. From the initial estimates, these algorithms calculate successively better
approximations of all roots until a termination condition is reached.

Consider the polynomial p given by

p(z) =
n∑

i=1

aiz
i = an

n∏
i=1

(z − αi),
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where each αi is a root of p(z). We evaluate the derivative of p based on its factorised form:

p′(z) = an

n∑
i=1

∏
j 6=i

(z − αj)

.

Now, if αi is a root of p, p′(αi) will be given by

p′(αi) = an

n∏
j=1,j 6=i

(αi − αj).

This can be “plugged in”5 to the Newton iteration to give the Weierstrass Durand-Kerner
iteration, which is:

xk+1
i = xk

i −
p(xk

i )

an

n∏
j=1,j 6=i

(xk
i − xk

j )
,

where xk
i in general is the i’th root of p(z) on the k’th iteration step. Replacing p(z) with

ri(z) :=
p(z)

n∏
j=1,j 6=i

(z − αj)
,

into the Newton iteration gives us the Aberth-Erlich method. Note that ri(z) is the linear factor
(z − αi) of p, corresponding to the root αi. The zero of this linear factor (z − αi) is one of the
roots of p. When we have only estimates of the roots, then the ri terms are correspondingly
estimates of the factors associated with each root. The Aberth-Erlich iteration is then given
by:

xk+1
i = xk

i −
(p(xk

i )/p′(xk
i ))

1− (p(xk
i )/p′(xk

i ))
n∑

j=1
1/(xk

i − xk
j )

.

This iteration is the focus of Bini’s and Fiorentino’s work on MPSolve [4, 6]. The MPSolve
package is referred to in latter sections of this thesis as it is used to compare the relative speed
of subdivision based approaches to those based on simultaneous iteration.

2.4.3 The Jenkins-Traub algorithm

Jenkins and Traub in [21] introduced a globally convergent algorithm to calculate all roots of
a polynomial p using a three stage process. The algorithm is known to be extremely stable
and robust, and is in use in various commercial packages [45]. The algorithm does not attempt
to find all roots of p simultaneously. Instead, it approximates one of the n roots αi of p and
then proceeds to find all (n − 1) roots of p/(z − αi) and so on. Roots are found in generally
increasing order of magnitude [21]. The basic idea behind the algorithm is to construct a
sequence of polynomials Hλ which are meant to converge to the polynomial p/(z − αi) which
is the cofactor of the root αi. The iteration step of the Jenkins-Traub algorithm (which [21]
calls “Stage 3: The variable shift process”) is very closely related to the Newton iteration of
the previous section, and is given by:

sλ+1 = sλ −
p(sλ)

H(λ+1)(sλ)
.

5In reality, its not as simple as just plugging it in. Proving that it is in fact convergent and that it actually
works is a far more complex and tedious task.
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Here, each sλ is the current estimate of a root, and H(λ+1) is the current estimate of the cofactor
of that root. This can be viewed as an iteration on a rational function p(z)/C(z) where C(z)
can be made as close to the cofactor of the desired root as possible.

One of the disadvantages of the approach it is difficult to apply to the problem of isolating
roots within a region of interest, a task to which subdivision algorithms are particularly well
suited. Further, the roots need to be found in roughly increasing order of magnitude to avoid
numerical stability issues when deflating p with a large root [21]. Further, Goedecker in [13]
points out that this method is generally unsuitable for use for polynomials of degree n > 50
and speaks of convergence issues around multiple roots and clusters of roots. Nevertheless, its
stability and speed of convergence make it one of the prime choices for numerical packages.
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Chapter 3

Implementation

3.1 Introduction

The previous chapter discussed root isolation from a purely mathematical viewpoint. Imple-
menting an algorithm that has its basis in analysis poses its own challenges and is an area of
study in its own right. The most basic concept in real analysis, the set of real numbers R is
incapable of being represented by a digital computer with discrete and finite memory. In most
cases, computers can only work with approximations of its members. Implementers of numerical
algorithms also need to deal with issues around precision, overflow and employing the correct
form of rounding. This chapter discusses some of these issues in the context of subdivision
algorithms and also serves to provide an outline of our implementation.

We choose to implement our algorithms in C++ for multiple reasons. It is the most commonly
used language for scientific computing and has a large and mature body of open source code
that can be built upon. We describe some of the open source libraries that we used through
the rest of this section. Further, most existing root finders are written in C, and using C++ will
allow a fair comparison of our work with other approaches.

3.2 Machine arithmetic

In our mathematical definitions, we dealt with various sets of numbers. The most common
being the real numbers R and the complex numbers C. Both of these sets are dense, infinite
and uncountable. Computers with finite memory cannot represent every member of either of
these sets, and in most cases can store only approximations. The set of integers Z is countable
but still infinite, and though every member of this set is capable of an exact representation, a
computer with finite memory can represent only a finite subset of the integers. We deal with
the machine representation of each of these sets below.

3.2.1 Fixed precision formats

These representations use a fixed number of bits to represent a given number. The number of
bits used in this representation is often referred to as the precision of the type1. This is usually
chosen to be the register size of the underlying hardware, in which case the format is said
to be at “machine precision”. In this case, standard arithmetic operations can be performed
using dedicated hardware and as a consequence are very fast. This is in contrast to extended
precision formats which are discussed in Section 3.2.2.

1This definition tends to vary, some definitions include the sign and exponent bits as well, others choosing
just the significand.
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¶7. Integral types: C++ provides two fixed precision integer types, the int and the
long. The length of an int (resp. long) is implementation dependent and all the C++ stan-
dard (Page 53. [20]) requires is that it can store all values in the range [INT MIN, INT MAX]
(resp. [LONG MIN, LONG MAX]) as defined in the standard header <climits.h>. On most 32
bit architectures, the int is 32 bits (4 bytes) in length as is a long2.

Basic arithmetic operations on these fixed precision integer types are often performed in
hardware by dedicated circuitry and are extremely fast. The operators {+,−, ·} on integral
types are always exact as long as the results do not overflow. The ÷ operator on integers is not
closed and in C++ will return the integer quotient of the division.

¶8. Floating point types: C++ provides a single precision floating point type float and
a double precision floating point type double that occupy 32 and 64 bits respectively. Their
behaviour is governed by the IEEE-754-1985 standard (and the IEEE-754-2008 standard that
succeeded it [19]). In most of our work, we use the double precision type and we now devote a
short paragraph to the details behind it.

A 64 bit double precision floating point type (the standard calls this binary64, Section
3.1 [19]) is made up of three components, a single sign bit, a 11 bit exponent and a 52 bit
significand. The exponent is encoded in bias offset form, meaning that a fixed exponent bias
value is subtracted from it (Section 3.5.2 [19]) to obtain the actual exponent. The number is
then given by

n = (−1)sign · 2exponent−bias · 1.m1m2m3 . . .mn,

where m1m2m3 . . .mn are the significand bits. The significand is stored in normalised form,
which means its bits are shifted left as far as possible such that the first digit is always 1. The
first digit is implicit (1.m1 . . . ) and raises the number of significand bits to 53. (This is not
always the case, see the section on underflow, below).

¶9. Overflow: When the result of a floating point or integral calculation is such that its
minimal representation requires a precision larger than the precision level of the calculation,
an overflow is said to have occurred. In the case of the integral types, this happens precisely
when the result does not fall in the range [INT MIN, INT MAX] (or [LONG MIN, LONG MAX]).
For floating point types, an overflow occurs when the exponent is larger than the largest ex-
ponent that can fit in 11 bits. An overflow is a serious problem, and stable numerical method
implementations should be able to detect it and take mitigating steps or signal that the method
must halt.

¶10. Underflow: Consider the case of a floating point calculation whose result is positive.
When the result is sufficiently close to zero on the positive axis, its exponent might be smaller
than the smallest exponent that can be represented by the type. When this happens, an
underflow is said to have occurred3. This leads to the so called zero gap, the gap between the
closest real number capable of a fixed length floating point representation and 0 is larger than
the gap between any two other adjacent numbers that can be represented by the type.

The designers of the IEEE-754 standard mitigated this issue by introducing the subnormal
numbers. These are numbers whose implicit bit is 0 instead of the usual 1. This allows sig-

2The fact that a long must be “at least as long as” ([20, Page 54]) an int along with the fact that
[LONG MIN, LONG MAX] can be represented in 32 bits in twos complement form means that on most 32 bit archi-
tectures, a long is the same size as int. This is an endless source of confusion for those new to C++.

3Note that this is different from being smaller than the smaller representable number of the type as all negative
numbers are smaller

28



nificands of the form 0.m1m2m3m4..mn, that gradually lose precision as they get smaller (the
exponent will remain fixed at its smallest possible value)4

¶11. Rounding: The floating point types described above are fixed precision, and as a
result are capable of representing only a very small subset of the real numbers. Numbers that
cannot be represented must be rounded to the number of bits of precision available. Results of
calculations are represented as if the calculation occurred at infinite precision and the results
were rounded to the significand precision. The IEEE-754 standard specifies a set of rounding
types for all floating point operations (Section 4.3 [19]):

• Round to nearest: Rounds the number to the nearest representable value. If the number
falls midway between to representable values (a tie), we can chose either the value with
a zero LSB5 (the default rounding algorithm) or one with a LSB of 1. Note that ties are
broken consistently one way or the other, and not by a random choice.

• Round towards 0: Rounds to the nearest representable number between the result and
zero.

• Round towards +∞: Rounds to the nearest representable number larger than the result.

• Round towards −∞: Rounds to the nearest representable number smaller than the result.

Each of these rounding modes have their own utility. For instance, while evaluating expressions
involving intervals, we would round operations involving the lower limit of the interval towards
−∞ and those involving the upper limit towards +∞ in order to produce a wider interval that
is a superset of the (infinite precision) result. Note that this fits in well with our interpretation
of an interval as the upper and lower bound on the result of a calculation.

3.2.2 Extended precision formats

Though the precisions and sizes described in the previous section suffice for a large category
of mathematical programs, some require higher precision than the above representations are
capable of. We therefore need formats that have a higher number of bits than the machine
precision formats of the previous section. The IEEE-754 standard (Section 3.7 [19]) calls these
extended precision formats. These are also called arbitrary precision formats, though this term
is misleading because the precision is always bounded by the available system memory and
implementation. The programming community tends to prefer the less formal name “bignums”
for such formats.

The C++ standard library does not provide an extended precision implementation and this
space is filled by multiple open source libraries. The most widely used of these libraries is the
GNU Multi-Precision Library [11] (GMP). It is a mature, well maintained library used in a wide
variety of open source projects and is backed by an active developer community. This makes it
the obvious choice for our work. We provide a brief introduction to some of the representations
GMP offers that are central to our implementation.

¶12. Integers: The GMP extended precision integer type mpz t is represented as a sign and
a magnitude [12]. An integer is stored as an array of “limbs”, each limb being the size of a
machine word (32 or 64 bits). The limbs are dynamically allocated according to the magnitude
of the integer, and the number of limbs is limited only by the available system memory.

4For an interesting discussion of these issues, see [22]
5LSB is an acronym for the Least Significant Bit
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¶13. Floating point numbers: The GMP floating point type mpf t like the integer types is
stored as an array of limbs. In addition, an exponent and a target precision (in terms of limbs)
are associated with every floating point representation. The exponent is a machine precision
long, and is not stored in the bias offset format. Results are computed until the number of
limbs specified by the precision. The precision of a floating point type is limited only by the
available system memory, and the exponent is limited to the range [LONG MIN, LONG MAX].

¶14. Rationals: A rational type mpq t is stored as an mpz t pair representing a numera-
tor and a denominator. The canonical form always contains a positive denominator, and the
numerator and denominator always contain no common factors.

¶15. Rounding: The GMP library does not offer any guarantees that results involving
floating point types will be rounded consistently to the desired precision, instead stating that
the results will be correctly rounded in “most cases” and truncated in others [12]. Applications
that desire correct and consistent rounding must use libraries like the GNU MPFR [31]. MPFR
stays true to the spirit of the IEEE-754 standard in that it supports all of the rounding modes
that the standard outlines with the same semantics. Further, when the target precision is 53
bits (the same as the machine double), MPFR will accurately reproduce every operation as if
it was performed with corresponding machine type [32].

3.2.3 The dyadic numbers

It turns out that the set of numbers that can be represented exactly using a finite binary floating
point representation (mpf t) is very small, and the elements of of this set are called the dyadic
numbers. They are of the form a.2−e where a, e ∈ Z. For any number r ∈ R that is not dyadic,
we can construct the sequence

b2k.rc
2k

k = 0, 1 . . .

whose elements are successively better approximations of r as k increases. Hence, any number
in R can be represented by a dyadic number that is an arbitrarily small distance away from
it. However, as this distance decreases the precision and the memory required to store the
approximation increase.

It can be seen that the set is closed under the operations {+,−, ·}. For example,

p

2a
+

q

2b
=

p.2b−a + q

2b
, b ≥ a

and
p

2a
· q

2b
=

p · q
2(a+b)

.

Therefore, the results of these operations on dyadic numbers can be represented exactly, and
will in fact be exact if the target precision is high enough. The dyadic numbers are not closed
under the operator ÷ and the quotient of two dyadic numbers is not necessarily dyadic. Hence,
the result of the ÷ operator may not have a finite binary representation.

30



3.3 The Core Library

3.3.1 An introduction to Core

The Core library [9] is a collection of C++ classes for exact computation with algebraic real
numbers and arbitrary precision arithmetic6. It is built over the GMP and MPFR libraries that
we introduced in Section 3.1, and in addition to providing a unified and consistent C++ API
over the mpx t types, provides a useful set of extensions to perform tasks such as polynomial
representation and evaluation, basic linear algebra, real root isolation and so on. In addition,
Core defines multiple levels of operation over which a program can be compiled and executed.
Each of these levels provide stronger guarantees on exactness at the cost of slower execution.
For a detailed description of the design and implementation of Core, see [46].

Our complex root isolation algorithms have been implemented using the Core library as this
allowed us to build upon its existing polynomial evaluation and linear algebra code and to use
the clean Core API over the GMP types.

During the course of our implementation, we wrote a framework of classes that are of
considerable utility even outside of our work. These include a templated interval arithmetic
package, a complex number type and a consolidated API over machine doubles. In addition,
we improved parts of the Core library by contributing specific algorithms not directly related
to our work, such as an implementation of the Bareiss algorithm (See Chapter 10 in [43]) for
determinant calculation and matrix inversion.

All of this work has been reviewed and submitted to the Core repository and forms a part
of the latest Core release (Version 2.1, which can be downloaded at [8]).

3.3.2 The Core design

One of the aims of the Core library is to make it easy to write programs that can be run at
different levels of precision without significant changes to the algorithm code. For instance, a
program that operates using the machine precision types long and double with minor changes
should be able to use the GMP types mpz t and mpf t if the calculation it performs needs
more precision than the machine types can offer. Programs that use the Core library specify a
“CORE LEVEL” which the C++ preprocessor uses to perform certain code substitutions. Take the
following code sample for instance:

#define CORE_LEVEL 2

#include "Core/Core.h"

int main(int argc , char **argv) {

double a = 5.0, b = 4.0;

long d = 56;

double c = a*b;

}

The sample defines a CORE LEVEL of 2. Based on the Core level that is defined, and on definitions
in Core.h, the pre-processor will replace all occurrences of double with the default floating
point type corresponding to that level, and similarly for occurrences of long integral types.
The program might end up looking like the following.

int main(int argc , char **argv) {

BigFloat a = 5.0, b = 4.0;

BigInt d = 56;

6An algebraic number is a number is the root of a non zero univariate polynomial with integer coefficients.
It is important note that though an algebraic number may not be dyadic, it can be represented in terms of its
“construction” from other dyadic numbers.
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BigFloat c = a*b;

}

Here, BigFloat, BigInt are classes defined by Core in a manner that allows them to replace
the basic types double and long in all situations. For instance, the snippet above depends on
the following definitions:

class BigFloat {

// Implicit conversion from a machine precision

// double.

BigFloat(const double &);

};

// To substitute the "*"

BigFloat operator *(const BigFloat &l,

const BigFloat &r);

It is important to note that int and float types are never substituted by default, and if the
user wants to prevent an automatic substitution he can explicitly do so by using the typedefs
machine double and machine long. We now describe the substitutions that occur at each core
Level and the associated precision of the calculations.

Also, note that these substitutions are performed by the C preprocessor and therefore take
place at compile time. If programs wish to switch their Core Level dynamically at run time, it
involves slightly more effort and operation at Level 4, which is explained below.

Level 1: At Level 1, all calculations occur at machine precision by default and no preprocessor
substitutions occur. Due to the fact that these operations occur in hardware, this level is much
faster than the other Core levels. One of our contributions to Core was the introduction of
Wrapper types at Level 1 to allow a greater degree of interoperability with the other core
Levels.

Level 2: At Level 2, double and long are substituted with the Core classes BigFloat and
BigInt respectively. These are wrappers over the GMP types mpf t and mpz t through the
MPFR API that ensures correct rounding. Further, Core can automatically determine the
required target precision for a calculation such that if the operands are dyadic, then the result
is represented exactly for the operators {+,−, ·}. Core also introduces a BigRat class as a
wrapper over mpq t.

Level 3: Level 3 provides “Exact Numerical Computation” as defined by [44] through
the Expr class using the theory of constructive zero bounds (See Chapter 12 in [43]). The details
behind this approach are beyond the scope of this thesis, and can be found in [46]. Each Expr
numeric type stores a directed acyclic graph that describes its construction from other algebraic
constants. The Expr type supports exact comparisons (not just ε correctness) for algebraic
numbers, and an associated approximate comparison for the transcendentals.

Level 4: Level 4 allows for mixed mode operation. Machine precision types long, double
can be used alongside BigFloat, BigInt and Expr types. All references to types must be
explicit and no preprocessor substitutions occur. This mode is useful for programs that need
to switch to a higher precision only in certain situations. Such programs can operate at Level
1 by default, and if they detect that they require more precision, convert their working set into
a higher level type and proceed with execution. This strategy allows for faster operation since
extended precision types are used only if required, and not by default.
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There are multiple programming methods that can be used to achieve this. For instance, we
could write templated versions of our algorithms parametrised by the number type they operate
on. The following code sample should make this clearer.

#define CORE_LEVEL 4

template <typename NT> class Algorithm {...};

void Run() {

Algorithm <machine_double >:: run ();

..

if (needsMorePrecision ()) {

ConvertWorkingSet ();

Algorithm <BigFloat >:: run ();

}

}

We use a similar approach in our implementation of the Newton type methods. Specifically, in
our treatment of unresolved boxes (see Section 3.4.4).

3.3.3 Support for Interval arithmetic

One of our contributions to Core (as of version 2.1) is a templated interval arithmetic class:

template <typename NT> class IntervalT {

// Construct from end points.

Interval(const NT &left , const NT &right );

// Construct from degenerate

Interval(const NT &left);

};

The class can be parametrised with any of the number types from any of the Core levels. An
instance of the IntervalT<NT> class can be used in most places where a standard number type
is used since it implements the interval equivalents of the basic operators {+,−, ·,÷}. Further,
floating point numbers are automatically (type) upgraded to the equivalent degenerate interval.

At Level 1, the interval endpoints are machine precision floating point numbers. Like all
other operations, results of interval operations at Level 1 might be inexact and for all operations,
interval upper and lower bounds are rounded upward and downwards respectively. Note that
this means that a result interval might be wider than the corresponding infinite precision result7.

At Level 2, the interval endpoints are instances of Core BigFloat class. As a consequence,
the operations {+,−, ·} are exact for dyadic endpoints. The operator ÷ may not be exact, but
our implementation rounds the endpoints of the resulting interval correctly so that the resulting
interval contains the exact result. Some authors refer to the formal system in which all interval
endpoints are fixed precision floating point types as rounded interval arithmetic (See Section
3.2 of [28]). This approach is not quite the same, since we allow for all operations except for ÷
to be exact on dyadic intervals.

One last point to note is that at as a side effect of implementing the API of the number
types, the Core polynomial package can evaluate a polynomial p(x) for an Interval valued x.
The polynomial package defines

template <typename T> class Polynomial {

// Note that this is a template member function. T is the

// type parameter for the polynomial coefficients , and NT

// the type parameter for the point at which the polynomial

7To round intervals at machine precision, we require access to the floating point environment as defined in
the C standard header <fenv.h>. On platforms that do not implement this header, intervals will be rounded to
the IEEE default.
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// is being evaluated. Note that T and NT must either be

// interoperable or implicitly convertible.

template <typename NT> NT eval(const NT &x);

};

which the compiler can instantiate for NT=IntervalT.

3.3.4 Support for Complex numbers

As part of the groundwork for implementing the complex analysis based predicates (Section
2.3) we implemented a Complex number type which is now a part of Core (as of Version 2.1).

// The cartesian form of a complex number.

template <typename NT> class ComplexT;

// The polar form of a complex number.

template <typename NT> class PolarComplexT;

Here, NT can be any of the types discussed earlier. These classes are used extensively in our
implementation of the CEVAL algorithm. Polar and Cartesian complex numbers are interop-
erable, but the conversion between these two types is inexact since it involves the evaluation of
trigonometric functions.

We note that the C++ standard now defines a Complex number type as part of the standard
library (Section 26.2 in [20]). The reason for not using it is that though it is a part of the
standard, it is not implemented on all the platforms that Core supports. Furthermore, we
provide an API to select specific rounding modes and match the API of the Core real number
types.

3.3.5 Working with polynomials

The most basic of our requirements is the ability to represent and operate on polynomials.
For this, we use the Core polynomial library which offers classes that represent and implement
operations on univariate and bivariate polynomials.

¶16. Polynomial representation: Consider the type Polynomial<NT> parametrised with
NT, the number type of the polynomial coefficients. The most natural machine representation
of a univariate polynomial of degree n is a vector of size n + 1 that stores each of its n + 1
coefficients (this includes the coefficient of z0, the constant term).

Bivariate polynomials (the BiPoly<NT> class) can be represented in much the same way.
Let p(x, y) be a bivariate polynomial of y-degree n. This can be written as:

p(x, y) =
n∑

i=0

yifi(x),

where fi(x) is a univariate polynomial in x. Hence, a bivariate polynomial is represented as
a vector of univariate polynomials, each member of the vector being implicitly a coefficient of
some power of y.

We also make a short note on the input format for polynomials. Polynomials can be fully
specified either at the program command line, or as a reference to a file. We use the same file
format as the MPSolve package [6], details can be found at [5].

¶17. Separating p(z) into u(x, y)+iv(x, y): Recall that our Newton type operators work by
considering the system of equations u(x, y) = v(x, y) = 0 where u, v are the real and imaginary
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parts of f(z). We therefore need a method to convert a univariate polynomial into two bivariate
polynomials that represent its real and imaginary parts.

When the coefficients of f are real, this straightforward to do. We employ a method that
calculates the composition of f with the polynomial t(x, y) = x + y. This composition is a
bivariate polynomial in x, y. Obviously, terms with even powers of y will belong to u and those
with odd powers of y will belong to v (with the appropriate sign). The bivariate polynomial
representation above makes it even easier to compute this separation.

3.3.6 Visualising subdivision trees

In some cases, we might be interested in inspecting the subdivision tree that our algorithm
generates in addition to its actual output. This is helpful in debugging, and also gives us a
visual indication of how our predicates are performing. With that in mind, we implemented a
display module in C++ using the OpenGL graphics library to visualise this subdivision tree, an
example of which is given in Figure 3.1. Even though we do not require 3D graphics, we use

(a) The roots of a degree n = 25 polynomial
(using CEVAL).

(b) The same figure zoomed to the top right.

Figure 3.1: Example visualisations.

OpenGL primarily because its transformation stack makes it easy for us to implement methods
for zooming into the subdivision tree and panning it across our viewport. Our framework is in
use across Core for the visualisation of other subdivision based methods.

3.4 The Newton type operators

3.4.1 The subdivision algorithm

Recall the generic subdivision algorithm presented in Section 2.1.2. We noted in Section 2.2.9
that for each of the Newton type operators N(X),K(X),H(X), a zero in X will belong to the
operator result as well. This allows us to use a slightly modified subdivision algorithm. It has
an inner loop which is given by:
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1.While Q is non-empty
2. Remove B from Q.
3. If Cout(B) holds, discard B.
4. Else
5. R← P (B)
6. If R ∩B = ∅, discard B.
7. Else if R ⊂ B
8. Insert B into the output.
9. Else
10. Subdivide B ∩ P (B) and insert the subdivisions into Q.

In the algorithm above, P (B) can be any of the Newton type operators that we discussed
earlier. Notice the change in line 10. Instead of subdividing B, we can subdivide B ∩ P (B) in
its place. This does not affect the correctness of the algorithm but improves its efficiency as we
can potentially discard areas of B that we know will not contain roots.

The general structure of the problem suggests that the code that implements the subdi-
vision algorithm must be as loosely coupled with the code that implements the predicates
Cout(B), P (B) as possible. The algorithm needs to have no knowledge of how these predicates
work, only requiring that they return the correct values as per their contract.

The bulk of our implementation is spread across three classes, the Algorithm class, the
BasePredicate class and the BoxT class, each of which we describe below.

BoxT: The BoxT class represents a box in the 2D plane, as defined by ¶2. It is a C++ template
parametrised with NT, the number type of each of the boxes corners. The BoxT class contains
instances of the IntervalT class that define its extent along the x and y axes.

In addition, the BoxT class implements a subdivide method. This splits the box into four
equal boxes, each of which are 1

4 the area of the original box. Recall that this method will be
called when the box can neither be included nor excluded by our predicates.

Initial Box: Recall that the subdivision algorithm from Section 2.1.2 starts with an initial
box B0 which is an input to the algorithm. In our implementation, we either allow the user to
specify the initial box in terms of the coordinates of its corners or estimate it using the input
polynomial. To estimate it automatically, we assume that the user is interested in isolating all
roots of the polynomial and choose a box that will contain all of them. The problem of choosing
such a box is related to the theory of root bounds i.e., expressing upper and lower bounds on
the roots of a polynomial in terms of its coefficients. In our work, we use an implementation
that Core provides of the Cauchy Bound. The theory of these bounds is beyond the scope of
this thesis and can be found in [43].

Box Sizes: In Section 2.1.2 we briefly spoke about practical implementation issues. We
continue this discussion in the context of our implementation. At Level 1, as boxes get smaller
we will start losing precision in the representation of their corners as boxes get smaller. Level
2 BigFloats do not suffer from similar issues as their corners are dyadic and will continue to
be exact (though each of their representations will take larger amounts of memory). Further,
as the depth of the subdivision tree grows the number of boxes increase considerably and may
occupy a sizable fraction of the available system memory.

For this reason, the algorithm is run with a parameter denoting the minimum box size.
Boxes that are smaller than the minimum box size are output as unresolved. We allow the
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minimum box size to be specified in two ways, either as a lower bound on the width of the box
or as an upper bound on the depth of the box from the root of the subdivision tree.

BasePredicate: The BasePredicate class is the base class for all the predicates used in the
subdivision algorithm. It contains some support methods that are common to all our predicates,
but arguably its most important job is to define the API that the predicate implementations
must implement. It does so by declaring some of its functions purely virtual.

enum OPERATOR_DECISION {

OD_EXCLUDE = 0,

OD_INCLUDE ,

OD_SUBDIVIDE

};

template <typename NT> class BasePredicate {

// Returns true iff. the box is too small to be processed.

// If this function returns true , the box is marked as

// unresolved.

bool Min(const BoxT <NT> *region) const;

// Returns true iff the box is guaranteed to contain

// no roots. This is guaranteed to be called before

// Include , for a given box.

virtual bool Exclude(const BoxT <NT > *region) const = 0;

// Returns the operator decision for the box. Also appends

// the results of P(B) to contraction.

virtual OPERATOR_DECISION Include(

const BoxT <NT > *region ,

vector <const BoxT <NT > *> *contraction) const = 0;

};

Note that this (abstract) class defines two functions, Include and Exclude. The algorithm
implementation guarantees that for a given box, Exclude will be called before Include, and
this is the equivalent of Cout. We then have Include, which can return the values defined by
the enumerated type OPERATOR DECISION.

Note that Include appends P (B) to an input vector, instead of returning a box (note that
its third argument is a pointer to a vector<const Box*> type). This is to deal with the case
when extended interval arithmetic is used, where the operator output can be multiple disjoint
boxes. Recall from Section 2.2.1, that division by an interval straddling zero in extended interval
arithmetic might result in two disjoint intervals.

Algorithm: We are now ready to describe the inner loop of the algorithm. It is a direct
translation of the pseudocode presented in Section 2.1.2. The algorithm operates on an initial
BoxT with dyadic corners that represents our initial region of interest, and uses the predicates
supplied by one of the subclasses of BasePredicate to operate on the box.

Recall that the generic subdivision algorithm specifies Q, a data structure that contains a
“queue” of boxes that are in line to be processed by our algorithm. The C++ standard template
library (STL) provides two container classes that could be used in this situation, the list<T>
container, and the vector<T> container.

While the former is backed by a (doubly) linked list, the latter uses an array. When a vector
expands beyond its current capacity, it doubles its size by trying to allocate a larger chunk of
contiguous memory. Inserts to the front and back of a list, as well as the removal of elements
whose locations are known are constant time operations. The vector on the other hand allows
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for (amortised) constant time appends to its end, but linear time removals and additions from
any position other than the end.

In our work, we choose to use a vector to implement a stack like data structure. New boxes
are appended to the end of the vector, and boxes are removed from the end of the vector for
processing. Both of these operations are constant time operations. A vector used in this way
proves to be faster than a list, possibly due to better memory locality. Further, it tends to8

use less memory than a list which has a constant overhead for every element it stores (due to
linked list pointers).

A consequence of this decision is that the subdivision of our search set tends to be “depth
first”. Results of a subdivision are appended to the end of the vector and all of them will
necessarily be processed ahead of other boxes in the vector since we remove boxes from the
end of the vector for processing.

3.4.2 The exclusion predicate

Recall from Lemma 1 that our exclusion predicate has a very simple form:

0 /∈ u(X, Y ) or 0 /∈ v(X, Y ).

All it requires is the evaluation of the interval extensions u and v. We mentioned in Section
2.2.2 that in the case of polynomials, the interval extension can be obtained by replacing the
real number operations {+,−, ·} with their interval equivalents. The naive implementation can
proceed as per Section 3.3.3 by using the existing polynomial evaluation code instantiated with
the IntervalT type. Since we use the same exclusion predicate along with each of the three
operators, it is implemented in the BasePredicate class (the Exclude function).

Note that since polynomial evaluation (using Horner’s rule or otherwise) can be reduced to
the operations {+,−, ·}, it is in general exact at Level 2 when evaluated at a dyadic point with
polynomial coefficients that are dyadic.

For polynomials of a higher degree, the interval extensions’ estimate of the range of u, v or a
box B can be much wider than the actual range (see 4.2.1). Converting the polynomials into a
centred form centred at m(B) can yield a much tighter estimate of the polynomial range. (See
[41] for an exposition of the effect of the polynomial representation on the interval extension)
This improvement in accuracy of due to the centred form is balanced to some extent by the
cost of recentring the polynomial at the midpoint of every box.

The centred form can be obtained either by calculating the coefficients of the bivariate
Taylor series at the new centre, or by composing the polynomials with the linear transformations
x+u = xc and y+v = yc where xc, yc are the new centres. With this transformation, a bivariate
polynomial f(x, y) is transformed into g(u, v) say. Then, g can be evaluated at (xc− x, yc− y),
which has the same effect as a centred form.

We seek to balance the cost of recentring by using a simplistic scheme of basing the decision
to recentre the polynomial on a threshold T . Here T is the number of subdivisions since the last
centring. Note that the number of subdivisions is a useful heuristic for this purpose because a
subdivision occurs only if both the inclusion and exclusion predicates do not hold. If we find
that both predicates do not hold more often than they do, it might be an indicator that they
are not very effective. A detailed tabulation of run times and other measures of efficacy with
and without these changes can be found in Section 4.2.1.

8Note that we say “tends to”, note that a vector that has just doubled its size has slightly less than half of
its capacity unused. In some pathological cases, this might lead to memory pressure.
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3.4.3 The inclusion predicates

In this section we describe the three subclasses of the BasePredicate class that implement each
of the Newton, Krawczyk and the Hansen-Sengupta inclusion tests.

The Newton operator: The Newton operator is given by (2.16) and is

N(X) = xc − J(x)−1 · f(xc).

We deal here with the two dimensional case, and so X = (X, Y ) where X, Y are the x and
y axis extents of a given box B. Further, f = (u(x, y), v(x, y)) and xc = (m(X),m(Y )). The
Jacobian of this two dimensional system is given by

J(u, v) =
[

ux uy

vx vy

]
, (3.1)

and its interval extension is naturally

J(u, v) =
[

ux uy

vx vy

]
.

The matrix inverse in this case is straightforward, and is

J(u, v)−1 =
1
D

[
vy − uy

− vx ux

]
, D = ( ux · vy − uy · vx). (3.2)

With these definitions in hand, the translation of the Newton operator into code is straightfor-
ward. We use the Core linear algebra package [9] to represent our two dimensional vectors and
the interval matrix J(X)−1. Once this is done, the code mirrors equation (2.16) exactly.

Note that if a box B is dyadic, then its x and y extents (X, Y ) will have dyadic endpoints
and their centres (m(X),m(Y )) will be dyadic as well. This means that all multiplications and
additions involving intervals will be exact at Level 2, and as a consequence as will all polynomial
evaluations. The only operation that may not be exact is the division 1

D in (3.2), but here we
round the resulting interval endpoints correctly as described in Section 3.3.3. The resulting
N(X) might hence be wider than if it had been calculated at infinite precision. Obviously, this
does not affect the correctness of the operator in any way. Note that if we rounded our end
points incorrectly, the result interval might have been narrower than the exact result, and the
test might have passed even though it should not.

Note that the determinant term D in (3.2) might be an interval containing a zero. There
are two ways in which this can be dealt with.

• Variant 1: Use the rules of extended interval arithmetic (See Section 2.2.1) to compute
this quotient.

• Variant 2: Subdivide the box by splitting it into four equal sized boxes.

We present a comparison of the two approaches in Section 4.2.2. Note that if D contains a
zero, the box B will never be isolating since the results of extended division are always infinite.
However, its usage might help us bound the root away from certain regions of the box (since if
B contains roots of f , so will B ∩N(B)).

As an example, we run our algorithm on the polynomial z10 − 1 = 0. The roots of this
polynomial are the 10th roots of unity and are equispaced on the unit disk. The command line
arguments are given below to illustrate how our program can be used.
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./ main_newt --display \\ Display subdivision tree

--poly data/nroots10.pol \\ Input polynomial file

--use_root_bounds

-n \\ Use the newton operator.

Note the use root bounds command line argument that tells the program to estimate the input
box B0. In this case, the initial box is B0 = [−2, 2] × [−2, 2]. The subdivision tree that this
produces can be seen in Fig. 3.2. Note that areas near the roots are subdivided further than
areas that are further away from the roots.

Figure 3.2: Subdivision tree for z10 − 1 = 0 using the Newton operator

The Krawczyk operator: The Krawczyk operator is defined in (2.21) and is given by:

K(X) := y − Y · f(y) + {I − Y · J(X)}(X− y).

Here y is taken to be (m(Bx),m(By)) where Bx, By are intervals corresponding to the x and y
extents of B respectively. Also, X, f and J(X) have the same definition as with the Newton
operator and Y can be any non singular matrix.

We have three strategies for calculating Y , all we require is that it is non singular:

• Variant 1: Choose Y = J−1(y) i.e., the inverse of the Jacobian evaluated at the centre
of B.

• Variant 2: Choose Y = mid( J(X)−1) 9.
9The midpoint of an interval valued matrix A is simply the matrix whose elements are the mid points of the

elements of A
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• Variant 3: Choose Y as some fixed non-singular matrix, for example I2×2.

In the case of variants 1 and 2, irrespective of Core Level, the inverse can be calculated at
fixed (machine) precision. We do not care about exactness because Y can be any non singular
matrix.

Further, note that our expressions for Y might yield singular matrices. In this case we can
always fall back to using a fixed non singular Y . The operator is expected to be sensitive to
the choice of Y since w(K(X)) depends on that of {I − Y · J(X)}. We provide a comparison
of the efficiency of these variants in Section 4.2.3.

As in the case of the Newton operator if the box B has dyadic corners the evaluation of
K(X) will be exact, or rounded correctly.

Figure 3.3: Subdivision tree for z10 − 1 = 0 using the Krawczyk operator

The Hansen-Sengupta operator: The Hansen-Sengupta operator is defined by equation
(2.25) and is:

H = x−D−1
{
l + L(X′ − x) + U(X− x),

}
X′ = H ∩X

where U + D + L = A , A = B · J(X) and l = −B · f(x) for a suitable preconditioner matrix
B. In our implementation, we choose B = J(x)−1 though the choices are the same as in the
case of Y in the Krawczyk operator.

In the two dimensional case, equation (2.25) becomes considerably simpler. If X = (X, Y ),
and x = (x, y) = (m(X),m(Y )) then we can calculate the first element of H above as:

X1 = x + (l1 −A12(Y − y))/D11. (3.3)
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We then calculate X ′ = X1 ∩X to use in our calculation Y1 which is:

Y1 = y + (l2 −A21(X ′ − x))/D22. (3.4)

Now, H = (X1, Y1) is the result of the operator on a box B with extents (X, Y ). If either of
D11 or D22 is zero, we must resort to extended interval arithmetic in the calculation of this
quotient. Even if X1 is of infinite length as a result of an (extended) division by zero, X1 ∩X
will be finite. Further X1 might be a union of up to two intervals if a divide by zero occurs and
so might Y1. What this implies for a box B is that H(B) ∩ B might the union of four disjoint
boxes. It is important to stress that if this happens, B is never an isolating box as H(B) will
always be infinite. However, H(B) ∩ B can give us information as to where in B the roots
cannot be.

As in the case of the operators above, a dyadic box B will yield dyadic, or correctly rounded
results.

Figure 3.4: Subdivision tree for z10 − 1 = 0 using the Hansen-Sengupta operator

3.4.4 Dealing with unresolved boxes

In Section 2.2.6, we spoke about the case where a root that is at the boundary of a box will
result in the algorithm terminating with unresolved boxes. Another cause for unresolved boxes
is the overestimation of function ranges by interval analytic predicates (see Section 4.2.5).

We deal with unresolved boxes as per Section 2.2.6. We now take the example of z3 +z = 0,
which has the roots {0, i,−i}. Trying to resolve its roots with B0 = [−2, 2] × [−2, 2] should
lead to unresolved boxes around the roots which lie on the boundary of boxes at the centre of
the region. These boxes have x extents of the form [a, 0] and [0, b]. The output of running of
running the algorithm without a further step to deal with unresolved boxes is shown below.
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$ ./ main_newt --poly ./data/boundary.pol --display -n

iters =325, includes=0,splits =81, ambiguous =48, exc_c0 =196, exc_c1=0,time =19

Operating over : [ -2, 2 ],[ -2, 2 ]

With polynomials :

[x + x^3] + [-3x] * y^2

[1 + 3*x^2] * y^1

+ [-1] * y^3

Output regions :

Unresolved regions :

X : [ -5.1280538749490776375e-05, 0 ], Y : [ 1, 1.0000166586618850495 ]

X : [ -0.00032521731005719642978 , 0 ], Y : [ 0.9994359129023973054 , 1 ]

<truncated >

Note that there are 48 unresolved regions, the full list of which has been truncated. Further,
note that the program found no roots. All of the roots are contained within the unresolved
regions in the output. This is shown in Figure 3.5, where regions of blue are unresolved boxes.
These are too small to see without sufficient magnification, so we have highlighted them. We

Figure 3.5: Subdivision tree for z(z2 + 1) = 0 using the Newton operator

now list the output of the program when we run an additional step to deal with unresolved boxes
(note the additional command line parameter --step 2). The output shows that all three roots
have now been isolated.

$ ./ main_newt --poly ./data/boundary.pol --display -n --step_2

iters =325, includes=0,splits =81, ambiguous =48, exc_c0 =196, exc_c1=0,time =28

Operating over : [ -2, 2 ],[ -2, 2 ]

With polynomials :

[x + x^3] + [-3x] * y^2

[1 + 3*x^2] * y^1

+ [-1] * y^3

Output regions :

X : [ -9.5128978964329236225e-06, 9.5128978964329236225e-06 ],

Y : [ 0.99997358089918875201 , 1.0000288677637101387 ]

X : [ 0, 0 ], Y : [ 0, 0 ]

X : [ -9.5128978964329236225e-06, 9.5128978964329236225e-06 ],

Y : [ -1.0000288677637101387 , -0.99997358089918875201 ]

Unresolved regions :
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3.5 The CEVAL algorithm

Our discussion of the CEVAL algorithm is largely limited to the implementation of TK and the
8-Point-Test which serve as its exclusion and inclusion predicates respectively. We start with a
definition and an observation.

Representing a complex number: As described in Section 3.3.4, the machine representa-
tion of a complex number is a pair of real numbers. The type of these numbers depends on the
Core Level. At Level 1, the real and imaginary parts are fixed precision floating point numbers,
and suffer from the same precision issues as their real counterparts.

At Level 2, the real and imaginary parts are BigFloat numbers and can store dyadic real
and imaginary components exactly. We abuse terminology slightly and call a complex number
with dyadic real and imaginary parts a dyadic complex number.

The addition and subtraction of two dyadic complex numbers is obviously dyadic. The
product of two dyadic complex numbers z1 = a + ib , z2 = c + id is computed as z1 · z2 =
(ac − bd) + i(bc + ad) and is also dyadic since its real and imaginary portions are built from
dyadic real numbers using the operations {+, ·,−}. The quotient of two complex numbers z1, z2
is:

z1

z2
=

a + ib
c + id

=
ac + bd

c2 + d2
+ i

bc− ad

c2 + d2
.

Clearly, this is not necessarily dyadic as the real and imaginary parts are divided by the factor
(c2 + d2). As a final point, the modulus of a complex number |z| need not be dyadic due to the
presence of a square root.

The subdivision algorithm: Unlike the Newton type operators, the subdivision step of this
algorithm always divides a box into four equally sized children, and we do not substitute B with
P (B)∩B before subdivision (such a substitution has no meaning in this case). Apart from this
difference, the algorithm is exactly the same as that for the Newton type operators and we do
not discuss it any further.

One point to note is that if a box B with centre m and radius r passes the 8-point-test, we
insert D(m, 4r) into the output. From Section 2.3.3, we know that this disk D might intersect
other disks in the output, in which case we can resolve this by including the smaller of the two
disks and discarding the other. The output list is an STL list container, and we search it
linearly for intersecting disks replacing them in place. Note that number of disks in this list is
bounded by the degree of the polynomial under consideration, and is never prohibitively large.

3.5.1 The TK predicate

Recall the definition of the TK predicate from equations (2.28) and (2.29) given by:

T f
K(m, r) : |f(m)| > K

∑
k≥1

∣∣∣∣∣f (k)(m)
k!

∣∣∣∣∣ rk, (3.5)

and the closely related version for the derivative f ′:

T f ′

K (m, r) : |f ′(m)| > K
∑
k≥2

∣∣∣∣∣f (k)(m)
(k − 1)!

∣∣∣∣∣ rk−1. (3.6)

Note that we cannot guarantee that both sides of the inequality will be exact due to the presence
of the modulus and division on both sides of the equation. Consider TK(B) applied on a box
B.
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Making K dyadic: As part of the CEVAL algorithm, K can be one of
{
1,
√

2, 6
}

where T1

forms the exclusion predicate and T ′6, T
′√
2

are preconditions for the 8 point test. Clearly, we
would like K to be dyadic, as it appears in the RHS of (3.5) and (3.6) above. We can replace√

2 with 3
2 [37] since Ta implies Tb if a, b > 0 and a > b. This is a consequence of the RHS of

the equations for (3.5),(3.6) strictly increasing with increasing K.

Making r dyadic: Note that the radius of a box B defined by equation (2.1) is not in
general dyadic. Like in the above case, the RHS of (3.5) strictly increases with increasing r, so
TK(m, r1) implies TK(m, r2) for r1, r2 ∈ R+ and r1 > r2. We can therefore replace r(B) with
an approximation to it, the most obvious of which is r(B) rounded towards +∞. Note that [37]
suggests that 3

4w(B) can be used as well, based on the same justification.

Issues with modulus, division: The issue with the division by k! can be solved by mul-
tiplying both sides of the inequality with n! where n is the degree of f , and thereby verifying
that

n!|f(m)| >
∑
k≥1

n.(n− 1) . . . (n− (k − 1))|f (k)(m)|rk.

The last observation is that if all our |z| on the LHS are rounded towards −∞ and those on the
RHS are rounded towards +∞, the correctness of the predicate is not affected.

Issues with polynomials of higher degree: Note that the value of n! increases very rapidly
as the degree n of the polynomial increases. In fact, 22! is the largest factorial that can be
represented by a 64 bit integral type. Even if we are working at a Core level that has an
extended precision integer type, the number of bits required to represent an integral factorial
value can be large enough to slow down the entire algorithm. We therefore take the approach
of using a floating point type (rounded in the correct direction) to store approximations of the
factorial to a fixed precision. Consider the predicate:

n!|f(m)| >
∑
k≥1

n.(n− 1) . . . (n− (k − 1))|f (k)(m)|rk.

Now clearly, if the n! term on the LHS is rounded downwards (towards −∞) and the n!
k! terms

on the RHS are rounded upwards, when the predicate holds at a finite precision it will hold at
infinite precision as well. We can compute all of these terms once per run of the algorithm, and
store them in a table for quick lookup. Another option might be to use a known mathematical
approximation for n!, such as Stirling’s approximation, which is:

n! ≈
√

2πn
(n

e

)n
.

This might be a viable alternative for very large n, but it is one that we have not explored yet.
Note that the changes listed above make the predicate TK more conservative, as we end

up evaluating it at marginally larger box radii (rounded upwards) and K values (also rounded
upwards). This suggests that at finite precision, TK might fail when it reality it should hold.
This does not affect the correctness of the overall algorithm, because if these predicates fail, a
box is never (wrongly) rejected, rather it is processed in more detail after being subdivided.
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3.5.2 The 8-Point-Test

Assume that T ′6(m, 4r) and T ′√
2
(m, 8r) hold. Then, the 8-point test requires us to evaluate the

sign of u, v at eight points on the boundary of D(m, 4r). These points are the end points of
eight arcs, and are given by:

P =
{

m + r · eijπ/4
}

, j = 0, 1, . . . , 7.

Using eiθ = cos θ + i sin θ, we can arrive at expressions for the 8 points at which we must
evaluate f . The cardinal compass points {N,S,E,W} are in general dyadic, as they amount to
{m± r, m± ir} for a dyadic m,r. The other 4 compass points are

{
m + r√

2
(±1± i)

}
and are

not dyadic and hence the evaluation of f can never be exact at these points.
To evaluate the exact sign of f (and thereby that of u, v), we follow the recommendations of

Section 6 of [37]. They note from Theorem 14 of [37], that it suffices if each pair i, j of compass
points are separated by an angle θij where θij ∈ [45◦± δ], and δ = 2.5◦. We can now try to find
a Pythagorean triplet (a, b, c) such that sin θ = a

c and cos θ = b
c are representable by the rational

number BigRat type. In this situation, r which is dyadic and therefore rational, can also be
represented as a BigRat. This lends each of these points to an exact rational representation
(with dyadic numerators and denominators), and therefore the polynomial can be evaluated
exactly in this form.

Note that even though we need the signs of u, v at these points, these are evaluated by
calculating z = f(p) and taking the signs of Re(z) and Im(z).

3.6 The CXY algorithm

This section details some of our contributions to the CXY algorithm [25] for topologically
accurate meshing of implicit curves. The CXY algorithm is not related to the rest of this thesis,
except that it uses interval arithmetic and is a subdivision algorithm. The reader may therefore
skip this section without any loss of continuity. Note that this section assumes familiarity with
the CXY algorithm and related terminology from [25].

3.6.1 Contributions to CXY

Most of our changes to CXY are the result of careful CPU and memory profiling of its execution.
The other changes are due to stronger invariants that we could impose on its data structures
that were afforded to us by theory in [25]. Some of our modifications are summarised below.

• Profiling revealed that comparing widths of boxes was a time consuming operation. We
observed that there was no need to compare the actual width of a box, and all boxes at
the same depth from the root of the subdivision tree have the same width. Using this, we
could translate all box size implementations into unsigned integer arithmetic.

• We note from Section 5 of [25] that we do not require a “total” priority queue over all
boxes. All we require is that smaller boxes appear ahead of larger boxes, and boxes of the
same size can be processed in any order except for the requirement that ambiguous boxes
appear ahead of all others. This lends itself to an implementation that maintains a list
of lists of boxes, each of these lists containing boxes of a particular size. The number of
such lists is the same as the depth of the subdivision tree and in general is small. Such
an implementation will provide worst case time complexities of O(1) on the Insert and
Erase operations respectively.
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• We now ensure that the balancing step only balances in-boxes, and not every node in the
subdivision tree.

• We implemented an efficient balancing algorithm that propagates changes from the min-
imum sized boxes outwards. It ensures that the minimum possible number of boxes are
compared and split. Further, it brings with it support for balancing the subdivision tree
around a particular node. In the previous implementation, all balances were global.

3.6.2 Results

The new code is much more efficient than the original, and since it occupies a smaller memory
footprint, can handle much larger subdivision trees. Further, the use of our new interval arith-
metic package and improved polynomial evaluation result in a speedup in the subdivision step of
the algorithm. The newly written balancing code is probably the most dramatic improvement,
yielding a 10x improvement in run time on an average. Results of run times on some functions
are listed below. Each of these targets correspond to the CXY makefile in Core. In all cases,

Target Old New Speedup

eg1 8 ms 6 ms 1.3x
eg4 202 ms 70 ms 2.9x
eg12 775 ms 224 ms 3.5x
eg31 13,723 ms 805 ms 17.0x
eg33 179,472 ms 6183 ms 29.0x

Table 3.1: Comparison of CXY running times

the new code ran at least as fast as the old and in most situations was dramatically faster. Our
new implementation will serve as the base for the extension of CXY to higher dimensions and
its extension to calculating curve intersections. The results of meshing some of the curves above
are shown below. The two curves are{

eg30 : (x2 + y2 + 12x + 9)2 − 4(2x + 3)3 = 0
eg33 : (x3 + y3 − 3xy)(x2 + y2 − 0.1)((x2 + y2)(y2 + x(x + 1))− 4xy2) = 0
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(a) eg30 (b) eg33

Figure 3.6: Example meshes constructed by CXY.
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Chapter 4

Results

In this chapter, we discuss the performance of the operators we implemented as per Chapter 3.
Section 4.1 describes the setup and methodology that we used for our tests, and we deal with
our test results in Sections 4.2 and 4.3.

4.1 Test setup

4.1.1 Testbed details

All of our code is compiled into two separate binary executables (programs). The first of these
programs isolates roots as per the interval arithmetic based methods, and here the choice of
operator is controlled by a command line argument. The CEVAL algorithm shares very little
common code with the above and is compiled into a separate binary. The inputs to these
programs are provided in the form of command line arguments, a full listing of which can be
found in Appendix B. (For sample usage, see Section 3.4.3, Appendix C).

To generate tabular results, these programs are run by a Python script using the appropriate
command line argument combinations. For this purpose, we use the Python subprocess module
to execute a command and to collect and process the output it writes to the standard terminal.
In this way, the python script can run the program over a series of inputs and generate tabular
data that can be directly included into LATEX.

Both of these programs support two output formats. The first of these is a detailed format
that includes the subdivision diagrams of the previous chapter along with various diagnostic
information and is meant for human consumption. The second is a compact mode that produces
output that is meant to be parsed by a script or machine. An example of the latter is given
below.

$./ main_newt --random \

--seed 20130 \

--degree 15 \

--use_root_bounds \

-n

iters =4525 , includes =12, splits =1131 , ambiguous =48, exc_c0 =3326 , exc_c1=8,time =4189

The output is a comma separated list of key value pairs. A description of what these keys
represent can be found in Section 4.1.3.

Hardware: All tests were run on a MacBook Pro with an Intel Core 2 Duo processor clocked
at 2.53 GHz with 4GB of RAM running Mac OS X (10.5.8). All compilation was performed
using gcc-4.2 with its most aggressive optimisation flags (-O3).
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Core Level: All tests in this section can be assumed to have run at Level 1 except where
indicated. Recall that Level 1 operates at fixed precision, and calculations at this level are not
in general exact for most dyadic numbers.

To counter this, our algorithms are run with the min box size parameter set sufficiently
high to mitigate some of these issues. Moreover, our input polynomials are such that machine
precision is sufficient to isolate their zeroes. In each case, we have checked the correctness of
our Level 1 output against other polynomial solvers (primarily MPSolve), and also with our
own code running at a higher precision.

We also note that the relative performance of these operators remains the same as we operate
at higher Core levels, except that the differences between them are more pronounced than at
Level 1. We provide a comparison of run times at Level 2 in section 4.3.4, and in Section 4.3.5
we discuss an where the attempt to isolate roots at Level 1 fails, and operation at Level 2 is
required.

4.1.2 Test Polynomials

Our test polynomial set consists of a few specific well known polynomials, along with a series of
randomly generated polynomials of varying degrees. Our examples are drawn from the MPSolve
test suite [5], which is itself a part of the FRISCO1 test suite [40].

Specific polynomials: These are chosen from among polynomials that appear often in the
areas of probability, differential equations and graph theory. Examples of such polynomials are
the degree 20 Hermite, Chebyshev and Laguerre polynomials, and a Chromatic polynomial of
degree 22. Appendix C contains a list of some of these polynomials and their coefficients, along
with the program output for each of them. Other examples include:

• nth roots of unity: These are the solutions of the equation zn−1 = 0 and are equispaced
points on the unit disk, i.e., |α| = 1 for each root α. We include n = 10, 20 as part of our
standard tests.

• Wilkinson’s polynomial: These are polynomials of the form
n∏

k=1

(z − k). The roots of

these polynomials are real and are simply 1, 2 . . . n. Note that the coefficients of these
polynomials are in general large (The constant term will be 20! for the degree 20 polyno-
mial).

Randomly generated polynomials: We implemented a routine in C++ that generates poly-
nomials with (pseudo) random coefficients. The routine requires two parameters, the maximum
degree of the polynomial and an upper bound on the magnitude of its coefficients (which for
all tests is 10 unless specified otherwise). This ensures that the roots of the polynomials fall
within a reasonable bounding box.

Note that the seed for the random number generator is provided as an input to our program,
so we can ensure that the same sequence of pseudo random polynomials is generated and
processed across multiple runs of a given test.

Lastly, note that polynomials above, such as the Wilkinson and Chebyshev examples have
much larger coefficients than our randomly generated polynomials.

1Framework for Integrated Symbolic/Numeric Computation, a three year project funded by the European
Commission
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4.1.3 Statistics

For each run of the algorithm, we collect statistics that we consider indicative of the performance
of the algorithm. The most important of these statistics is the algorithm running time:

Running time: The performance of the algorithm is measured in terms of wall clock time.
This is measured by specific C++ code that we implemented. We use the C gettimeofday API
to measure microsecond start and end times and use them to calculate our running time. Note
that wall clock time is not always a reliable indicator of running time due to factors like context
switches between processes and so on. However, across multiple runs of a given program it is a
reliable indicator of its relative efficiency. Moreover, our programs are CPU intensive, and do
not perform any disk or network I/O operations and hence the running time measured in this
way is a suitable metric.

In addition to the running time of the code, we collect other statistics such as those described
below:

Number of boxes processed: We keep track of the total number of boxes processed during
an algorithm run. Recall that each box is either included, excluded or subdivided. Obviously,
this number will depend on the size of the initial box B0 but for initial boxes of the same size,
a method that processes fewer boxes is likely to run faster.

Number of Cout (resp. Cin) excludes: This is the number of boxes that were excluded
by the Cout (resp. Cin) predicate. Recall that the inclusion predicate can reject boxes in the
case of the Newton type operators when P (B) ∩ B = ∅ where P is one of the operators. This
number should be treated carefully and not viewed in isolation because smaller values are not
necessarily indicative of poor performance. An example is the case when a larger box can be
excluded instead of subdividing it into smaller boxes and then individually excluding each of
the subdivisions.

Number of unresolved boxes: As we mentioned in Section 2.1.2, the algorithm is run with
a parameter that specifies the maximum allowed extent of subdivision. Boxes that cannot be
excluded or included at that point are marked as unresolved. Ideally, this number should be
zero and unless it is so, we cannot guarantee that all roots contained in the initial box B0 have
been isolated.

4.2 Newton type operators

We now discuss the performance of each of the Newton type operators individually, and provide
a comparison of their performance at the end of this section.

Result tables: In our tables, “Iters” stands for the total number of boxes processed during
the running of the algorithm (iterations of the main loop, see Section 2.1.2). Also, all of our
result tables are sorted in increasing order of polynomial degree. When a given metric is being
compared across multiple approaches, the best performer is always underlined.

4.2.1 The exclusion predicate

We start with a small note about the exclusion predicate. We noted in Section 3.4.2 that using a
centred form in the evaluation of a polynomial over an interval yielded a tighter result. We now
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provide data to back our claim. Recall that T is the threshold number of failures at which we
recentre the polynomial. At T = 0 we recentre at every application of the exclusion predicate,
and as T gets higher, we recentre less frequently. We present Table 4.1, which contains run
times for the interval Newton operator isolating the roots of z20 − 1 = 0.

T Iters Cout (%age of Iters) Time(s)

0 8197 6032(73.5) 12.931
4 15257 11295(74.0) 1.736
16 31125 22084(70.9) 1.254
64 70777 44187(62.4) 1.493
256 182369 79776(43.7) 2.706
+∞ 3464677 81676(2.3) 17.4

Table 4.1: The effect of T on the exclusion predicate. Observe that the percentage of boxes
that the Cout predicate can exclude gets lower as we recentre less frequently.

Note that the number of iterations steadily increases as we decrease the frequency of centring.
The running time in contrast, decreases, as the computational effort of recentring need not be
borne. As we increase the value of T beyond 64 however, the cost of processing a higher number
of boxes negates any gains from less frequent centring, and the run time starts to increase again.

Also, note that this heuristic for recentring the polynomial is sensitive to the order in which
we process boxes. If boxes that are “close” to each other are processed subsequently, we would
expect that the centred form would need to be calculated less frequently.

We would like to emphasise that this is a rather simplistic scheme for improving predicate
performance. There is scope for improvement, but we would like to note that range overesti-
mation by the exclusion predicate seems to be an inherent drawback of the interval arithmetic
based exclusion approach. We will see in Section 4.3.1 how the TK predicate compares to this
one.

Another variant of this predicate that we implemented uses the definition of exponentiation
from Section 2.2.1 to try to obtain a tighter result. Recall that we have specific expressions
for In in this case, and we do not evaluate it using In = I · I . . . . We switched from using the
Horner’s rule (where this change would have no effect as there is no explicit exponentiation) to
a sum of powers based evaluation strategy in this case. Sample results of this approach can be
found in Table 4.2. Comparing these with Table 4.1 which contains data for the same polynomial
shows that except for T = 0, the Horner’s rule performs better. We therefore choose to use the
Horner’s rule and the standard definition of exponentiation for the rest of our experiments.

T Iters Cout Time(s)

0 7253 5324 12.305
4 22877 16995 3.734
16 48649 33708 4.043
64 121681 69184 7.172
256 305145 108671 12.269

Table 4.2: The effect of using power summation in the exclusion predicate. Observe that the
number of iterations is higher than Table 4.1 except for T = 0.
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4.2.2 The interval Newton operator

In Section 3.4.3, we discussed two variants of the interval Newton operator. The first of these
variants (Variant 1) used extended interval arithmetic when a singular Jacobian was encountered
and the second chose to subdivide the box in this case (Variant 2). We now present results of
tests that exercise the two variants.

All tests in this section are run over the input box B0 = [−2, 2] × [−2, 2] with the aim of
isolating all roots within that box. In some cases, the input polynomial may not have a root
within B0, but even so this test will give us an indication of how good the algorithm is at
discarding regions that have no roots. Further, we do not run the additional step to resolve
unresolved boxes as per Section 3.4.4. The number of unresolved boxes is not reported here as
it is the same across variants (this data can be found in Table 4.5).

We run the variants on our standard test set of polynomials described in Section 4.1.2. In
the case of the randomly generated polynomials, we generated 50 random polynomials of each
of the degrees n = {4, 6, 8, 10, 12} and each table entry contains the mean of the statistics for
that degree.

Iters Time(s)
Num zero divs.

v1 v2 v1 v2

random4 348 331 0.032 0.027 49
random6 788 766 0.1356 0.125 49
random8 1385 1336 0.415 0.368 349
random10 1958 1936 0.875 0.823 475
nroots10 2245 2213 1.025 0.885 517
random12 2861 2818 1.806 1.699 759
chebyshev20 13717 13573 22.928 21.955 3321
nroots20 8341 8245 13.723 12.687 1997
laguerre20 869 837 1.437 1.324 189
wilk20 653 637 1.143 1.006 143
hermite20 1797 1733 3.069 2.668 489
chrma22 5349 5269 10.095 9.590 1273
chrmc23 7189 7061 14.461 13.949 1729

Table 4.3: Variants of the Interval Newton operator. Observe that Variant 2 (v2) is consistently
faster and has a marginally smaller subdivision tree in all our tests. The last column contains
the number of iterations for which extended interval arithmetic was necessary.

We observe in Table 4.3 that there is very little difference between the two approaches. This
is because, in most cases when the Jacobian is not invertible, the results of extended division
tend to be an interval with infinite end points ([−∞,+∞])2. This does not give us any useful
information about the presence or absence of roots in a given box. Further, the run time of
Variant 1 (with extended division) is always higher because of the extra code required to deal
with extended interval arithmetic. Overall, there seems to be no significant difference between
the two approaches, but Variant 2 is faster and simpler to implement.

Finally, observe that the number of divides by zero (the last column in Table 4.3) is roughly
1
4 the total number of iterations. This seems to indicate that most subdivisions in Variant 2
are due to the Jacobian being non invertible. This seems to be due to the overestimation of the
Jacobian intervals due to the interval extensions, as in the case of the exclusion predicates.

2In extended interval arithmetic, a÷ b = [−∞, +∞] when 0 ∈ a and 0 ∈ b.
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Cost of recentring: Table 4.3 seems to show a serious degradation in running time as the
degree of the polynomial increases. From 0.027s for random degree 4 polynomials, to 10 seconds
or higher for degree 20 polynomials. This has been observed to increase to the order of minutes
as the degree increases (see Table 4.6). This is largely due to the increased computational cost
of calculating the centred forms. In fact, CPU profiling3 shows:

Total: 1291 samples

956 74.1% 74.1% 978 75.8% std:: vector :: _M_insert_aux

268 20.8% 94.8% 1276 98.8% CORE:: BiPoly :: operator *=

The third column is of particular importance to us, it gives the total percentage of time spent
in a particular function, and in functions that appear before it. A significant portion of time
(nearly 95%) is therefore spent in Core::BiPoly::operator*= which is used in the polynomial
composition code that we use in our centring. Note that as the degree of the polynomial
increases, so does the cost of recentring it.

However, if we recentre less frequently we find that a large number of boxes end up unresolved
due to the interval extension overestimating the range of the polynomial over a box. This is
best demonstrated visually; see Figure 4.1. Here, areas of blue are unresolved regions, and areas
of red are excluded by Cout.

(a) T = 0 (b) T = ∞

Figure 4.1: Subdivision tree for a degree n = 25 polynomial using the Newton operator. The
figure is the square [−2, 2]× [−2, 2]. Blue bordered boxes are unresolved.

In Figure 4.1b, we observe that about 1
4 of the total starting region B0 is unresolved. This is

clearly unacceptable, and if this predicate is to be used on higher degree polynomials, centring
seems to be a necessity. Even with centring however, the performance of the algorithm is
unacceptably slow. We will see in Section 4.3 that the complex analytic predicates can perform
much better in these situations.

4.2.3 The Krawczyk operator

In Section 3.4.3 we discussed three variants of the Krawczyk operator. These variants differ in
their choice of Y (Eq. (2.21)). Recall that:

• Variant 1 chooses Y = J−1(y).
3The profiles were generated using Google Performance Tools [14].
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• Variant 2 chooses Y = mid( J(X)−1)

• Variant 3 chooses Y = I2×2

Based on our discussion in Sections 2.2.7 and 3.4.3, we expect Variants 1 and 2 to outperform
Variant 3 which arbitrarily chooses a constant Y . Recall that in order to produce tighter
output intervals, we need to minimise w(K(X)) = w({I − Y · J(X)}). We would expect that
Y · J(X) ≈ I as Y gets closer to J−1. As the width of X reduces, we’d expect Variants 1 and
2 to perform similarly.

Iters Time(s)

v1/v2 v3 v1 v2 v3

random4 332 436 0.028 0.028 0.037
random6 760 928 0.126 0.128 0.160
random8 1342 1546 0.380 0.375 0.426
random10 1916 2148 0.841 0.842 0.911
nroots10 2181 2453 0.876 0.926 0.980
random12 2822 3070 1.752 1.716 1.850
chebyshev20 13573 13675 22.087 23.725 26.623
nroots20 8213 8565 12.805 13.492 15.473
laguerre20 829 949 1.344 1.483 1.563
hermite20 1733 1941 2.731 2.840 3.066
wilk20 629 693 1.002 1.065 1.133
chrma22 5245 5413 9.633 9.819 11.991
chrmc23 7029 7101 14.050 14.872 14.945

Table 4.4: Variants of the Krawczyk operator. Note that Variants 1 and 2 have very similar
performance, though Variant 1 is faster since it costs less to calculate Y in this case.

In Table 4.4 we provide a comparison of the three variants. These tests were run under
the same conditions as for the Newton variants in Section 4.2.2. It turns out that in our tests,
Variants 1 and 2 are so similar that the number of iterations and splits is exactly the same in
both cases. Variant 2 tends to be the slower of the two as it requires the evaluation of J(X)
and its (interval valued) inverse in order to calculate Y .

Variant 3 is the slowest as expected, due to the selection of a fixed Y . Among the three
Variants, Variant 1 provides the fastest execution and accuracy comparable to Variant 2, and
this makes it the best choice.

4.2.4 Comparison of the Newton type operators

In Sections 4.2.3 and 4.2.2, we compared variants of the Krawczyk and Newton operator respec-
tively. At the end of those sections, we had a clear indication of which variant of each of those
operators performed best. We now provide a comparison between the operators of the previous
two sections and the Hansen-Sengupta operator. For the Krawczyk and interval Newton oper-
ator, the best variant is assumed to have been used (Variant 2 in both cases). Recall that for
both of these operators, we do not use extended interval arithmetic and in this respect, they
differ from the Hansen-Sengupta operator. We might expect the latter to be slower as a result
of this difference. Recall from Section 1.2.1 that we have the following theoretical order on the
tightness of output intervals:

Interval Newton > Hansen-Sengupta > Krawczyk.
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The interval Newton operator is therefore expected to perform the best. Table 4.5 contains a
comparison of their practical performance.

Iters Time(s) Unresolved

N HS K N HS K N HS K

random4 331 359 332 0.029 0.032 0.028 36 36 38
random6 767 871 760 0.131 0.147 0.127 40 39 38
random8 1336 1553 1342 0.413 0.439 0.378 40 39 48
random10 1936 2249 1916 0.858 0.971 0.832 39 40 52
nroots10 2213 2485 2181 0.899 0.996 0.866 32 64 88
random12 2819 3295 2822 1.724 1.988 1.706 50 46 55
chebyshev20 13573 16437 13573 21.899 26.231 23.044 160 160 160
nroots20 8245 10837 8213 13.035 16.708 12.753 80 104 80
laguerre20 837 973 829 1.343 1.600 1.322 32 32 32
hermite20 1733 1829 1733 2.713 2.930 2.667 64 64 64
wilk20 637 813 629 1.187 1.330 0.992 24 24 24
chrma22 5269 6405 5245 9.696 12.136 10.067 32 48 32
chrmc23 7061 7973 7029 13.997 16.299 13.745 216 168 352

Table 4.5: Comparison of the three Newton type operators on [−2, 2]× [−2, 2].

A quick look at Table 4.5 reveals not much difference between the three operators. Their run
times and the number of boxes they process are very similar. The Krawczyk operator however,
often runs the fastest of the three. The Hansen Sengupta operator is slowed down by its use of
extended interval arithmetic, and in most tests is the slowest of the operators that we test.

More disturbing is the fact that each of these algorithms yield unresolved boxes. Even by
this metric, there is no clear difference between the three operators. The Newton operator
performs slightly better here, and the Krawczyk operator is the worst.

Though the Krawczyk operator is the weakest theoretically (and yields a slightly larger
number of unresolved boxes), our tests show that over a wide range of polynomials, it can be
faster at isolating roots due to it being computationally efficient. Moreover, unlike the Newton
operator that is forced to subdivide a box if the interval Jacobian contains a singular matrix,
the Krawczyk operator suffers no such “artificial” subdivisions. The operator can always be
applied for a suitable choice of Y .

We therefore believe that though overlooked in favour of the Newton or Hansen-Sengupta
operator, the Krawczyk operator is a viable interval arithmetic based inclusion predicate.

4.2.5 Higher degree polynomials and unresolved boxes

Previous sections of this chapter provided timing information for polynomials of degree upto 20.
We now provide brief results of the application of these operators to higher degree polynomials.
Further, we provide some results about the effect of the centring threshold T on the number of
unresolved boxes and the overall running time for a higher degree polynomial. In our tests, we
use the Krawczyk operator as it performs best as per Section 4.2.4.

From Table 4.6, we see that the performance continues to decrease with increasing polyno-
mial degree. Observe that the number of unresolved boxes increases proportional to the degree
as well. We observe that these boxes are clustered around roots (see Figure 4.2). Since the
number of boxes is still manageable, we can attempt to resolve them as per Section 3.4.4.
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Degree Iters Unresolved Isolated Time(s)

20 8317 40 16 8.84
30 15065 64 20 31.43
40 31601 152 22 141.74
50 46417 252 20 330.46
60 68509 276 27 750.10

Table 4.6: Performance of the Krawczyk operator with T = 0 on higher degree random poly-
nomials

Figure 4.2: Section of the subdivision tree for a degree 40 random polynomial with T = 0
showing small clusters of (blue) unresolved regions around roots. The region highlighted with
green is a successfully isolated root.
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Recall our CPU profiling results from Section 4.2.2 that showed that most of our CPU time
was spent centring the polynomial representation. We can try to decrease our running time by
centring less frequently, but we would expect our predicate efficiency to decrease. The results
of our experiments with a degree 40 random polynomial are the subject of Table 4.7.

T Iters Unresolved Isolated Time(s)

0 31601 152 22 141.74
4 52681 292 23 18.459
16 94469 3984 11 14.956
64 188741 25708 8 21.668
256 428189 148832 5 35.647
1024 966721 515740 3 60.690

Table 4.7: Performance of the Krawczyk operator on a degree 40 random polynomial with
varying values of T .

As expected, the efficiency of the predicate in terms of running time increases, but so does
the number of unresolved boxes. In fact, the number of unresolved boxes is so high that a
second stage of processing to resolve them would end up processing most of the original area
B0.

This seems to be a major drawback of these interval arithmetic based approaches. Their
predicates appear to be less effective on higher degree polynomials. This is primarily due to range
overestimation by the exclusion predicate. Further, schemes to mitigate some of these problems
tend to be computationally expensive. Lastly, these predicates suffer from issues with roots that
lie at box boundaries, for which additional processing is often involved.

4.3 The CEVAL algorithm

In this section, we discuss the performance of the CEVAL algorithm and the closely related
exclusion based approach of Yakoubsohn. We will show that in all situations, these approaches
perform better than the approaches of the previous section.

Recall from Section 2.3 that Yakoubsohn’s approach does not guarantee isolating boxes and
simply outputs non excluded boxes with width w ≤ ε. The CEVAL algorithm on the other
hand is based on the 8-point test which can guarantee that a box is isolating. Both these
approaches use the same exclusion predicate, so any difference in their performance will be due
to the application of the 8-point-test and its related preconditions (T ′6, T ′√

2
).

We start with a discussion of the exclusion predicate.

4.3.1 The exclusion predicate

Recall the form of our predicate T f
K from (2.28). Although it involves the evaluation of n partial

derivatives for a degree n polynomial, it does not involve any interval operations. Due to this,
it does not appear to suffer from the same issues with overestimation as the interval analysis
based exclusion predicate. The results are presented in Table 4.8, which contains timings for
random polynomials of the specified degree.

Observe that the predicate performance remains stable as the degree of the polynomial is
increased until n = 90. We do not observe any degradation in the accuracy of the predicate, but
as expected the performance decreases since a larger number of derivatives have to be evaluated,
and each of those derivatives are themselves higher degree polynomials. On comparing this
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Degree Iters Cout (as % of Iters) Time(ms)

10 1917 1420(74) 1.699
20 6853 5100(74) 14.610
30 16005 11948(74) 63.833
40 27845 20812(74) 185.072
50 42861 32046(74) 434.557
60 58925 44084(74) 814.191
70 77397 57092(73) 1478.965
80 112445 84168(75) 2790.035
90 142109 106418(75) 4358.963

Table 4.8: Performance of T f
K with varying polynomial degree. Note that the run time and

number of iterations increase, but the predicate is still effective on smaller boxes.

data with Table 4.6 and the discussion in Sections 4.2.5, 4.2.1, we observe significantly better
performance that the interval arithmetic based methods. The times in Table 4.8 are presented
in milli seconds and are three orders of magnitude faster than the interval methods.

Issues with degree n > 90: This predicate suffers from some pitfalls as the polynomial
degree n increases beyond 90. The problem is that the evaluation of this predicate requires us
to evaluate each of 1!, 2!, 3!, . . . , n! , and these factorials grow very fast (see Section 3.5.1).

To work around the problem, we can use approximations of the factorials with correct round-
ing as described in Section 3.5.1. Even with these approximations, at n = 90 our calculations
start reaching the thresholds of the machine precision double types. For polynomials higher
than this degree, operation at Level 2 is unavoidable. This brings with it the associated slow-
ness of using an extended precision type. See Section 4.3.4 for a comparison of run times at
Level 2.

4.3.2 CEVAL performance

We now present the performance of the CEVAL algorithm. Based on our discussion of the
exclusion predicate in the previous section, we expect that the CEVAL algorithm will be faster
than the interval arithmetic based operators. We present Table 4.9 containing our experimental
results. In this case, we attempt to isolate the roots of the test polynomials with the initial box
B0 = [−2, 2]× [−2, 2].

Naturally, we might also be interested in isolating all roots of the respective polynomials,
instead of just those in B0 defined above. This is the subject of Table 4.10. To isolate all roots,
we use the Cauchy bound to estimate a B0 guaranteed to contain all the roots of the polynomial.
This bounding box will be somewhat larger than our fixed choice of [−2, 2]× [−2, 2] above, so
we expect the algorithm to take longer to run as a consequence. However, an effective exclusion
predicate (such as T1) should be able to minimise this difference.

Table 4.10 shows that the run times of CEVAL on an initial box calculated using root bounds
are indeed longer than the B0 = [−2, 2]× [−2, 2] case. This is expected, since the running time
of a subdivision algorithm is dependent on the size of its input box (see the results in Section
4.3.3).

We now turn our attention to the comparison of CEVAL with Yakoubsohn’s method. Recall
that the 8-point test involves evaluating the polynomial at 8 points on a disk. While these
polynomial evaluations are not expensive, the prerequisites for the 8-point test can be. Recall
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Iters Time(ms)

random10 1909 1.741
nroots10 2037 1.838
random20 7109 14.942
chebyshev20 12805 26.262
nroots20 7989 16.593
laguerre20 805 1.747
hermite20 1685 3.680
wilk20 581 1.371
chrma22 4949 10.978
chrmc23 7101 16.840
random30 16013 62.602
random40 27419 178.732
random50 43160 427.576
random60 60757 843.580
random70 80215 1481.286
random80 111795 2685.381
random90 139605 4211.166

Table 4.9: Performance of the CEVAL algorithm on B0 = [−2, 2] × [−2, 2]. Note that the run
times are in milli seconds.

Iters Time(ms)

random10 2615 2.342
nroots10 2037 1.816
chebyshev20 18533 39.821
nroots20 7989 16.444
laguerre20 38253 79.055
hermite20 17093 35.618
wilk20 40589 97.393
random20 8201 17.378
chrma22 36749 80.626
chrmc23 43389 107.063
random30 27413 110.893
random40 45722 315.381
random50 71905 743.922
random60 107746 1495.772
random70 108310 2104.210
random80 121129 2946.031
random90 221837 6789.341

Table 4.10: Performance of the CEVAL algorithm in isolating all roots. Observe that these are
in general higher than Table 4.9.
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that T ′6(m, 4r) and T ′√
2
(m, 8r) must hold, and each of these tests are almost the same cost as

the exclusion predicate (involving degree n− 1 polynomials, instead of degree n).
In the case of Yakoubsohn’s approach we need to choose a fixed ε, so that we can output

boxes whose widths are lesser than ε and are not excluded by T1. We can choose this value based
on a root separation bound (which is a property of the polynomial), or choose a fixed value
based on Core Level. We choose the latter for the sake of simplicity, and set ε = 0.0001. Note
that as this value becomes smaller, the running time will increase as the number of subdivisions
required to reach that size will increase.

The performance comparison between these two approaches can be found in Table 4.11.
As expected, Yakoubsohn’s method is faster since it does not bear the burden of calculating
T ′6(m, 4r), T ′√

2
(m, 8r), and the 8-point test. However, in our tests the CEVAL algorithm always

operates on a fewer number of boxes.
We make two observations about Yakoubsohn’s method, the first being that it tends to have

a larger subdivision tree as it forces boxes to be subdivided until their width is less than a fixed
ε. CEVAL can include larger boxes in the output as long as they satisfy the 8-point test. Also,
in the case of Yakoubsohn’s approach, there are a multiple output boxes clustered around roots.
In our tests, polynomials have an average of 8 output boxes around every root. To approximate
roots that these boxes are believed to contain, these boxes will need to be processed in some
way that the original algorithm does not fully specify.

Output(Yako.)
Iters Time(ms)

CEVAL Yako. CEVAL Yako.

random10 76 2615 3105 2.721 2.282
nroots10 96 2037 2581 1.773 1.802
chebyshev20 176 18533 19509 38.462 35.544
nroots20 192 7989 8885 16.481 14.526
laguerre20 192 38253 39845 77.991 65.489
hermite20 160 17093 18309 35.690 29.955
wilk20 128 40589 41909 84.321 69.130
random20 147 8201 8985 19.750 14.805
chrma22 168 36749 37661 83.140 67.142
chrmc23 200 43389 43813 101.816 83.464
random30 228 27413 28441 123.294 89.068
random40 296 45722 46957 337.769 245.090
random50 361 71905 73347 783.600 578.127
random60 426 107746 109317 1646.602 1191.557
random70 511 108310 110064 2213.269 1623.679
random80 581 121129 122990 3021.738 2347.435
random90 665 221837 223842 6839.414 5385.514

Table 4.11: Comparison of CEVAL and Yakoubsohn’s method with ε = 0.0001. Observe that
Yakoubsohn’s method is always faster.

Finally, we compare CEVAL with other non subdivision based methods. We choose the
MPSolve package, (see Section 2.4.2) which uses the Aberth-Erlich simultaneous iteration. The
timings for MPSolve were generated using the UNIX time command and are in general not as
accurate as the timings generated from our code. In any case, given that these timings are in
the order of milli seconds, they are not reliable due to operating system context switches etc.
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and are provided as a rough indicator of performance. The list of timings can be found in Table
4.12.

The CEVAL algorithm performs about the same as MPSolve for polynomials with degree
n < 30. For higher degree polynomials, their performance starts to diverge with MPSolve
being consistently faster. At n = 40 we see that CEVAL is generally up to five or eight
times slower. One of the factors that works against CEVAL is the estimate of B0 from the
Cauchy bound. For instance, the Wilkinson’s degree 40 polynomial has an estimated B0 =
[−2048, 2048] × [−2048, 2048], which is much larger than the minimal bound. The number of
iterations of the Aberth-Erlich iteration that are required to converge to a root is not directly
related to the root bounds, or to the distribution of roots. The behaviour of this iteration (and
the reason for its seemingly wonderful convergence properties) is not very well understood in
general; a discussion can be found in [4].

Time(ms)

CEVAL MPSolve

chebyshev20 39.821 27
laguerre20 79.055 87
hermite20 35.618 81
wilk20 97.393 49
chrma22 80.626 47
chrmc23 107.063 61
hermite40 525.80 88
wilk40 1142.82 153

Table 4.12: Comparison of CEVAL and MPSolve.

We must keep in mind that the Aberth-Erlich (or indeed the Weierstrass-Durand-Kerner)
iteration does not output a list of isolating boxes, rather just approximations of roots. We have
no guarantee that the iteration will converge to “reasonable” approximations. Our subdivision
based methods on the other hand, can produce boxes that are guaranteed to isolate roots.
Additionally, the strength of subdivision based methods is that they can operate on tight areas
of interest while the simultaneous iteration based methods necessarily have to approximate all
roots. Unfortunately, we cannot provide a comparison of the two methods operating on such a
preselected area because the MPSolve software does not support such an option (see [5]).

4.3.3 The effect of B0 on CEVAL performance

In this section, we analyse the performance of the CEVAL algorithm as the size of the input
box B0 increases. We mentioned in earlier sections that we expect the running time to increase
with increasing initial box size.

Our test involves the Wilkinson’s degree 20 polynomial. This has an estimated bounding
box B0 = [−512, 512] × [−512, 512] as per the Cauchy bound. We tabulate the running time
at Level 1 on boxes of increasing size. Our boxes are of the form B0 = [−a, a] × [−1, 1] where
a = {1, 4, 16, 64, 256}. Note that for a = {1, 4, 16}, some roots of the polynomial will not be
isolated as they lie outside the bounding box, and each increase of a increases the area of the
initial box by a factor of 4.

The results of this test are presented in Table 4.13. Note that the time increases quite
significantly with increasing B0. This tells us that the speed of our algorithm can potentially
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a Iters Time(ms)

1 189 1.015
4 2629 12.937
16 27781 134.605
64 172997 834.539
256 351425 1704.078

Table 4.13: The effect of increasing B0 on algorithm run time.

be improved by choosing a better root bound. This is an area of improvement that we intend
to pursue in the longer term, but have insufficient time to include in this thesis.

4.3.4 Running times at Level 2

We now provide a comparison of running times at Level 2 of the operators we discussed. We
start with the Newton type operators, whose performance is presented in Table 4.14.

As in the case of Level 1, there is no significant difference between the three operators. At
Level 2 however, the interval Newton operator appears to be faster than the Krawczyk operator
by a consistently small margin. Given that arithmetic operations are more expensive at this
Level, the approach that processes the fewest boxes is bound to be faster. Also, note that
the Hansen-Sengupta operator lags further behind the other two as a result of its expensive
extended interval arithmetic computations.

Degree
Iters Time(s)

HS N K HS N K

4 325 333 357 0.320 0.334 0.463
6 877 805 829 2.285 1.769 2.164
8 1557 1317 1349 6.972 5.633 6.559
10 2461 2093 2069 19.066 15.730 17.410
12 3445 2965 2965 41.488 35.037 39.390
14 4677 3997 4021 87.262 71.523 77.699

Table 4.14: Comparison of Newton type operators at Level 2 on [−2, 2]× [−2, 2]

As in the case of Level 1, CEVAL continues to be three orders of magnitude faster than the
Newton type operators. The results make up Table 4.15.

Degree Output(Yako.)
Iters Time(s)

CEVAL Yako. CEVAL Yako.

10 72 1965 2381 0.801 0.876
20 128 7909 8565 12.587 12.257
30 224 16413 17381 65.162 53.582
40 248 29293 30405 203.899 163.549

Table 4.15: Comparison CEVAL with Yakoubsohn’s pure exclusion approach over [−2, 2] ×
[−2, 2]
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The results of this section show that the performance of our algorithms at Level 2 is between
20 and 50 times slower than at Level 1. This is an expected consequence of using extended
precision types. To improve performance, it might be advantageous to carry out as many
operations as possible at machine precision, and to control precision growth in areas that require
it.

The current CEVAL implementation is not capable of switching Core levels at run time for
portions of the working set, and can run only entirely at Level 1 or Level 2 as decided at compile
time. This is one of the aspects of the implementation that we hope to improve, and we discuss
this in Section 5.2.
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Chapter 5

Conclusions

5.1 Summary

Our experimental results show that the interval arithmetic based approaches seem to suffer
from a serious degradation in performance as the degree n of the polynomial increases. Some
of this degradation in performance can be attributed to the overestimation of function range
by interval extensions, but methods to compensate for it tend to be computationally expensive.
Further, these operators suffer from issues due to roots that lie on box boundaries. Overall, this
approach appears to suffer from various practical and performance issues, and its use cannot
be recommended.

Among the three interval arithmetic based approaches however, we showed that the Krawczyk
operator (despite being the weakest theoretically) did not lag very far behind the other opera-
tors in terms of performance. It was in fact the fastest of the three at Level 1 and performed
marginally slower than the interval Newton operator at Level 2.

In contrast, our experimental results for the CEVAL algorithm appear quite encouraging.
It is efficient and robust, and works well on a larger range of polynomials. It can also pro-
vide stronger guarantees than Yakoubsohn’s exclusion based approach at a comparable speed.
Further, both of these approaches perform three orders of magnitude faster than the interval
arithmetic based approaches.

However, the performance of the predicate TK breaks down due to the growth of n! for
polynomials of degree n > 90. We discuss possible solutions to this problem in Section 5.2 and
we plan to incorporate these solutions into our implementation. Even without these changes,
we believe that the algorithm is an efficient and viable choice for isolating roots of complex
polynomials of degree n < 90.

5.2 Future Work

Most of the discussion in this section revolves around CEVAL. We believe that with some further
work, we can extend it to work efficiently with polynomials of higher degree as well.

The 8-point test: Recall that the 8-point-test evaluates the input polynomial at ordinal
compass points using the BigRat type. Since the BigRat type is represented by a pair of BigInt
instances (a, b) for a

b , the exponentiation of these values to a high power will be slow and the
representation will be expensive in terms of memory usage as well. Also, since the BigRat
representation must always contain no common factors, many expensive GCD operations are
required as well.
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One possible change in this area is to use rounded interval arithmetic to estimate the range
of f over the interval lower and upper bound of the approximate value of the ordinal points.
Clearly, if the interval is either entirely negative or positive, then so is the sign of f at the exact
ordinal point.

The TK predicate: We need to explore approaches that allow TK to remain performant for
higher degree polynomials as well. Some of the directions we can look in include the truncated
evaluation of the Taylor series and controlled precision growth (with correct rounding) of our
calculations.

At fixed precision: Note that our implementation runs either entirely at Level 1 or entirely
at Level 2. It would be desirable to implement a wrapper over a machine precision type that
can detect underflows and overflows, and switch calculation over to Level 2 or a higher Core
level only in this situation. We are currently working on the outline of such a type, but a lot of
work remains to be done to test it and integrate it with our CEVAL implementation.

We would also like to explore a fixed precision BigFloat that behaves closer to a machine
type, but with larger number of bits of precision.
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Appendix A

Sample code

We now provide some sample code from our implementation. Our entire contribution to CORE
is about 6000 lines of code (excluding unit tests) and can be found as a part of the CORE
distribution 2.1 at http://cs.nyu.edu/exact/core_pages/downloads.html.

Our code can be found in CORE under :

\$CORE_ROOT/corelib2/progs/mesh/krawczyk /...

\$CORE_ROOT/corelib2/progs/mesh/cxy /...

\$CORE_ROOT/corelib2/progs/mesh/ceval /...

\$CORE_ROOT/corelib2/progs/mesh/benchmark /...

\$CORE_ROOT/corelib2/inc/CORE/Wrappers.h

\$CORE_ROOT/corelib2/inc/CORE/ComplexT.h

\$CORE_ROOT/corelib2/inc/CORE/IntervalT.h

A.1 The subdivision algorithm

void Algorithm ::Run() {

// Statistics gathering.

unsigned int num_iterations = 0;

unsigned int num_excludes_T1 = 0;

unsigned int num_excludes_8P = 0;

unsigned int num_includes = 0;

unsigned int num_splits = 0;

while (! queue_.empty ()) {

++ num_iterations;

const Box *b = queue_.back ();

queue_.pop_back ();

// Keep the mid and the radius handy.

const Complex mid = b->mid();

const double rad = b->radius ();

if (Size(b)) {

if (! use_inclusion_) {

// If no inclusion predicate is being used , then

// if the box is too small - it is a part of the

// output.

ambiguous_.push_back(b);

} else {

// If an inclusion predicate is being used , then

// if the box is too small - it is ambiguous.
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if (display_) {

ambiguous_.push_back(b);

} else {

delete b;

}

}

continue;

}

// This is the exclusion predicate.

if (pred_.T(1, mid , rad)) {

++ num_excludes_T1;

if (display_) {

rejects_.push_back(b);

} else {

delete b;

}

} else if (use_inclusion_ &&

pred_.Tdash(6, mid , 4*rad) &&

pred_.Tdash (1.5, mid , 8*rad)) {

if (pred_.PointTest(mid , 4*rad)) {

// A success ! . The region can be inserted into the output.

InsertOutput(mid , 4*rad);

++ num_includes;

if (display_) {

output_b_.push_back(b);

}

} else {

// If the 8 point test fails the region can be

// excluded.

++ num_excludes_8P;

if (display_) {

rejects_.push_back(b);

} else {

delete b;

}

}

} else {

// Neither excluded or included , therefore split.

++ num_splits;

b->Split (& queue_ );

delete b;

}

}

}
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Appendix B

Command line arguments

B.1 CEVAL

$ ./ main_ceval --help

USAGE:

./ main_ceval [-z <unsigned int >] [-f <unsigned int >] [-g <unsigned

int >] [-a] [-M <string >] [-m <string >] [-i] [-d] [-r] [-u

<string >] [-y <string >] [-c <string >] [-x <string >] [-p

<string >] [--] [--version] [-h]

Where:

-z <unsigned int >, --max_coeff <unsigned int >

Upper bound on magnitude of coefficient

-f <unsigned int >, --seed <unsigned int >

Seed for generating the random polynomial

-g <unsigned int >, --degree <unsigned int >

Degree of random polynomial

-a, --random

Use a random polynomial

-M <string >, --max_box_size <string >

Maximum box size

-m <string >, --min_box_size <string >

Minimum box size

-i, --no_use_inclusion

Do not use the inclusion predicate (Yakoubsohns approach)

-d, --display

Display subdivision tree

-r, --use_root_bounds

Use Cauchy Bounds

-u <string >, --y_max <string >

Maximum y range
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-y <string >, --y_min <string >

Minimum y range

-c <string >, --x_max <string >

Maximum x range

-x <string >, --x_min <string >

Minimum x range

-p <string >, --poly <string >

Input polynomial file name

--, --ignore_rest

Ignores the rest of the labeled arguments following this flag.

--version

Displays version information and exits.

-h, --help

Displays usage information and exits.

B.2 Newton type operators

$ ./ main_newt --help

USAGE:

./ main_newt [-f <unsigned int >] [-a <unsigned int >] [-b] [-e] [-c

<int >] [-g <int >] [-t <int >] [-l <string >] [-m <string >]

[-s] [-k] [-n] [-d] [-r] [-u <string >] [-y <string >] [-z

<string >] [-x <string >] [-p <string >] [--] [--version]

[-h]

Where:

-f <unsigned int >, --seed <unsigned int >

Seed for generating the random polynomial

-a <unsigned int >, --degree <unsigned int >

Degree of random poly

-b, --random

Use a random polynomial

-e, --step_2

Disambiguate unresolved boxes

-c <int >, --core_level <int >

CORE LEVEL of operation

-g <int >, --max_gen_id <int >

Threshold for recalculating the centered form

-t <int >, --cr_threshold <int >

Threshold for recalculating the centered form

-l <string >, --max_box_size <string >

Maximum subdivision size

-m <string >, --min_box_size <string >
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Minimum subdivision size

-s, --hansen

Use the hansen sengupta operator

-k, --krawczyk

Use the krawczyk operator

-n, --newton

Use newton iteration

-d, --display

Display subdivision tree

-r, --use_root_bounds

Use Cauchy Bounds

-u <string >, --y_max <string >

Maximum y range

-y <string >, --y_min <string >

Minimum y range

-z <string >, --x_max <string >

Maximum x range

-x <string >, --x_min <string >

Minimum x range

-p <string >, --poly <string >

Input polynomial file name

--, --ignore_rest

Ignores the rest of the labeled arguments following this flag.

--version

Displays version information and exits.

-h, --help

Displays usage information and exits.
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Appendix C

Polynomials

C.1 The Mignotte like polynomials

So far, we have dealt with polynomials whose roots can be isolated by operating at Level 1. We
now present a case (from the MPSolve test suite [5]) where operation at Level 2 is required.
Consider the polynomial defined by:

p(z) = z20 + (100iz + 1)3. (C.1)

This polynomial has a cluster of three roots very close to 1
100 i while the other 17 roots are well

separated. The roots in this cluster are separated from each other by a distance of less than
10−16. We try to isolate the roots of (4.1) using CEVAL at Level 1, and get the following
output:

$ ./ main_ceval --display --random \

--y_min -4 --y_max 4 \

--x_min -4 --x_max 4 \

--min_box_size 0.0000000000000000001

iters =9565 , includes =32, splits =2391 , ambiguous=0,exc_c0 =7126 , exc_c1 =16,

time =32538O

Operated on Bounding box : [-4 + (-4)i],[4 + (4)i]

--------------------------

Number of roots :17

<truncated >

-------------Graphic ----------------

The output shows that we could isolate only 17 of the 20 roots of this polynomial. More
troubling is the fact that the output shows no unresolved regions (the variable ambiguous in
the output above). We would have expected that the roots that could not be isolated would be in
unresolved regions, but due to the small value of min box size specified above, our calculations
could not be represented within the precision available and resulted in us wrongly rejecting
boxes that contained roots. Running the code at Level 2 produces the right result.

$ ./ main_ceval --display --random \

--y_min -4 --y_max 4 \

--x_min -4 --x_max 4 \

--min_box_size 0.0000000000000000001

iters =11997 , includes =38, splits =2999 , ambiguous=0,exc_c0 =8960 , exc_c1=0,

time =20678781

Operated on Bounding box : [-4 + (-4)i],[4 + (4)i]

--------------------------

Number of roots :20

<truncated >
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m= [3.98986e-16 + (.01)i], r= 2.08167e-17

m= [ -4.05925e-16 + (.01)i], r= 2.08167e-17

m= [ -3.46945e-18 + (.01)i], r= 2.08167e-17

-------------Graphic ----------------

We have omitted all output except the cluster of three roots mentioned above1. The subdivision
tree is shown below. The three clustered roots are at the centre of the figure and are highlighted
in blue, while the well separated roots are highlighted in green.

Figure C.1: Subdivision tree for p(z) = z20 + (100iz + 1)3

C.2 CEVAL on non square free polynomials

We mentioned earlier that in order to terminate with all roots isolated, the CEVAL algorithm
requires that its input polynomial is square free. We now give an example of CEVAL running
on a polynomial that is not square free. In order for the algorithm to terminate, we will need
to specify a min box size and the output will contain unresolved regions around roots that are
not simple (of multiplicity 1). For this, we use the polynomial p(z) = (z6 +64)2(z6−729). This
polynomial has 6 repeated roots that lie on a disk of radius 2, and 6 simple roots that lie on
a disk of radius 3. Running CEVAL on this polynomial, we find that we have 256 unresolved
boxes for a min box size of 0.0001. Further, all 6 simple roots were isolated. The output listing
and subdivision tree are given below.

iters =8645 , includes =16, splits =2161 , ambiguous =256, exc_c0 =6212 ,

1The keen observer might note that this output is missing a text dump of the polynomial like some of the
other outputs. This is because the Core library templated polynomial package does not support the display of
polynomials with complex coefficients. The changes to do so are currently in the pipeline.
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exc_c1=0,time =10413791

Operated on Bounding box : [-4 + (-4)i],[4 + (4)i]

With polynomial :

# -2985984 -89216x^{6} -601x^{12}

# + x^{18}

--------------------------

Number of roots :6

m= [1.498046875 + ( -2.599609375)i], r= .01171875

m= [ -1.501953125 + ( -2.599609375)i], r= .01171875

m= [2.998046875 + (.001953125)i], r= .01171875

m= [1.498046875 + (2.599609375)i], r= .01171875

m= [ -3.001953125 + (.001953125)i], r= .01171875

m= [ -1.501953125 + (2.599609375)i], r= .01171875

Figure C.2: Subdivision tree for p(z) = (z6 +64)2(z6−729). Areas of blue are unresolved boxes
around double roots, and areas of green are isolated simple roots.

C.3 Chebyshev’s degree 20 polynomial (chebyshev20)

p(x) = 1− 200x2 + 6600x4 − 84480x6 + 549120x8 − 2050048x10

+ 4659200x12 − 6553600x14 + 5570560x16 − 2621440x18

+ 524288x20

Number of roots :20

m= [0.996948 + (0.00012207)i], r= 0.000732422

m= [0.972168 + (0.000488281)i], r= 0.00292969

m= [0.922852 + (0.000976562)i], r= 0.00585938
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m= [0.853516 + (0.00195312)i], r= 0.0117188

m= [0.759766 + (0.00195312)i], r= 0.0117188

m= [0.650391 + (0.00195312)i], r= 0.0117188

m= [0.521484 + (0.00195312)i], r= 0.0117188

m= [0.380859 + (0.00195312)i], r= 0.0117188

m= [0.232422 + (0.00195312)i], r= 0.0117188

m= [0.0820312 + (0.00390625)i], r= 0.0234375

m= [ -0.0820312 + (0.00390625)i], r= 0.0234375

m= [ -0.232422 + (0.00195312)i], r= 0.0117188

m= [ -0.384766 + (0.00195312)i], r= 0.0117188

m= [ -0.521484 + (0.00195312)i], r= 0.0117188

m= [ -0.650391 + (0.00195312)i], r= 0.0117188

m= [ -0.759766 + (0.00195312)i], r= 0.0117188

m= [ -0.853516 + (0.00195312)i], r= 0.0117188

m= [ -0.924805 + (0.000976562)i], r= 0.00585938

m= [ -0.972168 + (0.000488281)i], r= 0.00292969

m= [ -0.996948 + (0.00012207)i], r= 0.000732422

C.4 Laguerre’s 20th order polynomial (laguerre20)

p(x) = 2432902008176640000− 48658040163532800000x + 231125690776780800000x2

− 462251381553561600000x3 + 491142092900659200000x4

− 314330939456421888000x5 + 130971224773509120000x6

− 37420349935288320000x7 + 7601008580605440000x8

− 1126075345274880000x9 + 123868287980236800x10 − 10237048593408000x11

+ 639815537088000x12 − 30287126016000x13 + 1081683072000x14

− 28844881920x15 + 563376600x16 − 7797600x17 + 72200x18

− 400x19 + x20

Number of roots :20

m= [66.5156 + (0.015625)i], r= 0.09375

m= [55.7969 + (0.015625)i], r= 0.09375

m= [47.6094 + (0.015625)i], r= 0.09375

m= [40.8281 + (0.015625)i], r= 0.09375

m= [35.0156 + (0.015625)i], r= 0.09375

m= [29.9219 + (0.015625)i], r= 0.09375

m= [25.4531 + (0.015625)i], r= 0.09375

m= [21.4844 + (0.015625)i], r= 0.09375

m= [17.9531 + (0.015625)i], r= 0.09375

m= [14.7969 + (0.015625)i], r= 0.09375

m= [12.0469 + (0.015625)i], r= 0.09375

m= [9.57812 + (0.015625)i], r= 0.09375

m= [7.45312 + (0.015625)i], r= 0.09375

m= [5.60938 + (0.015625)i], r= 0.09375

m= [4.04688 + (0.015625)i], r= 0.09375

m= [2.73438 + (0.015625)i], r= 0.09375

m= [1.70312 + (0.015625)i], r= 0.09375

m= [0.921875 + (0.015625)i], r= 0.09375

m= [0.367188 + (0.0078125)i], r= 0.046875

m= [0.0683594 + (0.00195312)i], r= 0.0117188

76



C.5 Hermite polynomial of degree 20 (hermite20)

p20(x) = 670442572800− 13408851456000x2 + 40226554368000x4

− 42908324659200x6 + 21454162329600x8 − 5721109954560x10

+ 866834841600x12 − 76205260800x14 + 3810263040x16

− 99614720x18 + 1048576x20

Number of roots :20

m= [5.38867 + (0.00195312)i], r= 0.0117188

m= [4.60352 + (0.00195312)i], r= 0.0117188

m= [3.94336 + (0.00195312)i], r= 0.0117188

m= [3.34766 + (0.00390625)i], r= 0.0234375

m= [2.78516 + (0.00390625)i], r= 0.0234375

m= [2.25391 + (0.00390625)i], r= 0.0234375

m= [1.73828 + (0.00390625)i], r= 0.0234375

m= [1.24219 + (0.0078125)i], r= 0.046875

m= [0.742188 + (0.0078125)i], r= 0.046875

m= [0.242188 + (0.0078125)i], r= 0.046875

m= [ -0.242188 + (0.0078125)i], r= 0.046875

m= [ -0.742188 + (0.0078125)i], r= 0.046875

m= [ -1.24219 + (0.0078125)i], r= 0.046875

m= [ -1.73828 + (0.00390625)i], r= 0.0234375

m= [ -2.25391 + (0.00390625)i], r= 0.0234375

m= [ -2.79297 + (0.00390625)i], r= 0.0234375

m= [ -3.34766 + (0.00390625)i], r= 0.0234375

m= [ -3.94336 + (0.00195312)i], r= 0.0117188

m= [ -4.60352 + (0.00195312)i], r= 0.0117188

m= [ -5.38867 + (0.00195312)i], r= 0.0117188

C.6 Chromatic polynomials (chrma22, chmrc23)

pchrma22(x) = −246093 + 2492430x− 12114723x2 + 37736580x3 − 84823783x4

+ 146716642x5 − 202994933x6 + 230138376x7 − 216927522x8

+ 171394508x9 − 113940788x10 + 63782456x11 − 30020386x12

+ 11837548x13 − 3886852x14 + 1052700x15 − 231773x16

+ 40562x17 − 5445x18 + 528x19 − 33x20 + x21

Number of roots :21

m= [1.21289 + ( -2.92383)i], r= 0.0117188

m= [2.19434 + ( -1.93262)i], r= 0.00585938

m= [2.3291 + ( -1.22949)i], r= 0.00585938

m= [2.61914 + ( -0.810547)i], r= 0.0117188

m= [2.9873 + ( -0.383789)i], r= 0.00585938

m= [0.118164 + ( -1.1084)i], r= 0.00585938

m= [1.06934 + ( -0.731445)i], r= 0.00585938

m= [1.22168 + ( -0.467773)i], r= 0.00585938

m= [1.16602 + ( -0.287109)i], r= 0.0117188

m= [1.0752 + ( -0.0986328)i], r= 0.00585938

m= [2.9873 + (0.383789)i], r= 0.00585938

m= [2.61914 + (0.810547)i], r= 0.0117188

m= [2.3291 + (1.23145)i], r= 0.00585938

m= [2.19434 + (1.93457)i], r= 0.00585938
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m= [1.0752 + (0.100586)i], r= 0.00585938

m= [1.16602 + (0.291016)i], r= 0.0117188

m= [1.22168 + (0.467773)i], r= 0.00585938

m= [1.06934 + (0.731445)i], r= 0.00585938

m= [0.999512 + (0.000488281)i], r= 0.00292969

m= [0.118164 + (1.11035)i], r= 0.00585938

m= [1.21289 + (2.92773)i], r= 0.0117188

pchrmc23(x) = 468864− 4827264x + 23676736x2 − 73773952x3

+ 164369080x4 − 279584216x5 + 378695856x6 − 420778328x7

+ 392030336x8 − 311242152x9 + 212910190x10 − 126266334x11

+ 65006540x12 − 28961860x13 + 11085034x14 − 3604758x15

+ 981064x16 − 219016x17 + 39018x18 − 5330x19 + 524x20

− 33x21 + x22

C.7 Wilkinson’s polynomials (wilk20)

p(x) = 2432902008176640000− 8752948036761600000x + 13803759753640704000x2

− 12870931245150988800x3 + 8037811822645051776x4 − 3599979517947607200x5

+ 1206647803780373360x6 − 311333643161390640x7 + 63030812099294896x8

− 10142299865511450x9 + 1307535010540395x10 − 135585182899530x11

+ 11310276995381x12 − 756111184500x13 + 40171771630x14 − 1672280820x15

+ 53327946x16 − 1256850x17 + 20615x18 − 210x19 + x20

Number of roots :20

m= [19.998046875 + (.001953125)i], r= .01171875

m= [18.99609375 + (.00390625)i], r= .0234375

m= [17.99609375 + (.00390625)i], r= .0234375

m= [16.9921875 + (.0078125)i], r= .046875

m= [15.9921875 + (.0078125)i], r= .046875

m= [14.9921875 + (.0078125)i], r= .046875

m= [14.015625 + (.015625)i], r= .09375

m= [12.984375 + (.015625)i], r= .09375

m= [11.984375 + (.015625)i], r= .09375

m= [10.984375 + (.015625)i], r= .09375

m= [9.984375 + (.015625)i], r= .09375

m= [8.984375 + (.015625)i], r= .09375

m= [7.984375 + (.015625)i], r= .09375

m= [6.984375 + (.015625)i], r= .09375

m= [5.9921875 + (.0078125)i], r= .046875

m= [4.9921875 + (.0078125)i], r= .046875

m= [3.9921875 + (.0078125)i], r= .046875

m= [2.99609375 + (.00390625)i], r= .0234375

m= [1.99609375 + (.00390625)i], r= .0234375

m= [0.998046875 + (.001953125)i], r= .01171875
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Appendix D

Subdivision trees

D.1 x(9x9 + 7x8 + 8x7 + 8x6 + 6x4 + 5x3 + 2x2 + x) = 0

(a) CEVAL (b) Newton

(c) Krawczyk (d) Hansen-sengupta

Figure D.1: Subdivision trees for a degree 10 polynomial.
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D.2 CEVAL with increasing degree

(a) n = 20 (b) n = 30

(c) n = 40 (d) n = 50

Figure D.2: Subdivision trees for randomly generated degree n polynomials.
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Appendix E

Music & other inconsequential
things

Music: This is a summary of the music I have listened to through the writing of this thesis.
If there is ever a scientific study about the effect of music on creative or scientific output, then
this shall serve as a data point.

1. Eat a peach, The Allman Brothers band (Southern rock, Blues rock)

2. Fresh cream, Cream (Blues rock, psychedelic rock)

3. Baptizm of Fire, Glenn Tipton (Heavy metal, Hard rock)

4. Maktub, Motherjane (Progressive rock)

5. Mer de Noms, A perfect circle (Progressive rock, Alternative rock)

6. One hot minute, Red hot chilli peppers (Alternative rock, Funk rock)

7. Born Again, Black Sabbath (Heavy metal)

Tigers: I would also like to draw attention to the plight of tigers worldwide. Their numbers
are fast dwindling due to habitat destruction and wanton poaching for “medicinal” reasons, or
maybe because someone wants a cool carpet. Something needs to be done before these beautiful
and graceful creatures vanish from our planet forever. Dont forget, 2010 is the year of the tiger:
http://www.worldwildlife.org/species/finder/tigers/year-of-tiger.html.
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