
Non-local Isotopic Approximation of Nonsingular Surfaces

Long Lin, Chee Yap and Jihun Yu
Courant Institute of Mathematical Sciences

New York University
New York, NY 10012 USA

{llin,yap,jihun}@cs.nyu.edu

December 3, 2011

Abstract

ABSTRACT: We consider the problem of computing isotopic approximations of nonsingular surfaces
which are implicitly represented by equations of the formf(x, y, z) = 0. This mesh generation problem
has seen much recent progress. We focus on methods based on domain subdivision using numerical
primitives because of their practical adaptive complexity. Previously, Snyder (1992) and Plantinga-Vegter
(2004) have introduced techniques based on parametrizability and non-local isotopy, respectively. In our
previous work (SoCG 2009), we synthesized these two techniques into a highly efficient and practical
algorithm for curves. In this paper, we extend our approach to surfaces. The extension is by no means
routine, as the correctness arguments and analysis are considerably more complex. Unlike the 2-D case, a
new phenomenon arises in which local rules for constructingsurfaces are no longer sufficient.

We treat two important extensions, to exploit anisotropic subdivision and to allow arbitrary geometry
for the region-of-interest (ROI). Anisotropy means that weallow boxes to be split into 2, 4 or 8 children
which are rectangular boxes with bounded aspect ratio. Using ROI allows our algorithms to be extremely
”local”, and anisotropy increases their adaptivity.

Our algorithms are relatively easy to implement, as the underlying primitives are based on interval
arithmetic and exact BigFloat numbers. We report on very encouraging preliminary experimental results.

Key Words: Mesh Generation, Surface Approximation, Isotopy, Parametrizability, Subdivision Algo-
rithms, Interval Methods, Topological Correctness, Exact Numerical Algorithms.

1 Introduction

A basic problem in areas such as physics simulation, computer graphics andgeometric modeling is that of
computing approximations of curves and surfaces from implicit definitions. Typically, the surface is repre-
sented by an equation,f(x, y, z) = 0 as illustrated in Figure1. We assume the approximation is a triangulated
surface, also known as amesh. The recent book of Boissonnat and Teillaud [5] provides an algorithmic per-
spective for this general area; chapter 6 in particular is a survey of meshing algorithms.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 1: Approximation of tangled cubef(x, y, z) = x4 − 5x2 + y4 − 5y2 + z4 − 5z2 = −10.

The approximate surface or mesh must satisfy two basic requirements: topological correctness and geomet-
ric accuracy. For instance, in Figure1(c) is produced by our algorithm with only topological correctness as
stopping criterion. For some applications, this is sufficient. But if one desires geometric accuracy as well, this
can be further refined as in Figure1(a), where the error bound isε = 0.25. Generally, the problem of ensuring
topologically correctness is more challenging than refinement.

Formally, themesh generation problem(“meshing problem” for short) is this:given a region-of-interest
(ROI)R0 ⊆ R

3, an error boundε > 0, a surfaceS implicitly represented by an equationf(x, y, z) = 0, to
find a piecewise linearε-approximationG of S restricted toR0.

Geometric accuracy inG means that the Hausdorff distance betweenG andS∩R0 is at mostε. Topological
correctness means the surfaceG should be isotopic toS in the interior ofR0, and also on the boundary∂R0;
we denote this by “G ≃ S (modR0)”. We focus on guaranteeing topological correctness by means of
numerical techniques. Numerical methods have many advantages: they tendto have adaptive complexity, are
efficient in practice and easy to implement. Numerical methods are more general than algebraic ones since
hey are applicable to non-algebraic functions such as frequently arise inmathematical analysis. But numerical
methods traditionally do not offer topological guarantees, and so this is ourmain challenge.

Throughout this paper, we fix the functionf : R3 → R, the surfaceS := f−1(0) and region-of-interest
R0 ⊆ R

3. The regionR0 is a nice region (see below) represented by an octree, andf is nonsingular inR0.
Unless otherwise noted, we assumeǫ =∞ (i.e., we focus on isotopy, with no concern for geometric accuracy).
For the algorithms of this paper, it is easy refine to any desiredǫ once we have the correct isotopy.

¶1. Subdivision Algorithms. Our main algorithmic paradigm is(domain) subdivision where an initial
axes-parallel boxB0 ⊆ R

3 is repeated subdivided into smaller boxes, forming an octreeT rooted atB0. Each
non-leaf ofT can have 2, 4 or 8 children, corresponding to half-, quarter- or full-splits of boxes into congruent
subboxes. The leaves ofT provide a partition ofB0 into boxes, and to subdivideT means to split its leaves.
All algorithms in this paper are viewed as instances of the following:

Generic Subdivision Algorithm:
INPUT: AN OCTREET REPRESENTING A REGIONB0

I. Subdivision Phase:
Keep subdividingT until some stopping criterion holds.

II. Refinement Phase:
Further subdivideT until some refinement criterion holds.

III. Construction Phase:
Construct the approximationG from the refined treeT .

1

The conceptual question is:what kind of stopping and refinement criteria do we need in order to ensure that
the Construction Phase has sufficient information to construct an isotopic approximationG? This question is
ill-formed unless we constrain the Construction Phase. The well-known Marching Cubes [15] gives us a clue:
for each leaf boxB, the Marching Cubes algorithm computes a small surface patchGB ⊆ B basedonly on
the signs off at the corners ofB. This isO(1) work per leaf, andG is defined to be union of all these patches
GB. Such a Construction Phase is said to beMC-like (“Marching Cubes like”). But it is well-known that the
Marching Cubes could not ensure correct isotopy. The achievement of Plantinga & Vegter (PV) [18] is that, by
using the “small normal variation predicate”, they could ensure correct isotopy with a MC-like construction.
Theirs is the first topologically correct algorithm for meshing of nonsingular surfaces based on numerical
primitives. In contrast, the construction phase in Snyder’s algorithm [24] is not MC-like, but requires highly
nontrivial processing (e.g., root isolation). In [14, 13], we characterize the PV approach as exploiting “non-
local isotopy”. We show that the stopping criterion of PV can be weakenedto the parametrizability predicate
of Snyder, leading to greatly improved efficiency. Our previous result was only for curves; in this paper, we
will extend it to surfaces. As we shall see, the extension to surfaces is far from routine, requiring new ideas in
the algorithm as well as in its correctness proofs. For instance, a new phenomenon arises in the Construction
Phase in which local rules are no longer sufficient.

The algorithms in this line of research are very practical for two reasons:first, it is based on the easily
implementable subdivision paradigm. Second, all our primitives are explicitly numerical (no hidden imple-
mentation gaps). We stress this point because many exact algorithms in the literature have primitives that
are impractical for exact implementation. The numerical primitives are based on two simple foundations: (a)
interval methods [17, 19], and (b) BigFloats, some software implementation of dyadic numbers. Moreover,
machine arithmetic can be exploited in two ways: first, it can replace BigFloats when machine precision suf-
fices (taking care to detect overflows which indicate the need for higher precision). In fact all the examples
in this paper are run at machine precision. Second, they can be used as filters to speed up BigFloats. See
[14] for further discussion. We have implemented our algorithm and preliminary evidence suggests that our
algorithms can be much more efficient than previous algorithms.

¶2. Our Contribution and Overview of Paper. Our general contribution is the further development of
non-local isotopy analysis. In Section 2, we review this concept. Our main technical contribution is a new
exact, efficient and practical algorithm for isotopic surface approximation. We describe a sequence of three
increasingly sophisticated algorithms:Regularized Cxyz(Section 4),Balanced Cxyz(Section 5), andRect-
angular Cxyz (Section 6). Each has independent interest, but is also useful in our development: we reduce the
correctness of each algorithm to that of the previous one. Because of space limitation, we only briefly touch
on another important topic, allowing input region-of-interest (ROI) with arbitrary geometry as represented by
a suitable octree. Section 7 contains our experimental results, and we conclude in Section 8. All the proofs
and further experimental data are available in the thesis of Lin [13] and may be downloaded from [9]

2 Related Work

We broadly classify approaches to mesh generation into three categories:algebraic, geometric, and numer-
ical. Algebraic approaches [1, 22, 8, 23], exploit tools such as cylindrical algebraic decomposition (CAD),
resultants, and manipulation of algebraic numbers ([5, Chapter 3] reviews these technique). These tools are
exact, but the algorithms may be slow with non-adaptive complexity. A promising direction to remedy this
is to combine symbolic with numeric methods [10]. The geometric approaches [25, 3, 7, 4] postulate some
abstract computational model where geometric primitives such as ray shooting are available, and algorithms
based on these primitives are constructed. Implementing these abstract models can be an issue (e.g., ray shoot-
ing returns points with algebraic coordinates, which may be unsuitable for implementation). The numerical
approaches [15, 18, 16, 20, 26, 27] are based on numerical approximations, evaluation and derivatives of
function, and interval methods. It is the most pragmatic of the three approaches. Its advantages include hav-
ing adaptive and local complexity, and relative ease of implementation. Guaranteeing topological correctness
is the traditional weakness of this approach. The non-local isotopy idea can be exploited in other applica-

2

tions: recently we constructed a new subdivision method for complex root isolation [21] that has proved very
efficient [11, 12]. To motivate the general approach of our paper, we review four particular subdivision algo-
rithms: Marching Cubes [15], Snyder’s Algorithm [24], Plantinga & Vegter’s (PV) Algorithm [18], and our
Cxy Algorithm (in 2-D) [14]. We use the framework of the Generic Subdivision Algorithm in¶1.

¶3. Marching Cubes. Marching Cubes is one of the most popular subdivision algorithms for surface recon-
struction. The stopping criterion for its Subdivision Phase is “box has width< ǫ” for some arbitraryǫ > 0.
In the Construction Phase, we determine the sign of the functionf at the corners of each leaf boxB of T . Up
to symmetry and interchange of signs, the possiblesign typesare given in Figure2.

If an edge ofB has different signs

Type 4b

Type 0 Type 1 Type 2a Type 2b Type* 2c Type 3a Type 3b

Type* 3c Type 4a Type 4c Type+ 4d Type* 4e Type* 4f

Figure 2: 14 Sign Types off at box corners: only 10 arise underCxyz

at its two corners, we introduce a
vertex in the middle of the edge.
We then connect pairs of vertices
on faces ofB by arcs. Some pos-
sibilities for thesearc types are
illustrated in Figure3 (our figure
shows only those types that can
arise in our algorithm). Note that

Sign Types 2b, 3b and 4d each gives rise to two arc types, and they are topologically distinct. This “ambiguity”
will be one of our main correctness concerns. Once the arcs are fixed,we can introduce a triangulated surface
patchGB in B such thatGB intersects boundary ofB with the given arc type. The unionG =

⋃
B GB of

these patches constitutes an approximation ofS. Fortunately, the isotopy type ofGB is uniquely determined
by the chosen arcs:

Type 3a

Type 4c Type 4d(ii)Type 4d(i)Type 3b(i) Type 4bType 4aType 3b(ii)

Type 2b(ii)Type 2b(i)Type 2aType 1Type 0

Figure 3: The 13 Arc Types underCxyz Predicate.

LEMMA 1. Each of the 13 arc types in Figure3 uniquely determines the isotopy of the surface patch in a box.

This lemma follows by case analysis. Although the Marching Cubes does not guarantee topology, we stress
that the Marching Cubes is very useful and widely-used.

¶4. Parametrizability of Snyder. A key paper towards ensuring correct topology in subdivision algorithms
is Snyder [24]. He introduced interval methods to determine the correct topology within each subdivision box
B. Snyder’s stopping criterion is “S ∩B is parametrizable”. This means that surface patchS ∩B is the graph
of some functiong(i, j) in two coordinate directionsi, j ∈ {x, y, z}. This condition can be detected using
interval arithmetic: we call this theCxyz(B) predicate below. Snyder is then able to construct a triangulated
surface patchGB ⊆ B with the propertyGB ≃ S (modB). His algorithm is recursive in dimension: to
constructGB, recursively solve the2-D problem of computing the topology ofS ∩F on each faceF of B. In
turn, this requires solving the1-D problem of root isolation along the edges ofF . There are two issues. First,
the algorithm may not terminate ifS intersects the boundary ofB tangentially at isolated points [2, p. 195].
Second,GB can have arbitrary combinatorial complexity, and thus is not MC-like.

¶5. Non-local Isotopy of Plantinga & Vegter The second key paper is from Plantinga & Vegter [18]:
instead of parametrizability, they introduce two simple criteria for termination of subdivision: theexclusion
predicateC0(B) and thesmall normal variation predicate C1(B) (see below for the definitions ofC0 and

3

C1). The predicateC1(B) implies that the angle between two gradient vectors off in B is less than90
degrees, and in particular it implies thatS ∩ B is parametrizable. Snyder constructs thelocal isotopyof the
surface in each boxB. In a radical departure from Snyder, they no longer require thatGB be isotopic to
S ∩ B. Remarkably, this approach also solves the two issues of Snyder. We viewnon-local isotopy very
favorably because enforcing local isotopy is considered wasteful (after all, subdivision boxes are artifacts of
the algorithm, not inherent in topology ofS).

¶6. Our Synthesis. Our paper [14] is a synthesis of the parametrizability approach of Snyder with the
non-local isotopy of PV. We only treated curves. Basically, we want to run the PV algorithm but replacing the
C1 predicate with parametrizability. It turns out that this is justifiable provided we take care to disambiguate
certain configurations by subdivisions. Our motivation is that usingC1 is an overkill for isotopy (thoughC1

has other uses, including controlling normal deviation and refinement). Experiments confirm our expectation:
our synthesis is more efficient than either approach separately.

3 Preliminaries

For any setS ⊆ R, let S denote the set of all closed intervals with endpoints inS. We mainly useS = R

andS = F whereF := {m2n : m,n ∈ Z} denote the set of dyadic numbers (BigFloats). Abox (or d-box)
is any element of R

d (= (R)d). Usually,d = 1, 2, 3. If f : Rd → R is any function, then a function of
the form f : F

d → F is called abox function for f if for all B,Bi ∈ F, we have (1) (inclusion)
f(B) ⊆ f(B), and (2) (convergence) iflimi→∞Bi = p ∈ R

d, thenlimi→∞ f(Bi) = f(p).
Note that using interval arithmetic, it is very easy to construct box func-

y
back

front

bottom

right

z

x

top

left

Figure 4: Box face conventions.

tions whenf is a polynomial. For a boxB =
∏d

i=1 Ii, let w(B) =
mindi=1w(Ii) denote thewidth of B, wherew(I) denotes the width of an
interval. The0-, 1- and2-dimensional features of a box are called itscor-
ners, edges, andfaces. Fori ∈ {x, y, z}, ani-faceis a face that is normal
to thei-direction We also name each face of a box as ‘front’, ‘back’, ‘top’,
‘bottom’, etc, using the convention in Figure4.

By an infinitesimal perturbation, we may assume thatf has positive or negative signs at box corners (never
the zero sign). Viewing signs (+ or−) as colors, we can talk about edges and boxes beingmonochromaticor
bichromatic. As in Section 2, we introducevertices in the middle of bichromatic edges. In our implemented
code, we use linear interpolation to improve the quality of the meshes. On a face, we will introducearcs
connecting pairs of vertices (this need not be uniquely determined, as we saw). Finally, for each boxB, we
introduce a collection oftriangles to form a triangulated patchGB such thatGB ∩ ∂B is precisely these
vertices and arcs. Thus, we use the corner/edge/face terminology for boxes, but reserve the vertex/arc/triangle
terminology for the triangulated mesh.

¶7. Octrees. We assume that each leaf of our octrees is labeled as “in” or “out”.A leaf boxB is called an
in-box if it is labeled ”in”; similarly for anout-box. The set of all the in-boxes ofT is called thebox-complex
defined byT . The union of all in-boxes is denotedR(T), theregion represented byT . Following [6], a set
of the formR(T) is called anice region. Such regions are closed subsets ofR

3, but could be disconnected
with holes and cavities. Two boxes of an octree areneighbors of each other if they have disjoint interiors
but they share an open face (i.e., the relative interior of the face of one of the two boxes). We say they are
edge-neighborsif they share an open line segment. Note that neighbors are automatically edge-neighbors,
but the converse may not hold.

¶8. Box Predicates for Subdivision. The stopping criterion of the Subdivision Phase (¶1) is based on two
box predicates: anexclusion predicateCout(B) and aninclusion predicateCin(B). Subdivision Phase ends
when each in-boxB satisfiesCout(B) orCin(B). The in-boxes ofT fall into three mutually exclusive types:
1. Discarded Boxes: these satisfyCout

2. Candidate Boxes: these do not satisfyCout, but an ancestor satisfiesCin.
3. Inconclusive boxes: do not satisfyCout orCin.

4

If B satisfiesCin but notCout, then the above definition impliesB is a candidate box (sinceB is an ancestor
of itself). Discarded boxes will no longer be considered. Whenever wesplit a candidate box, we always check
if each subboxes satisfyCout: if so, it is discarded; otherwise it remains a candidate box. After the Subdivision
Phase, no inconclusive boxes remain. For the Refinement Phase, we only split candidate boxes. The following
list contains various instantiations forCout andCin used in this paper:

C0(B) : 0 /∈ f(B) (Exclusion)
Cx(B) : 0 /∈ fx(B) (x-Monotonicity)
Cxy(B) : Cx(B) ∨ Cy(B) (Parametrizability)
Cxyz(B) : Cx(B) ∨ Cy(B) ∨ Cz(B) (Parametrizability)
C1(B) : 0 /∈ (fx(B))2 + (fy(B))2 + (fz(B))2 (Small Normal Variation)

(1)

Note thatfx, fy, fz refers to partial derivatives off . Clearly, ifC0(B) holds, thenS ∩ B is empty. So we
useC0 as the exclusion predicateCout in all our algorithms. For Snyder’s and Cxyz Algorithms,Cin = Cxyz,
and for PV Algorithm,Cin = C1.

4 Regularized Cxyz Algorithm

An octree is “regular” if every leaf is at the same level, as in Marching Cubes. So the “Regularized Algorithm”
amounts to enforcing this regularity during the Refinement Phase. In our Regularized Cxyz Algorithm, we
can relax this requirement: we only require that two candidate boxes who are edge-neighbors must have the
same width. The correctness of the Regularized Cxyz Algorithm is far fromtrivial. Its analysis will be critical
for extension to subsequent algorithms. This tact of going through the regularized case follows [18, 14].

The algorithm only perform full-splits, and recall that its inclusion predicateCin is Cxyz. This completely
defines its Subdivision Phase. The Refinement Phase is defined by the rule that we split a candidate box
B if it has an edge-neighbor that is a candidate box of smaller width. At the endof this process, any two
edge-neighbors that are both candidates would have the same width. The rest of this section will focus on the
Construction Phase, and correctness proof.

At this juncture, we insert a concept that will be useful in subsequent analysis. At the end of the Subdivision
Phase, each candidate boxB in the octree is known to satisfyCi(B) for somei ∈ {x, y, z}. We arbitrarily
pick one of thesei’s and call it theknown monotone direction (“monotone direction” for short) forB.
In subsequent computation, when we splitB, the candidate descendants ofB will inherit this monotone
direction. This direction is stored withB by our algorithm since some decisions will depend on it.

¶9. Sign Types, Arc Types and Surface Types under theCxyz Predicate Of the 14 possible sign types
of f at box corners shown in Figure2, only 10 can arise under the Cxyz predicate. The 4 excluded cases
are indicated by asterisks: Types∗2c, ∗3c, ∗4e, ∗4f . As usual, we introduce vertices in the middle of
bichromatic edges, and connect pairs of vertices on each face by arcs. The 10 sign types give rise to 13arc
types in Figure3. Lemma1 asserts that these arc types give rise to uniquesurface typewithin each box,
shown in yellow in Figure3.

¶10. Counter Example to the Neighborly Connection Rule. In 2-D, we can apply the above method to
construct a surface in each box, without consideration of other boxes[14]. But now, there are two choices
of arc connections when a face has4 vertices: we call thesealternating faces. In Figure2, these faces
are colored pink, as in Types (2b), (3b) and (4d). This implies that constructing surface patches in each
box must (at least) beneighborly, meaning that two boxes sharing an alternating face must agree on which
choice of arcs to make. Alternating faces arise even under theC1 predicate of PV Algorithm. They showed
any neighborly choice will lead to a correct surface, which is rather non-intuitive. For ourCxyz predicate,
neighborly choices alone is insufficient: Figure5 gives a counter example.

In Figure5(a), the arc connections are neighborly. The two boxes satisfyCx, but the triangulated surface
determined by the indicated arc connections violate theCx condition. Using a different arc connection, we
obtain the triangulated surface in Figure5(b) (this one is consistent with theCx condition). Extending this
example (using the phenomenon of “blocks” below) we see that a choice in one box can force the choice of
boxes arbitrarily far away. E.g., Figure5(c).

5

(c)(a) (b)

Figure 5: Neighborly choice of arc patterns is insufficient for correctness.

¶11. Alternating Faces (AF) Rule. For alternating faces, we provide the following globally consistent
rule for connecting arcs:RULE: the arcs will be line segments that are parallel to one of the three vectors:
(1, 1, 0), (1, 0, 1), (0, 1, 1), depending whether the alternating face is anz-, y- or x-face (respectively).E.g.,
for an alternatingx-face we will connect its four vertices with line segments that are parallel to the vector
(0, 1, 1), as in Type 2b(ii), and not as in Type 2b(i) of Figure3. Call this theAlternating Faces Rule(AF
Rule for short). With this rule, we have now completely specified the Regularized Cxyz Algorithm. See
AppendixA.4 for the correctness proof of Regularized Cxyz algorithm.

5 Balanced Cxyz Algorithm

We now extend the Regularized Cxyz Algorithm to the Balance Cxyz Algorithm. This extension aims at
reducing the number of unnecessary splits. The idea is to allow the widths of edge neighbors to differ by a
factor of≤ 2; this is called “balancing”. The tradeoff is that we are faced with more involved connection rules
and correctness analysis. The Subdivision Phase is the same as in the regularized case. For the Refinement
Phase, we need some notation. Leti ∈ {x, y, z}. An edge of a box is ani-edgeif it is parallel to thei-axis.
The i-width of a box is the length of itsi-edges. An octree isi-balancedif for all pairs of candidate boxes
B,B′ which are edge-neighbors, then thei-widths ofB andB′ is within a factor of2 of each other. The octree
is balancedif it is i-balanced for alli = x, y, z. This general definition will be used later for the Rectangular
Cxyz Algorithm. For now, we only do full splits and we can usew(B) as the definition of width.

In the rest of the Balanced Cxyz Algorithm, all our queues will be minimum priority queues. The compari-
son criterion for these queues isw(B) for each boxB. The Refinement Phase has three sub-phases:

Refinement Phase:
1. T ′

1
← Balance(T1)

2. For each candidate box inT ′

1
, introduce vertices in the middle of bichromatic edges.

3. T2 ← Disambiguate(T ′

1
)

The first sub-phaseBalance(T1) amounts to splitting any candidate boxB that has an edge-neighbor of
width > 2w(B). At the end of this sub-phase, we say the octree is “balanced”. The thirdsub-phase is based
on the concept of ambiguity which we next introduce.

¶12. Disambiguation Sub-phase We want to call certain boxes “ambiguous” if there is not enough infor-
mation to do a MC-like construction, and this is resolved by splitting the ambiguous box. This may in turn
cause new boxes to become ambiguous. In the following we will identify three kinds of ambiguity.

Let us indicate the issues that arise if we simply replaceC1 by Cxyz in the Balanced (Cxyz) Algorithm.
Consider an horizontally-stretched hyperboloid as in Figure6 (a1). We run the Balanced Algorithm on this
hyperboloid, and the Subdivision Phase terminates with the10 boxes shown in Figure6 (a2). Clearly, both
of the two larger boxes (B1 andB3) satisfyCx. The output graph obtained by our connection rules (in the
Regularized Algorithm) is the yellow polytopeG seen in Figure6(a2). SinceG forms a closed surface, it
is clearly wrong. An error occurred in boxB1 (and alsoB3) whereS ∩ B1 is a tube whileG ∩ B1 is a
planar surface. If we had splitB1, we would have discovered this error. We sayB1 (resp.,B3) has “3D
ambiguity”. A similar problem is seen in Figure6(b1), corresponding to “2D ambiguity” in each of the boxes
B1, B3, B4, B6. SupposeB satisfiesCy. Then we sayB has3D ambiguity if the interior of its top or bottom
faces has four vertices. We sayB has2D ambiguity if one or more of its vertical faces has exactly two
vertices on the same edge. Note that this edge is not a vertical edge becauseCy(B) is satisfied.

6

(B1)

(a2)

(a1) (b1)

(b2)

(B1) (B2) (B3)

(B1) (B2) (B3)

(B4) (B5) (B6)

(B3)(B2)(B1)

(B4) (B5) (B6)

(B3)(B2)

Figure 6: Examples of 2D and 3D ambiguity.

This definition is modified accordingly ifB satisfiesCx or Cz. In Figure6(a1), the ambiguous boxes
satisfiesCx. In Figure6(b1), the ambiguous boxes might satisfyCx orCz.

We now describe the third kind of ambiguity. Its motivation will be become clearerin the Construction Phase
below. Leti ∈ {x, y, z} be the monotone direction of a boxB. We sayB has analternating ambiguity if it
properly contains thei-faceF of its neighbor, and thisF is alternating.

Finally, a boxB is said to beambiguousif it is 2D, 3D or alternating ambiguous.

LEMMA 2. If we split an ambiguous boxB into 8 subboxes, none of these subboxes will be ambiguous.

Nevertheless, splitting of ambiguous boxes might induce its edge-neighborsto become ambiguous. and
also cause the octree to be unbalanced. The re-balance procedure is very local, we only need to propagate the
“modified” boxes. We will next describe the Construction Phase for the Balanced Cxyz Algorithm.

¶13. Construction Phase Let F be a face of some boxB. Our first goal is to connect the vertices onF
by arcs. LetB′ be a neighbor ofB that shares part ofF as a common face. There are two possibilities: If
B′ ∩ B = F , thenB′ has width at least that ofB. This is the case we are interested in: callF active in this
case. Otherwise,F is inactive; this meansB′ must have width that is half that ofB. We are not interested
in inactiveF because we would have processed the faces ofB′ beforeB, and in particular, any vertex inF
would have been processed. Henceforth, we will only focus on arc connections for active faces.

Recall that at the end of the Refinement Phase, we have an octreeT2 in which all the bichromatic edges
have a vertex in its middle. Our goal is to connected pairs of these vertices intoarcs. Define anarc loop to be
a closed curve comprising of such arcs on the boundary of a boxB. The Construction Phase has three steps:

Construction Phase:
LetQ be a priority queue of the candidate boxes inT2.
While (Q is non-empty)

Remove a boxB fromQ
1. Arc connect the vertices on the active faces ofB
2. Group the arcs onB’s boundary into arc loops
3. Triangulate the arc loops on the boundary ofB

Steps 2 and 3 are straightforward. In the following, we will describe how toimplement Step 1.

¶14. Sign Types of Active Faces Note that each edge of an active face can have at most two vertices. There
might be a neighborB′ of B that shares an edge with an activeF . If B′ has smaller width thanB, then a
corner ofB′ would be the midpoint of an edge ofF . Therefore, in considering sign types ofF , we need to
consider signs of such midpoints. There can be up to8 signs on the boundary ofF . The possibleSign Types

7

of such faces are enumerated in Figure7 – there are 13 in number. The sign type ofF will uniquely determine
the vertices that are introduced intoF (as illustrated in Figure7).

(8)∗

(2c)(2b)(0) (2a) (4a)∗ (4b)

(4d) (4e)∗ (6a)∗

(4c)

(6b)∗ (6c)∗

Figure 7: Sign Types of active faces.

¶15. Arc Types of Active Faces Let F be an active face, and supposeF bounds two boxesB andB′, i.e.,
F = B ∩ B′. The rule for arc connection inF depends on whetherF is (known to be) “parametrizable” or
not. Let us define this concept. We sayF is known parametrizable if F is parallel to the monotone direction
of B orB′. Otherwise,F is said to benot known parametrizable.

AssumeB is aCy box. Then the four faces ofB which are parallel to they-direction are clearly known
parametrizable faces. It follows from our analysis for curves [14] that each of these faces can have at most4
vertices. SoB can have at most16 vertices on its edges. Indeed, it is easy to see that16 vertices can arise.
Our connection rule for the known parametrizable faces can follow the rules given in [14]. For reference, call
this theparametrizable face rulewhich is reproduced in Figure8.

It remains to give the connec-++

−

−

++

+

+

+

(e)

−

−

+

(f)

−+

(b) (d)
+−

(c)
+

(a)

+

− +

+

−

+

+

+

−

+

−

+

−

Figure 8: Parametrizable Face Rules.

tion rule for the case whereF
is not known parametrizable. In
the Regularized Algorithm, the
arc connections onF may be ar-

bitrary, as long as we ensure block-wise consistency. But the BalancedCxyz Algorithm needs a new approach.
We define the termi-block (i ∈ {x, y, z}) for the balanced octreeT2. For definiteness, leti = y. A y-block
B is a sequenceB1, . . . , Bt of candidate boxes ofT2 such that (1) the bottom face ofBj is the top face of
Bj+1 for j = 1, . . . , t − 1; (2) the monotone direction for eachBi is y; and (3) the block is maximal. Note
that this implies that all the boxes in a block have the same width. Thewidth of the block is defined as the
width of anyBi. Also theend facesof B refers to the top face ofB1 and bottom face ofBt.

Recall that every candidate box in our octreeT2 has been assigned or inherited a monotone direction from
the Subdivision Phase. This partitions the set of candidate boxes ofT2 into blocks as defined above. All the
boundary faces of a block can be connected using the above Parametrizable Face Rule, except for the end
faces which is addressed in the next lemma.

LEMMA 3. LetF be an active end face of a block.
(a) If F is not known parametrizable, then it has at most 2 vertices.
(b) If F is known parametrizable, thenF has at most4 vertices. When there are4 vertices, the sign types are
one of Figure7(4b), (4c) and (4d). These can be connected using the Parametrizable Face Rule.

The correctness of above lemma depends on the fact that we have resolved alternating ambiguities in the
Refinement Phase. The only faces whose connection rule remains undecided after the above discussion are
those in the interior of blocks. We know from previous counter examples that there is a need for global
consistency, but it cannot be solved using a simple fixed rule like the AF Rule. Our solution is as follows:
(1) if all but one face remains unconnected, we can connect this face ina safe way (i.e., one which will not
lead to contradiction). This connection rule will be known as the “Matching Rule”.
(2) in any candidate box, at most two opposite faces cannot be connected by the Parametrizable Face Rule.

To “process” a boxB in the present context means to connect all the vertices on the faces ofB. We can now
processB as follows: if (1) holds, we can processB by using the Matching Rule to connect its remaining
unconnected face. Otherwise (2) holds, and we search in any one of the two directions of the block containing
B, looking at neighboring boxesB1, B2, . . . until we find a boxBk that satisfies (1). Then we apply the

8

Matching Rule toBi for i = k, k − 1, . . . , 1. Thus eachBi is processed, andB can now be processed using
the Matching Rule.

Let us now define theMatch-

(i)

(v) (v’) (v”)

(iii)(ii) (iv)

Figure 9: Examples of matching rules ((i), (ii), (iii) and (iv)) and propagation
rules ((v)→(v’)→(v”)) to connect vertices.

ing Rule for a candidate box
B with parametrization direc-
tion y. Assume thatB’s top
face, as well as the other four
faces parallel toy-direction, have
been connected. Then the Match-
ing Rule tells us how to con-
nect the bottom faceF . Let
v1, v2, . . . , v2m be the vertices

on the boundary ofF . Note thatm ≤ 4. The Matching Rule tells us to introduce the arc(vi, vj) if there exists
a path of arcs on the boundary ofB from vi to vj . Note that this rule yields a unique way to connect all the
vertices onF . Figure9 illustrates this Matching Rule. The correctness proof of the Balanced CxyzAlgorithm
follows the same structure as that of the Regularized Cxyz Algorithm: See AppendixA.5 for the correctness
proof of Balanced Cxyz algorithm.

6 Rectangular Cxyz Algorithm – Exploiting Anisotropy

The ability to have partial splits (i.e., half-splits or quarter-splits) can be highlyadvantageous. We design an
algorithm calledRectangular Cxyz Algorithm to exploit this. A technique from the 2-D version [14] can be
applied here, though the details are considerably more complicated. To ensure termination, we must fix some
arbitrary upper boundρ > 1 on the aspect ratio of any inconclusive box. Theaspect ratioof a box is the ratio
of the lengths of the longest edge to shortest edge. Please refer to [13] and AppendixA.2 for details.

7 Experimental Results

Our algorithms are implemented inJava on the Eclipse Platform. All examples are run on an Intel Core2 Duo
Mobile Processor T2500 (2.0Ghz, 667FSB, 2MB shared L2 Cache) and 2.0Gb of RAM. We use the default
Java heap memory 256MB (some runs result in OutOfMemoryError (OME)). We plan to convert theJava
codes toC++ for distribution with our open sourceCore Library. We implemented four algorithms: PV,
Balanced Cxyz, Balanced Cxyz with epsilon precision, and Rectangular Cxyz. These are abbreviated as PV,
Cxyz, Cxyze, and Rect-n (wheren is the maximum aspect ratio). Table 1 lists11 examples of our tests.
Figure10 visualizes the surfaces of Eg2, Eg3, Eg6 and Eg7. Table 2 compares thenumber of boxes and
timings (in ms) among Cxyz, PV, and Rect-n (n = 2, 4, 8, 16, 32). The percentages represent the relative
number of boxes and the relative timing, with Cxyz as 100%. See AppendixA.1 for additional images.

Curve name Equationf(x, y, z) = 0 Original Box

Eg1 tangle cube x4
− 5x2 + y4

− 5y2 + z4 − 5z2 + 10 [(−8,−8,−8), (8, 8, 8)]

Eg2 chair (x2 + y2 + z2 − 23.75)2 − 0.8((z − 5)2 − 2x2)((z + 5)2 − 2y2) [(−8,−8,−8), (8, 8, 8)]

Eg3 quartic cylinder y2x2 + y2z2 + 0.01x2 + 0.01z2 − 0.01 [(−8,−8,−8), (8, 8, 8)]

Eg4 quartic cylinder y2(x − 1)2 + y2(z − 1)2 + 0.01(x − 1)2 + 0.01(z − 1)2 − 0.2002 [(−5,−5,−5), (7, 7, 7)]

Eg5 quartic cylinder y2(x − 1)2 + y2(z − 1)2 + 0.01(x − 1)2 + 0.01(z − 1)2 − 1.0002 [(−12,−12,−12), (14, 14, 14)]

Eg6 shrek −x4
− y4

− z4 + 4(x2 + y2z2 + y2 + z2x2 + z2 + x2y2) − 20.7846xyz − 10 [(−8,−8,−8), (8, 8, 8)]

Eg7 tritrumpet 8z2 + 6xy2
− 2x3 + 3x2 + 3y2

− 0.9 [(−8,−8,−8), (8, 8, 8)]

Eg8a eclipse x2 + 102y2 + 102z2 − 1 [(−8,−8,−8), (8, 8, 8)]

Eg8b(n) (n = 2, 4, 6) eclipse x2 + 10ny2 + 10nz2 − 1 [(−7,−7,−7), (8, 8, 8)]

Table 1: Equations and input boxes of examples

(1) Cxyz is at least as good as PV, and is significantly faster than PV in mostexamples. In Eg8b(4), Cxyz is
7.5 times faster than PV. In Eg8b(6), Cxyz spends1.3 seconds to construct the mesh, compared to PV which
spends more than70 seconds and runs out of memory. Rect is the fastest in both Eg8b(4) andEg8b(6): Rect-2
spends 141 ms for Eg8b(4), and 172 ms for Eg8b(6). The only exception is Eg8a where Cxyz and PV produce
the same number of boxes, and spend the same amount of time. In Eg8b(2), we use the same function as Eg8a,
but with an asymmetric original box. Cxyz is twice as fast as PV. Also note thatin the Eg3, Cxyz and PV

9

(a) Eg2:chair (b) Eg3:quartic cylinder (c) Eg6:shrek (d) Eg7:tritrumpet

Figure 10: Approximation of various examples in Table 1.

also produce the same number of boxes, but Cxyz is faster than PV because the computational cost for theC1

predicate is bigger than theCxyz predicate.
(2) Rect can be significantly faster than Cxyz, but the performance of Rect is inconsistent. In Eg3, Rect-32

takes11.8% of Cxyz’s time; and in Eg8b(6), Rect-2 takes12.8% of Cxyz’s time. The input surface for these
examples are very long and thin, allowing Rect to take advantage of larger aspect ratios. The results show
that although Rect produces fewer boxes than Cxyz in all examples but Eg8b(2), the running time of Rect is
not always faster than the Cxyz (as in Eg2 with a “squarish” input surface). This is because Rect must spend
more time checking splitting criteria, and processing boxes in3 directions.

(3) Increasing the maximum aspect ration in Rect does not necessarily improve the performance of the
algorithm. In Eg3, increasing the maximum aspect ratio directly improves the performance of Rect; but in
Eg8b(6), it has an opposite effect. This is because increasing the maximumaspect ratio might cause the boxes
to “over split” in one direction, which is also the reason for the inconsistencyof Rect. Another example for
over-splitting in Rect is Eg2, where Rect-n spends more time than Cxyz. Figure17 in Appendix shows the
resulting boxes, meshes, and details by running Cxyz, Rect-8, and Rect-32 on Eg2.

Equation Cxyz PV Rect-2 Rect-4 Rect-8 Rect-16 Rect-32

Eg1 2584 / 391 198% / 184% 42% / 148% 50% / 168% 66% / 200% 81% / 236% 103% / 288%
Eg2 26104 / 4516 406% / 349% 51% / 163% 76% / 236% 98% / 302% 118% / 372% 141% / 451%
Eg3 35792 / 3437 100% / 112% 33% / 82% 18% / 47% 9% / 28% 6% / 17% 3% / 12%
Eg4 80662 / 10282 OME>90sec. 54% / 174% 41% / 129% 34% / 105% 36% / 115% 33% / 103%
Eg5 134163 / 17187 OME>90sec. 48% / 205% 28% / 86% 23% / 71% 21% / 65% 20% / 61%
Eg6 31144 / 4046 319% / 296% 44% / 134% 52% / 171% 62% / 208% 70% / 255% 77% / 283%
Eg7 1688 / 328 172% / 128% 47% / 109% 50% / 119% 61% / 129% 74% / 138% 98% / 176%
Eg8a 400 / 94 100% / 100% 44% / 133% 50% / 149% 58% / 166% 68% / 166% 80% / 183%
Eg8b(2) 274 / 125 789% / 200% 54% / 87% 56% / 87% 72% / 100% 82% / 112% 102% / 112%
Eg8b(4) 1247 / 203 1774% / 754% 28% / 69% 34% / 69% 39% / 77% 44% / 85% 53% / 100%
Eg8b(6) 15226 / 1343 OME>70sec. 5% / 13% 5% / 14% 6% / 15% 6% / 15% 7% / 16%

Table 2: Cxyz vs. PV vs. Rect-n

(4) We also ran our algorithm on the high order polynomialf(x, y, z) = x300 + y300 + z300 − 1 = 0. To
construct a correct mesh, Cxyz uses 188 ms; PV uses 219 ms; Rect-2 uses 296 ms and Rect-4 uses 375 ms.
This shows that subdivision algorithms can perform well when the input function is a high degree polynomial.
On the other hand, starting from Rect-8, there are overflow/underflow errors. This problem can be resolved if
we use a library like ourCore Library.

8 Conclusion

This paper introduces new algorithms for the isotopic approximation of implicit surfaces. Our algorithms are
relative simple, efficient and easy to implement. A main idea is to exploit parametrizability (as in Snyder) and
nonlocal isotopy (as in Plantinga & Vegter), and we further extend this ideato anisotropic subdivision. Our
comparison with three algorithms (PV, Balanced Cxyz, and Rectangular Cxyz) show that our Cxyz Algorithm
is consistently more efficient than PV and the Rectangular Cxyz Algorithm canexhibit significant speedup.
But the precise way to exploit anisotropy remains a research problem. Themajor open problem is to extend
this work to higher dimensions. It is a challenge to find faster methods for surface refinement. Finally two
general open problems are the effective treatment of singularity using numerical methods, and the complexity
analysis of subdivision algorithms.

10

References

[1] S. Basu, R. Pollack, and M.-F. Roy.Algorithms in Real Algebraic Geometry. Algorithms and Computa-
tion in Mathematics. Springer, 2003.

[2] J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, and G.Vegter. Meshing of surfaces. In
Boissonnat and Teillaud [5]. Chapter 5.

[3] J.-D. Boissonnat, D. Cohen-Steiner, and G. Vegter. Isotopic implicit surfaces meshing. InACM Symp.
Theory of Comput., pages 301–309, 2004.

[4] J.-D. Boissonnat and S. Oudot. Provably good sampling and meshing of surfaces.Graphical Models,
67(5):405–451, 2005.

[5] J.-D. Boissonnat and M. Teillaud, editors.Effective Computational Geometry for Curves and Surfaces.
Springer, 2006.

[6] M. Burr, S. Choi, B. Galehouse, and C. Yap. Complete subdivision algorithms, II: Isotopic meshing
of singular algebraic curves. In33th Int’l Symp. Symbolic and Alge. Comp. (ISSAC’08), pages 87–94,
2008. Hagenberg, Austria. Jul 20-23, 2008. Accepted for SpecialIssue of ISSAC 2008 in JSC. Also, in
arXiv:1102.5463.

[7] S.-W. Cheng, T. Dey, E. Ramos, and T. Ray. Sampling and meshing a surface with guaranteed topology
and geometry. InProc. 20th ACM Symp. on Comp. Geom., pages 280–289, 2004.

[8] A. Eigenwillig, L. Kettner, E. Schmer, and N. Wolpert. Complete, exact, and efficient computations with
cubic curves. In20th ACM Symp. on Comp. Geom., pages 409 – 418, 2004. Brooklyn, New York, USA,
Jun 08 – 11.

[9] Exact Geometric Computation homepage, Since 1996. FAQs, downloads, documentation and links from
URL http://cs.nyu.edu/exact/.

[10] H. Hong. An efficient method for analyzing the topology of plane real algebraic curves.Mathematics
and Computers in Simulation, 42:571–582, 1996.

[11] N. Kamath. Subdivision algorithms for complex root isolation: Empirical comparisons. Master’s thesis,
Oxford University, Oxford Computing Laboratory, Aug. 2010.

[12] N. Kamath, I. Voiculescu, and C. Yap. Empirical study of an evaluation-based subdivision algorithm for
complex root isolation. In4th Intl. Workshop on Symbolic-Numeric Computation (SNC), pages 155–164,
2011.

[13] L. Lin. Adaptive Isotopic Approximation of Nonsingular Curves and Surfaces. Ph.D. thesis, New York
University, Sept. 2011.

[14] L. Lin and C. Yap. Adaptive isotopic approximation of nonsingular curves: the parameterizability and
nonlocal isotopy approach.Discrete and Comp. Geom., 45(4):760–795, 2011. Special Conference Issue
based on 25th ACM Symp. on Comp.Geom, 2009.

[15] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution3D surface construction algorithm.
In M. C. Stone, editor,Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pages 163–169,
July 1987.

[16] R. Martin, H. Shou, I. Voiculescu, A. Bowyer, and G. Wang. Comparison of interval methods for plotting
algebraic curves.Computer Aided Geometric Design, 19(7):553–587, 2002.

11

[17] R. E. Moore.Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

[18] S. Plantinga and G. Vegter. Isotopic approximation of implicit curves and surfaces. InProc. Eurograph-
ics Symposium on Geometry Processing, pages 245–254, New York, 2004. ACM Press.

[19] H. Ratschek and J. Rokne.Computer Methods for the Range of Functions. Horwood Publishing Limited,
Chichester, West Sussex, UK, 1984.

[20] H. Ratschek and J. G. Rokne. SCCI-hybrid methods for 2d curvetracing. Int’l J. Image Graphics,
5(3):447–480, 2005.

[21] M. Sagraloff and C. K. Yap. A simple but exact and efficient algorithm for complex root isolation. In
36th Int’l Symp. Symbolic and Alge. Comp. (ISSAC’11), pages 353–360, 2011. June 8-11, San Jose,
California.

[22] E. Schoemer and N. Wolpert. An exact and efficient approach for computing a cell in an arrangement of
quadrics.Comput. Geometry: Theory and Appl., 33:65–97, 2006.

[23] R. Seidel and N. Wolpert. On the exact computation of the topology of real algebraic curves. InProc.
21st ACM Symp. on Comp. Geom., pages 107–116, 2005. Pisa, Italy.

[24] J. M. Snyder. Interval analysis for computer graphics.SIGGRAPH Comput.Graphics, 26(2):121–130,
1992.

[25] B. T. Stander and J. C. Hart. Guaranteeing the topology of an implicit surface polygonalization for
interactive meshing. InProc. 24th Computer Graphics and Interactive Techniques, pages 279–286,
1997.

[26] G. Taubin. Distance approximations for rasterizing implicit curves.ACM Transactions on Graphics,
13(1):3–42, 1994.

[27] G. Taubin. Rasterizing algebraic curves and surfaces.IEEE Computer Graphics and Applications,
14(2):14–23, 1994.

12

A Appendix

In this appendix, we provide details of the correctness proofs. Correctness is nontrivial because our exploita-
tion of non-local isotopy forces us to do global arguments. Most of the proofs are included here, but the
omitted ones may be found in Lin’s Thesis [13, 9]. First, we show more figures from our experiments.

A.1 More Examples

This section illustrates the surfaces for Eg.2 to Eg.7 in Table 1 using Cxyze, PV, Cxyz and Rect-n. n is
selected in a way that Rect-n is the fastest among all Rect algorithms.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 11: Approximation of Eg2: chairf(x, y, z) = (x2 + y2 + z2 − 23.75)2 − 0.8((z − 5)2 − 2x2)((z +
5)2 − 2y2) = 0.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-32

Figure 12: Approximation of Eg3: quartic cylinderf(x, y, z) = y2x2+ y2z2+0.01x2+0.01z2− 0.01 = 0.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 13: Approximation of Eg6: shrekf(x, y, z) = −x4 − y4 − z4 + 4(x2 + y2z2 + y2 + z2x2 + z2 +
x2y2)− 20.7846xyz − 10 = 0.

A.2 Rectangular Cxyz Algorithm

The ability to have partial splits (i.e., half-splits or quarter-splits) can be highlyadvantageous. We design such
an algorithm, known as the Rectangular Cxyz Algorithm. A technique from the Rectangular Cxy Algorithm
[14] can be applied (the implementation details are considerably more complicated). To ensure termination,
we must fix some arbitrary upper boundρ > 1 on the aspect ratio of any inconclusive box. Theaspect ratio
of a box is the ratio of the lengths of the longest edge to shortest edge. Forthe Subdivision Phase, we test

13

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 14: Approximation of Eg7: tritrumpetf(x, y, z) = 8z2 + 6xy2 − 2x3 + 3x2 + 3y2 − 0.9 = 0.

(a) Cxyz (b) Rect-32

Figure 15: Approximation of Eg4: quartic cylinder1f(x, y, z) = y2(x− 1)2+ y2(z− 1)2+0.01(x− 1)2+
0.01(z − 1)2 − 0.2002 = 0.

(a) Cxyz (b) Rect-32

Figure 16: Approximation of Eg5: quartic cylinder2f(x, y, z) = y2(x− 1)2+ y2(z− 1)2+0.01(x− 1)2+
0.01(z − 1)2 − 0.1002 = 0.

each boxB as follows. We go through the following list of predicates which amounts to checkingC0 orCxyz

on the whole, half-, quarter- parts ofB. This list of of predicates is given as (2) in the Appendix.

L0 :
Cout : C0(B)
Cin : Cxyz(B)
L1 :
Cout : C0(B1234), C0(B5678), C0(B1278), C0(B3456), C0(B1458), C0(B2367)
Cin : Cxyz(B1234), Cxyz(B5678), Cxyz(B1278),

Cxyz(B3456), Cxyz(B1458), Cxyz(B2367)
L2 :
Cout : C0(B12), C0(B34), C0(B56), C0(B78), C0(B14), C0(B23),

C0(B67), C0(B58), C0(B18), C0(B27), C0(B36), C0(B45)
Cin : Cxyz(B12), Cxyz(B34), Cxyz(B56), Cxyz(B78), Cxyz(B14), Cxyz(B23),

Cxyz(B67), Cxyz(B58), Cxyz(B18), Cxyz(B27), Cxyz(B36), Cxyz(B45)

(2)

14

(a) Cxyz (b) Rect-8 (c) Rect-32

Figure 17: Boxes, meshes, and details of Eg2 using Cxyz, Rect-8 and Rect-32. Note that the triangles are
elongated as the maximum aspect ratio increases.

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

Figure 18: (a)-(e): Approximations of quartic cylinder1f(x, y, z) = y2(x − 1)2 + y2(z − 1)2 + 0.01(x −
1)2 + 0.01(z − 1)2 − 0.2002 = 0 using Rect-n (n = 2, 4, 8, 16, 32). (f)-(j): Local topology preservation in
the squared area of the approximations.

In this list, the subboxes ofB are labeled using some fixed convention1 for labeling the 8 orthants of the
coordinate system. This list has three sublists (L0, L1, L2). If a condition inL0 is verified we tagB as an in-
or out-box, accordingly. If a condition inL1 (L2) is verified, we half- (quarter-) split to produce a child that
satisfies that condition, and tag that child accordingly. If no condition is verified, we do a full-split. Finally,
for balancing, we balance in thex-, y- andz-directions independently. This could create pairs(B,B′) of
neighboring boxes whereB ∩ B′ = F butF is a proper subface ofB and ofB′. We half-split eitherB or
B′ to makeF a face of a subbox. Now,F would be active, and this allows our former analysis to work. The
Disambiguation Sub-phase and Construction Phase are unchanged.

1 Unlike the 2-D case, there seems to be no universally accepted convention for this. See, e.g.,
http://godplaysdice.blogspot.com/2007/09/convention-for-quadrantoctantorthant.html. We will use the gray code to label suc-
cessive orthants, starting from1 = 000, 2 = 001, 3 = 011, 4 = 010, 5 = 110, 6 = 111, 7 = 101, 8 = 100.

15

A.3 Overview of Correctness Proof

In this section, we will give an overview of the correctness proof, both for the regularized algorithm and the
balanced algorithm. They have a common structure, but we will point out differences.

Correctness means that the output graphG is isotopic toS in the input regionR(T0), denotedG ≃
S (modR(T0)). LetT be the final octree produced by the algorithm.

The proof consists of two major steps. First we show the existence of a surface S̃ that is isotopic toS
via an isotopy that respects the vertices ofT . This means that the intermediate surfaces of the isotopy does
not intersect the vertices ofT . We denote this relation by “S ≃ S̃ (modT)”. Moreover, this surfacẽS has
some nice properties relative toT , namely,S̃ should intersect all the segments and faces ofT in a “clean”
way. Here, “segment” means any edge of a box that does not have a corner in its interior. To intersect a face
“cleanly” means̃S does not intersect the face in any loop. To intersect a segment “cleanly”means̃S intersects
it at most once. To show the existence of such anS̃, we will give a conceptual process to remove loops and
remove pairs of intersections on segments. But we need to define a partial order on loops and pairs and to
show that we can remove minimal elements of this partial order repeatedly. When this partial order is empty,
the surface is clean.

It turns out that to define this partial order, we need to maintain some monotonicity property of the surface
(not the underlying function that defines the surface). Here we see a major difference between the regularized
and the balanced case: in the former, we could remove all the loops beforethe pairs, and so we can define
a separate partial order on loops, and on pairs. In the latter, we need to define a single partial order on their
union.

A maximal set of boxes that are connected by alternating faces is called analternating block. The second
major step is to show thatG ≃ S̃ within each alternating block ofT . Finally, we can conclude thatG ≃ S̃ ≃
S (modR(T)).

A.4 Correctness of Regularized Cxyz Algorithm

We address the correctness of the Regularized Cxyz Algorithm. The proof is subtle, and harder than the2D
Regularized Cxy Algorithm or the3D Regularized PV Algorithm. Our previous2D proof for Cxy does not
seem easy to generalize to3D, so we use a different approach. This proof will form the basis for proving the
correctness of the Balanced Cxyz Algorithm in the next section.

Let T be an octree. We sayS intersects the boundary ofR(T) generically if:

• For each boundary faceF , the surfaceS intersectsF transversally, and does not pass through any
corner ofF .

• The setS ∩ F is a finite collection of a finite set of closed loops and/or open curves. By anopen curve,
we mean one that has two distinct endpoints. The loops lie in the interior ofF , and the open curves
terminate transversally on the edges ofF .

First, we will prove the termination of the subdivision phase. LetT0 denote the octree representation of the
original nice regionR0.:

LEMMA 4. If S = f−1(0) intersects the boundary ofR(T0) generically, and iff has no singularities in
R(T0), then the subdivision phase will terminate.

Proof. If the subdivision phase does not terminate, then there is an infinite decreasing sequence of boxes
B0 ⊃ B1 ⊃ · · · such that eachC0(Bi) andCxyz(Bi) fail. Thus:

0 ∈ (f(Bi) ∩ fx(Bi) ∩ fy(Bi) ∩ fz(Bi)). (3)

The boxesBi must converge2 to some pointp ∈ R(T0) asi → ∞. Since f is a box function forf , we
conclude that f(Bi)→ f(p). Then (3) implies0 = f(p) = fx(p) = fy(p) = fz(p). Thus,f has a singular
point inR(T0). Q.E.D.

2 The existence ofp depends only on the existence of a boundr on the maximum aspect ratio – so this proof applies in the more
general setting of Rectangular Cxyz Algorithm later.

16

From now on, letT be the octree at the termination of the Regularized Cxyz Algorithm, andG be the graph
constructed by our rules fromT .

¶16. Monotone Surfaces Let S ⊆ R
3 be a continuous surface,B ⊆ R

3 be a rectangular box andi ∈
{x, y, z}. An i-line is a straight line that is parallel to thei-axis.

We sayS is i-graph-like in B if |S ∩ B ∩ L| ≤ 1 for everyi-line L. We sayS is i-monotonein B if it is
i-graph-like and we can assign a plus or negative sign to each connectedcomponent ofB \ S so that adjacent
components have different signs and for eachi-line L that is directed in the increasingi-direction, the lineL
never pass from a negative region to a positive region. In2D case, we can similarly definei-monotoneon the
facesF of B. 2D examples of graph-like and monotone cases are shown in Figure19. Note thatL may keep
the same sign as it passes throughF/S, or it may change from a positive to a negative region.

+
(a)

+

-

(b)

+

- -

+

- -

+

-

+

-+

+

--

++

+

Figure 19: (a)S ∩B is graph-like inB but not monotone, (b)S ∩B is monotone.

Here is an alternative characterization ofi-monotone:

LEMMA 5. LetB = Ix×Iy×Iz. Thenf is z-monotone inB iff there is a continuous functionφ : Ix×Iy → Iz
such that the graphgr(φ) = {(x, y, φ(x, y)) : (x, y) ∈ Ix × Iy} of φ is equal toS in the interior ofB, i.e.,

gr(φ) ∩ int(B) = S ∩ int(B).

The easy proof is omitted. Note that if(x, y) ∈ Ix × Iy and(x, y, φ(x, y)) /∈ S thenφ(x, y) must be either
max Iz ormin Iz. The continuity of the functionφ is necessary to ensure monotonicity.

We simply say “graph-like” or “monotone” ifi is understood from the context. For specificity, we usually
let i = y in illustrations. These definitions also make sense in2D whereS is a curve andB is a planar
rectangle.

LEMMA 6. SupposeS = f−1(0) wheref : R3 → R. For any boxB, if ∂f
∂i
(p) 6= 0 for all p ∈ B thenS is

i-monotone inB.

This lemma shows the origin of our monotonicity concept, and the proof of it is immediate. Next, suppose
T is the octree produced by our regularized Cxyz algorithm on the input function f . Then for each boxB in
T which is intersected byS = f−1(0), there is a directioni = iB ∈ {x, y, z} such thatS is i-monotone in
B. Let i : T → {x, y, z} denote this (canonical) direction. Hence for each candidate boxB ∈ T , we have a
fixed directioni, whereS is i-monotone inB.
S is monotone in T if S is i-monotone in each boxB in T for somei ∈ {x, y, z}. Let S andS̃ be two

surfaces. We saỹS preserves themonotonicity of S in T if for any candidate boxB in T , if S is i-monotone
in B, thenS̃ is alsoi-monotone onB.

In our proof, we will begin with a surface that is monotone in all the candidateboxes inT , and we will
repeatedly modifyS to someS̃ which preserves the monotonicity ofS in T . What is important is that we can
basically “forget” about the original functionf as we do this modification, and we do not have to produce a
suitablef̃ with the property that̃f−1(0) = S̃.

Relative to a surfaceS, an edgeE is dirty if |S ∩ E| ≥ 2 or S intersectsE tangentially, and a faceF is
dirty if S∩F contains a loop (i.e., closed curve) orS intersectsF tangentially. The opposite of dirty isclean.
A surfaceS̃ is clean if every edge and face ofT is clean relative tõS.

For the correctness3 of our algorithm, we must modify our algorithm to do special “boundary processing”
so thatT is clean relative toS on the boundary faces. This processing amounts doing root isolation on the

3 All our correctness is up to an infinitesimal perturbation off . It means that our algorithms miss tangential intersections of
S ∩R(T), when these components only occur on the boundary ofR(T). On the other hand, tangential intersections ofS ∩R(T) in
the interior ofR(T) are excluded by explicit assumption.

17

edges on∂R(T), followed by the2D Cxy algorithm on the boundary ofR(T). These1D and2D processing
are performed by splitting boxes in the octree. Boundary processing in theCxyz Algorithm is similar to the
Cxy Algorithm. For the following part, we will assume that the surfaceS intersects∂R(T) cleanly.

Note that for a boxB, S ∩B might be comprised of several connected components, but one can prove that
(in the Regularized Cxyz algorithm) all these components must belong to the same(global) component of
S ∩R(T). Note that each component ofS can give rise to zero, one, or more components ofS ∩R(T).

¶17. Partial Order on Pairs We fix the usual octreeT andf that defines the surfaceS = f−1(0). Let
P(S) denote the set of allpairs of points{p, q} such that there is an edgeE of T , {p, q} ⊆ E ∩ S and the
segment[p, q] intersectsS in an even number of points.Note that the definition of pair in Cxyz Algorithm is
more general than the definition of convergent pair in Cxy Algorithm.We assume thatP(S) is a finite set. We
also regard the empty setO as a special element ofP(S); all other pairs are callednon-empty pairs. We say
P(S) is trivial if its only member isO.

F+x

(b)
p q

z

y

x

a1

(b)
p q

Cp = Cq

p′ q′

Cq = Cq′Cp = Cp′

(d)

B′′

E

B′

B F+y

F−y

F−x

a2 a3 a4 a5

E

(a)

Figure 20: (a) Pairs on edgeE, (b) {p, q} ≻ {p′, q′}, (c) {p, q} ≻ O

Example: Figure20(a) shows an edgeE with 5 intersection points withS. There are6 pairs onE given by

{a1, a2} , {a2, a3} , {a3, a4} , {a4, a5} , {a1, a4} , {a2, a5} .

In general, an edge withn intersection points withS determinesp(n) pairs wherep(0) = 0 and forn ≥ 1,
p(n) = p(n− 1) + ⌈(n− 1)/2⌉. Sop(1) = 0, p(2) = 1, p(3) = 2, p(4) = 4, p(5) = 6.

We define a relationship between pairs ofP(S). For any faceF of T , we consider the connected curve
components ofF ∩ S. If o is a point inS ∩ ∂F , letCo denote the connected component ofF ∩ S that haso
as one endpoint. Given two pairs{p, q} , {p′, q′}, we define the relation

{p, q} ≻
{
p′, q′

}
(modF) (4)

if d(p, q) > d(p′, q′) andF has two opposite edges,E andE′ such that{p, q} ⊆ E and{p′, q′} ⊆ E′, and
the connected components ofS ∩ F has this property:Cp = Cp′ andCq = Cq′ . Further define

{p, q} ≻ O(modF) (5)

if {p, q} ⊆ ∂F andCp = Cq. Both the relations (4) and (5) are illustrated in Figure20(b,c).
For pairsA,B ∈ P(S), define the relationA ≻ B if there exists a faceF such thatA ≻ B(modF). Let
� denote the reflexive transitive closure of≻: P � Q iff P = Q or there is a finite sequence of pairs where
P = P0 ≻ P1 ≻ · · · ≻ Pk = Q.

LEMMA 7. The relation(P(S),�) is a partial ordering onP(S)

Proof. We check three properties. LetA,B,C ∈ P(S). Reflexivity: A � A (by definition). Symmetry:
A � B andB � A impliesA = B. This is true ifA or B is equal toO. Otherwise, ifA 6= B, we see
thatA � B implies d(A) > d(B). Similarly, B � A implies d(B) > d(A), contradiction. Transitivity:
A � B � C impliesA � C. This follows from the definition of�. Q.E.D.

18

If A � B, we sayB is “smaller” thanA and we are interested in minimal elements in this partial order.
Intuitively,O is the unique minima inP(S). Towards proving this result, we need a useful property of our

octreeT :

LEMMA 8. Let S be a surface which is monotone inT , andE be any non-boundary edge ofT such that
|S ∩E| ≥ 2. Assume (wlog) thatE is parallel to thez-axis, and the four faces bounded byE areFx, F−x, Fy

andF−y, as in Figure20(d). Then eitherS is x-monotone onFx ∪ F−x, or S is y-monotone onFy ∪ F−y.

Proof. SupposeS is notx-monotone onF−x. Consider the boxB lying aboveF−x. SinceS cannot be
z-monotone inB (becauseE intersectsS in more than one point) and it cannot bex-monotone (sinceS is not
x-monotone onF−x), we conclude thatS must bey-monotone inB. The same reasoning implies thatS must
bey-monotone in the boxB′ belowF−x. This concludes thatS must bey-monotone onFy ∪ F−y. Q.E.D.

LEMMA 9. The empty setO ∈ P(S) is the unique minimal element ofP(S).

See [13] Lemma 23 for the proof of this lemma.

¶18. Cleansing Strategy We are going to transformS to another surfacẽS that is clean relative toT . We
do this by transformingS isotopically toS̃. A difficult problem in this transformation is that it is very hard to
keep track of the nice properties of the originalf with respect toT . For instance, we know that each candidate
boxB of T must satisfyCf

xyz(B). We first overview the cleansing processes:

1. First, we clean all faces. Here we can exploit the original property off . Becausef is monotone in
some coordinate direction in each boxB, there cannot be loops in two adjacent faces ofB. Moreover,
the set of all such loops has a natural nesting partial order in each coordinate direction.

2. Next, assuming all the faces are clean, we can clean edges. Actually, we cannot clean an entire edge at
once, but we remove pairs fromP(S), one pair at a time. LetS = S0 and we construct a new surface
Si+1 from Si by removing one pair. The fact thatP(Si+1) is a proper subset ofP(Si) allows us to
preserve the partial order that is induced from the originalP(S) = P(S0). We show that each pair
removal does not introduce any loop. So, at the end of this process, wehave a surfaceSk that is clean,
and isotopic toS.

We next give details of these cleansing routines.

¶19. Cleaning Faces Consider the set of loops ofS in faces of our octreeT . Denote this set byL(S), and
as before, introduce an artificial elementO in L(S). We sayL(S) is trivial if its only member isO. We also
assume thatL(S) is a finite set.

Let L,L′ be two distinct loops ofL(S), and they lie on the boundary of a common boxB. LetCL denote
the connected component ofS∩B that is bounded byL. Wlog, letf bey-monotone inB. This implies thatL
andL′ can only lie ony-faces ofB. These twoy-faces can be distinct or the same. We writeL ≻ L′(modB)
if CL = CL′ and they-projection ofL′ is contained in the interior of they-projection ofL (by y-projection,
we mean the projection onto they = 0 plane). Note that eitherL ≻ L′ or L′ ≻ L must occur becausef is
y-monotone inB. This ensures that we have a global partial ordering onL(S). This global property is derived
from our original functionf , and is critical for our proof. We must carry some of this information along in
the induction, even after we have transformedf . Also, observe that the partial ordering can be naturally
partitioned into three subrelationsL(S) = Lx(S) ∪ Ly(S) ∪ Lz(S), corresponding to the three coordinate
directions.

Note that there can be several loopsL(i) (i = 1, 2, . . .) such thatL ≻ L(i). TheseL(i) can lie in the same
face asL or in the opposite face. A fundamental property of this relation is this:

LEMMA 10. For each loopL′, there is at most oneL such thatL ≻ L′.

19

Proof.Say these loops lie ony-faces. IfL ≻ L′(modB), then they-projection ofL′ is in the interior of the
y-projection ofL. Moreover, the componentCL ⊆ B ∩ S projects into the interior ofL. If L0 ≻ L′ for some
loopL0, then we see thatCL0 = CL andL0 = L. Q.E.D.

In the special case where the boundary ofCL is connected, then we have∂CL = L. In this case, we write
L ≻ O(modB). This produces a partial order on the set of all loops (treatingO as a special loop). Moreover,
O is the unique minimum in this partial order. IfL ≻ O(modB), we callCL ⊆ B acap. Our transformation
for loops amounts to repeated removing caps. Initially, letS0 = S. We will define a sequence of surfaces,
S1, S2, . . . such that the loopsLy(Si+1) is a proper subset ofLy(Si) for eachi.

LetL ≻ O in Ly(Si) lies in the faceF and supposeB′ is another box that is bounded byF . We can easily
define a(B ∪ B′)-isotopy to transformSi to Si+1 in whichL does not occur inLy(Si+1), but all the other
loops ofLy(Si) remains. Of course, ifL′ ≻ L in Ly(Si), the removal ofL may induce the new relation
L′ ≻ O in Ly(Si+1).

Eventually,Ly(Si) becomes trivial and contains onlyO. We can independently repeat this argument on
Lx(Si) andLz(Si). All faces are clean whenL(S) is empty.

¶20. Semi-loops and BasesWe now have clean faces. To discuss the cleansing of edges, we need some
additional concepts. SupposeF is a face and the surface intersectsF in a number of curves, including loops
(i.e., curve components with no endpoints). A non-loop curve componentC whose two endpoints lie on the
same edgeE of F is called asemi-loop (E.g.,C on Fy+ or C ′ on Fx+ in Figure21). If p, q are the two
endpoints ofC, we call the line segment[p, q] ⊆ E thebaseof the semi-loopC. SupposeF ′ is another face
that is bounded byE, andF ′ has another semi-loopC ′ sharing the same base asC. Then we sayC andC ′ are
linked by this base. SupposeC,C ′ are linked semi-loops, there are two possibilities: they could be coplanar
(Figure21, C ′ andC ′′) or they may lie on a pair of perpendicular planes (Figure21, C andC ′). In general, a
base can be shared by up to4 semi-loops. The next lemma shows that this will not happen.

LEMMA 11 (NO FOURSOMES).LetS be a surface which is monotone inT . Then at most 3 semi-loops can
be linked together.

See [13] Lemma 25 for the proof of this lemma. REMARK: in subsequent transformationof S, “NO
FOURSOMES” property will be preserved (as we will see).

Fy−

Fx+

C

C ′

Fy+

Fx− C ′′

C ′′′

b

Figure 21: Impossibility of 4-linked semi-loops.

LEMMA 12 (NO HOLES).LetS be the surface after the face cleaning process (note thatS is monotone in
T). LetC,C ′ ⊂ S be linked semi-loops on the boundary ofB. LetP ⊆ S∩B be a surface patch inB (i.e.,P
is a connected component ofS ∩B). If C ∪C ′ ⊆ ∂P , then∂P = C ∪C ′. In other words,P is topologically
a disc.

Proof. Let B be the box containingC andC ′ in Figure21. S must be monotone inx or y-direction in
B. Wlog, let us assume thatS is monotone iny-direction inB. SinceP is converging iny+ direction, the
projection ofP ∩ int(B) ontoFx+ must lie withinC ′. Also,S ∩ B contains no loop on the faces ofB. So
we can conclude thatP is a topological disc and∂P = C ∪ C ′. Q.E.D.

In other words, this lemma says thatP cannot contain any holes as illustrated in Figure22.
From the proof of Lemma12, and the fact that a connected subset of ani-block can be viewed as a rectan-

gular box in whichS is monotone ini-direction, it is easy to see that the following lemma is also correct:

20

C ′

(b)(a)

C

C ′

C

Figure 22: Examples of holes.

LEMMA 13 (NO HOLES 1).LetB be a connected subset of ani-block, andS be a surface that is monotone
in T which intersects the faces ofB ∈ B cleanly. LetC ⊆ S ∩ ∂(∪B∈BB) be a closed curve, andP ⊆ S ∩B
be a connected component. IfC ⊆ ∂P , then∂P = C. In other words,P is topologically a disc.

REMARK: in subsequent transformation ofS, this property will also be preserved (as we will see).

¶21. Cleaning Edges via Base Removal OperationsLet us retain the notations of Figure20 relative to an
edgeE containing a pair{p, q}. We call a pair{p, q} penultimate minimum (or {p, q} ≻∗ O) if for any
pairP , {p, q} ≻ P impliesP = O. If {p, q} ≻∗ O and for exactlyi of the facesF ∈ {Fx, F−x, Fy, F−y},
{p, q} ≻ O(modF), then we say{p, q} ≻i O. Note that if{p, q} ≻i O, then i ≥ 1. In other words,
{p, q} ≻0 O is not possible. We call a baseb = [p, q] apenultimate minimum baseif {p, q} is a penultimate
minimum pair. Clearly, penultimate minimum base is a base of some semi-loops.

We will remove one penultimate minimum pair inP(S) each time. LetS = S0 = f−1(0) and suppose
we construct a new surfaceSi+1 from Si by removing one pair fromP(Si). The fact thatP(Si+1) is a
proper subset ofP(Si) allows us to preserve the partial order that is induced from the originalP(S) =
P(S0). Our removing of penultimate minimum pairs will not change the partial order inP(S). In each step
P(Si) = P(Si+1) ∩ {{pi, qi}} where{pi, qi} is the penultimate minimum pair which we remove at stepi.
The removing only creates new relations of the form{p, q} ≻ O where{p, q} ≻ {p′, q′} in P(Si).

The next lemma shows that if a baseb = [p, q] is a penultimate minimum base and{p, q} ≻2 O, then the
two linked semi-loops must lie on a pair of perpendicular planes:

LEMMA 14. LetS be a surface that is monotone inT , and{p, q} be a pair ofS ∩ T . Consider two distinct
facesFs andFv in Figure 20 where{s, v} ⊂ {x,−x, y,−y}. If {p, q} ≻2 O where{p, q} ≻ O(modFs)
and{p, q} ≻ O(modFv), then{s, v} 6= {x,−x} and{s, v} 6= {y,−y}.

Proof. If {p, q} ≻ O(modFx) and≻ O(modF−x), and curvesCp, Cq ⊆ S ∩ (F−y ∪Fy) are the connected
components that passes throughp andq, thenCp andCq must be different components inF−y ∪ Fy. Since
{p, q} is a penultimate minimum pair,S can not bey-monotone inFy∪F−y. From Lemma8, we know thatS
isx-monotone inFx∪F−x, which contradicts the fact that[p, q] is the base of two coplanar linked semi-loops
onFx ∪ F−x. Q.E.D.

SupposeP ≻i O whereP is a pair. We already noted thati = 0 is not possible. From Lemma11, if we can
preserve the monotonicity ofS during the surface transformation (which will be proven later), theni = 4 is
also impossible. So the only possibilities fori is 1, 2 and3. Because of Lemma14, a penultimate minimum
baseb could have three possibilities, as shown in Figure23(I), (II) and (III). Note that ifb is not a penultimate
minimum base, Figure23(III ′′) might arise.

Let b be a penultimate minimum base for some semi-loop. To “remove”b means to simultaneously remove
all the semi-loops that share the baseb. Since there are only three possibilities, so there are three distinct base
removal operations. This is shown in Figure23. In Figure23 (I) → (I ′), we push down the part of semi-
loop component to form a “tunnel” below the edgeE. In Figure23 (II) → (II ′), we push the topological
disc component bounded by the two semi-loops in bothx− andy− directions to eliminate it. In Figure23
(III) → (III ′), we push down the topological disc component bounded by the three semi-loops to remove
the it. Note that these operations are well-defined: this depends on the factthat in each boxB that contains

21

a pair of linked semi-loopsC andC ′, the surface patch bounded byC ∪ C ′ is a topological disc (i.e., the
”NO HOLES” property in Lemma12holds as long as we preserve the monotonicity of the surface during our
operations, which will be proven in the following part).

C1

B′′

E

B′

B F+y

F−y

F−x
F+x

B′′

E

B′

B F+y

F−y

F−x
F+x

B′′

E

B′

B F+y

F−y

F−x
F+x

(I’) (II’) (III’)

B′′

E

B′

B F+y

F−y

F−x
F+x

B′′

E

B′

B F+y

F−y

F−x
F+x

(I) (II) (III)

B′′

E

B′

B

F−y

F−x
F+x

F+y

(III”)

B′′

E

B′

B F+y

F−y

F−x
F+x

Pc

Figure 23: Three Base Removal Operations.

We next describe some properties that our transformation preserves. LetT be an octree andVT be the set
of all corners of the boxes inT . Let S, S′ be two surfaces. We sayS is compatible with S′ (respect toT)
iff there exist an isotopyI : R3 × [0, 1] → R

3, s.t. I(·, 0) is the identity;I(S, 1) = S′ and∀t ∈ [0, 1],
I(S, t) ∩ VT = ∅.

LEMMA 15. The face cleaning operations and the base removal operations preserve the compatibility ofS
in T .

Proof. The correctness of this lemma is based on the nature of our operations: we never transform the
surface “across” any corners inT . Q.E.D.

LEMMA 16 (Surface Monotonicity Preservation).Base removal operations preserve the monotonicity ofS in
T .

See [13] Lemma 30 for the proof of this lemma.
The next example shows that if we remove the bases in arbitrary order, wemight create holes within the

boxes. Letb1 be the smallest base in the boxB in Figure24(I). AssumeS is y-monotone inB, since our
operation preserves the monotonicity, we have the length ofb3 is less than the length ofb4.. If we remove
the bases in arbitrary order, we might removeb1 andb4 beforeb2 andb3, which results in a hole as shown in
Figure24(I’).

LEMMA 17. The face cleaning operations do not induce new dirty faces, and the base removal operations do
not induce new dirty edges and dirty faces.

Proof. It is clear that the face cleaning operations do not induce new dirty faces, and the base removal
operations do not induce new dirty edges. We will show that the base removal operations do not induce new
dirty faces. LetR be a base removal operation which removes a penultimate minimum pairb and induces a
new loopl on a faceF . Then before the operation,l was a semi-loop with the baseb. This contradicts the fact
thatR removed all the semi-loops that share the same baseb. Q.E.D.

22

B

b1

b4

b3

b2 b2

b3

(I) (I’)

B

Figure 24: Removing bases in arbitrary order might create holes.

The above base removal process halts only whenP(S) is empty. At this point, all faces and edges are clean
relative toT . From the analysis above, we have the following theorem:

THEOREM 18. LetT be the octree produced by our Regularized Cxyz Algorithm. There∃S̃, s.t.
(1) S̃ ≃ S(modR(T)).
(2) S̃ is compatible withS respect toT .
(3) S̃ intersectsT cleanly.
(4) S̃ preserves the monotonicity ofS within each candidate box ofT .

Proof.We first clean the faces, then we clean the edges. From Lemma15, Lemma16 and Lemma17, and
the fact that each operation is an isotopic transformation, the resultingS̃ satisfies all the properties in this
theorem. Q.E.D.

THEOREM 19. LetG be the mesh we construct by the Regularized Cxyz Algorithm, thenG ≃ S(modR(T)).

Proof.Based on the construction phase of our algorithm, for each alternating block B, S̃ ∩ ∂(∪B) “agrees”
with G∩∂(∪B). From Lemma13, we know that̃S is isotopic toG within each block. SoG ≃ S̃(modR(T)).
From Theorem18, we haveG ≃ S̃ ≃ S(modR(T)). Q.E.D.

A.5 Correctness of Balanced Cxyz Algorithm

Let T be the octree produced by our Balanced Cxyz Algorithm. Similar to the correctness proof of the
Regularized Cxyz Algorithm, we will first transform the input surfaceS = f−1(0) to another surfacẽS
which has some nice properties.

In the correctness proof of the Regularized Cxyz Algorithm, we separately defined the partial orders for
loops and pairs ofS in T . In the Balanced Cxyz Algorithm, we need to define the partial order for the
combination of all loops and pairs. The reason is that a loop might be “blocked” by pairs (an example is
shown in Figure25(I)), and we need to remove the pairs first in order to remove the loop. Also, a pair might
be “blocked” by loops ,as shown in Figure25(II) (we do not have such problem in the Regularized Cxyz
Algorithm since the loops are removed before pairs).

K

(I)

p q

L

B

(II)

B

p

q

L

Figure 25: Partial order between a loop and a pair.

23

We define the new partial order for the set ofP(S) ∪ L(S), whereP(S) is the set of all pairs ofS ∩ T ,
andL(S) is the set of all loops ofS ∩ T (see¶17 and¶19). The partial order between loops and between
pairs are the same as the partial order defined in the Regularized Cxyz Algorithm: let≺P⊆ P(S)×P(S) be
the partial order defined for pairs, and≺L⊆ L(S) × L(S) be the partial order defined for loops. We need to
define a partial order on the setP(S) ∪ L(S).

LetB be a box with monotone directiony. LetL be a loop on the bottom face ofB and{p, q} be a pair on
the top face ofB. If the y-projection of{p, q} is contained within they-projection ofL, we say{p, q} ≺ L
(as shown in Figure25(I)). In order to removeL, we need to remove{p, q} first. We can similarly define such
relations inx andz directions. Let≺PL⊆ P(S) × L(S) be all the relations so defined. Similarly, we can
define≺LP⊆ L(S) × P(S): let {p, q} be a pair, andK be a semi-loop whose base is[p, q]. If there exist
a loopL which lies in the same boxB asK, and thei-projection ofL (for somei ∈ {x, y, z}) lies in the
interior of thei-projection ofK, we sayL ≺ {p, q} (as shown in Figure25(II)).

P11

L

P2

P3P4P5P6

P9 P10

P7

P8

P1

Figure 26: Example of a loop in≺P ∪ ≺L ∪ ≺PL ∪ ≺LP .

In the Regularized Cxyz Algorithm, we removed all loops before we remove pairs. But in the Balanced
Cxyz Algorithm, we are forced to intermix pair removal with loop removal because of the relations in≺PL

and≺LP . However, if we look at the relation≺P ∪ ≺L ∪ ≺PL ∪ ≺LP , we do not obtain a partial order on
P(S) ∪ L(S) (see Figure26: the green points form pairs, and the arrows show the monotone direction of the
boxes. It is possible thatL ≺ P11 ≺ . . . ≺ P1 ≺ L, which forms a loop).

Our solution is to define a partial order based only on≺Bal:=≺P ∪ ≺L ∪ ≺PL. This is clearly a partial
order onP(S) ∪ L(S).

LEMMA 20 (DAG). The partial order relationship≺Bal forms a DAGGp where the pairs and loops are the
nodes ofGp and the partial order relations are the (directed) edges ofGp.

Why is this a solution? As usual, we plan to inductively remove elements fromP(S) ∪ L(S), which are
minimal relative to≺Bal. The possible complication arises when we want to remove a pair{p, q} where
L ≺LP {p, q} for some loopL. It turns out, we can remove{p, q} without first removingL provided that we
generalize our previous base removal operation as follows: to remove a pair {p, q}, we will remove all semi-
loopsK whose base is[p, q]. There are two possible situations: (A) If there is a loopL s.t.L ≺LP {p, q}, then
we know that[p, q] is the base of a semi-loopK where thei-projection ofL (for somei ∈ {x, y, z}) lies in the
interior ofK. In this case, we transform the surfaceS so that{p, q} is removed fromP(S), and a new loop
K ′ appears inL(S). And moreover,L ≺ K ′ ∈≺L. See Figure27(II∗)→ (II∗′) and(III∗)→ (III∗′) for

24

(III*) (III*’)

(II*) (II*’)

q

p

L

K

L

Figure 27: Universal Base Removal Operations.

the illustration of this operation. Note that there might be more than one such loopsL. (B) If no such loopL
exists, then the operation is defined as in the Regularized Cxyz Algorithm. Similarto the proof of Lemma16,
we can prove that those two generalized operations also preserve the surface monotonicity ofS in T . Based
on the correctness analysis in the Regularized Cxyz Algorithm, we have the following (similar) theorem for
the Balanced Cxyz Algorithm:

THEOREM 21. LetT be the octree produced by our Balanced Cxyz Algorithm. There∃S̃, s.t.
(1) S̃ ≃ S(modR(T)).
(2) S̃ is compatible withS respect toT .
(3) S̃ intersectsT cleanly.
(4) S̃ preserves the monotonicity ofS within each candidate box ofT .

Proof. The correctness of this theorem follows from the analysis of the face cleaning and edge cleaning
processes. Q.E.D.

In the Regularized Cxyz Algorithm, we proved Lemma13. We have a similar result in the balanced algo-
rithm:

LEMMA 22 (NO HOLES 2).Let S̃ be the surface described in Theorem21andB be a connected subset of an
i-block. LetC be a closed curve which is the intersection ofS̃ with ∂(∪BB∈B). LetP ⊆ S̃ ∩ B be a surface
patch inB (i.e.,P is a connected component ofS̃ ∩ B). If C ⊆ ∂P , then∂P = C. In other words,P is
topologically a disc.

Proof.The correctness of this lemma follows from the facts thatS̃ ∩ B is monotone inB, andS̃ intersects
B cleanly. The proof is similar to the proof of Lemma12. Q.E.D.

From Lemma22, it is easy to see that̃S ∩B is a set of topological discs for each candidate boxB.

THEOREM 23. The meshG constructed by our Balanced Cxyz Algorithm is isotopic toS̃ within eachi-block
B of T . In other words,G ≃ S̃ ≃ S(modR(T)).

Proof. From Theorem21, it is easy to see that̃S intersects the boundary ofB cleanly. Our construction
rule guarantees thatG ∩ ∂(∪B) “agrees” withS̃ ∩ ∂(∪B). And each connected component ofG ∩ B is a
topological disc. So based on Lemma22, we haveG ∩ B ≃ S̃ ∩ B. Q.E.D.

25

	Introduction
	Related Work
	Preliminaries
	Regularized Cxyz Algorithm
	Balanced Cxyz Algorithm
	Rectangular Cxyz Algorithm – Exploiting Anisotropy
	Experimental Results
	Conclusion
	Appendix
	More Examples
	Rectangular Cxyz Algorithm
	Overview of Correctness Proof
	Correctness of Regularized Cxyz Algorithm
	Correctness of Balanced Cxyz Algorithm

