
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Novel Range Functions via Taylor Expansions and Recursive
Lagrange Interpolation with Application to Real Root Isolation

Kai Hormann
kai.hormann@usi.ch

Università della Svizzera italiana
Lugano, Switzerland

Lucas Kania
lucas.kania@usi.ch

Università della Svizzera italiana
Lugano, Switzerland

Chee Yap
yap@cs.nyu.edu

Courant Institute, NYU
New York, USA

ABSTRACT

Range functions are an important tool for interval computations,
and they can be employed for the problem of root isolation. In this
paper, we first introduce two new classes of range functions for
real functions. They are based on the remainder form by Cornelius
and Lohner [7] and provide different improvements for the remain-
der part of this form. On the one hand, we use centered Taylor
expansions to derive a generalization of the classical Taylor form
with higher than quadratic convergence. On the other hand, we
propose a recursive interpolation procedure, in particular based
on quadratic Lagrange interpolation, leading to recursive Lagrange
forms with cubic and quartic convergence. We then use these forms
for isolating the real roots of square-free polynomials with the al-
gorithm Eval, a relatively recent algorithm that has been shown to
be effective and practical. Finally, we compare the performance of
our new range functions against the standard Taylor form. Range
functions are often compared in isolation; in contrast, our holistic
comparison is based on their performance in an application. Specif-
ically, Eval can exploit features of our recursive Lagrange forms
which are not found in range functions based on Taylor expansion.
Experimentally, this yields at least a twofold speedup in Eval.

CCS CONCEPTS

•Mathematics of computing → Interval arithmetic; Computa-
tions on polynomials; • Computing methodologies → Symbolic
calculus algorithms;

KEYWORDS

range functions, root isolation, interval arithmetic

ACM Reference Format:

Kai Hormann, Lucas Kania, and Chee Yap. 2021. Novel Range Functions via
Taylor Expansions and Recursive Lagrange Interpolation with Application
to Real Root Isolation. In International Symposium on Symbolic and Algebraic
Computation (ISSAC ’21), July 18–22, 2021, Saint Petersburg. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

This paper addresses two related computational problems: (P1)
range functions and (P2) root isolation. Computing the range of
functions is arguably the most basic task in interval computa-
tion [11, 19, 23]. Root isolation is also a fundamental task in the
huge classical literature on root finding [17]. These two problems
are connected by the fact that root isolation can be reduced to eval-
uating range functions. To see this, the next two subsections review
the relevant literature on range functions and root isolation.

1.1 Range functions

We first consider problem (P1). Let 𝑓 : R → R be a real function.
For any 𝑆 ⊆ R, the range of 𝑓 on 𝑆 is the set 𝑓 (𝑆) := {𝑓 (𝑥) : 𝑥 ∈ 𝑆}
and we define the magnitude of 𝑆 as |𝑆 | := sup{|𝑠 | : 𝑠 ∈ 𝑆}. Let
R denote the set of closed bounded intervals. For any 𝐼 ∈ R

with 𝐼 = [𝑎, 𝑏], the width, radius, and midpoint of 𝐼 are given by
𝑤 (𝐼) := 𝑏 − 𝑎, 𝑟 (𝐼) := (𝑏 − 𝑎)/2, and𝑚(𝐼) := (𝑎 +𝑏)/2, respectively.
Note that |𝐼 | = max{|𝑎 |, |𝑏 |}. A range function (or inclusion function)
for 𝑓 is a function of the form

𝑓 : R→ R,

where 𝑓 (𝐼) ⊆ 𝑓 (𝐼) for all 𝐼 ∈ R. If 𝑓 (𝐼) = 𝑓 (𝐼) for all 𝐼 , we
call it the exact range function. Note that ‘ 𝑓 ’ is a generic name
for a range function of 𝑓 ; we use subscripts and/or superscripts
to identify particular range functions: e.g., 𝑔 𝑓 , 𝑇

2 𝑓 , or
𝐿
3 𝑓 . We

can compare range functions using a natural “tightness partial or-
der” on range functions of 𝑓 : we say that 1 𝑓 is as tight as 2 𝑓 ,
denoted 1 𝑓 ⪯ 2 𝑓 , if 1 𝑓 (𝐼) ⊆ 2 𝑓 (𝐼) for all 𝐼 . Generally, we
prefer range functions that are as tight as possible, ideally the exact
range function. But since tight range functions are inefficient (i.e.,
expensive to compute), we must choose a trade-off between tight-
ness and efficiency. Comparative studies of range functions based
on tightness or efficiency are often done in isolation, independent
of any application. For example, see [8, 9, 31]. In this paper, we
give a holistic or integrated comparison of range functions, namely
comparisons in the context of an application (see Sec. 5).

A more robust way to evaluate range functions is to look at
“asymptotic tightness”. We say that 𝑓 has order 𝑘 convergence (for
𝑘 ≥ 1) on 𝐼0 if there exists a constant𝐶0 > 0 that depends on 𝑓 and
𝐼0 but not on 𝐼 , such that

𝑞(𝑓 (𝐼), 𝑓 (𝐼)) ≤ 𝐶0𝑤 (𝐼)𝑘

for all 𝐼 ⊆ 𝐼0, where 𝑞([𝑎, 𝑏], [𝑎′, 𝑏 ′]) := max {|𝑎 − 𝑎′ |, |𝑏 − 𝑏 ′ |}
is the Hausdorff distance on intervals. If 𝑓 has at least order 1
convergence, thenwe call 𝑓 convergent. Note that for any sequence
(𝐼𝑖)𝑖≥1 of intervals that converges monotonically to a point 𝑝 ∈ 𝐼0,

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia Kai Hormann, Lucas Kania, and Chee Yap

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

a convergent range function satisfies

𝑓 (𝑝) = lim
𝑖→∞

𝑓 (𝐼𝑖) .

Such a convergent range function is also called a box form of 𝑓 [31].
When 𝑘 = 2, we say 𝑓 has quadratic convergence.

Cornelius and Lohner [7] were the first to introduce techniques
for higher than quadratic convergence. For any function 𝑔 : R→ R,
they consider range functions of 𝑓 of the form

𝑔 𝑓 (𝐼) := 𝑔(𝐼) + 𝑅𝑔 (𝐼), (1)

where 𝑅𝑔 := 𝑓 − 𝑔 is the remainder function. They call 𝑔 the exact
part of this range function because its range must be computed
exactly. This limits 𝑔 to polynomials of small degree 𝑑 (Cornelius
and Lohner suggest 𝑑 ≤ 5). The remainder part 𝑅𝑔 (𝐼) need not be
exact, but its width controls the overall Hausdorff distance, since [7,
Theorem 4]

𝑞(𝑓 (𝐼), 𝑔 𝑓 (𝐼)) ≤ 𝑤 (𝑅𝑔 (𝐼)).
It follows that the remainder form 𝑔 𝑓 (𝐼) has order 𝑘 convergence,
if𝑤 (𝑅𝑔 (𝐼)) ≤ 𝐶0𝑤 (𝐼)𝑘 .

Cornelius and Lohner show that this can be achieved by letting
the exact part 𝑔 be a Hermite interpolant of 𝑓 . In fact, if 𝑓 is 𝑘 times
continuously differentiable, 𝑥0, . . . , 𝑥ℓ ∈ 𝐼 are distinct interpolation
nodes, 𝑝0, . . . , 𝑝ℓ are positive integers with

∑ℓ
𝑖=0 𝑝𝑖 = 𝑘 , and 𝑔 is

the unique polynomial of degree at most 𝑘 − 1, such that

𝑔 (𝑗) (𝑥𝑖) = 𝑓 (𝑗) (𝑥𝑖), 𝑗 = 0, . . . , 𝑝𝑖 − 1, 𝑖 = 0, . . . , ℓ, (2)

then the remainder function can be expressed for any 𝑥 ∈ 𝐼 as

𝑅𝑔 (𝑥) =
1
𝑘!

𝑓 (𝑘) (b𝑥)
ℓ∏

𝑖=0
(𝑥 − 𝑥𝑖)𝑝𝑖 , (3)

for some b𝑥 ∈ 𝐼 . We now define the remainder part as

𝑅𝑔 (𝐼) :=
1
𝑘!

𝑓 (𝑘) (𝐼)
ℓ∏

𝑖=0
(𝐼 − 𝑥𝑖)𝑝𝑖 , (4)

where 𝑓 (𝑘) (𝐼) is what Ratschek and Rokne [23, p. 23] call the nat-
ural interval extension of 𝑓 (𝑘) (𝑥). For example, if 𝑓 (𝑘) (𝑥) is a poly-
nomial, we write it as an expression 𝐸 (𝑥) in the nested Horner form
and define 𝑓 (𝑘) (𝐼) := 𝐸 (𝐼). The remainder form 𝑔 𝑓 (𝐼) in (1) then
has order 𝑘 convergence, because |𝐼 − 𝑥𝑖 | ≤ 𝑤 (𝐼) and Lemma 1.6
in [23, p. 24] imply

𝑤 (𝑅𝑔 (𝐼)) ≤ 2| 𝑅𝑔 (𝐼) | ≤ 2
| 𝑓 (𝑘) (𝐼) |

𝑘!
𝑤 (𝐼)𝑘 ≤ 2

| 𝑓 (𝑘) (𝐼0) |
𝑘!

𝑤 (𝐼)𝑘 .

The simplest example of this approach is the convergent mean
value form around 𝑥0,

𝑀𝑉
𝑥0 𝑓 (𝐼) := 𝑓 (𝑥0) + 𝑓 ′(𝐼) (𝐼 − 𝑥0),

which is obtained by letting ℓ = 0 and 𝑝0 = 𝑘 = 1, so that 𝑔 is
the constant interpolant of 𝑓 at 𝑥0. This form has even quadratic
convergence, if the range 𝑓 ′(𝐼) is approximated with a Lipschitz
range function [23].

Cornelius and Lohner further point out that it is also possible to
define the exact part as

𝑔(𝑥) := 𝑔(𝑥) + 𝑦

𝑘!

ℓ∏
𝑖=0

(𝑥 − 𝑥𝑖)𝑝𝑖 (5)

for some 𝑦 ∈ 𝑓 (𝑘) (𝐼) ⊂ 𝑓 (𝑘) (𝐼) and the remainder part (cf. (4)) as

𝑅𝑔 (𝐼) :=
1
𝑘!

(𝑓 (𝑘) (𝐼) − 𝑦)
ℓ∏

𝑖=0
(𝐼 − 𝑥𝑖)𝑝𝑖 . (6)

If 𝑓 (𝑘) is Lipschitz continuous, then this gives one extra order of
convergence, because | 𝑓 (𝑘) (𝐼) − 𝑦 | ≤ 𝑤 (𝑓 (𝑘) (𝐼)) ≤ 𝐶 ′

0𝑤 (𝐼) for
all 𝐼 ⊆ 𝐼0 and some constant 𝐶 ′

0 > 0 that depends on 𝑓 and 𝐼0
but not on 𝐼 [7, Theorem 2]. In this variant, 𝑔 is of degree 𝑘 and
the condition that distinguishes 𝑔 from 𝑔 is that 𝑔 (𝑘) = 𝑦, while
𝑔 (𝑘) = 0. Evaluating 𝑔(𝐼) exactly is of course more costly than
evaluating 𝑔(𝐼), because 𝑔 has a higher degree than 𝑔. Note that we
can also get this extra order of convergence by adding one Hermite
interpolation condition to the definition of 𝑔. The evaluation of the
exact part would then be as costly as the evaluation of 𝑔(𝐼), but the
remainder part would depend on 𝑓 (𝑘+1) , while the remainder part
in (6) depends on 𝑓 (𝑘) , a fact that we shall exploit in Sec. 3.2.

The Cornelius–Lohner framework appears to suggest that con-
vergence is limited by the exact part alone, without attaching much
interest to the remainder part. In this paper, we suggest the contrary:
for any function 𝑓 with exact part 𝑔, the remainder part 𝑅𝑔 (𝐼)
in (1) can vary. Despite having the same order of convergence, their
actual performance in an application like root isolation can diverge
significantly.

In this paper, we propose two new ideas for defining such im-
proved remainder parts. The first relies on expressing the remainder
function (3) in centered form (Sec. 2.1), the second approximates
𝑓 (𝑘) (𝐼) in (4) using again the remainder form in (1), thus applying
the idea of Cornelius and Lohner recursively (Sec. 3).

1.2 Real root isolation and Eval

We next turn to (P2). Consider again a real function 𝑓 : R→ R. The
zero set of 𝑓 on 𝑆 ⊆ R is Zero𝑓 (𝑆) := {𝑥 ∈ 𝑆 : 𝑓 (𝑥) = 0}, and #𝑓 (𝑆)
denotes1 the cardinality of Zero𝑓 (𝑆). An isolator for 𝑓 is an interval
𝐼 such that #𝑓 (𝐼) = 1, and we say that 𝐼 isolates the unique zero of 𝑓
in 𝐼 . The root isolation problem can then be formalized as follows:
Given 𝑓 and an interval 𝐼0 ∈ R, compute a set 𝑍 of isolators for 𝑓 ,
such that each Z ∈ Zero𝑓 (𝐼0) is isolated by some 𝐼 ∈ 𝑍 . Assuming
𝑓 to be nice, in the sense that 𝑓 is continuously differentiable and
the zeros of 𝑓 in 𝐼0 are simple (i.e., 𝑓 (Z) = 0 implies 𝑓 ′(Z) ≠ 0), we
can reduce problem (P2) to (P1) using a procedure that we call Eval
(see Algo. 1).

Note that the numerical computation of Eval is reduced to evalu-
ating two range functions, one for 𝑓 (line 5) and one for its derivative
𝑓 ′ (line 6). Moreover, Eval uses two queues to hold intervals, an
active queue 𝑄 and an output queue 𝑍 . The intervals 𝐼 are bisected
until either 0 ∉ 𝑓 (𝐼) or 0 ∉ 𝑓 ′(𝐼) holds. We may call these two
conditions the exclusion and inclusion predicates.

Eval terminates and solves problem (P2), if we assume the two
range functions 𝑓 and 𝑓 ′ to be convergent on 𝐼0. It is then clear
that each 𝐼 ∈ 𝑍 represents a unique root Z ∈ Zero𝑓 (𝐼0), because 𝐼
is added to 𝑍 if and only if 𝑓 (𝑎) 𝑓 (𝑏) ≤ 0 (line 9), which guarantees
the existence of a root by the intermediate value theorem, and if 𝑓 is

1Note that root multiplicity is not used in the definitions of Zero𝑓 (𝑆) and #𝑓 (𝑆) . In
particular, Zero𝑓 (𝑆) is a set, not a multiset.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Novel Range Functions via Taylor Expansions and Recursive Lagrange Interpolation ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Algorithm 1 Real root isolation with range functions
Input: 𝑓 : R→ R and 𝐼0 ∈ R

Output: 𝑍 containing isolators for each Z ∈ Zero𝑓 (𝐼0)
1: procedure Eval(𝑓 , 𝐼0)
2: initialize𝑄 := {𝐼0 } and 𝑍 := ∅
3: while𝑄 is non-empty do

4: 𝐼 := 𝑄.pop() , where 𝐼 = [𝑎,𝑏]
5: if 0 ∈ 𝑓 (𝐼) then ⊲ 𝐼 is implicitly discarded if 0 ∉ 𝑓 (𝐼)
6: if 0 ∈ 𝑓 ′ (𝐼) then
7: 𝑄.push([𝑎,𝑚], [𝑚,𝑏]) , where𝑚 =𝑚 (𝐼)
8: else ⊲ 𝑓 is strictly monotonic
9: if 𝑓 (𝑎) 𝑓 (𝑏) ≤ 0 then ⊲ 0 ∈ 𝑓 (𝐼)
10: 𝑍 .push(𝐼)
11: return 𝑍

strictly monotonic on 𝐼 = [𝑎, 𝑏] (line 8), which assures the unique-
ness of that root. Moreover, each Z ∈ Zero𝑓 (𝐼0) is represented by
at most two isolators. In case two isolators 𝐼 , 𝐽 ∈ 𝑍 represent Z ,
then Z ∈ 𝐼 ∩ 𝐽 is a common endpoint of 𝐼 and 𝐽 . Such duplication is
easily detected and removed, or avoided upfront. For example, if 𝑓
is a polynomial with rational coefficients and rational arithmetic is
used in Eval, then we can replace the weak inequality in line 9 by
the strict inequality 𝑓 (𝑎) 𝑓 (𝑏) < 0 and instead test 𝑓 (𝑚) = 0 after
line 7, adding the point interval [𝑚,𝑚] to 𝑍 if the test holds.

Despite its simplicity, the subdivision tree of Eval is “near-
optimal” when 𝑓 is an integer polynomial [3, 4, 28] and the box
forms 𝑓 and 𝑓 ′ are the “maximal” centered Taylor forms 𝑇

2
(see Sec. 2). In other words, it asymptotically matches the tree size
achieved by powerful tools like Sturm sequences or Descartes’ rule
of signs! However, Eval does not require 𝑓 to be a polynomial [32].

1.3 Some broader literature

Besides the book of Ratschek and Rokne [23] on range functions,
we refer to Neumaier [20, Chapter 2.4] and Stahl’s thesis [29] for
further investigations of the remainder forms of Cornelius and
Lohner [7], which are also referred to as interpolations forms.

To our knowledge, the first version of Eval is from Mitchell [18]
in the context of ray tracing in computer graphics. Its current formu-
lation as a root isolation algorithm, together with complexity anal-
ysis, began with [5]. Yap et al. introduced Eval as a 1-dimensional
analogue of the 2-dimensional algorithm of Plantinga and Veg-
ter for isotopic approximation of non-singular curves [14, 15, 22].
Besides Eval, Yap et al. also introduced CEval [25] for complex
roots, and AEval [32] for analytic roots. The complexity analysis
of these algorithms can be captured under the elegant framework
of “continuous amortization” [3, 4, 28].

Root finding for polynomials is a highly classical problem [16, 17]
that has remained active to the present. The modern complexity-
theoretic approach to root finding was initiated by Schönhage in
1982 [26]. A basic quest is to construct “near-optimal” algorithms,
and in the last decade, significant progress has been made in this di-
rection; see Sagraloff and Mehlhorn [24] (for real roots) and Becker
et al. [1, 2] (for complex roots). The new near-optimal algorithms
(like Eval) are based on the subdivision paradigm; moreover, they
were implemented soon after their appearance [12, 13]. In contrast,
the original near-optimal algorithm [21] has never been imple-
mented (see [21, p. 703] for some challenges).

1.4 Overview of the paper

In Section 2, we introduce a family of range functions based on
Taylor expansions. Technically, these functions are not new, but
within the Cornelius–Lohner framework, we highlight their true
role as improvements on the remainder parts. In Section 3, we in-
troduce range functions based on recursive Lagrange interpolation.
These are new but again, we can view them as improvements of
the remainder parts. In Secs. 4 and 5, we evaluate the deployment
of eight of these range functions in the Eval algorithm; here, the
Lagrange form begins to shine because of its “distributed evalu-
ation” scheme (see Sec. 4.1). We conclude in Sec. 6. NOTE: This
version refers to appendices (A.1–A.3) for the benefit of the review-
ers. These three appendices are easily removed in the final version,
with trivial modifications and bringing the page count down to 8.

2 NEW RANGE FUNCTIONS BASED ON

CENTERED TAYLOR EXPANSIONS

A classic approach for designing a remainder form (1) with qua-
dratic convergence is to choose ℓ = 0 and 𝑝0 = 𝑘 = 2 in (2) and
letting 𝑥0 = 𝑚 :=𝑚(𝐼), so that the exact part is the linear Taylor
polynomial of 𝑓 about the midpoint of 𝐼 , that is,𝑔1 (𝑥) := 𝑓 (𝑚)+(𝑥−
𝑚) 𝑓 ′(𝑚). This gives the centered form 𝑔1 𝑓 (𝐼) := 𝑔1 (𝐼) + 𝑅𝑔1 (𝐼).
One option now is to follow Cornelius and Lohner and express the
remainder part as in (4),

𝑅𝑔1 (𝐼) =
1
2

𝑓 ′′(𝐼) (𝐼 −𝑚)2, (7)

where 𝑓 ′′(𝐼) is the natural interval extension of 𝑓 ′′(𝑥). We call the
resulting version of 𝑔1 𝑓 (𝐼) the minimal (centered) Taylor form.

This can be improved considerably, if 𝑓 is 𝑛 times continuously
differentiable for 𝑛 > 2, by using the (𝑛 − 1)-th order Taylor expan-
sion of 𝑓 about𝑚 to write the remainder function as

𝑅𝑔1 (𝑥) =
𝑛−1∑︁
𝑖=2

𝑓 (𝑖) (𝑚)
𝑖!

(𝑥 −𝑚)𝑖 + 𝑓 (𝑛) (b𝑥)
𝑛!

(𝑥 −𝑚)𝑛, (8)

for some b𝑥 ∈ 𝐼 . We now define

𝑐𝑖 :=
𝑓 (𝑖) (𝑚)

𝑖!
, 𝑖 = 0, . . . , 𝑛 − 1, 𝑐𝑛 :=

| 𝑓 (𝑛) (𝐼) |
𝑛!

, (9)

where the magnitude of the natural interval extension, 𝑓 (𝑛) (𝐼),
can be replaced by 𝑓 (𝑛) (𝑚) in the definition of 𝑐𝑛 , if 𝑓 (𝑛) is a
constant, for example, in the case of 𝑓 being a polynomial of degree
𝑑 ≤ 𝑛. We then get the following improvement of (7):

𝑅𝑔1 (𝐼) :=
𝑛∑︁
𝑖=2

𝑐𝑖 (𝐼 −𝑚)𝑖 = 𝑟2 [−1, 1]𝑆2,𝑛, 𝑆2,𝑛 :=
𝑛∑︁
𝑖=2

|𝑐𝑖 |𝑟 𝑖−2,

(10)
where 𝑟 := 𝑟 (𝐼). Computing the 𝑐𝑖 ’s takes 𝑂 (𝑛 log𝑛) arithmetic
steps (or 𝑂 (𝑛2) in simple implementations, as in Sec. 5); for bit-
complexity, see [30]. In contrast, the natural interval extension (7)
requires 𝑂 (𝑛) steps. What do we get in return? Although this does
not change the quadratic convergence of the centered form 𝑔1 𝑓 (𝐼),
it may be much better than the remainder part in (7) of Cornelius
and Lohner, because successive terms of 𝑆2,𝑛 converge with higher
and higher order. This is dramatically illustrated below in Tables 2–
4 (columns Ẽ𝑇2 and E𝑇2). Recalling that the exact range of 𝑔1 is

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia Kai Hormann, Lucas Kania, and Chee Yap

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝑔1 (𝐼) = 𝑐0 + 𝑟 [−1, 1]𝑐1 (see App. A.1), we realize that the resulting
centered form

𝑇
2,𝑛 𝑓 (𝐼) := 𝑐0 + 𝑟 [−1, 1]𝑐1 + 𝑟2 [−1, 1]𝑆2,𝑛 (11)

is actually just the classical Taylor form of order 𝑛 (or “level 𝑛”
using our terminology below) [23, p. 77], with the range 𝑓 (𝑛) (𝐼)
approximated by | 𝑓 (𝑛) (𝐼) | · [−1, 1].

2.1 Taylor forms with order k convergence

FollowingCornelius and Lohner, we can raise the convergence order
from quadratic to basically any order 𝑘 > 2, simply by replacing 𝑔1
with the (𝑘 − 1)-th order Taylor polynomial of 𝑓 about𝑚,

𝑔𝑘−1 (𝑥) :=
𝑘−1∑︁
𝑖=0

𝑓 (𝑖) (𝑚)
𝑖!

(𝑥 −𝑚)𝑖 =
𝑘−1∑︁
𝑖=0

𝑐𝑖 (𝑥 −𝑚)𝑖 . (12)

But instead of expressing the remainder function 𝑅𝑔𝑘 = 𝑓 − 𝑔𝑘 in
terms of the 𝑘-th derivative of 𝑓 as (cf. (3))

𝑅𝑔𝑘−1 (𝑥) =
1
𝑘!

𝑓 (𝑘) (b𝑥) (𝑥 −𝑚)𝑘 ,

we continue the Taylor expansion of 𝑓 (𝑘) (𝑥) all the way to 𝑛−1 for
some 𝑛 ≥ 𝑘 (assuming that the derivatives exist), to obtain (cf. (8))

𝑅𝑔𝑘−1 (𝑥) =
𝑛−1∑︁
𝑖=𝑘

𝑓 (𝑖) (𝑚)
𝑖!

(𝑥 −𝑚)𝑖 + 𝑓 (𝑛) (b𝑥)
𝑛!

(𝑥 −𝑚)𝑛, (13)

for some b𝑥 ∈ 𝐼 . As above (cf. (10) and (11)), we then get the gener-
alized Taylor form of (convergence) order 𝑘 and level 𝑛:

𝑇
𝑘,𝑛

𝑓 (𝐼) := 𝑔𝑘−1 (𝐼) + 𝑟𝑘 [−1, 1]𝑆𝑘,𝑛, 𝑆𝑘,𝑛 :=
𝑛∑︁
𝑖=𝑘

|𝑐𝑖 |𝑟 𝑖−𝑘 , (14)

where the 𝑐𝑖 are defined as in (9). The level 𝑛 is minimal if 𝑛 = 𝑘 ,
and maximal if 𝑛 = ∞. The maximal level is only possible when
𝑓 is analytic and 𝑟 sufficiently small, so that 𝑆𝑘,∞ is convergent.
Clearly, if 𝑓 is a polynomial of degree 𝑑 , then 𝑆𝑘,∞ is a finite sum
and convergent for any 𝑟 . We call the corresponding range func-
tions minimal and maximal Taylor forms of order 𝑘 , denoted by˜𝑇
𝑘 𝑓 (𝐼) and 𝑇

𝑘
𝑓 (𝐼), respectively. This definition includes the mini-

mal Taylor form based on 𝑔1 (cf. (7)) as a special case for 𝑘 = 𝑛 = 2.
For 𝑘 = 3, computing the exact range of the quadratic Taylor

polynomial 𝑔2 is only marginally more costly (see App. A.2) than
computing 𝑔1 (𝐼) and the cubic convergence gives a noticeable per-
formance gain when used in Eval (see Sec. 5). But already for 𝑘 = 4
the computational overhead of determining the range 𝑔3 (𝐼) exactly
(see App. A.3) appears to outweigh the benefit of the better conver-
gence order, at least in the context of Eval, leaving only a slight
advantage in terms of running time. Note that there is a similar
phenomenon in Newton’s method where quadratic convergence is
the sweet spot despite the possibility of achieving cubic (Halley’s
method) or higher convergence.

3 NEW RANGE FUNCTIONS BASED ON

RECURSIVE INTERPOLATION

Another approach to improving the remainder part is by recursively
applying the idea of Cornelius and Lohner. To this end, let ℎ0 be the
Hermite interpolant of 𝑓 for a certain choice of interpolation nodes

𝑥𝑖 and multiplicities 𝑝𝑖 and with degree at most 𝑘 − 1. According
to (3), the remainder part 𝑅ℎ0 = 𝑓 − ℎ0 can be written as

𝑅ℎ0 (𝑥) =
𝜔 (𝑥)
𝑘!

𝑓 (𝑘) (b𝑥), 𝜔 (𝑥) :=
ℓ∏

𝑖=0
(𝑥 − 𝑥𝑖)𝑝𝑖 , (15)

for some b𝑥 ∈ 𝐼 , and the magnitude of its (exact) range satisfies

|𝑅ℎ0 (𝐼) | ≤ Ω |𝑓 (𝑘) (𝐼) |, Ω :=
|𝜔 (𝐼) |
𝑘!

. (16)

Here we assume that the range 𝜔 (𝐼) can be computed exactly,
which is certainly true for small 𝑘 (as in Sec. 3.1 below), but it is
also possible to replace 𝜔 (𝐼) with some range estimate 𝜔 (𝐼). We
now split 𝑓 (𝑘) in (16) into the Hermite interpolant ℎ1 of 𝑓 (𝑘) (for
the same interpolation nodes and multiplicities) and a remainder
part 𝑅ℎ1 . Since |𝑅ℎ1 (𝐼) | ≤ Ω |𝑓 (2𝑘) (𝐼) |, we obtain

|𝑓 (𝑘) (𝐼) | ≤ |ℎ1 (𝐼) | + Ω |𝑓 (2𝑘) (𝐼) |. (17)

If 𝑓 is 𝑛𝑘 times continuously differentiable for some 𝑛 ≥ 1, we may
repeat this procedure (always with the same interpolation nodes 𝑥𝑖
and multiplicities 𝑝𝑖) to obtain Hermite interpolants ℎ 𝑗 of 𝑓 (𝑗𝑘) for
𝑗 = 1, . . . , 𝑛. This gives a recursive remainder bound

|𝑅ℎ0 (𝐼) | ≤
𝑛−1∑︁
𝑗=1

|ℎ 𝑗 (𝐼) |Ω 𝑗 + Ω𝑛 | 𝑓 (𝑛𝑘) (𝐼) | =: 𝑇𝑘,𝑛 . (18)

Since 𝜔 (𝑥) scales with 𝑟𝑘 as 𝐼 varies, we have Ω ∈ 𝑂 (𝑟𝑘) and also
𝑇𝑘,𝑛 ∈ 𝑂 (𝑟𝑘). It follows that the recursive remainder form of order 𝑘
and level 𝑛,

𝑅
𝑘,𝑛

𝑓 (𝐼) := ℎ0 (𝐼) + [−1, 1]𝑇𝑘,𝑛, (19)

has indeed order 𝑘 convergence. Theminimal form 𝑅
𝑘,1 𝑓 (𝐼) for the

smallest level 𝑛 = 1 is essentially the remainder form of Cornelius
and Lohner (cf. (4)), if we replace𝜔 (𝐼) in (16) by 𝜔 (𝐼). As in Sec. 2,
the advantage of higher levels of 𝑛 is due to the fact that the terms
of𝑇𝑘,𝑛 converge with successively higher order. Again, the maximal
level 𝑛 = ∞ that induces the maximal recursive remainder form
𝑅
𝑘,∞ 𝑓 (𝐼), is only possible if 𝑇∞ is convergent, which is the case if

𝑓 is analytic and 𝑟 sufficiently small, or if 𝑓 is a polynomial. Note
that in the latter case, evaluating this form requires just a finite
number of point evaluations of 𝑓 and its derivatives, akin to the
evaluation of the maximal Taylor forms.

3.1 Recursive Lagrange form with cubic

convergence

One particular instance of the recursive remainder form (19) that
will prove beneficial for Eval is based on the endpoints and the
midpoint of 𝐼 = [𝑎, 𝑏] as simple interpolation nodes, that is, to use
ℓ = 2, 𝑥0 = 𝑎, 𝑥1 = 𝑚, 𝑥2 = 𝑏 in (2) and 𝑝0 = 𝑝1 = 𝑝2 = 1, so that
𝑘 = 3. In this setting, ℎ 𝑗 is the quadratic Lagrange interpolant of
𝑓 (3𝑗) at 𝑎,𝑚, and 𝑏, which can be expressed in centered form as

ℎ𝐿𝑗 (𝑥) := 𝑑 𝑗,0 + 𝑑 𝑗,1 (𝑥 −𝑚) + 𝑑 𝑗,2 (𝑥 −𝑚)2 (20)

with coefficients

𝑑 𝑗,0 := 𝑓 (3𝑗) (𝑚), 𝑑 𝑗,1 :=
𝑓 (3𝑗) (𝑏) − 𝑓 (3𝑗) (𝑎)

2𝑟
,

𝑑 𝑗,2 =
𝑓 (3𝑗) (𝑏) − 2𝑓 (3𝑗) (𝑚) + 𝑓 (3𝑗) (𝑎)

2𝑟2
,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Novel Range Functions via Taylor Expansions and Recursive Lagrange Interpolation ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

where 𝑟 := 𝑟 (𝐼). A simple calculation shows that the exact range of

𝜔3 (𝑥) := (𝑥 − 𝑎) (𝑥 −𝑚) (𝑥 − 𝑏)

is 𝜔3 (𝐼) = 2
√
3

9 𝑟3 [−1, 1], so that Ω3 := 1
6 |𝜔3 (𝐼) | =

√
3

27 𝑟
3. We denote

the resulting recursive Lagrange form of level 𝑛 by
𝐿
3,𝑛 𝑓 (𝐼) := ℎ𝐿0 (𝐼) + [−1, 1]𝑇3,𝑛, (21)

where (cf. (18))

𝑇3,𝑛 :=
𝑛−1∑︁
𝑗=1

|ℎ𝐿𝑗 (𝐼) |Ω
𝑗

3 + Ω𝑛
3 | 𝑓 (3𝑛) (𝐼) | ∈ 𝑂 (𝑟3) . (22)

If 𝑓 is a polynomial of degree 𝑑 , then the maximal recursive La-
grange form 𝐿

3 𝑓 (𝐼) :=
𝐿
3,∞ 𝑓 (𝐼) depends on the 3(⌊𝑑/3⌋+1) values

𝑓 (3𝑗) (𝑎), 𝑓 (3𝑗) (𝑚), 𝑓 (3𝑗) (𝑏), 𝑗 = 0, . . . , ⌊𝑑/3⌋, which is comparable
to the 𝑑 + 1 values needed for the maximal Taylor forms 𝑇

𝑘
𝑓 (𝐼).

As the cubic convergence of 𝐿
3,𝑛 𝑓 (𝐼) is independent of how the

range of ℎ𝐿
𝑗
is estimated for 𝑗 ≥ 1 in (22), we can replace the exact

evaluation of ℎ𝐿
𝑗
(𝐼) by the cheaper centered form evaluation

𝑇
2 ℎ

𝐿
𝑗 (𝐼) = 𝑑 𝑗,0 + 𝑟 [−1, 1] |𝑑 𝑗,1 | + 𝑟2 [−1, 1] |𝑑 𝑗,2 |.

This yields a less tight range function (cf. (21))
𝐿′
3,𝑛 𝑓 (𝐼) := ℎ𝐿0 (𝐼) + [−1, 1]𝑇 ′

3,𝑛, (23)

where

𝑇 ′
3,𝑛 :=

𝑛−1∑︁
𝑗=1

(
|𝑑 𝑗,0 | + 𝑟 |𝑑 𝑗,1 | + 𝑟2 |𝑑 𝑗,2 |

)
Ω
𝑗

3 + Ω𝑛
3 | 𝑓 (3𝑛) (𝐼) | ∈ 𝑂 (𝑟3),

which depends on the same data values as 𝐿
3,𝑛 𝑓 (𝐼). In the context

of Eval, this increases the size of the subdivision tree slightly, but
seems to be more efficient in terms of running time (see Sec. 5).

3.2 Recursive Lagrange form with quartic

convergence

Another variant of the recursive Lagrange form can be obtained
by applying Cornelius and Lohner’s general trick to get one extra
order of convergence. To this end (cf. (20)), let

ℎ̂𝐿0 (𝑥) := ℎ𝐿0 (𝑥) +
𝑓 ′′′(𝑚)

6
𝜔3 (𝑥)

= 𝑑0,0 + 𝑑0,1 (𝑥 −𝑚) + 𝑑0,2 (𝑥 −𝑚)2 + 𝑑0,3 (𝑥 −𝑚)3,
(24)

where

𝑑0,1 := 𝑑0,1 − 𝑟2
𝑓 ′′′(𝑚)

6
, 𝑑0,3 :=

𝑓 ′′′(𝑚)
6

,

be the (unique) cubic polynomial that interpolates 𝑓 at 𝑎,𝑚, and 𝑏,
like ℎ𝐿0 , and also matches the third derivative of 𝑓 at𝑚, in the sense
that

(
ℎ̂𝐿0

) ′′′(𝑚) = 𝑓 ′′′(𝑚). Similarly as above, we then have

|𝑅
ℎ̂𝐿0

(𝐼) | ≤ Ω3 |𝑓 ′′′(𝐼) − 𝑓 ′′′(𝑚) | = Ω3 |𝑓3 (𝐼) |,

where 𝑓3 (𝑥) := 𝑓 ′′′(𝑥) − 𝑓 ′′′(𝑚). We now split 𝑓3 into the Lagrange
interpolant

ℎ̂𝐿1 (𝑥) := ℎ𝐿1 (𝑥) − 𝑓 ′′′(𝑚) = (𝑑1,1 + 𝑑1,2 (𝑥 −𝑚)) (𝑥 −𝑚) (25)

of 𝑓3 at 𝑎,𝑚, and 𝑏 and the remainder 𝑅
ℎ̂𝐿1
, which satisfies

|𝑅
ℎ̂𝐿1

(𝐼) | ≤ Ω3 |𝑓 ′′′3 (𝐼) | = Ω3 |𝑓 (6) (𝐼) |,

hence |𝑓3 (𝐼) | ≤ |ℎ̂𝐿1 (𝐼) | + Ω3 |𝑓 (6) (𝐼) |. From here on, we repeat the
splitting procedure as in the construction of 𝐿

3,𝑛 𝑓 (𝐼) and finally
arrive at the recursive Lagrange form of level 𝑛

𝐿
4,𝑛 𝑓 (𝐼) := ℎ̂𝐿0 (𝐼) + [−1, 1]𝑇4,𝑛, (26)

where (cf. (22))

𝑇4,𝑛 := |ℎ̂𝐿1 (𝐼) |Ω3 +
𝑛−1∑︁
𝑗=2

|ℎ𝐿𝑗 (𝐼) |Ω
𝑗

3 + Ω𝑛
3 | 𝑓 (3𝑛) (𝐼) |.

The advantage of 𝐿
4,𝑛 𝑓 (𝐼) in (26) over 𝐿

3,𝑛 𝑓 (𝐼) in (21) is that
|ℎ̂𝐿1 (𝐼) | ∈ 𝑂 (𝑟), which follows from (25), so that 𝑇4,𝑛 ∈ 𝑂 (𝑟4).
This implies that 𝐿

4,𝑛 𝑓 (𝐼) has quartic convergence, at the cost of
requiring the evaluation of the exact range of the cubic polynomial
ℎ̂𝐿0 in (24).

Note that 𝐿
4,𝑛 𝑓 (𝐼) depends on the same data as 𝐿

3,𝑛 𝑓 (𝐼), and
analogous to (23), we can replace the exact evaluation of ℎ̂𝐿1 (𝐼) and
ℎ𝐿
𝑗
(𝐼) for 𝑗 ≥ 2 by centered form evaluations to get the cheaper,

but less tight range function
𝐿′
4,𝑛 𝑓 (𝐼) := ℎ̂𝐿0 (𝐼) + [−1, 1]𝑇 ′

4,𝑛, (27)

where 𝑇 ′
4,𝑛 := 𝑇 ′

3,𝑛 − |𝑑1,0 |Ω3, without compromising the quartic
convergence order, because also 𝑇 ′

4,𝑛 ∈ 𝑂 (𝑟4).
A valid question at this point is: why did we not consider ap-

plying Cornelius and Lohner’s trick for increasing the conver-
gence order to the generalized Taylor forms in Sec. 2.1? The an-
swer is surprisingly simple: because it does not give anything
new! In fact, if we modify the exact part 𝑔𝑘−1 (𝑥) of the Taylor
form 𝑇

𝑘,𝑛
𝑓 (𝐼) accordingly and consider the alternative exact part

𝑔𝑘−1 (𝑥) := 𝑔𝑘−1 (𝑥) +
𝑓 (𝑘) (𝑚)

𝑘! (𝑥 −𝑚)𝑘 , then we eventually get the
Taylor form 𝑇

𝑘+1,𝑛 𝑓 (𝐼), because 𝑔𝑘−1 = 𝑔𝑘 .

4 REAL ROOT ISOLATIONWITH EVAL AND

THE NEW RANGE FUNCTIONS

4.1 Advantage of the Lagrange form in Eval

What is to recommend the generalized Taylor form or the recursive
Lagrange form? We give the intuition for the advantages of the
Lagrange form in the context of root isolation with Eval for polyno-
mials. Recall that computing the maximal Taylor form 𝑇

𝑘
𝑓 (𝐼) for

a polynomial of degree 𝑑 requires us to evaluate 𝑓 (𝑖) at𝑚 =𝑚(𝐼)
for 𝑖 = 0, . . . , 𝑑 . To compute the maximal recursive Lagrange form
𝐿
3 𝑓 (𝐼), we must evaluate 𝑓 (3𝑗) at 𝑎, 𝑚, 𝑏, where 𝐼 = [𝑎, 𝑏] for

𝑗 = 0, . . . , ⌊𝑑/3⌋. Considered in isolation, the two forms are compa-
rable in computational complexity, since they each need about 𝑑
function or derivative evaluations. But in the context of the Eval
algorithm, the Lagrange form begins to shine: after estimating the
range of 𝑓 over [𝑎, 𝑏], we would typically need to further estimate
the ranges over [𝑎,𝑚] and [𝑚,𝑏]. For the Lagrange form, estimating
the range over [𝑎,𝑚] needs only ⌊𝑑/3⌋ + 1 additional evaluations
of 𝑓 (3𝑗) at (𝑎 + 𝑚)/2, since we already computed 𝑓 (3𝑗) (𝑎) and
𝑓 (3𝑗) (𝑚). In contrast, the Taylor form must still make 𝑑 + 1 evalua-
tions of 𝑓 and its derivatives at (𝑎 +𝑚)/2. A similar remark holds
for [𝑚,𝑏]. Therefore, we may expect a roughly 3-fold speed up of
Evalwhen using the Lagrange instead of the Taylor form, although

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia Kai Hormann, Lucas Kania, and Chee Yap

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Combinations of range functions for 𝑓 and 𝑓 ′ used
by Eval in our experiments.

Taylor forms recursive Lagrange forms

Ẽ𝑇2 E𝑇2 E𝑇3 E𝑇4 E𝐿3 E𝐿′3 E𝐿4 E𝐿′4

range of 𝑓 ˜𝑇

2
𝑇
2

𝑇
3

𝑇
4

𝐿
3

𝐿′
3

𝐿
4

𝐿′
4

range of 𝑓 ′ ˜𝑇

2
𝑇
2

𝑇
3

𝑇
4

𝐿
2

𝐿′
2

𝐿
2

𝐿′
2

we should keep in mind that the performance is also influenced by
other factors. For example, the tightness of the two forms is not
identical and the Lagrange form requires a more elaborate memory
management so that some of the data needed for processing [𝑎,𝑚]
and [𝑚,𝑏] can be inherited from the data computed for [𝑎, 𝑏].

4.2 Range functions for derivatives

Before presenting the results of our numerical experiments, there
is one more issue that needs to be dealt with: Eval not only needs
to estimate the range of 𝑓 over 𝐼 , but also the range of 𝑓 ′.

For the generalized Taylor form, a simple calculation shows that
the generalized Taylor form (of level 𝑛 − 1) applied to 𝑓 ′ is

𝑇
𝑘,𝑛−1 𝑓

′(𝐼) = 𝑔′
𝑘
(𝐼) + 𝑟𝑘 [−1, 1]𝑆 ′

𝑘,𝑛−1, 𝑆 ′
𝑘,𝑛−1 :=

𝑛∑︁
𝑖=𝑘+1

𝑖 |𝑐𝑖 |𝑟 𝑖−𝑘−1,

where 𝑔𝑘 is the 𝑘-th order Taylor polynomial of 𝑓 about𝑚, that
is, 𝑔′

𝑘
(𝑥) =

∑𝑘
𝑖=1 𝑖 𝑐𝑖 (𝑥 −𝑚)𝑖−1, and the 𝑐𝑖 are defined as in (9).

Therefore, 𝑇
𝑘,𝑛

𝑓 (𝐼) and 𝑇
𝑘,𝑛−1 𝑓

′(𝐼) both have order𝑘 convergence
and depend on the same data.

For the Lagrange form, it is more complicated, since 𝐿
3,𝑛 𝑓

′(𝐼)
depends on the evaluation of 𝑓 (3𝑗+1) at 𝑎, 𝑚, and 𝑏 and would
thus double the computational cost. To re-use the data needed
for computing 𝐿

3,𝑛 𝑓 (𝐼), we recall a result by Shadrin [27], which
asserts that the error between the 𝑘-th derivative of 𝑓 and the 𝑘-th
derivative of the Lagrange polynomial ℎ(𝑥) that interpolates 𝑓 at
the ℓ + 1 nodes 𝑥0, . . . , 𝑥ℓ ∈ 𝐼 satisfies

|𝑓 (𝑘) (𝑥) − ℎ (𝑘) (𝑥) | ≤ |𝜔 (𝑘) (𝐼) | |𝑓
(ℓ+1) (𝐼) |
(ℓ + 1)! , 𝑥 ∈ 𝐼 ,

for 𝑘 = 0, . . . , ℓ and 𝜔 (𝑥) =
∏ℓ

𝑖=0 (𝑥 − 𝑥𝑖). In the context of 𝐿
3,𝑛 ,

this implies

|𝑓 ′(𝑥) −
(
ℎ𝐿0

) ′(𝑥) | ≤ |𝜔 ′
3 (𝐼) |

|𝑓 ′′′(𝐼) |
6

, 𝑥 ∈ 𝐼 .

Since 𝜔 ′
3 (𝐼) = 𝑟2 [−1, 2] and Ω3 |𝑓 ′′′(𝐼) | ≤ 𝑇3,𝑛 , we conclude that

𝑓 ′(𝐼) can be estimated by the recursive Lagrange forms

𝐿
2,𝑛 𝑓

′(𝐼) :=
(
ℎ𝐿0

) ′(𝐼) + 3
√
3

𝑟
[−1, 1]𝑇3,𝑛, (28)

and
𝐿′
2,𝑛 𝑓

′(𝐼) :=
(
ℎ𝐿0

) ′(𝐼) + 3
√
3

𝑟
[−1, 1]𝑇 ′

3,𝑛, (29)

which have only quadratic convergence, but depend on the same
data as 𝐿

3,𝑛 𝑓 (𝐼) and
𝐿′
3,𝑛 𝑓 (𝐼). Note that we cannot derive a similar

range function for 𝑓 ′ with cubic convergence from 𝐿
4,𝑛 , because ℎ̂

𝐿
0

is not a Lagrange interpolant and Shadrin’s result does not apply.

Table 2: Size of the Eval subdivision tree.

𝑓 𝐼0 Ẽ𝑇2 E𝑇2 E𝑇3 E𝐿3 E𝐿′3 E𝑇4 E𝐿4 E𝐿′4
𝑇20 931 319 211 239 243 195 227 231
𝑇40 183115 663 439 471 479 423 455 463
𝑇80 [−10, 10] — 1379 931 983 1007 863 931 955
𝑇160 — 2751 1859 1943 1979 1723 1875 1899
𝑇320 — 5611 3795 3875 4003 3467 3735 3851
𝐻20 491 259 179 195 195 151 191 191
𝐻40 18039 443 319 359 363 303 347 351
𝐻80 [−25, 25] — 851 639 683 695 547 671 683
𝐻160 — 1319 1063 1123 1131 1011 1111 1119
𝐻320 — 2251 1967 1975 2063 1527 1939 1987
𝑀21 3873 169 97 113 113 91 109 109
𝑀41 — 339 181 215 215 181 213 213
𝑀81 [−1, 1] — 683 367 445 445 359 423 423
𝑀161 — 1379 757 905 905 721 857 857
𝑀321 — 2771 1513 1801 1801 1459 1711 1711
𝑆100 629 973 521 633 633 509 609 609
𝑆200 1251 1941 1045 1281 1281 1019 1221 1221
𝑆400

[−10, 10] 2503 3887 2083 2555 2555 2035 2435 2435
𝑆800 5005 7753 4161 5103 5103 4053 4875 4875

5 NUMERICAL EXPERIMENTS

We implemented a general version of the Eval procedure (see
Algo. 1) in C++ and derived from it eight versions (see Table 1)
that differ by the concrete range functions used for estimating the
ranges of 𝑓 and 𝑓 ′ in lines 5 and 6. The first version Ẽ𝑇2 estimates
both ranges with the minimal Taylor form (cf. (7) in Sec. 2). The
next three versions E𝑇

𝑘
for 𝑘 = 2, 3, 4 employ the order-𝑘 conver-

gent Taylor form for both ranges (see Sec. 2.1). The remaining four
versions use recursive Lagrange forms with cubic or quartic con-
vergence (see Secs. 3.1 and 3.2) to estimate the range of 𝑓 and the
recursive Lagrange form with quadratic convergence (see Sec. 4.2)
for 𝑓 ′. Note that the version E𝑇2 represents the state-of-the-art of
Eval [5] and serves as the “baseline” for performance. Except for˜𝑇2 , all these Taylor and Lagrange forms are the maximal versions.

The input data for our experiments come from four represen-
tative families of integer polynomials: dense with all roots real
(Chebyshev,𝑇𝑛 and Hermite, 𝐻𝑛), dense with only 2 real roots in 𝐼0
(Mignotte cluster,𝑀2𝑘+1 = 𝑥2𝑘+1−2(4𝑥2−1)𝑘 , from [12]) and sparse
without real roots (𝑆𝑛 (𝑥) = 1 + 𝑥 +∑log2

𝑛
100

𝑖=0 𝑥2
𝑖100). Note that these

polynomials do not have multiple roots, a prerequisite for Eval’s
halting. Our implementation, including these data and experiments,
may be downloaded from the Core Library webpage [6, 33].

We summarize the results of our experiments in three tables,
with columns grouped by convergence order. Table 2 reports the
size of the Eval subdivision tree for the various polynomials. It
is a good measure of the tightness of the various range functions,
since the size of the recursion tree is inversely proportional to the
tightness of the range functions used. In each row, we underscore
the smallest tree size, which is always achieved by E𝑇4 . In general,
we observe that the tree size decreases as the convergence order of
the range functions increases and that the “cheaper” variants of the
recursive Lagrange forms lead to (slightly) larger subdivision trees.
The difference between the tree sizes for the Taylor and Lagrange

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Novel Range Functions via Taylor Expansions and Recursive Lagrange Interpolation ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Average running time of the Eval algorithm with 1024-bit floating point arithmetic in seconds.

𝑓 𝐼0 Ẽ𝑇2 E𝑇2 E𝑇3 E𝐿3 E𝐿′3 E𝑇4 E𝐿4 E𝐿′4 𝜎

𝑇20 0.1242 0.02161 0.01526 0.01457 0.01200 0.01459 0.01496 0.01208 1.80
𝑇40 69.96 0.1470 0.0996 0.0677 0.0549 0.0987 0.0689 0.0555 2.68
𝑇80 [−10, 10] — 1.173 0.775 0.379 0.328 0.725 0.365 0.315 3.58
𝑇160 — 9.43 6.39 2.48 2.29 5.80 2.42 2.22 4.12
𝑇320 — 77.2 52.5 17.7 17.3 48.4 17.0 16.7 4.46
𝐻20 0.06296 0.01762 0.01283 0.01214 0.01022 0.01167 0.01271 0.01014 1.72
𝐻40 6.263 0.0945 0.0685 0.0499 0.0403 0.0679 0.0505 0.0412 2.34
𝐻80 [−25, 25] — 0.706 0.528 0.258 0.223 0.450 0.259 0.222 3.17
𝐻160 — 4.40 3.54 1.46 1.31 3.40 1.41 1.28 3.36
𝐻320 — 31.5 27.0 8.9 8.8 21.1 8.8 8.5 3.58
𝑀21 0.5314 0.01389 0.007585 0.007525 0.005753 0.006891 0.007448 0.005920 2.41
𝑀41 — 0.07723 0.04097 0.03071 0.02430 0.04075 0.03071 0.02376 3.18
𝑀81 [−1, 1] — 0.5599 0.3020 0.1681 0.1409 0.2940 0.1624 0.1376 3.97
𝑀161 — 4.620 2.507 1.152 1.049 2.403 1.094 0.9977 4.41
𝑀321 — 38.52 21.08 8.247 7.842 20.47 7.883 7.449 4.91
𝑆100 0.8973 1.080 0.582 0.346 0.301 0.572 0.336 0.292 3.59
𝑆200 6.124 8.54 4.62 2.27 2.09 4.50 2.19 2.00 4.09
𝑆400

[−10, 10] 47.22 66.9 36.3 16.2 15.4 35.2 15.4 14.7 4.34
𝑆800 368.3 527 281 120 117 273 113 112 4.50

Table 4: Average running time of the Eval algorithm with multi-precision rational arithmetic in seconds.

𝑓 𝐼0 Ẽ𝑇2 E𝑇2 E𝑇3 E𝐿3 E𝐿′3 E𝑇4 E𝐿4 E𝐿′4 𝜎

𝑇20 0.2005 0.02917 0.01966 0.02115 0.01656 0.02004 0.02255 0.01758 1.76
𝑇40 123.1 0.1928 0.1305 0.1083 0.0837 0.1320 0.1127 0.0868 2.30
𝑇80 [−10, 10] — 1.520 1.026 0.659 0.534 0.964 0.643 0.519 2.85
𝑇160 — 13.28 8.86 4.74 3.95 8.27 4.65 3.88 3.36
𝑇320 — 159.8 104.8 52.4 45.7 94.9 50.7 44.1 3.50
𝐻20 0.1024 0.02337 0.01716 0.01779 0.01378 0.01639 0.01968 0.01521 1.70
𝐻40 10.37 0.1364 0.1010 0.0871 0.0660 0.1018 0.0897 0.0683 2.07
𝐻80 [−25, 25] — 0.977 0.725 0.484 0.379 0.632 0.494 0.389 2.58
𝐻160 — 6.80 5.44 3.02 2.37 5.19 3.06 2.39 2.87
𝐻320 — 71.7 61.8 31.9 25.9 47.6 31.9 25.1 2.77
𝑀21 0.9342 0.01787 0.009825 0.01176 0.008525 0.009681 0.01172 0.009060 2.10
𝑀41 — 0.1047 0.05708 0.05195 0.03939 0.05636 0.05217 0.04041 2.66
𝑀81 [−1, 1] — 0.7824 0.4081 0.3086 0.2459 0.4023 0.3012 0.2349 3.18
𝑀161 — 6.937 3.707 2.258 1.887 3.630 2.184 1.786 3.68
𝑀321 — 85.82 43.78 25.58 21.94 42.03 24.49 20.65 3.91
𝑆100 1.039 1.180 0.615 0.509 0.404 0.596 0.500 0.393 2.92
𝑆200 8.019 11.17 5.70 3.87 3.24 5.52 3.72 3.09 3.45
𝑆400

[−10, 10] 103.4 154.0 76.2 45.8 41.1 73.8 43.6 39.7 3.75
𝑆800 1556 2322 1160 636 589 1123 569 561 3.94

versions of Eval with the same convergence order is mainly due to
the inferior recursive Lagrange form with only quadratic conver-
gence that is used for 𝑓 ′. In fact, if we use 𝑇

3 instead of 𝐿
2 for the

range of 𝑓 ′ in E𝐿3 , then the tree sizes are almost identical to those
of E𝑇3 , and likewise for E𝐿4 versus E𝑇4 . However, the price of larger
subdivision trees seems to be well compensated for when it comes
to the actual performance of the different Eval variants.

Our experimental platform is a Windows 10 laptop with 1.8
GHz Intel Core i7-8565U processor and 16 GB RAM. The average
running times (over 1600/𝑛 runs for 𝑇𝑛 , 𝐻𝑛 , 800/𝑘 runs for𝑀2𝑘+1,
and 4000/𝑛 runs for 𝑆𝑛) of our eight versions of Eval on our list
of 19 polynomials are obtained by using two kinds of computer

arithmetic: 1024-bit floating point arithmetic (Table 3) and multi-
precision rational arithmetic (Table 4). No times (and tree sizes in
Table 2) are reported, if an Eval version did not terminate within 1
hour. Both arithmetic variants come from the multiple-precision
arithmetic library GMP [10]. For rational arithmetic, we replaced
the constant

√
3 in the definitions of Ω3, 𝐿

2 , and
𝐿′
2 with the

slightly larger rational number 17320508075688773/1016, so that
the validity of the bounds is not altered. Moreover, we temporarily
switch to 1024-bit floating point arithmetic for computing square
roots. The latter is unavoidable when computing the exact ranges
of cubic polynomials (see Sec. A.3) and thus needed by the range
functions with quartic convergence.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia Kai Hormann, Lucas Kania, and Chee Yap

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

We draw several conclusions from the tables: 1) The Eval version
Ẽ𝑇2 based onminimal formsmay be utterly non-competitivewith the
maximal form E𝑇2 (the former timed out after 1 hour for degrees 𝑛 >

40 for the first 3 sets of polynomials).We expect the same conclusion
for other minimal forms. 2) The Eval versions based on recursive
Lagrange forms outperform the ones based on Taylor forms with
the same convergence order, despite the larger subdivision trees.We
attribute this to the fewer number (about one-third) of derivative
values that are computed. 3) It does not pay to use range functions
with quartic convergence order, because the overhead of computing
exact ranges of cubic instead of quadratic polynomials seems to
cancel the advantage of smaller tree sizes. 4) Based on speed and
implementation simplicity, we declare the Eval variant E𝐿

′
3 as the

winner in this comparison. 5) Viewing E𝑇2 as the state-of-art, we
see that E𝐿

′
3 is at least twice as fast but asymptotically 3 to 4.5 times

faster: this is seen in the speedup 𝜎 , defined as the ratio of the
timings E𝑇2 : E𝐿

′
3 , in the last column of Tables 3 and 4.

6 CONCLUSIONS

Bounding the range of a function is an important problem in many
scientific disciplines, but most range functions have only quadratic
convergence order. Higher convergence orders and other improve-
ments are particularly important for generic root finding applica-
tions (of which root isolation is only one aspect). This is because
root finding is a demanding application, in part because its long
history and literature has produced some very good algorithms
which any new algorithm must contend with. The upshot is that
tight and efficient range functions are in demand.

In this paper, we use the framework of Cornelius and Lohner [7]
to investigate range functions of any order convergence 𝑘 . For a
fixed 𝑘 , we explore the two formulations of the remainder form:
Taylor expansion and Lagrange interpolation. We see that this re-
mainder form can be refined to any “level” 𝑛 (𝑛 ≥ 𝑘); the remainder
form is minimal if 𝑛 = 𝑘 and maximal when 𝑛 = ∞. Experimentally,
we show that the minimal form may be far inferior to the maximal
form. This phenomenon should be investigated theoretically.

We then proceed to a holistic comparison of the resulting recur-
sive Lagrange forms and the generalized Taylor forms with cubic
and quartic convergence in the context of the Eval root isolation
procedure. Our empirical study suggests that both forms behave
similarly and that the recursive Lagrange form with cubic con-
vergence is particularly well-suited for Eval, giving a significant
speed-up, compared to the state of the art.

One limitation of our empirical work is that the floating point
version of Eval has not accounted for round-off errors. But we
verified experimentally that our floating point version agrees with
that of the rational arithmetic version in twoways: (a) they generate
subdivision trees of the same size (that explains why there is only
one Table 2) and (b) they both count the same number of isolator
intervals. To address the issues of implementation including errors
from rounding in machine arithmetic, it is possible to apply the
3-levels “AIE methodology” in [31] to our algorithms.

ACKNOWLEDGMENTS

Lucas was supported by a UROP Fellowship (Summer 2019) from
the Faculty of Informatics at Università della Svizzera italiana (USI).

Chee’s work began under a USI Visiting Professor Fellowship (Fall
2018); additional support comes from NSF Grants # CCF-1564132
and # CCF-2008768.

REFERENCES

[1] R. Becker, M. Sagraloff, V. Sharma, J. Xu, and C. Yap. 2016. Complexity analysis
of root clustering for a complex polynomial. ISSAC ’16. ACM, New York, 71–78.

[2] R. Becker, M. Sagraloff, V. Sharma, and C. Yap. 2018. A near-optimal subdivision
algorithm for complex root isolation based on Pellet test and Newton iteration.
J. Symb. Comput. 86 (2018), 51–96.

[3] M.A. Burr. 2016. Continuous amortization and extensions: With applications to
bisection-based root isolation. J. Symb. Comput. 77 (2016), 78–126.

[4] M.A. Burr and F. Krahmer. 2012. SqFreeEVAL: An (almost) optimal real-root
isolation algorithm. J. Symb. Comput. 47 (2012), 153–166.

[5] M.A. Burr, F. Krahmer, and C. Yap. 2009. Continuous Amortization: A Non-
Probabilistic Adaptive Analysis Technique. Technical Report 136. ECCC. 22 pages.

[6] Core Library. Since 1999. Software download, source, documentation and links.
https://cs.nyu.edu/exact/core_pages/intro.html

[7] H. Cornelius and R. Lohner. 1984. Computing the range of values of real functions
with accuracy higher than second order. Computing 33 (1984), 331–347.

[8] A. Frommer, B. Lang, and M. Schnurr. 2004. A comparison of the Moore and
Miranda existence tests. Computing 72 (2004), 349–354.

[9] A. Goldsztejn. 2007. Comparison of the Hansen–Sengupta and the Frommer–
Lang–Schnurr existence tests. Computing 79 (2007), 53–60.

[10] T. Granlund and GMP Development Team. 2015. GNU MP 6.0: Multiple Precision
Arithmetic Library. Samurai Media Limited, Hong Kong.

[11] E.R. Hansen and G.W. Walster. 2004. Global Optimization Using Interval Analysis
(2nd ed.). Marcel Dekker, New York.

[12] R. Imbach, V.Y. Pan, and C. Yap. 2018. Implementation of a near-optimal com-
plex root clustering algorithm. In Mathematical Software – ICMS 2018. LNCS,
Vol. 10931. Springer, Cham, 235–244.

[13] A. Kobel, F. Rouillier, and M. Sagraloff. 2016. Computing real roots of real
polynomials ... and now for real! ISSAC ’16. ACM, New York, 303–310.

[14] L. Lin and C. Yap. 2011. Adaptive isotopic approximation of nonsingular curves:
the parameterizability and nonlocal isotopy approach. Discrete Comput. Geom.
45 (2011), 760–795.

[15] L. Lin, C. Yap, and J. Yu. 2013. Non-local isotopic approximation of nonsingular
surfaces. Comput.-Aided Des. 45 (2013), 451–462.

[16] J.M. McNamee. 2007. Numerical Methods for Roots of Polynomials, Part 1. Elsevier,
Amsterdam.

[17] J.M. McNamee and V.Y. Pan. 2013. Numerical Methods for Roots of Polynomials,
Part 2. Elsevier, Amsterdam.

[18] D.P. Mitchell. 1990. Robust ray intersection with interval arithmetic. In Proc.
Graph. Interface (GI ’90). Canadian Info. Processing Soc., Toronto, 68–74.

[19] R.E. Moore, R.B. Kearfott, and M.J. Cloud. 2009. Introduction to Interval Analysis.
Society for Industrial and Applied Mathematics, Philadelphia.

[20] A. Neumaier. 1990. Interval Methods for Systems of Equations. Cambridge Uni-
versity Press, Cambridge.

[21] V.Y. Pan. 2002. Univariate polynomials: Nearly optimal algorithms for numerical
factorization and root-finding. J. Symb. Comput. 33 (2002), 701–733.

[22] A. Plantinga and G. Vegter. 2004. Isotopic approximation of implicit curves and
surfaces. In Proc. Symp. Geom. Process. (SGP ’04). ACM, New York, 245–254.

[23] H. Ratschek and J. Rokne. 1984. Computer Methods for the Range of Functions.
Ellis Horwood Limited, Chichester.

[24] M. Sagraloff and K. Mehlhorn. 2016. Computing real roots of real polynomials.
J. Symb. Comput. 73 (2016), 46–86.

[25] M. Sagraloff and C.K. Yap. 2011. A simple but exact and efficient algorithm for
complex root isolation. ISSAC ’11. ACM, New York, 353–360.

[26] A. Schönhage. 1982. The Fundamental Theorem of Algebra in Terms of Compu-
tational Complexity. www.informatik.uni-bonn.de/~schoe/fdthmrep.ps.gz.

[27] A. Shadrin. 1995. Error bounds for Lagrange interpolation. J. Approx. Theory 80
(1995), 25–49.

[28] V. Sharma and C.K. Yap. 2012. Near optimal tree size bounds on a simple real
root isolation algorithm. ISSAC ’12. ACM, New York, 319–326.

[29] V. Stahl. 1995. Interval Methods for Bounding the Range of Polynomials and Solving
Systems of Nonlinear Equations. Ph.D. Thesis. Johannes Kepler Univ., Linz.

[30] J. von zur Gathen and J. Gerhard. 1997. Fast algorithms for Taylor shifts and
certain difference equations. ISSAC ’97. ACM, New York, 40–47.

[31] J. Xu and C. Yap. 2019. Effective subdivision algorithm for isolating zeros of real
systems of equations, with complexity analysis. ISSAC ’19. ACM, NY, 355–362.

[32] C. Yap, M. Sagraloff, and V. Sharma. 2013. Analytic root clustering: A complete
algorithm using soft zero tests. In The Nature of Computation. Logic, Algorithms,
Applications. LNCS, Vol. 7921. Springer, Berlin, 434–444.

[33] J. Yu, C. Yap, Z. Du, S. Pion, and H. Brönnimann. 2010. The design of Core 2: A
library for exact numeric computation in geometry and algebra. InMathematical
Software – ICMS 2010. LNCS, Vol. 6327. Springer, Berlin, 121–141.

8

https://cs.nyu.edu/exact/core_pages/intro.html
www.informatik.uni-bonn.de/~schoe/fdthmrep.ps.gz

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Novel Range Functions via Taylor Expansions and Recursive Lagrange Interpolation ISSAC ’21, July 18–22, 2021, Saint Petersburg, Russia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

A EXACT RANGES FOR LOW DEGREE

POLYNOMIALS

Let 𝐼 = [𝑎, 𝑏], 𝑟 = (𝑏 − 𝑎)/2,𝑚 = (𝑎 + 𝑏)/2, and

𝐴 := min{𝑔(𝑎), 𝑔(𝑏)}, 𝐵 := max{𝑔(𝑎), 𝑔(𝑏)}. (30)

A.1 Linear polynomials

The exact range 𝑔(𝐼) = [𝐴, 𝐵] of the linear polynomial 𝑔1 (𝑥) =

𝑐0 + 𝑐1 (𝑥 − 𝑚) is given by the assignment in (30), because 𝑔 is
monotonic. The range can also be expressed as

𝑔(𝐼) = 𝑐0 + 𝑟 [−1, 1]𝑐1 .

A.2 Quadratic polynomials

To determine the exact range 𝑔(𝐼) = [𝐴, 𝐵] of the quadratic polyno-
mial 𝑔(𝑥) = 𝑐0 + 𝑐1 (𝑥 −𝑚) + 𝑐2 (𝑥 −𝑚)2 we first observe that the
extremum of 𝑔 occurs at

𝑥∗ =𝑚 − 𝑐1
2𝑐2

,

which is inside 𝐼 , if and only if |𝑐1 | < 2|𝑐2 |𝑟 . If 𝑥∗ ∉ 𝐼 , then 𝑔 is
monotonic on 𝐼 and the assignment in (30) gives the correct range.
Otherwise, we check the sign of 𝑐2 to see if𝑔 has aminimum (𝑐2 > 0)
or a maximum (𝑐2 < 0) at 𝑥∗ and accordingly replace 𝐴 or 𝐵 with

𝑔(𝑥∗) = 𝑐0 −
𝑐21
4𝑐2

.

Note that the special case of 𝑔 being linear (or constant) with 𝑐2 = 0
is automatically handled correctly by this procedure.

A.3 Cubic polynomials

To find the exact range𝑔(𝐼) = [𝐴, 𝐵] of the cubic polynomial𝑔(𝑥) =
𝑐0 + 𝑐1 (𝑥 −𝑚) + 𝑐2 (𝑥 −𝑚)2 + 𝑐3 (𝑥 −𝑚)3, we assume that 𝑐3 ≠ 0.
If 𝑐3 = 0, then 𝑔(𝑥) is a polynomial of degree at most two and its
range can be found with the method in Sec. A.2.

We now analyze the stationary points of 𝑔 by considering the
quadratic equation

𝑔′(𝑥) = 𝑐1 + 2𝑐2 (𝑥 −𝑚) + 3𝑐3 (𝑥 −𝑚)2 = 0

and in particular its discriminant

Δ = 𝑐22 − 3𝑐1𝑐3 .

If Δ < 0, then 𝑔 does not have any local extrema, and if Δ = 0, then
𝑔 has a stationary point of inflection. In both cases, 𝑔 is monotonic
and its range is given by the assignment in (30).

If Δ > 0, then 𝑔 has a local minimum at 𝑥− and a local maximum
at 𝑥+, where

𝑥± =𝑚 − 𝑐2 ±
√
Δ

3𝑐3
. (31)

To determine the range of 𝑔, we need to know whether 𝑥− and 𝑥+
are inside or outside 𝐼 and must distinguish four cases:
1) If 𝑥−, 𝑥+ ∈ (𝑎, 𝑏), then 𝑔(𝐼) = [min{𝐴,𝑔(𝑥−)},max{𝐵,𝑔(𝑥+)}].
2) If 𝑥− ∈ (𝑎, 𝑏) and 𝑥+ ∉ (𝑎, 𝑏), then 𝑔(𝐼) = [𝑔(𝑥−), 𝐵].
3) If 𝑥+ ∈ (𝑎, 𝑏) and 𝑥− ∉ (𝑎, 𝑏), then 𝑔(𝐼) = [𝐴,𝑔(𝑥+)].
4) If 𝑥−, 𝑥+ ∉ (𝑎, 𝑏), then 𝑔 is monotonic over 𝐼 and 𝑔(𝐼) = [𝐴, 𝐵].

Algorithm 2 Computing the exact range 𝑔(𝐼) = [𝐴, 𝐵] of the cubic
polynomial 𝑔(𝑥) = ∑3

𝑖=0 𝑐𝑖 (𝑥 −𝑚)𝑖 with 𝑐3 ≠ 0 over 𝐼 = [𝑎, 𝑏].
1: 𝐴 := min{𝑔 (𝑎), 𝑔 (𝑏) }
2: 𝐵 := max{𝑔 (𝑎), 𝑔 (𝑏) }
3: Δ := 𝑐22 − 3𝑐1𝑐3
4: if Δ > 0 then
5: 𝐿 := sgn(𝑐3) (𝑐1 + 3𝑐3𝑟 2)
6: 𝑅 := 2 |𝑐2 |𝑟
7: if 𝐿 > 𝑅 then

8: if |𝑐2 | < 3 |𝑐3 |𝑟 then

9: 𝑥− :=𝑚 − (𝑐2 −
√
Δ)/(3𝑐3)

10: 𝑥+ :=𝑚 − (𝑐2 +
√
Δ)/(3𝑐3)

11: 𝐴 := min{𝐴,𝑔 (𝑥−) }
12: 𝐵 := max{𝐵,𝑔 (𝑥+) }
13: else if 𝐿 > −𝑅 then

14: if 𝑐2 > 0 then
15: 𝑥− :=𝑚 − (𝑐2 −

√
Δ)/(3𝑐3)

16: 𝐴 := 𝑔 (𝑥−)
17: else if 𝑐2 < 0 then
18: 𝑥+ :=𝑚 − (𝑐2 +

√
Δ)/(3𝑐3)

19: 𝐵 := 𝑔 (𝑥+)
20: return [𝐴, 𝐵]

In all four cases, 𝐴 and 𝐵 are assumed to be as in (30).
We shall now work out rather simple conditions for detecting

these cases. To this end, we first conclude from (31) that

𝑥± ∈ (𝑎, 𝑏) ⇔ |𝑥± −𝑚 | < 𝑟 ⇔ |𝑐2 ±
√
Δ| < 3|𝑐3 |𝑟 .

Since the larger of the two values |𝑐2 −
√
Δ| and |𝑐2 +

√
Δ| equals

|𝑐2 | +
√
Δ, it is clear that both 𝑥− and 𝑥+ are inside 𝐼 , if and only if

|𝑐2 | +
√
Δ < 3|𝑐3 |𝑟 ⇔

√
Δ < 3|𝑐3 |𝑟 − |𝑐2 |. (32)

Squaring both sides of the last inequality gives

Δ = 𝑐22 − 3𝑐1𝑐3 < 9𝑐23𝑟
2 − 6|𝑐2 | |𝑐3 |𝑟 + 𝑐22

⇔ 2|𝑐2 |𝑟 <
𝑐3
|𝑐3 |

(𝑐1 + 3𝑐3𝑟2),

but, of course, this is equivalent to (32) only if the right-hand side
of the last inequality is positive. Hence, the condition for the first
case above is

𝑥−, 𝑥+ ∈ (𝑎, 𝑏)
⇔ 𝜎 (𝑐1 + 3𝑐3𝑟2) > 2|𝑐2 |𝑟 and |𝑐2 | < 3|𝑐3 |𝑟, (33)

where 𝜎 = 𝑐3/|𝑐3 | = sgn(𝑐3). In a similar way, it can be shown that

𝑥− ∈ (𝑎, 𝑏), 𝑥+ ∉ (𝑎, 𝑏)
⇔ 2|𝑐2 |𝑟 ≥ 𝜎 (𝑐1 + 3𝑐3𝑟2) > −2|𝑐2 |𝑟 and 𝑐2 > 0

and

𝑥+ ∈ (𝑎, 𝑏), 𝑥− ∉ (𝑎, 𝑏)
⇔ 2|𝑐2 |𝑟 ≥ 𝜎 (𝑐1 + 3𝑐3𝑟2) > −2|𝑐2 |𝑟 and 𝑐2 < 0,

and the condition for the last case above is simply that none of these
three cases occur. Note that this includes the case when 𝑐2 = 0 and
𝑐1 + 3𝑐3𝑟2 = 0, which turns out to be equivalent to the condition
{𝑥−, 𝑥+} = {𝑎, 𝑏}. Overall, this analysis leads to Algo. 2.

9

	Abstract
	1 Introduction
	1.1 Range functions
	1.2 Real root isolation and Eval
	1.3 Some broader literature
	1.4 Overview of the paper

	2 New range functions based on centered Taylor expansions
	2.1 Taylor forms with order k convergence

	3 New range functions based on recursive interpolation
	3.1 Recursive Lagrange form with cubic convergence
	3.2 Recursive Lagrange form with quartic convergence

	4 Real root isolation with Eval and the new range functions
	4.1 Advantage of the Lagrange form in Eval
	4.2 Range functions for derivatives

	5 Numerical experiments
	6 Conclusions
	Acknowledgments
	References
	A Exact ranges for low degree polynomials
	A.1 Linear polynomials
	A.2 Quadratic polynomials
	A.3 Cubic polynomials

