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Abstract

ABSTRACT: We consider the problem of computing isotopic approxinretiof nonsingular surfaces
which are implicitly represented by equations of the fof(w, y, z) = 0. This mesh generation problem
has seen much recent progress. We focus on methods basednamdzubdivision using numerical
primitives because of their practical adaptive complex®seviously, Snyder (1992) and Plantinga-Vegter
(2004) have introduced techniques based on parametityadnild non-local isotopy, respectively. In our
previous work (SoCG 2009), we synthesized these two teaksiinto a highly efficient and practical
algorithm for curves. In this paper, we extend our approacsutfaces. The extension is by no means
routine, as the correctness arguments and analysis areleatsy more complex. Unlike the 2-D case, a
new phenomenon arises in which local rules for construdingaces are no longer sufficient.

We treat two important extensions, to exploit anisotropicdivision and to allow arbitrary geometry
for the region-of-interest (ROI). Anisotropy means thatallew boxes to be split into 2, 4 or 8 children
which are rectangular boxes with bounded aspect ratio.dJRDI allows our algorithms to be extremely
"local”, and anisotropy increases their adaptivity.

Our algorithms are relatively easy to implement, as the dyidg primitives are based on interval
arithmetic and exact BigFloat numbers. We report on veryperaging preliminary experimental results.

Key Words: Mesh Generation, Surface Approximation, Isotopy, Parametrizabilitydi8ision Algo-
rithms, Interval Methods, Topological Correctness, Exact Numeritgdithms.



1 Introduction

A basic problem in areas such as physics simulation, computer graphiggeantetric modeling is that of
computing approximations of curves and surfaces from implicit definitiogpicdlly, the surface is repre-
sented by an equatioifi(x, y, z) = 0 as illustrated in Figuré. We assume the approximation is a triangulated
surface, also known asmaesh The recent book of Boissonnat and TeillaGiprovides an algorithmic per-
spective for this general area; chapter 6 in particular is a survey dfingealgorithms.

(a) Cxyze ’ (b) PV (c) Cxyz (d) Rect-2

Figure 1: Approximation of tangled cuféz, y, z) = x* — 522 4+ ¢y* — 532 + 2% — 522 = —10.

The approximate surface or mesh must satisfy two basic requirements:gmablmorrectness and geomet-
ric accuracy. For instance, in Figuiéc) is produced by our algorithm with only topological correctness as
stopping criterion. For some applications, this is sufficient. But if one deg&emetric accuracy as well, this
can be further refined as in Figuté), where the error boundds= 0.25. Generally, the problem of ensuring
topologically correctness is more challenging than refinement.

Formally, themesh generation problem(*meshing problem” for short) is thisgiven a region-of-interest
(ROI) Ry C R3, an error boundt > 0, a surfaceS implicitly represented by an equatigf{z, y, ) = 0, to
find a piecewise lineas-approximationG of S restricted toRy.

Geometric accuracy i means that the Hausdorff distance betwéesnd.S N Ry is at most. Topological
correctness means the surfagshould be isotopic t&' in the interior ofRy, and also on the boundadyR;
we denote this by G ~ S (mod Ry)”. We focus on guaranteeing topological correctness by means of
numerical techniques. Numerical methods have many advantages: they tend adaptive complexity, are
efficient in practice and easy to implement. Numerical methods are more b#veralgebraic ones since
hey are applicable to non-algebraic functions such as frequently ansgthematical analysis. But numerical
methods traditionally do not offer topological guarantees, and so this imair challenge.

Throughout this paper, we fix the functign: R? — R, the surfaceS:= f~1(0) and region-of-interest
Ry C R3. The regionR, is a nice region (see below) represented by an octreef asonsingular inRj.
Unless otherwise noted, we assume oo (i.e., we focus on isotopy, with no concern for geometric accuracy).
For the algorithms of this paper, it is easy refine to any desitte we have the correct isotopy.

91. Subdivision Algorithms. Our main algorithmic paradigm iglomain) subdivision where an initial
axes-parallel box3, C R? is repeated subdivided into smaller boxes, forming an odtresoted atB,. Each
non-leaf ofI" can have 2, 4 or 8 children, corresponding to half-, quarter- or filitssof boxes into congruent
subboxes. The leaves &fprovide a partition of3, into boxes, and to subdividE means to split its leaves.
All algorithms in this paper are viewed as instances of the following:

Generic Subdivision Algorithm:
INPUT: AN OCTREET REPRESENTING A REGIONB,
I. Subdivision Phase:

Keep subdividindl” until some stopping criterion holds.
Il. Refinement Phase:

Further subdividg” until some refinement criterion hold
I1l. Construction Phase:

Construct the approximatiafi from the refined tre&".

2




The conceptual question igzhat kind of stopping and refinement criteria do we need in order toreribat
the Construction Phase has sufficient information to construct an isotppiogimationG? This question is
ill-formed unless we constrain the Construction Phase. The well-knownthvey Cubes]5] gives us a clue:
for each leaf boxB, the Marching Cubes algorithm computes a small surface @&ictc B basedonly on
the signs off at the corners oB. This isO(1) work per leaf, and~ is defined to be union of all these patches
G . Such a Construction Phase is said tavie-like (“Marching Cubes like”). But it is well-known that the
Marching Cubes could not ensure correct isotopy. The achieverhBlardinga & Vegter (PV) 18] is that, by
using the “small normal variation predicate”, they could ensure corretpy with a MC-like construction.
Theirs is the first topologically correct algorithm for meshing of nonsingsilafaces based on numerical
primitives. In contrast, the construction phase in Snyder’s algorithfi$ not MC-like, but requires highly
nontrivial processing (e.g., root isolation). In4 13], we characterize the PV approach as exploiting “non-
local isotopy”. We show that the stopping criterion of PV can be weakem#tke parametrizability predicate
of Snyder, leading to greatly improved efficiency. Our previous resa#t @nly for curves; in this paper, we
will extend it to surfaces. As we shall see, the extension to surfacesfisfiaroutine, requiring new ideas in
the algorithm as well as in its correctness proofs. For instance, a nevoipieaon arises in the Construction
Phase in which local rules are no longer sufficient.

The algorithms in this line of research are very practical for two reasfirss; it is based on the easily
implementable subdivision paradigm. Second, all our primitives are explicittyenigal (no hidden imple-
mentation gaps). We stress this point because many exact algorithms in therkdrave primitives that
are impractical for exact implementation. The numerical primitives are basegloosimple foundations: (a)
interval methods 17, 19, and (b) BigFloats, some software implementation of dyadic numbers. Mereo
machine arithmetic can be exploited in two ways: first, it can replace BigFloaes wiachine precision suf-
fices (taking care to detect overflows which indicate the need for higleersion). In fact all the examples
in this paper are run at machine precision. Second, they can be uséérastdi speed up BigFloats. See
[14] for further discussion. We have implemented our algorithm and preliminadgrge suggests that our
algorithms can be much more efficient than previous algorithms.

92. Our Contribution and Overview of Paper. Our general contribution is the further development of
non-local isotopy analysis. In Section 2, we review this concept. Our melmitgal contribution is a new
exact, efficient and practical algorithm for isotopic surface approximatile describe a sequence of three
increasingly sophisticated algorithmRegularized Cxyz(Section 4) Balanced Cxyz(Section 5), andRect-
angular Cxyz (Section 6). Each has independent interest, but is also useful ineelpgenent: we reduce the
correctness of each algorithm to that of the previous one. Becaupaaé mitation, we only briefly touch
on another important topic, allowing input region-of-interest (ROI) withiteary geometry as represented by
a suitable octree. Section 7 contains our experimental results, and wledmirt Section 8. All the proofs
and further experimental data are available in the thesis ofl3hgnd may be downloaded frori][

2 Related Work

We broadly classify approaches to mesh generation into three categagebraic, geometric, and numer-
ical. Algebraic approached [22, 8, 23], exploit tools such as cylindrical algebraic decomposition (CAD),
resultants, and manipulation of algebraic numbess(fhapter 3] reviews these technique). These tools are
exact, but the algorithms may be slow with non-adaptive complexity. A promisiegtibn to remedy this

is to combine symbolic with numeric methods)]. The geometric approachess 3, 7, 4] postulate some
abstract computational model where geometric primitives such as ray shao#iravailable, and algorithms
based on these primitives are constructed. Implementing these abstrats ozodee an issue (e.g., ray shoot-
ing returns points with algebraic coordinates, which may be unsuitable forrinepliation). The numerical
approachesl, 18, 16, 20, 26, 27] are based on numerical approximations, evaluation and derivatives of
function, and interval methods. It is the most pragmatic of the three agmeatts advantages include hav-
ing adaptive and local complexity, and relative ease of implementation. @earag topological correctness

is the traditional weakness of this approach. The non-local isotopy @lede exploited in other applica-



tions: recently we constructed a new subdivision method for complex raatisn [21] that has proved very
efficient [L1, 12]. To motivate the general approach of our paper, we review fouicpéar subdivision algo-
rithms: Marching Cubesl], Snyder’s Algorithm P4], Plantinga & Vegter’'s (PV) Algorithm 18], and our
Cxy Algorithm (in 2-D) [L4]. We use the framework of the Generic Subdivision Algorithn§iin

93. Marching Cubes. Marching Cubes is one of the most popular subdivision algorithms foaceirecon-
struction. The stopping criterion for its Subdivision Phase is “box has width for some arbitrarye > 0.
In the Construction Phase, we determine the sign of the fungterthe corners of each leaf béxof 7. Up
to symmetry and interchange of signs, the possilija typesare given in Figure.

If an edge ofB has different signs
at its two corners, we introduce a
vertex in the middle of the edge.
We then connect pairs of vertices
on faces ofB by arcs. Some pos-
sibilities for thesearc types are
illustrated in Figure3 (our figure
shows only those types that can

Figure 2: 14 Sign Types of at box corners: only 10 arise und€f,.  arise in our algorithm). Note that
Sign Types 2b, 3b and 4d each gives rise to two arc types, and theyatedizally distinct. This “ambiguity”
will be one of our main correctness concerns. Once the arcs areviieathn introduce a triangulated surface
patchG in B such thatG  intersects boundary a8 with the given arc type. The unio = |J; G of
these patches constitutes an approximatiof.ofortunately, the isotopy type ¢f is uniquely determined
by the chosen arcs:

Type O Type 1 Type Type Type*2c Type 3a Type

Type* 3¢ Type 4a Type 4b e Type Typed Type* 4e Type* 4

<

Type 1 Type 2a

B i - p N p NG
ype 3b(il Type 4a Type 4b Type 4c

Figure 3: The 13 Arc Types undéf,, . Predicate.

Type 4d

LEMMA 1. Each of the 13 arc types in FiguBuniquely determines the isotopy of the surface patch in a box.

This lemma follows by case analysis. Although the Marching Cubes doesiatdgee topology, we stress
that the Marching Cubes is very useful and widely-used.

94. Parametrizability of Snyder. A key paper towards ensuring correct topology in subdivision algorithms
is Snyder P4]. He introduced interval methods to determine the correct topology withim @aadivision box

B. Snyder’s stopping criterion isS‘'N B is parametrizable”. This means that surface p&tchB is the graph

of some functiorny(s, j) in two coordinate directions j € {z,y, z}. This condition can be detected using
interval arithmetic: we call this the’,,.(B) predicate below. Snyder is then able to construct a triangulated
surface patclGp C B with the propertyGp ~ S (mod B). His algorithm is recursive in dimension: to
construct g, recursively solve the-D problem of computing the topology 6fn F' on each facé” of B. In

turn, this requires solving theD problem of root isolation along the edgesfof There are two issues. First,
the algorithm may not terminate § intersects the boundary @&f tangentially at isolated pointg,[p. 195].
Second(= g can have arbitrary combinatorial complexity, and thus is not MC-like.

95. Non-local Isotopy of Plantinga & Vegter The second key paper is from Plantinga & Vegtéef]{
instead of parametrizability, they introduce two simple criteria for termination ledisision: theexclusion
predicate Cy(B) and thesmall normal variation predicate C, (B) (see below for the definitions @f, and
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C41). The predicate”; (B) implies that the angle between two gradient vectorg af B is less tharf0
degrees, and in particular it implies th& B is parametrizable. Snyder constructs libeal isotopy of the
surface in each bo®. In a radical departure from Snyder, they no longer require thatbe isotopic to
S N B. Remarkably, this approach also solves the two issues of Snyder. Wenwvighocal isotopy very
favorably because enforcing local isotopy is considered wastdfael @l, subdivision boxes are artifacts of
the algorithm, not inherent in topology 6.

96. Our Synthesis. Our paper [4] is a synthesis of the parametrizability approach of Snyder with the
non-local isotopy of PV. We only treated curves. Basically, we wantridha PV algorithm but replacing the
(' predicate with parametrizability. It turns out that this is justifiable provided e tare to disambiguate
certain configurations by subdivisions. Our motivation is that usings an overkill for isotopy (thougld’

has other uses, including controlling normal deviation and refinementerixents confirm our expectation:
our synthesis is more efficient than either approach separately.

3 Preliminaries

For any setS C R, let (.S denote the set of all closed intervals with endpoints'inVe mainly useS = R
andS = F whereF := {m2" : m,n € Z} denote the set of dyadic numbers (BigFloats)b@x (or d-box)
is any element of R (= (OR)%). Usually,d = 1,2,3. If f: R? — R is any function, then a function of
the form 0f : OF¢ — OF is called abox function for f if for all B, B; € OF, we have (1) (inclusion)
f(B) C Of(B), and (2) (convergence) ifm; ,., B; = p € RY, thenlim; o, 0f(B;) = f(p).
Er— Note that using interval arithmetic, it is very easy to construct box func-

y tions whenyf is a polynomial. For a boxB = Hle I;, letw(B) =
lefes ight min{_, w(I;) denote thevidth of B, wherew(I) denotes the width of an

interval. The0-, 1- and2-dimensional features of a box are calledcits-
ners, edges andfaces Fori € {z,y, z}, ani-faceis a face that is normal
Figure 4: Box face conventions. t0 thei-direction We also name each face of a box as ‘front’, ‘back’, ‘top’,

‘bottom’, etc, using the convention in Figufe
By an infinitesimal perturbation, we may assume thags positive or negative signs at box corners (never

the zero sign). Viewing signsH or —) as colors, we can talk about edges and boxes bamgpchromatic or
bichromatic. As in Section 2, we introduceerticesin the middle of bichromatic edges. In our implemented
code, we use linear interpolation to improve the quality of the meshes. On ,aweaosill introducearcs
connecting pairs of vertices (this need not be uniquely determined, aaw)e Binally, for each box3, we
introduce a collection ofriangles to form a triangulated patct's such thatGp N dB is precisely these
vertices and arcs. Thus, we use the corner/edge/face terminologyxes lbut reserve the vertex/arc/triangle
terminology for the triangulated mesh.

X bottom

q7. Octrees. We assume that each leaf of our octrees is labeled as “in” or “ol{’leaf box B is called an
in-box if it is labeled "in”; similarly for anout-box. The set of all the in-boxes @f is called thebox-complex
defined byI". The union of all in-boxes is denote®d(T"), theregion represented byT". Following [6], a set
of the form R(T') is called anice region Such regions are closed subset®Rdf but could be disconnected
with holes and cavities. Two boxes of an octree reeghbors of each other if they have disjoint interiors
but they share an open face (i.e., the relative interior of the face of foiine &wo boxes). We say they are
edge-neighborsf they share an open line segment. Note that neighbors are automaticaliyeiddgéors,
but the converse may not hold.

98. Box Predicates for Subdivision. The stopping criterion of the Subdivision Pha$é)(is based on two
box predicates: aexclusion predicateC,,,(B) and annclusion predicate C;,, (B). Subdivision Phase ends
when each in-box3 satisfies”,,:(B) or C;,,(B). The in-boxes of” fall into three mutually exclusive types:
1. Discarded Boxes: these satisfy,

2. Candidate Boxes: these do not satiSfy,;, but an ancestor satisfi€s,, .

3. Inconclusive boxes: do not satisty,,; or C;,.



If B satisfie<’;,, but notC,,:, then the above definition impligs is a candidate box (sindg is an ancestor
of itself). Discarded boxes will no longer be considered. Whenevesplvea candidate box, we always check
if each subboxes satisfy,,;: if o, itis discarded; otherwise it remains a candidate box. After thei@islmh
Phase, no inconclusive boxes remain. For the Refinement Phaselyspldrcandidate boxes. The following
list contains various instantiations fék,,; andC},, used in this paper:

Co(B) : 0¢ Of(B) (Exclusion)

C,(B) : 0 gé O0f:(B) (x-Monotonicity)

Cyy(B) : Cyx(B )\/Cy( ) (Parametrizability) @)
Cuy-(B) : Cyx(B)VCy(B)VC.(B) (Parametrizability)

Ci(B) : 0¢(0f(B))?+ (0f,(B))*+ (0f.(B))* (Small Normal Variation)

Note thatf,, f,, f. refers to partial derivatives gf. Clearly, if Cy(B) holds, thenS N B is empty. So we
useC) as the exclusion predicafe,,; in all our algorithms. For Snyder’s and Cxyz Algorithnds,, = C,,,
and for PV Algorithm(C;,, = C4.

4 Regularized Cxyz Algorithm

An octree is “regular” if every leaf is at the same level, as in Marching €u8e the “Regularized Algorithm”
amounts to enforcing this regularity during the Refinement Phase. In @ui&ized Cxyz Algorithm, we
can relax this requirement: we only require that two candidate boxes wehedge-neighbors must have the
same width. The correctness of the Regularized Cxyz Algorithm is far fireial. Its analysis will be critical
for extension to subsequent algorithms. This tact of going through tiwareged case followsl[s, 14].

The algorithm only perform full-splits, and recall that its inclusion predi€atgis C,,,.. This completely
defines its Subdivision Phase. The Refinement Phase is defined byl@htbauwe split a candidate box
B if it has an edge-neighbor that is a candidate box of smaller width. At theoktids process, any two
edge-neighbors that are both candidates would have the same widthestloé this section will focus on the
Construction Phase, and correctness proof.

At this juncture, we insert a concept that will be useful in subsequealysis. At the end of the Subdivision
Phase, each candidate bBxin the octree is known to satisfy;(B) for somei € {z,y, z}. We arbitrarily
pick one of these’s and call it theknown monotone direction (“monotone direction” for short) foi3.

In subsequent computation, when we st the candidate descendants Bfwill inherit this monotone
direction. This direction is stored witB by our algorithm since some decisions will depend on it.

99. Sign Types, Arc Types and Surface Types under thé’,,. Predicate Of the 14 possible sign types

of f at box corners shown in Figutg only 10 can arise under the Cxyz predicate. The 4 excluded cases
are indicated by asterisks: Typé2c, *3c, *4e, *4f. As usual, we introduce vertices in the middle of
bichromatic edges, and connect pairs of vertices on each face byTdred 0 sign types give rise to Hc
typesin Figure3. Lemmal asserts that these arc types give rise to un&uréace typewithin each box,
shown in yellow in Figures.

910. Counter Example to the Neighborly Connection Rule. In 2-D, we can apply the above method to
construct a surface in each box, without consideration of other HdxgsBut now, there are two choices
of arc connections when a face hawvertices: we call thesalternating faces In Figure2, these faces
are colored pink, as in Types (2b), (3b) and (4d). This implies thattnorigng surface patches in each
box must (at least) beeighborly, meaning that two boxes sharing an alternating face must agree on which
choice of arcs to make. Alternating faces arise even undef'th@edicate of PV Algorithm. They showed
any neighborly choice will lead to a correct surface, which is rather non-imtitFor ourC, . predicate,
neighborly choices alone is insufficient: Figurgives a counter example.

In Figure5(a), the arc connections are neighborly. The two boxes satisfibut the triangulated surface
determined by the indicated arc connections violate(thecondition. Using a different arc connection, we
obtain the triangulated surface in Figusg) (this one is consistent with th&, condition). Extending this
example (using the phenomenon of “blocks” below) we see that a choiaeeibax can force the choice of
boxes arbitrarily far away. E.g., FiguE€c).
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Figure 5: Neighborly choice of arc patterns is insufficient for corressn

911. Alternating Faces (AF) Rule. For alternating faces, we provide the following globally consistent
rule for connecting arcsRULE: the arcs will be line segments that are parallel to one of the thretorsec
(1,1,0),(1,0,1),(0,1,1), depending whether the alternating face isany- or z-face (respectively)E.g.,

for an alternatinge-face we will connect its four vertices with line segments that are paralleletoeltor
(0,1,1), as in Type 2b(ii), and not as in Type 2b(i) of Figuse Call this theAlternating Faces Rule (AF
Rule for short). With this rule, we have now completely specified the Regathitxyz Algorithm. See
AppendixA.4 for the correctness proof of Regularized Cxyz algorithm.

5 Balanced Cxyz Algorithm

We now extend the Regularized Cxyz Algorithm to the Balance Cxyz Algorithimis €xtension aims at
reducing the number of unnecessary splits. The idea is to allow the widtligefreighbors to differ by a
factor of < 2; this is called “balancing”. The tradeoff is that we are faced with more im@bonnection rules
and correctness analysis. The Subdivision Phase is the same as inulagized case. For the Refinement
Phase, we need some notation. Let {x,y, z}. An edge of a box is aitedgeif it is parallel to thei-axis.
Thei-width of a box is the length of its-edges. An octree isbalancedif for all pairs of candidate boxes
B, B’ which are edge-neighbors, then theidths of B and B’ is within a factor of2 of each other. The octree
is balancedif it is i-balanced for alf = x, y, z. This general definition will be used later for the Rectangular
Cxyz Algorithm. For now, we only do full splits and we can useB) as the definition of width.

In the rest of the Balanced Cxyz Algorithm, all our queues will be minimum pyigueues. The compari-
son criterion for these queuesug B) for each boxB. The Refinement Phase has three sub-phases:

Refinement Phase

1. T{ <+ Balance(Ty)
2. For each candidate box if{, introduce vertices in the middle of bichromatic edges.
3. Ty « Disambiguate(T})

The first sub-phas&alance(T)) amounts to splitting any candidate békthat has an edge-neighbor of
width > 2w(B). At the end of this sub-phase, we say the octree is “balanced”. Thesthtirgphase is based
on the concept of ambiguity which we next introduce.

912. Disambiguation Sub-phase We want to call certain boxes “ambiguous” if there is not enough infor-
mation to do a MC-like construction, and this is resolved by splitting the ambigumusThis may in turn
cause new boxes to become ambiguous. In the following we will identify thineks lof ambiguity.

Let us indicate the issues that arise if we simply repl@gedy C.,. in the Balanced (Cxyz) Algorithm.
Consider an horizontally-stretched hyperboloid as in Figu¢e;). We run the Balanced Algorithm on this
hyperboloid, and the Subdivision Phase terminates withl thieoxes shown in Figuré (a3). Clearly, both
of the two larger boxesK; and B3) satisfyC,.. The output graph obtained by our connection rules (in the
Regularized Algorithm) is the yellow polytop@ seen in Figurés(as). SinceG forms a closed surface, it
is clearly wrong. An error occurred in bak%; (and alsoBs3) whereS N B; is a tube whileG N By is a
planar surface. If we had spli®;, we would have discovered this error. We sy (resp.,Bs3) has “3D
ambiguity”. A similar problem is seen in Figufb,), corresponding to “2D ambiguity” in each of the boxes
By, B3, By, Bs. SupposeB satisfies”,. Then we say3 has3D ambiguity if the interior of its top or bottom
faces has four vertices. We s@yhas2D ambiguity if one or more of its vertical faces has exactly two
vertices on the same edge. Note that this edge is not a vertical edged€gans is satisfied.
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Figure 6: Examples of 2D and 3D ambiguity.

This definition is modified accordingly iB satisfiesC, or C',. In Figure6(al), the ambiguous boxes
satisfied”,.. In Figure6(bl), the ambiguous boxes might satisfy or C..

We now describe the third kind of ambiguity. Its motivation will be become cleatée Construction Phase
below. Leti € {x,y, z} be the monotone direction of a bdx We sayB has aralternating ambiguity if it
properly contains théface F' of its neighbor, and thig’ is alternating.

Finally, a boxB is said to beambiguousif it is 2D, 3D or alternating ambiguous.

LEMMA 2. If we split an ambiguous bok into 8 subboxes, none of these subboxes will be ambiguous.

Nevertheless, splitting of ambiguous boxes might induce its edge-neigtthbecome ambiguous. and
also cause the octree to be unbalanced. The re-balance procedemelcal, we only need to propagate the
“modified” boxes. We will next describe the Construction Phase for thar8ad Cxyz Algorithm.

913. Construction Phase Let F' be a face of some bok. Our first goal is to connect the vertices éh
by arcs. LetB’ be a neighbor of3 that shares part of' as a common face. There are two possibilities: If
B’' N B = F, thenB’ has width at least that d8. This is the case we are interested in: dalactive in this
case. Otherwisef is inactive; this meansB’ must have width that is half that @. We are not interested
in inactive F' because we would have processed the facds dfefore B, and in particular, any vertex it
would have been processed. Henceforth, we will only focus on ameezgions for active faces.

Recall that at the end of the Refinement Phase, we have an @étiaevhich all the bichromatic edges
have a vertex in its middle. Our goal is to connected pairs of these verticerastoDefine aarc loop to be
a closed curve comprising of such arcs on the boundary of &hd@he Construction Phase has three steps:

Construction Phase
Let Q be a priority queue of the candidate boxe§in
While (Q is non-empty)
Remove a box from @
1. Arc connect the vertices on the active face®qf
2. Group the arcs oB’s boundary into arc loops
3. Triangulate the arc loops on the boundaryBof

Steps 2 and 3 are straightforward. In the following, we will describe hawdement Step 1.

914. Sign Types of Active Faces Note that each edge of an active face can have at most two verticee. The
might be a neighboB’ of B that shares an edge with an acti#e If B’ has smaller width thai, then a
corner of B’ would be the midpoint of an edge &f. Therefore, in considering sign types Bf we need to
consider signs of such midpoints. There can be upgigns on the boundary df. The possiblé&ign Types
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of such faces are enumerated in Figdrethere are 13 in number. The sign typefodvill uniquely determine
the vertices that are introduced inkb(as illustrated in Figur&).

SR NEN
RENERT SRR

(4d) (4eY (6a) (6b)* (6c) (8)

Figure 7: Sign Types of active faces.

915. Arc Types of Active Faces Let F' be an active face, and suppaSéounds two boxe® andB’, i.e.,
F = BN B'. The rule for arc connection iR" depends on whethér is (known to be) “parametrizable” or
not. Let us define this concept. We s&ys known parametrizable if F' is parallel to the monotone direction
of B or B’. Otherwise F' is said to benot known parametrizable.

AssumeB is aCy, box. Then the four faces db which are parallel to thg-direction are clearly known
parametrizable faces. It follows from our analysis for cunved fhat each of these faces can have at most
vertices. SaB can have at mosit6 vertices on its edges. Indeed, it is easy to seeltbakertices can arise.
Our connection rule for the known parametrizable faces can follow the giden in [L4]. For reference, call
this theparametrizable face rulewhich is reproduced in Figur@

It remains to give the connec-

® ® ® O 1o ®

I::I .. tion rule for the case wher&

5 & b 9 I B SRR is not known parametrizable. In
€. . ..M

< ® > O ® ®

@) (®) © @ the Regularized Algorithm, the
Figure 8: Parametrizable Face Rules. arc connections of may be ar-

bitrary, as long as we ensure block-wise consistency. But the Bal&hgedAlgorithm needs a new approach.

We define the term+block (i € {x,y, z}) for the balanced octreB,. For definiteness, let=y. A y-block
B is a sequencésy, ..., B; of candidate boxes df, such that (1) the bottom face &f; is the top face of
Bjiforyj =1,...,t —1; (2) the monotone direction for eadh is y; and (3) the block is maximal. Note
that this implies that all the boxes in a block have the same width.witién of the block is defined as the
width of any B;. Also theend facesof B refers to the top face aB, and bottom face oB,.

Recall that every candidate box in our octféehas been assigned or inherited a monotone direction from
the Subdivision Phase. This partitions the set of candidate boXBEsinfo blocks as defined above. All the
boundary faces of a block can be connected using the above Paraletfface Rule, except for the end
faces which is addressed in the next lemma.

LEMMA 3. Let F' be an active end face of a block.

(a) If F'is not known parametrizable, then it has at most 2 vertices.

(b) If Fis known parametrizable, thefi has at most vertices. When there arevertices, the sign types are
one of Figure7(4b), (4c) and (4d). These can be connected using the Paraméérizabe Rule.

The correctness of above lemma depends on the fact that we haveeteatibrnating ambiguities in the
Refinement Phase. The only faces whose connection rule remainddetatter the above discussion are
those in the interior of blocks. We know from previous counter exampldsthieae is a need for global
consistency, but it cannot be solved using a simple fixed rule like the AF. Ruiesolution is as follows:

(1) if all but one face remains unconnected, we can connect this feasafe way (i.e., one which will not
lead to contradiction). This connection rule will be known as the “Matchinig’Ru
(2) in any candidate box, at most two opposite faces cannot be codrisctee Parametrizable Face Rule.

To “process” a box3 in the present context means to connect all the vertices on the faée3/é¢ can now
processB as follows: if (1) holds, we can procesgs by using the Matching Rule to connect its remaining
unconnected face. Otherwise (2) holds, and we search in any oretefdidirections of the block containing
B, looking at neighboring boxeB;, Bs, ... until we find a boxB;, that satisfies (1). Then we apply the
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Matching Rule toB; fori = k,k — 1,...,1. Thus eachB; is processed, anB can now be processed using
the Matching Rule.

Let us now define th®atch-
ing Rule for a candidate box
B with parametrization direc-
tion y. Assume thatB’s top

\ A ; , face, as well as the other four

he ‘ " ‘. ‘ faces parallel tg-direction, have

(m S ON ™ been connected. Then the Match-
ing Rule tells us how to con-
nect the bottom facd’. Let
v1, V9, ..., Vo bE the vertices
on the boundary of". Note thatn < 4. The Matching Rule tells us to introduce the érg v;) if there exists
a path of arcs on the boundary Bffrom v; to v;. Note that this rule yields a unique way to connect all the
vertices on. Figure9 illustrates this Matching Rule. The correctness proof of the Balanced gyzithm
follows the same structure as that of the Regularized Cxyz Algorithm: SeerfippA.5 for the correctness
proof of Balanced Cxyz algorithm.

%
<@

Figure 9: Examples of matching rules ((i), (ii), (iii) and (iv)) and propg&ma
rules ((v)—(v) —(v")) to connect vertices.

6 Rectangular Cxyz Algorithm — Exploiting Anisotropy

The ability to have partial splits (i.e., half-splits or quarter-splits) can be hiagtisantageous. We design an
algorithm calledRectangular Cxyz Algorithm to exploit this. A technique from the 2-D versiot¥] can be
applied here, though the details are considerably more complicated. Tie é@suaination, we must fix some
arbitrary upper bound > 1 on the aspect ratio of any inconclusive box. Hspect ratioof a box is the ratio
of the lengths of the longest edge to shortest edge. Please refe} amgd AppendixA.2 for details.

7 Experimental Results

Our algorithms are implementeddmava on the Eclipse Platform. All examples are run on an Intel Core2 Duo
Mobile Processor T2500 (2.0Ghz, 667FSB, 2MB shared L2 Caclie2 &Gb of RAM. We use the default
Java heap memory 256MB (some runs result in OutOfMemoryError (OME)). \&k o convert thdava
codes taC++ for distribution with our open sourdgor e Li br ary. We implemented four algorithms: PV,
Balanced Cxyz, Balanced Cxyz with epsilon precision, and Rectanguiar. These are abbreviated as PV,
Cxyz, Cxyze, and Reat- (wheren is the maximum aspect ratio). Table 1 lidts examples of our tests.
Figure 10 visualizes the surfaces of Eg2, Eg3, Eg6 and Eg7. Table 2 comparesititeer of boxes and
timings (in ms) among Cxyz, PV, and Rect{n = 2,4,8,16,32). The percentages represent the relative
number of boxes and the relative timing, with Cxyz as 100%. See Appéndlifor additional images.

[ # [[ Curvename | Equationf(z,y,z) =0 [ Original Box
Egl tangle cube 2% — 522 + yT —5y? + 27 — 522 + 10 [(—8,—8,—8),(8,8,8)]
Eg2 chair (22 + y2 4 22 — 23.75)%2 — 0.8((z — 5)2 — 222)((2 + 5)2 — 2y°) [(—8,—8,—8),(8,8,8)]
Eg3 quartic cylinder | yZz2 + y222 + 0.0122 + 0.0122 — 0.01 [(—8,—8,—8), (8,8,8)]
Eg4 quartic cylinder | y2(x — 1)2 + y2(z — 1)2 + 0.01(x — 1)2 4+ 0.01(z — 1)2 — 0.2002 (=5, —5,—5), (7,7, 7)]
Eg5 quartic cylinder | y2(x — 1) + y2(z — 1)2 + 0.01(z — 1)2 + 0.01(z — 1)2 — 1.0002 [(—12, —12, —12), (14, 14, 14)]
Eg6 shrek —2? — oyt — 2T 1 4(a? + yZ27 + y° + 22a2 + 22 + a2y2) — 20.7846xyz — 10 | [(—8, —8, —8), (8,8, 8)]
Eg7 tritrumpet 822 + 6xy> — 22° + 322 + 3y2 — 0.9 [(—8,—8,—8), (8,8,8)]
Egs8a eclipse 22 +10%y2 + 10222 — 1 (-8, -8, —8), (8,8, 8)]
Eg8h(n) (n = 2,4, 6) eclipse 22 +10"yZ + 1022 — 1 (=7, —7,—7), (8,8, 8)]

Table 1: Equations and input boxes of examples

(1) Cxyz is at least as good as PV, and is significantly faster than PV inerastples. In Eg8b(4), Cxyz is
7.5 times faster than PV. In Eg8b(6), Cxyz spendsseconds to construct the mesh, compared to PV which
spends more thard seconds and runs out of memory. Rect is the fastest in both Eg8b(£g&hd6): Rect-2
spends 141 ms for Eg8b(4), and 172 ms for Eg8b(6). The only exceptieg8a where Cxyz and PV produce
the same number of boxes, and spend the same amount of time. In Eg8b(Bk e same function as Eg8a,
but with an asymmetric original box. Cxyz is twice as fast as PV. Also noteirthtaie Eg3, Cxyz and PV



/
/

(a) Eg2:chair (b) Eg3:quartic cylinder (c) Eg6:shrek (d) Eg7:tritrumpet

Figure 10: Approximation of various examples in Table 1.

also produce the same number of boxes, but Cxyz is faster than PVsedt@computational cost for tihg
predicate is bigger than th&,,. predicate.

(2) Rect can be significantly faster than Cxyz, but the performancedf iR inconsistent. In Eg3, Rect-32
takes11.8% of Cxyz's time; and in Eg8b(6), Rect-2 také3.8% of Cxyz's time. The input surface for these
examples are very long and thin, allowing Rect to take advantage of lasgectaratios. The results show
that although Rect produces fewer boxes than Cxyz in all examplesg@i(#), the running time of Rect is
not always faster than the Cxyz (as in Eg2 with a “squarish” input sajfarhis is because Rect must spend
more time checking splitting criteria, and processing boxeksditections.

(3) Increasing the maximum aspect ratian Rect does not necessarily improve the performance of the
algorithm. In Eg3, increasing the maximum aspect ratio directly improves therpemce of Rect; but in
Eg8b(6), it has an opposite effect. This is because increasing the maxaspeut ratio might cause the boxes
to “over split” in one direction, which is also the reason for the inconsisteh@®ect. Another example for
over-splitting in Rect is Eg2, where Reetspends more time than Cxyz. Figut@ in Appendix shows the
resulting boxes, meshes, and details by running Cxyz, Rect-8, andBRect-Eg2.

[ Equation ][ Cxyz [ PV [ Rect-2 [ Rect-4 [ Rect-8 [ Rect-16 [ Rect-32 |
Egl 2584 /391 198% / 184% 42%/148% | 50%/168% | 66%/200% | 81%/236% 103% / 288%
Eg2 26104 /4516 406% / 349% 51%/163% | 76%/236% | 98%/302% | 118%/372% | 141%/451%
Eg3 35792 /3437 100% / 112% 33% /82% 18% / 47% 9% / 28% 6% /17% 3% /12%
= 80662 /10282 | OME=g0scc. | 54%/174% | 41%/129% | 34%7105% | 36%/115% | 33%/103%
Eg5 134163/17187| OME~gpsec. 48% / 205% | 28% /86% 23%/71% 21% / 65% 20%/61%
Eg6 31144 ] 4046 319% / 296% 44% [134% | 52%/171% | 62%/208% | 70% /255% 77% [ 283%
Eg7 1688 /328 172% / 128% 47%/109% | 50%/119% | 61%/129% | 74%/138% 98% / 176%
Eg8a 400/94 100% / 100% 44%/133% | 50%/149% | 58%/166% | 68% /166% 80% / 183%
Eg8b(2) 2741125 789% / 200% 54% / 87% 56% / 87% 72%/100% | 82%/112% 102% / 112%
Eg8b(4) 1247203 1774% | 754% 28% / 69% 34% / 69% 39% /77% 44% | 85% 53% / 100%
Eq8b(6) || 1522671343 OME=70scc. | 5%713% 5% 7 14% 6% 1 15% 6% 1 15% 7% 7 16%

Table 2: Cxyz vs. PV vs. Reat-

(4) We also ran our algorithm on the high order polynonfiat, y, z) = 230 4 3300 4 2300 _ 1 = 0. To
construct a correct mesh, Cxyz uses 188 ms; PV uses 219 ms; Rext-296ms and Rect-4 uses 375 ms.
This shows that subdivision algorithms can perform well when the inmation is a high degree polynomial.
On the other hand, starting from Rect-8, there are overflow/underfi@sse This problem can be resolved if
we use a library like ou€or e Li brary.

8 Conclusion

This paper introduces new algorithms for the isotopic approximation of implidaces. Our algorithms are
relative simple, efficient and easy to implement. A main idea is to exploit paraniglitizéas in Snyder) and
nonlocal isotopy (as in Plantinga & Vegter), and we further extend thistmleaisotropic subdivision. Our
comparison with three algorithms (PV, Balanced Cxyz, and Rectangular) Glkgw that our Cxyz Algorithm
is consistently more efficient than PV and the Rectangular Cxyz Algorithnexhibit significant speedup.
But the precise way to exploit anisotropy remains a research problemmajoe open problem is to extend
this work to higher dimensions. It is a challenge to find faster methods féacgurefinement. Finally two
general open problems are the effective treatment of singularity usingnical methods, and the complexity
analysis of subdivision algorithms.
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A Appendix

In this appendix, we provide details of the correctness proofs. Gogss is nontrivial because our exploita-
tion of non-local isotopy forces us to do global arguments. Most of thefprare included here, but the
omitted ones may be found in Lin’s Thesisy[ 9]. First, we show more figures from our experiments.

A.1 More Examples

This section illustrates the surfaces for Eg.2 to Eg.7 in Table 1 using CxyzeCBz and Recta. n is
selected in a way that Reatis the fastest among all Rect algorithms.

(a) Cxyze (d) Rect-2

Figure 11: Approximation of Eg2: chaji(z,y, z) = (22 + y? + 22 — 23.75)? — 0.8((z — 5)? — 222)((z +
5)% — 2y%) = 0.

SR

(ai) Cxyze (b) PV (é) Cxyz (d) Rect-32

Figure 12: Approximation of Eg3: quartic cylindétz, y, z) = y?2? + 4?22 +0.0122 +0.012%2 — 0.01 = 0.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 13: Approximation of Eg6: shrei(z,y,z) = —2* — y* — 2% + 4(2? + 9222 + 9% + 2222 + 22 +
22y?) — 20.78462yz — 10 = 0.

A.2 Rectangular Cxyz Algorithm

The ability to have partial splits (i.e., half-splits or quarter-splits) can be higdivantageous. We design such
an algorithm, known as the Rectangular Cxyz Algorithm. A technique from gwaRgular Cxy Algorithm
[14] can be applied (the implementation details are considerably more complicatedhsitire termination,
we must fix some arbitrary upper boupd> 1 on the aspect ratio of any inconclusive box. Hspect ratio

of a box is the ratio of the lengths of the longest edge to shortest edgehd-Gubdivision Phase, we test
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(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 14: Approximation of Eg7: tritrumpgtz, y, z) = 822 + 6xy? — 22> + 322 + 3y> — 0.9 = 0.

™

(a) Cxyz (b) Rect-32

Figure 15: Approximation of Eg4: quartic cylindeflr, y, z) = y?(x — 1)? +y%(2 — 1) +0.01(x — 1)% +
001(2—1 —0.2002 = 0.

> o

(a) Cxyz (b) Rect-32

Figure 16: Approximation of Eg5: quartic cylindef2z, y, ) = y*(z — 1) + 3?(z — 1)+ 0.01(z — 1)% +
0.01(z — 1)2 — 0.1002 = 0.

each boxB as follows. We go through the following list of predicates which amounts tokithg C; or C.,,.
on the whole, half-, quarter- parts 8f This list of of predicates is given ag)(in the Appendix.

LO :
Cout : Co(B)
Cin : Cwyz (B)
L1 :
Cout : Co(Bi234), Co(Bsers), Co(Bi278), Co(Baase ), Co(Biass ), Co(Baser)
Cin : Czyz (B1234)7 C:tyz (B5678)7 C:tyz (B1278)7 (2)
Czyz (33456)’ Cmyz (Bl458)’ Cmyz (32367)
L2 :
Cout : Co(Bi12), Co(B3a), Co(Bss), Co(Brs), Co(B1a), Co(Ba3),
Co(Ber), Co(Bss), Co(Bis), Co(Bar), Co(Bse), 00(345)
Cin : Catyz (B12)7 C:vyz (B34)7 Cwyz (B56)v Cwyz (B78) xYz (Bl4)a acyz(BQL%)a
Cmyz(BG7)7 Cmyz(BBS)v C:L‘yz(BIS)a C:vyz (B27) Czyz (BBG)a Yz (B45)

14



(a) Cxyz (b) Rect-8 (c) Rect-32

Figure 17: Boxes, meshes, and details of Eg2 using Cxyz, Rect-8 arteBReNote that the triangles are
elongated as the maximum aspect ratio increases.

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

Figure 18: (a)-(e): Approximations of quartic cylindeflx, v, 2) = y?(z — 1)? + 3%(z — 1)% + 0.01(z —
1)2 4+ 0.01(z — 1)? — 0.2002 = 0 using Rectr (n = 2,4, 8,16, 32). (f)-(j): Local topology preservation in
the squared area of the approximations.

In this list, the subboxes aB are labeled using some fixed conventidar labeling the 8 orthants of the
coordinate system. This list has three subligig (1, L2). If a condition inL is verified we tagB as an in-

or out-box, accordingly. If a condition ih, (Ls) is verified, we half- (quarter-) split to produce a child that
satisfies that condition, and tag that child accordingly. If no condition idieey we do a full-split. Finally,

for balancing, we balance in the, y- and z-directions independently. This could create p&is B’) of
neighboring boxes wherB N B’ = F but F' is a proper subface d8 and of B’. We half-split eitherB or

B’ to makeF" a face of a subbox. Nows' would be active, and this allows our former analysis to work. The
Disambiguation Sub-phase and Construction Phase are unchanged.

! Unlike the 2-D case, there seems to be no universally accepted comveritio this. See, ed.g.,
http://godplaysdice.blogspot.com/2007/09/convention-for-quadramttaethant.html.  We will use the gray code to label suc-
cessive orthants, starting from= 000,2 = 001,3 = 011,4 = 010,5 = 110,6 = 111, 7 = 101, 8 = 100.
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A.3 Overview of Correctness Proof

In this section, we will give an overview of the correctness proof, bothte regularized algorithm and the
balanced algorithm. They have a common structure, but we will point o@rdiites.

Correctness means that the output gr&phs isotopic toS in the input regionR(7j), denotedG ~
S (mod R(T))). LetT be the final octree produced by the algorithm. N

The proof consists of two major steps. First we show the existence offaceuf that is isotopic toS
via an isotopy that respects the vertices/of This means that the intermediate surfaces of the isotopy does
not intersect the vertices @f. We denote this relation byS* ~ S (mod7")”. Moreover, this surfacé& has
some nice properties relative 10, namely,§ should intersect all the segments and face% @f a “clean”
way. Here, “segment” means any edge of a box that does not haveer @oits interior. To intersect a face
“cleanly” meansS does not intersect the face in any loop. To intersect a segment “cle‘aetyhs? intersects
it at most once. To show the existence of suchbame will give a conceptual process to remove loops and
remove pairs of intersections on segments. But we need to define a pedtalom loops and pairs and to
show that we can remove minimal elements of this partial order repeatediyn iMisepartial order is empty,
the surface is clean.

It turns out that to define this partial order, we need to maintain some monityguioperty of the surface
(not the underlying function that defines the surface). Here we se¢oa difference between the regularized
and the balanced case: in the former, we could remove all the loops lileéopairs, and so we can define
a separate partial order on loops, and on pairs. In the latter, we neefirie d single partial order on their
union.

A maximal set of boxes that are connected by alternating faces is callgteamating block. The second
major step is to show th&t ~ S within each alternating block df. Finally, we can conclude thét ~ S ~
S (modR(T)).

A.4 Correctness of Regularized Cxyz Algorithm

We address the correctness of the Regularized Cxyz Algorithm. Théigrsabtle, and harder than tRé
Regularized Cxy Algorithm or theD Regularized PV Algorithm. Our previol proof for Cxy does not
seem easy to generalized®, so we use a different approach. This proof will form the basis fovipg the
correctness of the Balanced Cxyz Algorithm in the next section.

Let 7" be an octree. We say intersects the boundary of R(T") generically if:

e For each boundary facg, the surfaceS intersectsF' transversally, and does not pass through any
corner ofF.

e The setS' N F'is a finite collection of a finite set of closed loops and/or open curves. Bypan curve,
we mean one that has two distinct endpoints. The loops lie in the interibt ahd the open curves
terminate transversally on the edged-of

First, we will prove the termination of the subdivision phase. Ligtlenote the octree representation of the
original nice regionRy.:
LEMMA 4. If S = f~1(0) intersects the boundary d®(T,) generically, and iff has no singularities in
R(T)), then the subdivision phase will terminate.

Proof. If the subdivision phase does not terminate, then there is an infinite dewesequence of boxes
By D By D --- such that eacliy(B;) andCy,.(B;) fail. Thus:

0€ (0f(B;)N Ofe(Bs) N Ofy(Bi) N Of(By)). 3

The boxesB; must convergéto some poinp € R(Tp) asi — oo. Since 0f is a box function forf, we
conclude thatd f(B;) — f(p). Then @) implies0 = f(p) = f.(p) = fy(p) = f-(p). Thus,f has a singular
point in R(1p). Q.E.D.

2 The existence of depends only on the existence of a bourmh the maximum aspect ratio — so this proof applies in the more
general setting of Rectangular Cxyz Algorithm later.
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From now on, lefl” be the octree at the termination of the Regularized Cxyz Algorithm{ahd the graph
constructed by our rules froffi.

€16. Monotone Surfaces Let S C R? be a continuous surfacd C R? be a rectangular box ande
{z,y, z}. Ani-line is a straight line that is parallel to theaxis.

We says is i-graph-like in B if |S N BN L| < 1 for everyi-line L. We says$ is i-monotonein B if it is
i-graph-like and we can assign a plus or negative sign to each conmectghnent of3 \ S so that adjacent
components have different signs and for eatine L that is directed in the increasirgdirection, the lineL
never pass from a negative region to a positive regiohtase, we can similarly defirenonotoneon the
facesF of B. 2D examples of graph-like and monotone cases are shown in Fi§uidote thatZ, may keep
the same sign as it passes throught, or it may change from a positive to a negative region.

v
+ - _ _ - - - _ _ -

ad+ LS LA Mlads LU LAY

(@ (b)

Figure 19: (a)S N B is graph-like inB but not monotone, (b¥y N B is monotone.

Here is an alternative characterization-@honotone:

LEMMA 5. LetB = I, xI,xI,. Thenf is z-monotone in3 iff there is a continuous functiap: I, x I, — I,
such that the grapbr(¢) = {(z,y, ¢(x,v)) : (z,y) € I, x I} of ¢ is equal toS in the interior of B, i.e.,

gr(¢) Nint(B) = S Nint(B).

The easy proof is omitted. Note that(if, y) € I, x I, and(z,y, ¢(z,y)) ¢ S theng(z, y) must be either
max I, or min I,. The continuity of the functiow is necessary to ensure monotonicity.

We simply say “graph-like” or “monotone” if is understood from the context. For specificity, we usually
let i = y in illustrations. These definitions also make senselihwhere S is a curve andB is a planar
rectangle.

LEMMA 6. Supposes = f~1(0) wheref : R® — R. For any boxB, if %(p) # 0forall p € BthenS is
i-monotone inB.

This lemma shows the origin of our monotonicity concept, and the proof of it is inated\ext, suppose
T is the octree produced by our regularized Cxyz algorithm on the inpatimf. Then for each boX3 in
T which is intersected by = f~1(0), there is a direction = ig € {x,y, 2} such thatS is i-monotone in
B. Leti : T — {x,y, z} denote this (canonical) direction. Hence for each candidatethexT’, we have a
fixed directioni, wheresS is i-monotone inB. N

S is monotonein 7' if S is i-monotone in each bo® in T' for somei € {z,y,z}. Let.S andS be two
surfaces. We say preserves theonotonicity of S'in 7' if for any candidate box3 in 7', if S is i-monotone
in B, thens is alsoi-monotone omB.

In our proof, we will begin with a surface that is monotone in all the canditates in7', and we will
repeatedly modifys to someS which preserves the monotonicity §fin 7. What is important is that we can
basically “forget” about the orlglnal functiofi as we do this modification, and we do not have to produce a
swtablef with the property thaf L) = S.

Relative to a surfacé, an edgeF is dirty if |S N E| > 2 or S intersectst' tangentially, and a fac€’ is
dirty if SN F' contains aloop (i.e., closed curve)®intersects” tangentially. The opposite of dirty dean
A surfaceS is cleanif every edge and face df is clean relative tch.

For the correctne$of our algorithm, we must modify our algorithm to do special “boundary @ssing”
so that7 is clean relative t&5' on the boundary faces. This processing amounts doing root isolation on the

3 All our correctness is up to an infinitesimal perturbationfof It means that our algorithms miss tangential intersections of
S N R(T), when these components only occur on the boundafy(@f). On the other hand, tangential intersection§'of R(7") in
the interior of R(T") are excluded by explicit assumption.
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edges or®R(T), followed by the2 D Cxy algorithm on the boundary dt(7"). Thesel D and2D processing
are performed by splitting boxes in the octree. Boundary processing @xye Algorithm is similar to the
Cxy Algorithm. For the following part, we will assume that the surfacatersect®)R(T") cleanly.

Note that for a boxB, S N B might be comprised of several connected components, but one cantpetv
(in the Regularized Cxyz algorithm) all these components must belong to the(garhal) component of
S N R(T). Note that each component Sfcan give rise to zero, one, or more componentS of R(7T').

q17. Partial Order on Pairs We fix the usual octre& and f that defines the surface = f~1(0). Let
P(S) denote the set of aplairs of points{p, ¢} such that there is an eddeof 7', {p,q} C E N S and the
segmentp, ¢] intersectsS in an even number of point®lote that the definition of pair in Cxyz Algorithm is
more general than the definition of convergent pair in Cxy Algoritia.assume tha®(S) is a finite set. We
also regard the empty sétas a special element &f(S); all other pairs are calledon-empty pairs. We say
P(S) istrivial if its only member ig0.

Lo dnd l A

2 a3 ) )
(@) (b) (b)

©)
Figure 20: (a) Pairs on eddeg, (b) {p,q} - {p'.d'}, () {p,q} - O

Example: Figur&0(a) shows an edgg with 5 intersection points witly. There are pairs onE given by

{al, LZQ} y {az, a3} y {a3, a4} y {a4, a5} s {al, a4} s {ag, a5} .

In general, an edge with intersection points wittt' determineg(n) pairs wherep(0) = 0 and forn > 1,
p(n) = p(n — 1) + [(n —1)/2]. Sop(1) = 0,p(2) = 1,p(3) = 2,p(4) = 4,p(5) = 6.

We define a relationship between pairsfS). For any facel’ of T, we consider the connected curve
components of' N S. If o is a point inS N 0F, let C, denote the connected componentrof S that has
as one endpoint. Given two paifs, ¢} , {p’, ¢'}, we define the relation

{p,q} = {p'.d'} (mod F) (4)

if d(p,q) > d(p',q') and F' has two opposite edgeg;, and £’ such that{p, ¢} C F and{p’,¢'} C E’, and
the connected components®f ' has this propertyC), = C)y andC, = C,. Further define

{p,q} » O(mod F) (5)

if {p,q} C OF andC),, = C,. Both the relations4) and §) are illustrated in Figur@0(b,c).

For pairsA4, B € P(S5), define the relatiom >~ B if there exists a facé" such thatd >~ B(mod F'). Let
= denote the reflexive transitive closuresef P = Q iff P = @ or there is a finite sequence of pairs where
P=Fy P - =P =Q.

LEMMA 7. The relation(P(S), =) is a partial ordering onP(.S)

Proof. We check three properties. Ldt B,C € P(S). Reflexivity: A > A (by definition). Symmetry:
A = BandB = Aimplies A = B. Thisis true ifA or B is equal toO. Otherwise, ifA # B, we see
that A > B impliesd(A) > d(B). Similarly, B = A impliesd(B) > d(A), contradiction. Transitivity:
A > B = CimpliesA = C. This follows from the definition of. Q.E.D.
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If A > B, we sayB is “smaller” thanA and we are interested in minimal elements in this partial order.
Intuitively, O is the unique minima ifP(S). Towards proving this result, we need a useful property of our
octreeT”:

LEMMA 8. Let S be a surface which is monotone Th and £ be any non-boundary edge @fsuch that
|SNE| > 2. Assume (wlog) thal is parallel to thez-axis, and the four faces bounded Byare F,, F_,, F,
andF_,, as in Figure20(d). Then eithelS is z-monotone orf,, U F_,, or S is y-monotone oy, U F_,,.

Proof. SupposeS is notz-monotone ont”_,.. Consider the box3 lying aboveF .. SinceS cannot be
z-monotone inB (becausd’ intersectsS in more than one point) and it cannot Benonotone (sincé is not
z-monotone orF_,), we conclude tha$ must bey-monotone inB. The same reasoning implies thamust
bey-monotone in the boB’ below F_,. This concludes that must bey-monotone oy, U F_,. Q.E.D.

LEMMA 9. The empty s&D € P(S) is the unique minimal element Bf.S).

See [L3] Lemma 23 for the proof of this lemma.

918. Cleansing Strategy We are going to transforrfi to another surface that is clean relative t@. We

do this by transforming@ isotopically toS. A difficult problem in this transformation is that it is very hard to
keep track of the nice properties of the origigfakith respect tdl". For instance, we know that each candidate
box B of T" must satisf)Cg{yz(B). We first overview the cleansing processes:

1. First, we clean all faces. Here we can exploit the original propertf. dBecausef is monotone in
some coordinate direction in each bBxthere cannot be loops in two adjacent face®oMoreover,
the set of all such loops has a natural nesting partial order in eacticate direction.

2. Next, assuming all the faces are clean, we can clean edges. Actualtgnmot clean an entire edge at
once, but we remove pairs frof(S), one pair at a time. Let = S, and we construct a new surface
Si+1 from S; by removing one pair. The fact th@&(S;;1) is a proper subset d?(.S;) allows us to
preserve the partial order that is induced from the origiha$) = P(Sy). We show that each pair
removal does not introduce any loop. So, at the end of this procedsaweea surfacé), that is clean,
and isotopic taS.

We next give details of these cleansing routines.

919. Cleaning Faces Consider the set of loops 6f in faces of our octre&'. Denote this set by’ (S), and
as before, introduce an artificial eleméntin £(S). We sayL(S) istrivial if its only member isO. We also
assume thaf (.9) is a finite set.

Let L, L’ be two distinct loops of2(.5), and they lie on the boundary of a common b®xLet C;, denote
the connected component&f B that is bounded by.. Wlog, let f bey-monotone inB. This implies that.
andL’ can only lie ony-faces ofB. These tway-faces can be distinct or the same. We wiite- L'(mod B)
if O, = Cr, and they-projection of L’ is contained in the interior of thg-projection of L (by y-projection,
we mean the projection onto the= 0 plane). Note that eithet = L’ or L’ = L must occur becausgis
y-monotone inB. This ensures that we have a global partial ordering 0%). This global property is derived
from our original functionf, and is critical for our proof. We must carry some of this information along in
the induction, even after we have transformgdAlso, observe that the partial ordering can be naturally
partitioned into three subrelation¥.S) = L,(S) U L,(S) U L.(S), corresponding to the three coordinate
directions.

Note that there can be several lodp® (i = 1,2,...) such thatL = L. TheseL(® can lie in the same
face asL or in the opposite face. A fundamental property of this relation is this:

LEMMA 10. For each loopL/, there is at most oné such thatl, > L'.
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Proof. Say these loops lie opfaces. IfL = L'(mod B), then they-projection ofZ’ is in the interior of the
y-projection of L. Moreover, the component;, C B N S projects into the interior of.. If Ly = L’ for some
loop Lo, then we see that',, = Cr, andLy = L. Q.E.D.

In the special case where the boundarygfis connected, then we haw€’;, = L. In this case, we write
L = O(mod B). This produces a partial order on the set of all loops (treaflras a special loop). Moreover,
O is the unique minimum in this partial order.f = O(mod B), we callC;, C B acap. Our transformation
for loops amounts to repeated removing caps. InitiallySlet= S. We will define a sequence of surfaces,
S1, S2, ... such that the loopg,,(S;+1) is a proper subset af, (.S;) for eachi.

Let L = O in L,(S;) lies in the faceF” and supposé’ is another box that is bounded By We can easily
define a(B U B')-isotopy to transforns; to S; 1 in which L does not occur irC,(.S;+1), but all the other
loops of £, (S;) remains. Of course, it” > L in £,(S;), the removal ofL may induce the new relation
L'~ Oin Ey(Si—l-l)-

Eventually, £, (.S;) becomes trivial and contains onfy. We can independently repeat this argument on
L.(S;)andL,(S;). All faces are clean whed(S) is empty.

920. Semi-loops and BasesWe now have clean faces. To discuss the cleansing of edges, weoraed s
additional concepts. Supposeis a face and the surface intersegtén a number of curves, including loops
(i.e., curve components with no endpoints). A non-loop curve compdrievitose two endpoints lie on the
same edge’ of F is called asemi-loop(E.g.,C on F,, or C’ on F, in Figure21). If p,q are the two
endpoints ofC, we call the line segmenp, ¢] C F thebaseof the semi-loop”'. Supposé” is another face
that is bounded by, andF’ has another semi-loap’ sharing the same base@sThen we say’ andC’ are
linked by this base. Supposg& C’ are linked semi-loops, there are two possibilities: they could be coplanar
(Figure21, C" andC") or they may lie on a pair of perpendicular planes (FigRteC' andC”). In general, a
base can be shared by upfteemi-loops. The next lemma shows that this will not happen.

LEMMA 11 (NO FOURSOMES)Let S be a surface which is monotoneih Then at most 3 semi-loops can
be linked together.

See [L3] Lemma 25 for the proof of this lemma. REMARK: in subsequent transformatfoi, “NO
FOURSOMES” property will be preserved (as we will see).

4
b

C
= C, ﬁc’ Fx+

o

F,

Figure 21: Impossibility of 4-linked semi-loops.

LEMMA 12 (NO HOLES). Let S be the surface after the face cleaning process (notehatmonotone in
T). LetC,C" C S be linked semi-loops on the boundary®flLet P C SN B be a surface patch i (i.e., P
is a connected component®f B). If CUC’ C 9P, thendP = C UC". In other words,P is topologically
a disc.

Proof. Let B be the box containing’ andC” in Figure21. S must be monotone in or y-direction in
B. Wilog, let us assume that is monotone iry-direction in B. SinceP is converging iny+ direction, the
projection of P N int(B) onto F, must lie withinC’. Also, S N B contains no loop on the faces Bf So
we can conclude tha? is a topological disc andP = C U C". Q.E.D.

In other words, this lemma says thatcannot contain any holes as illustrated in Fig2?e
From the proof of Lemma2, and the fact that a connected subset of-aiock can be viewed as a rectan-
gular box in whichS' is monotone in-direction, it is easy to see that the following lemma is also correct:
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(b)

Figure 22: Examples of holes.

LEMMA 13 (NO HOLES 1).LetB be a connected subset of &block, andS be a surface that is monotone
in 7" which intersects the faces 8f € B cleanly. LetC' C SN 9d(UpepB) be a closed curve, an C SN B
be a connected componentfC 0P, thendP = C. In other words,P is topologically a disc.

REMARK: in subsequent transformation 8f this property will also be preserved (as we will see).

921. Cleaning Edges via Base Removal OperationsLet us retain the notations of Figu2® relative to an
edgeE containing a paifp, ¢}. We call a pair{p, ¢} penultimate minimum (or {p, ¢} =. O) if for any
pair P, {p,q} = P impliesP = O. If {p,q} >, O and for exactlyi of the facesF" € {F,, F_,, F,, F_,},
{p,q} » O(modF), then we say{p,q} »; O. Note that if{p,q} »; O, theni > 1. In other words,
{p,q} =0 Ois not possible. We call a base= [p, q| apenultimate minimum baseif {p, ¢} is a penultimate
minimum pair. Clearly, penultimate minimum base is a base of some semi-loops.

We will remove one penultimate minimum pair (S) each time. LetS = Sy = f~!(0) and suppose
we construct a new surfacg ., from S; by removing one pair fronP(S;). The fact thatP(S;11) is a
proper subset of(.5;) allows us to preserve the partial order that is induced from the orightal) =
P(Sp). Our removing of penultimate minimum pairs will not change the partial ord@(ii). In each step
P(S;) = P(Si+1) N {{pi,qi}} where{p;, ¢;} is the penultimate minimum pair which we remove at step
The removing only creates new relations of the fdmng} - O where{p, ¢} = {p’,¢'} in P(S;).

The next lemma shows that if a base= [p, ¢] is a penultimate minimum base afgd, ¢} >2 O, then the
two linked semi-loops must lie on a pair of perpendicular planes:

LEMMA 14. Let S be a surface that is monotone T and{p, ¢} be a pair ofS N 7. Consider two distinct
facesF; and F, in Figure 20 where{s,v} C {z,—z,y,—y}. If {p,q} =2 O where{p,q} = O(mod Fy)
and{p,q} = O(mod F,), then{s,v} # {z, —z} and{s,v} # {y, —y}.

Proof.If {p, ¢} = O(mod F,) and> O(mod F_,), and curves’,,, C, C SN (F_, U F,) are the connected
components that passes throygandg, thenC;, andC, must be different components i, U F),. Since
{p, ¢} is a penultimate minimum paif can not be;/-monotone in¥,, U F_,. From LemmaB, we know thatS
is z-monotone inF, U F_,, which contradicts the fact thi, ¢| is the base of two coplanar linked semi-loops
onF,UF_,. Q.E.D.

Suppose” ~; O whereP is a pair. We already noted that= 0 is not possible. From LemniHL, if we can
preserve the monotonicity & during the surface transformation (which will be proven later), then4 is
also impossible. So the only possibilities fois 1,2 and3. Because of Lemma4, a penultimate minimum
baseb could have three possibilities, as shown in Fig2@g), (11) and (I11). Note that ifb is not a penultimate
minimum base, Figur@3(I171"”) might arise.

Let b be a penultimate minimum base for some semi-loop. To “rembve&ans to simultaneously remove
all the semi-loops that share the bas&ince there are only three possibilities, so there are three distinct base
removal operations. This is shown in Figtg In Figure23 (1) — (I’), we push down the part of semi-
loop component to form a “tunnel” below the ed@e In Figure23 (I1) — (II’), we push the topological
disc component bounded by the two semi-loops in hothandy— directions to eliminate it. In Figurg3
(III) — (II1"), we push down the topological disc component bounded by the three sgpsitto remove
the it. Note that these operations are well-defined: this depends on thibdaat each box3 that contains
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a pair of linked semi-loopg’ andC’, the surface patch bounded byu C’ is a topological disc (i.e., the
"NO HOLES” property in Lemma.2 holds as long as we preserve the monotonicity of the surface during our
operations, which will be proven in the following part).

Figure 23: Three Base Removal Operations.

We next describe some properties that our transformation preserge®. e an octree anti; be the set
of all corners of the boxes iif". Let .S, S’ be two surfaces. We say is compatible with S’ (respect tdl’)
iff there exist an isotopy : R3 x [0,1] — R3, s.t. I(-,0) is the identity;1(S,1) = S" andvt € [0,1],
I(S,t)NVp = 0.

LEmMMA 15. The face cleaning operations and the base removal operations pesexcompatibility o5
inT.

Proof. The correctness of this lemma is based on the nature of our operationseweetransform the
surface “across” any corners’in Q.E.D.

LeEmMMA 16 (Surface Monotonicity PreservatiorBase removal operations preserve the monotonicity iof
T.

See [L.3] Lemma 30 for the proof of this lemma.

The next example shows that if we remove the bases in arbitrary ordemigie create holes within the
boxes. Lethl be the smallest base in the békin Figure24(l). Assumes is y-monotone inB, since our
operation preserves the monotonicity, we have the lengt3 of less than the length éf.. If we remove
the bases in arbitrary order, we might reméveandb4 beforeb2 andb3, which results in a hole as shown in
Figure24(I).

LEMMA 17. The face cleaning operations do not induce new dirty faces, and the &aswal operations do
not induce new dirty edges and dirty faces.

Proof. It is clear that the face cleaning operations do not induce new dirty facesthe base removal
operations do not induce new dirty edges. We will show that the base edwperations do not induce new
dirty faces. LetR be a base removal operation which removes a penultimate minimum gad induces a
new loopl on a faceF'. Then before the operatiohwas a semi-loop with the baseThis contradicts the fact
that R removed all the semi-loops that share the same hase Q.E.D.
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Figure 24: Removing bases in arbitrary order might create holes.

The above base removal process halts only wiRg$i) is empty. At this point, all faces and edges are clean
relative to7". From the analysis above, we have the following theorem:

THEOREM18. LetT be the octree produced by our Regularized Cxyz Algorithm. Thers.t.
(1) S ~ S(mod R(T)).

2 Sis compatible withS respect tdl".

(3) S intersectsT” cleanly.

4) S preserves the monotonicity Sfwithin each candidate box @f.

Proof. We first clean the faces, then we clean the edges. From Lelbna@mmal6 and Lemmal7, and
the fact that each operation is an isotopic transformation, the resufitisegfisfies all the properties in this
theorem. Q.E.D.

THEOREM19. LetG be the mesh we construct by the Regularized Cxyz Algorithm(thert (mod R(T')).

Proof. Based on the construction phase of our algorithm, for each aIternatirigBlcﬁEm d(UB) “agrees”
with GNA(UB). From Lemmal 3, we know thatS is isotopic toG within each block. Sa- ~ S(mod R(T)).
From Theoreni8, we haveG ~ S ~ S(mod R(T)). Q.E.D.

A.5 Correctness of Balanced Cxyz Algorithm

Let T be the octree produced by our Balanced Cxyz Algorithm. Similar to the d¢oees proof of the
Regularized Cxyz Algorithm, we will first transform the input surfage= f~1(0) to another surfacé
which has some nice properties.

In the correctness proof of the Regularized Cxyz Algorithm, we sepwrdégined the partial orders for
loops and pairs of in 7. In the Balanced Cxyz Algorithm, we need to define the partial order for the
combination of all loops and pairs. The reason is that a loop might be “bdddke pairs (an example is
shown in Figure2X(1)), and we need to remove the pairs first in order to remove the loop, Alpair might
be “blocked” by loops ,as shown in Figug(ll) (we do not have such problem in the Regularized Cxyz
Algorithm since the loops are removed before pairs).

(11)

Figure 25: Partial order between a loop and a pair.
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We define the new partial order for the setfS) U L(S), whereP(.S) is the set of all pairs o6 N T,
and£(.5) is the set of all loops of N T (seeq17 and§19). The partial order between loops and between
pairs are the same as the partial order defined in the Regularized Cxyitigolet <pC P(S) x P(S) be
the partial order defined for pairs, ard,C L£(S) x L(S) be the partial order defined for loops. We need to
define a partial order on the sBt.S) U L(S5).

Let B be a box with monotone directian Let L be a loop on the bottom face &f and{p, ¢} be a pair on
the top face ofB. If the y-projection of{p, ¢} is contained within the-projection ofL, we say{p,q} < L
(as shown in Figur@x(l)). In order to removed., we need to removép, ¢} first. We can similarly define such
relations inz and z directions. Let<p;,C P(S) x L(S) be all the relations so defined. Similarly, we can
define<.,pC L(S) x P(95): let {p,q} be a pair, and{ be a semi-loop whose base[is ¢|. If there exist
a loop L which lies in the same bo® as K, and thei-projection of L (for somei € {z,y, z}) lies in the
interior of thei-projection of K', we sayL < {p, ¢} (as shown in Figur@xIl)).

e

12
=6

Figure 26: Example of aloop irRp U <1 U <pr, U <rp.

In the Regularized Cxyz Algorithm, we removed all loops before we remaus.pBut in the Balanced
Cxyz Algorithm, we are forced to intermix pair removal with loop removal beeanf the relations i py,
and<yp. However, if we look at the relatiorp U <1, U <p;, U < p, We do not obtain a partial order on
P(S) U L(S) (see Figure6: the green points form pairs, and the arrows show the monotone direttioa o
boxes. Itis possible thdt < P < ... < P, < L, which forms a loop).

Our solution is to define a partial order based only-og,;:=<p U <1, U <pr. This is clearly a partial
order onP(S) U L(S).

LEMMA 20 (DAG). The partial order relationship< g, forms a DAGG),, where the pairs and loops are the
nodes ofz, and the partial order relations are the (directed) edge€f

Why is this a solution? As usual, we plan to inductively remove elements #6§) U £(.S), which are
minimal relative to<p,;. The possible complication arises when we want to remove a{pair} where
L <rp {p, q} for some loopL. It turns out, we can remov, ¢} without first removingL provided that we
generalize our previous base removal operation as follows: to remasie gppg}, we will remove all semi-
loopsK whose base ig, ¢|. There are two possible situations: (A) If thereis aldopt. L <7p {p, ¢}, then
we know thatp, ¢| is the base of a semi-lodig where the-projection ofL (for somei € {z, y, z}) lies in the
interior of K. In this case, we transform the surfageo that{p, ¢} is removed fronfP(.S), and a new loop
K’ appearsirC(S). And moreoverL < K’ €<y,. See Figur@7 (I1x) — (I1«) and(IIIx) — (I11x") for
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Figure 27: Universal Base Removal Operations.

the illustration of this operation. Note that there might be more than one suchlo@p) If no such loopL
exists, then the operation is defined as in the Regularized Cxyz Algorithm. Simtlee proof of Lemmad.6,
we can prove that those two generalized operations also preservefimesuonotonicity ofS in 7. Based
on the correctness analysis in the Regularized Cxyz Algorithm, we haveltbeihg (similar) theorem for
the Balanced Cxyz Algorithm:

THEOREM21. LetT be the octree produced by our Balanced Cxyz Algorithm. ThETes 1.
(1) S ~ S(mod R(T)).

(2) S is compatible withS respect tdr".

(3) S intersects” cleanly.

4) S preserves the monotonicity Sfwithin each candidate box @f.

Proof. The correctness of this theorem follows from the analysis of the facainand edge cleaning
processes. Q.E.D.

In the Regularized Cxyz Algorithm, we proved Lemma We have a similar result in the balanced algo-
rithm:

LEMMA 22 (NO HOLES 2).Let§ be the surface described in Theor@thand5 be a connected subset of an
i-block. LetC be a closed curve which is the intersectionsofvith 0(UBpgep). LetP C S N B be a surface
patch inB (i.e., P is a connected component lin B). If C C 0P, thengP = C. In other words,P is
topologically a disc.

Proof. The correctness of this lemma follows from the facts #at 13 is monotone ins, ands intersects
B cleanly. The proof is similar to the proof of Lemmia. Q.E.D.

From Lemma22, it is easy to see that N B is a set of topological discs for each candidate Bbx

THEOREM 23. The mesltx constructed by our Balanced Cxyz Algorithm is isotopigwithin eachi-block
B of T. In other wordsG ~ S ~ S(mod R(T)).

Proof. From Theoren?1, it is easy to see tha‘? intersects the boundary & cleanly. Our construction
rule guarantees that N 9(UB) “agrees” withS N 9(UB). And each connected component®@fn B is a
topological disc. So based on Lemid3 we haveG N B ~ SN B. Q.E.D.
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