
Resolution-Exact Planner for Non-Crossing 2-Link Robot

Zhongdi Luo and Chee K. Yap

Department of Computer Science

Courant Institute, NYU

New York, NY 10012, USA

{zl562,yap}@cs.nyu.edu

Abstract— We consider the motion planning problem for a
2-link robot amidst polygonal obstacles. The two links are
normally allowed to cross each other, but in this paper, we
introduce the non-crossing version of this robot. This 4DOF
configuration space is novel and interesting.

Using the recently introduced algorithmic framework of
Soft Subdivision Search (SSS), we design a resolution-exact
planner for this robot. We introduce a new data structure for
representing boxes and doing subdivision in this non-crossing
configuration space. Our implementation achieved real-time
performance for a suite of non-trivial obstacle sets.

I. INTRODUCTION

Motion planning is one of the key topics of robotics [7],

[3]. The main approach to motion planning for almost two

decades now is probabilistic sampling such as PRM [6].

In the plane, the simplest example of a flexible or non-

rigid robot is the 2-link robot, R2 = R2(ℓ1, ℓ2), with

links of positive lengths ℓ1 and ℓ2. The two links are

connected through a rotational joint A0 called the robot

origin as illustrated in Figure 1(a). The 2-link robot is in

the intersection of two well-known families of link robots:

chain robots and spider robots (Figure 1(b,c)). See [9] for

a definition of link robots; there we also discuss link robots

with thickness.

(b) Chain Robot
(c) Spider Robot

A0
A2

A5

A0

(a) R2

θ2 θ1

A0

A2

A1

A1

A4

A3

Fig. 1: Link Robots

We address the following phenomena: in the screen shot

of Figure 2, we show two configurations of the 2-link robot

inside an (inverted) T-room environment. Let α (respectively,

β) be the start (goal) configuration as indicated1 by the

double (single) circle. There are obvious paths from α to β
whereby the robot origin moves directly from the start to goal

positions and simultaneously, the link angles monotonically

1 Our images have color: the double circle is cyan and single circle is
magenta. The robot links are colored blue (ℓ1) and red (ℓ2), respectively.

adjust themselves, as illustrated in Figure 4(a). However,

such paths require the two links to cross each other. To

achieve a “non-crossing” path from α to β, the robot origin

must initially move away from the goal configuration towards

the T-junction first, in order to maneuver the two links into

the appropriate relative order before it can move toward the

goal configuration. Such a non-crossing path is shown in

Figure 4(b). We find such paths with a subdivision algo-

rithm; Figure 3 illustrates the subdivision of the underlying

configuration space (the scheme is explained below).

Fig. 2: T-Room: start and goal configurations

This paper shows how to construct a practical and

theoretically-sound planner for a non-crossing 2-link robot.

To our knowledge, this non-crossing configuration space has

not been studied before. Our planner may (but not always)

suffer a loss of efficiency when compared to the self-crossing

2-link planner (see [9]). Nevertheless, it gives real-time per-

formance for a variety of non-trivial obstacle environments

such as illustrated in Figure 5 (200 randomly generated

triangles), Figure 6(a) (Double Bug-trap (cf. [p. 181, Fig-

ure 5.13][7]), Figure 6(b) (Maze). Unlike sampling based

planners, we do not need any pre-processing arguments, and

no special techniques are needed to address the halting or

narrow-passage problem. For example, Figure 5(a) is an

environment with 200 randomly generated triangles, and a

path is found with ε = 4. If we use ε = 5, then it returns NO-

PATH as shown in Figure 5(b). This NO-PATH declaration

Fig. 3: T-room: Subdivision

(a) Self-crossing path (b) Non-crossing path

Fig. 4: T-Room Environment

guarantees that there is no path with clearance > Kε (for

some constant K).

II. CONFIGURATION SPACE OF NON-CROSSING ROBOT.

The self-crossing configuration space of R2 is

Cspace = R
2 × T (1)

where T = S1 × S1 is the torus. The configuration of link

robots is treated in Devadoss and O’Rourke [4, chap. 7]. Con-

sider a configuration γ = (x, y, θ1, θ2) ∈ Cspace where θi
(i = 1, 2) is the orientation of the i-th link (see Figure 1(a)).

When θ1 = θ2, we say the configuration is self-crossing;

otherwise it is non-crossing. Let

∆ :={(θ, θ) : θ ∈ S1}, T∆ :=T \∆.

Also, let T< :={(θ, θ′) ∈ T : θ < θ′} and T> :={(θ, θ′) ∈
T : θ > θ′}. We are interested in planning the motion of R2

in the non-crossing configuration space,

C∆
space :=R

2 × T∆. (2)

(a) Path found with ε = 4 (b) NO-PATH found with ε = 5

Fig. 5: 200 Random Triangles.

(a) Double Bugtrap (b) Maze

Fig. 6: (a) Double Bugtrap, (b) Maze.

Note that ∆ is a closed curve in T. In R
2, a closed curve

will disconnect the plane into two connected components.

But the curve ∆ does not disconnect T. To see this, consider

the plane model of T represented by a square with opposite

sides identified as shown in Figure 7. Each of the sets T< and

T> are themselves connected; moreover, any α ∈ T> and

β ∈ T< are path-connected in T∆ (as illustrated in Figure 7).

θ1

β

0 2π

2π

0
T>

T<

α

∆

γγ

θ2 α
β

γ′

γ′

T>

T<

Fig. 7: Paths in T∆ from α ∈ T> to β ∈ T<

Let us be specific about how to interpret the parameters

of Cspace. The robot R2 has three named points A0, A1, A2

(see [9]), shown in Figure 1(a), where A0 is the robot joint

(or origin).The footprint of these points at a configuration

γ = (x, y, θ1, θ2) are given by

A0[γ] := (x, y),

A1[γ] := (x, y) + ℓ1(cos θ1, sin θ1),

A2[γ] := (x, y) + ℓ2(cos θ2, sin θ2).

Let R2[γ] ⊆ R
2 denote the footprint of R2 at γ, de-

fined as the union of the line segments [A0[γ], A1[γ]] and

[A0[γ], A2[γ]].

III. RESOLUTION-EXACT PLANNING

The separation of two sets S, T ⊆ R
2 is Sep(S, T) :=

inf{‖s−t‖ : s ∈ S, t ∈ T }. The clearance of γ ∈ Cspace rel-

ative to any set Ω ⊆ R
2 is Sep(R2[γ],Ω), denoted Cℓ(γ,Ω)

or Cℓ(γ) when Ω is understood. A configuration γ is Ω-free

if Cℓ(γ,Ω) > 0. Let Cfree(Ω) = Cfree(Ω;R2) denote the

set of Ω-free configurations of R2. A Ω-free path (or simply

“path”) is a continuous function µ : [0, 1] → Cfree(Ω;R2);
the clearance of µ is inf{Cℓ(µ(t),Ω) : t ∈ [0, 1]}. The basic

planning problem for a robot R is this: given a polygonal set

Ω ⊆ R, a box B0 ⊆ Cspace(R) and α, β ∈ B0, to find any

Ω-free path µ : [0, 1] → B0 with µ(0) = α and µ(1) = β if

any such path exists; otherwise, return NO-PATH if no such

path exists.

To avoid exact computation, we [10], [11] introduced the

resolution-exact planning problem: given Ω, B0, α, β as

before, but additionally ε > 0, to find any Ω-free path

µ : [0, 1] → B0 if there exists any path with clearance

Kε; and return NO-PATH if there does not exist a path with

clearance ε/K . Here, K > 1 is any constant that depends on

the algorithm but independent of the inputs (Ω, α, β,B0; ε).
For simplicity, we do not require that the returned path µ
have any specified clearance; in [10] we require µ to have

clearance ε/K .

¶1. Soft-Subdivision Search To construct resolution-

exact planners, we use the well-known subdivision paradigm

[2], [13], [1], [12]. Our subdivision framework for such

planners is called Soft Subdivision Search (SSS), and

exploits the concept of soft predicates. Appendix A reviews

these concepts. To get a planner for any specific robot like

our 2-link robot, we need three subroutines:

• Soft Predicate C̃ for classifying boxes: for each box

B, C̃(B) ∈ {MIXED, FREE, STUCK}. Leaf boxes that are

MIXED and not “ε-small” are placed in a priority queue

Q.

• Search Strategy Q.GetNext() which returns the next

box B in Q to be split. There are canonical choices

for Q.GetNext(), such as BFS, random choice, various

A-star analogues.

• Split Strategy Split(B): We could split B into 2d

congruent children if B is a d-dimensional box – but

this is unlikely to scale for d > 3. We may use global

strategies that depend on state information and other

computed parameters. Following [9], this paper will use

the T/R approach.

Figure 3 shows such a subdivision for our 2-link robot.

Each box B ⊆ Cspace is decomposed into the translation

and rotational components: B = Bt × Br where Bt ⊆
R

2 and Br ⊆ T. Our display only shows the square Bt

but a user could click Bt to read off the corresponding

angular ranges of Br in the panel. Each box Br is colored

red/green/yellow/gray. Red and green indicate STUCK and

FREE boxes. The MIXED boxes are colored yellow and gray,

depending on whether its radius is at least ε or not. Thus,

only yellow boxes are candidates for splitting.

In this paper, we will concentrate on the soft predicate

C̃(B). The search strategy Q.GetNext() can be any of the

mentioned canonical ones. The split strategy Split(B) is the

T/R strategy from [9]. The idea is that we split the angular

range only when a box B has radius < ε, otherwise we only

split its translational subbox Bt. Moreover, the splitting of

Br is not based on binary splits, but depends on the geometry

of the obstacles.

IV. SUBDIVISION FOR NON-CROSSING 2-LINK ROBOT

Suppose we already have a resolution-exact planner for

a self-crossing 2-Link robot. We now describe a simple

transformation to convert it into a resolution-exact planner

for a non-crossing 2-Link robot.

¶2. Subdivision of Boxes. In this paper, we are interested

in a slight generalization of such boxes.

By a box (or d-box) of dimension d ≥ 1 we mean a set

of the form B =
∏d

i=1 Ii where d ≥ 1 and each Ii is a

closed interval of R or S1 of positive length. Such boxes are

natural for doing subdivision in configuration spaces of the

form R
k× (S1)d−k. For our 2-link robots, d = 4 and k = 2.

The configuration space for a submarine or helicopter might

be regarded as R
3 × S1.

For i = 1, . . . , d, we have the notion of i-projection and

i-coprojection of d-boxes:

• (Projection) Proji(B) :=
∏d

j=1,j 6=i Ij is a (d − 1) di-

mensional box.

• (Co-Projection) Coproji(B) := Ii is the ith interval of

B.

We also define the indexed Cartesian product ⊗i via the

identity

B = Proji(B)⊗i Coproji(B).

Let j = −1, 0, 1, . . . , d. Two boxes B,B′ of dimension d ≥
1 are said to be j-adjacent if dim(B ∩ B′) = j. Note that

B and B′ are (−1)-adjacent means they are disjoint. When

i = d − 1, we simply say the boxes are adjacent, denoted

B :: B′; when i = d, we say they are overlapping, denoted

B ◦B′. The following is immediate:

LEMMA 1: Let B,B′ be boxes of dimension d ≥ 1.

• If d = 1 then B :: B′ iff |B ∩B′| ∈ {1, 2}.

• If d > 1 then B :: B′ iff (∃i = 1, . . . , d) such that

Proji(B)◦Proji(B) ∧ Coproji(B) :: Coproj
i
(B′).

¶3. Boxes for Non-Crossing Robot. Our basic idea for

representing boxes in the non-crossing configuration space

C∆
space is to write it as a pair (B, XT) where XT ∈ {LT, GT},

and B is a box in self-crossing configuration space Cspace.

The pair (B, XT) represents the set B∩ (R2×TXT) (with the

identification TLT = T< and TGT = T>). It is convenient to

call (B, XT) an X-box since they are no longer “boxes” in

the usual sense.

As in [9], we may write B as the Cartesian product of

a translational box Bt and a rotational box Br: B = Bt ×
Br where Bt ⊆ R

2 and Br ⊆ T. Thus, Br = Θ1 × Θ2

where Θ1,Θ2 ⊆ S1 are angular intervals. We denote (closed)

angular intervals by [s, t] where s, t ∈ [0, 2π] and using the

interpretation

[s, t] :=

{
{θ : s ≤ θ ≤ t} if s < t,
[s, 2π] ∪ [0, t] if s ≥ t.

In particular, [s, s] = [s, t] ∪ [t, s] = S1. An angular interval

[s, t] that2 contains a neighborhood of 0 = 2π is said to be

wrapping. Also, call Br = Θ1 ×Θ2 wrapping if either Θ1

or Θ2 is wrapping.

Given any Br, we can decompose the set Br∩T∆ into the

union of two subsets Br
LT

and Br
GT

, where Br
XT

denote the set

Br ∩ TXT. In case Br is non-wrapping, this decomposition

has the nice property that each subset Br
XT

is connected. For

this reason, we prefer to work with non-wrapping boxes.

Initially, the box Br = T is wrapping. The initial split of

T should be done in such a way that the children are all

non-wrapping: the “natural” (quadtree-like) way to split T

into four congruent children has3 this property. Thereafter,

subsequent splitting of these non-wrapping boxes will remain

non-wrapping.

Of course, Br
XT

might be empty, and this is easily checked:

say Θi = [si, ti] (i = 1, 2). Then Br
< is empty iff t2 ≤ s1.

and Br
> is empty iff s2 ≥ t1. Moreover, these two conditions

are mutually exclusive.

We now modify the algorithm of [9] as follows: as long

as we are just splitting boxes in the translational dimensions,

there is no difference. When we decide to split the rotational

dimensions, we use the T/R splitting method of [9], but each

child is further split into two X-boxes annotated by LT or

GT (they are filtered out if empty). We build the connectivity

graph G (see Appendix A) with these X-boxes as nodes. This

ensures that we only find non-crossing paths. Our algorithm

inherits resolution-exactness from the original self-crossing

algorithm.

V. EXTENSION TO DIAGONAL BAND

The diagonal ∆ is a curve with no width. We now want

to fatten ∆ into a band ∆(κ) of bandwidth κ ≥ 0. For this

extension, we use the intrinsic Riemannian metric on S1: the

distance between θ, θ′ ∈ S1 is given by

d(θ, θ′) = min{|θ − θ′|, 2π − |θ − θ′|}.

where we may assume θ, θ′ ∈ [0, 2π]. Fix 0 ≤ κ < π. Then

∆(κ) :={(θ, θ′) ∈ T : d(θ, θ′) ≤ κ}.

Thus the original diagonal line is ∆(0) = ∆. The non-

crossing configuration space is now

C∆(κ)
space = R

2 × (T \∆(κ)).

2 Wrapping intervals are either equal to S1 or has the form [s, t] where
s > t, s 6= 2π and t 6= 0

3 This is not a vacuous remark – the quadtree-like split is determined
by the choice of a “center” for splitting. To ensure non-wrapping children,
this center is necessarily (0, 0) or equivalently (2π, 2π). Furthermore, our
T/R splitting method (to be introduced) does not follow the conventional
quadtree-like subdivision at all.

This extension is very useful in applications. For example,

the T-room example (Figures 2–3) uses κ = 10◦. Moreover,

if we set κ = 11◦, then there is NO-PATH. It is not surprising

that as κ is increased, we may no longer be able to find

a path. But somewhat surprisingly, our experiments (see

Table I below) show that increasing κ may also speed up

the search for a path.

The predicate isBoxEmpty(Br , κ, XT) which returns true

iff (Br
XT
) ∩ T∆(κ) is empty is useful in implementation. It

has a simple expression when restricted to non-wrapping

translational box Br:

LEMMA 2:

Let Br = [a, b]× [a′, b′] be a non-wrapping box.

(a) isBoxEmpty(Br, κ, LT) = true iff κ ≥ b′−a or 2π−κ ≤
a′ − b.
(b) isBoxEmpty(Br, κ, GT) = true iff κ ≥ b−a′ or 2π−κ ≤
a− b′.

VI. IMPLEMENTATION AND EXPERIMENTS

We implemented our planner in C++, extending our previ-

ous work on self-crossing 2-link robots in [9]. Our code, data

and experiments are freely distributed4 with our open source

Core Library. See Luo’s thesis [8] for more examples.

The platform for the experiments is a Mac OS X 10.8.3

(Mountain Lion) with a Quad Core Intel Core i7-3610QM

Processor, (6MB L3 Cache, up to 3.30 GHz) and 16GB

DDR3-1600MHz RAM. Our current implementation is based

on machine arithmetic, but it is relatively straightforward to

ensure arbitrary precision using bigFloat numbers and “lax

comparison” as described in [10].

Table I compares the performance of the non-crossing

planner with the original crossing planner from [9]. Each row

of Table I shows two statistics for the self-crossing and non-

crossing planners: total running time and the total number

of subdivision boxes created. The last column shows the

percentage improvement in time for non-crossing over self-

crossing.

We use various obstacle sets (named egX such as eg2a,

eg2b, eg5, etc.). Each run is a row in the Table, and has

these parameters (ℓ1, ℓ2, S, ε, κ) where ℓi is the length of

the i-th link, S ∈ {B,D,G} indicates5 the search strategy

(B = Breadth First Search (BFS), D = Distance + Size,

G = Greedy Best First (GBF)). The last parameter κ ∈
[0, 180) is the bandwidth of ∆ in degrees. When we run

the self-crossing planner the κ parameter is ignored. The

parameters for each run are encoded in a Makefile, but the

user may modify these parameters through the GUI interface

(see Figure 8).

Table I shows that the running time of the non-crossing

planner is comparable to that of the self-crossing planner in

all the examples (with the exception of the T-room or eg13).

Their percentage change is between −44.8% to 11.4%.

That is because, although non-crossing planner has some

overhead, it also filters out useless splittings earlier for the

4 http://cs.nyu.edu/exact/core/download/core/.
5 A random strategy is available, but it is never competitive.

dead ends. The exceptional case (T-room) is explained by the

fact that the non-crossing planner must use a much longer

circuitous path.

Table II shows the sensitivity of finding a path to the link

length ℓ2, and to the bandwidth κ, as ε decreases.

Fig. 8: GUI Interface for Maze Example

VII. CONCLUSION AND LIMITATIONS

The introduction of non-crossing flexible robots is novel,

and points the way for many similar extensions. Our work

is a contribution to the development of practical and theo-

retically sound subdivision planners [10], [11].

Although our current techniques work well for this 4DOF

robot, we believe that new techniques are needed to address

higher DOF’s. We are working on robots in R
3. But even in

the plane, real-time performance is easily compromised. For

instance, we could clearly extend the current work to non-

crossing k-spiders for k ≥ 3, with Cspace = R
2 ×T

k where

T
k = (S1)k. We expect to be achieve real-time performance

for k = 3, 4. However, it is less clear that we can do the same

with k-chain robots for k ≥ 3, crossing or non-crossing.

REFERENCES

[1] M. Barbehenn and S. Hutchinson. Toward an exact incremental
geometric robot motion planner. In Proc. Intelligent Robots and

Systems 95., volume 3, pages 39–44, 1995. 1995 IEEE/RSJ Intl. Conf.,
5–9, Aug 1995. Pittsburgh, PA, USA.

[2] R. A. Brooks and T. Lozano-Perez. A subdivision algorithm in
configuration space for findpath with rotation. In Proc. 8th Intl.

Joint Conf. on Artificial intelligence - Volume 2, pages 799–806, San
Francisco, CA, USA, 1983. Morgan Kaufmann Publishers Inc.

[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,

Algorithms, and Implementations. MIT Press, Boston, 2005.
[4] S. L. Devadoss and J. O’Rourke. Discrete and Computatational

Geometry. Princeton University Press, 2011.

[5] D. Hsu, J.-C. Latombe, and H. Kurniawati. On the probabilistic
foundations of probabilistic roadmap planning. Int’l. J. Robotics

Research, 25(7):627–643, 2006.

[6] L. Kavraki, P. Švestka, C. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Trans. Robotics and Automation, 12(4):566–580, 1996.

[7] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, 2006.

[8] Z. Luo. Resolution-exact planner for a 2-link planar robot using soft
predicates. Master thesis, New York University, Courant Institute, Jan.
2014.

[9] Z. Luo, Y.-J. Chiang, J.-M. Lien, and C. Yap. Resolution exact
algorithms for link robots, 2014. Submitted, 30th ACM Symp.
on Comp. Geom. Preliminary version: 23rd Fall Workshop on
Comp. Geom. (FWCG), Oct 25-26, 2013. The City College of New
York.

[10] C. Wang, Y.-J. Chiang, and C. Yap. On Soft Predicates in Subdivision
Motion Planning. In 29th ACM Symp. on Comp. Geom. (SoCG’13),
pages 349–358, 2013. Full paper was invited and submitted to
Comp.Geom.: Theory & Applic. (CGTA), Special Issue for SoCG ’13.

[11] C. K. Yap. Soft Subdivision Search in Motion Planning. In
Proceedings, Robotics Challenge and Vision Workshop (RCV 2013),
2013. Best Paper Award, sponsored by Computing Commu-
nity Consortium (CCC). Robotics Science and Systems Conference
(RSS 2013), Berlin, Germany, June 27, 2013. Full paper from:
http://cs.nyu.edu/exact/papers/.

[12] L. Zhang, Y. J. Kim, and D. Manocha. Efficient cell labeling and path
non-existence computation using C-obstacle query. Int’l. J. Robotics

Research, 27(11–12), 2008.

[13] D. Zhu and J.-C. Latombe. New heuristic algorithms for efficient
hierarchical path planning. IEEE Transactions on Robotics and

Automation, 7:9–20, 1991.

APPENDIX A: ELEMENTS OF SSS THEORY

We review the the notion of soft predicates and how it is

used in the SSS Planning Framework. See [10], [11], [9] for

more details.

¶4. Soft Predicates. The concept of a “soft predicate” is

relative to some exact predicate. Define the exact predicate

C : Cspace → {0,+1,−1} where C(x) = 0/ + 1/ − 1
(resp.) if configuration x is semi-free/free/stuck. The semi-

free configurations are those on the boundary of Cfree. Call

+1 and −1 the definite values, and 0 the indefinite value.

Extend the definition to any set B ⊆ Cspace: for a definite

value v, define C(B) = v iff C(x) = v for all x. Otherwise,

C(B) = 0. Let (Cspace) denote the set of d-dimensional

boxes in Cspace. A predicate C̃ : (Cspace) → {0,+1,−1}
is a soft version of C if it is conservative and convergent.

Conservative means that if C̃(B) is a definite value, then

C̃(B) = C(B). Convergent means that if for any sequence

(B1, B2, . . .) of boxes, if Bi → p ∈ Cspace as i → ∞, then

C̃(Bi) = C(p) for i large enough. To achieve resolution-

exact algorithms, we must ensure C̃ converges quickly in

this sense: say C̃ is effective if there is a constant σ > 1
such if C(B) is definite, then C̃(B/σ) is definite.

¶5. The Soft Subdivision Search Framework. An SSS

algorithm maintains a subdivision tree T = T (B0) rooted

at a given box B0. Each tree node is a subbox of B0. We

assume a procedure Split(B) that subdivides a given leaf

box B into a bounded number of subboxes which becomes

the children of B in T . Thus B is “expanded” and no longer

a leaf. For example, Split(B) might create 2d congruent

subboxes as children. Initially T has just the root B0; we

grow T by repeatedly expanding its leaves. The set of leaves

Obstacle Configuration Self-Crossing Non-Crossing Performance

(input) (ℓ1, ℓ2, S, ǫ, κ) time (ms) boxes time (ms) boxes Improvement

eg2b (88, 98, D, 2, 79) 1740.1 104663 1591.9 71123 8.51%

(8-way corridor) (88, 98, D, 2, 80) - - No Path No Path -

(88, 98, D, 2, 30) - - 1687.1 101287 3.0%

(88, 98, D, 2, 5) - - 1963.2 129394 -12.8%

eg5 (55, 50, G, 4, 95) 541.2 22243 542.3 27560 -0.2%

(Double Bugtrap) (55, 50, G, 4, 100) - - No Path No Path -

(55, 50, G, 4, 50) - - 613.1 32157 -13.3%

(55, 50, G, 4, 10) - - 730.3 42994 -34.9%

eg8 (30, 25, G, 2, 7) 31.5 2215 45.6 5214 -44.8%

(Hsu et al. [5]) (30, 25, G, 2, 8) - - No Path No Path -

(30, 25, G, 2, 3) - - 37.3 3514 -18.4%

eg12 (30, 33, D, 4, 146) 314.4 19953 283.3 15167 9.9%

(Maze) (30, 33, D, 4, 147) - - No Path No Path -

(30, 33, D, 4, 40) - - 360.9 22908 -14.8%

(30, 33, D, 4, 10) - - 410.2 32783 -30.5%

eg13 (94, 85, D, 4, 10) 3.1 616 98.9 12212 -3090%

(T-Room) (94, 85, D, 4, 11) - - No Path No Path -

(94, 85, D, 4, 5) - - 94.9 12068 -2961%

eg300 (40, 30, G, 4, 127) 305.7 8794 270.8 7314 11.4%

(300 Triangles) (40, 30, G, 4, 128) - - No Path No Path -

(40, 30, G, 4, 40) - - 353.6 11284 -15.7%

(40, 30, G, 4, 10) - - 348.4 12113 -14.0%

TABLE I: Comparison between Self-Crossing and Non-Crossing.

Obstacle Configuration Self-Crossing Non-Crossing Performance

(input) (ℓ1, ℓ2, S, ǫ, κ) time (ms) boxes time (ms) boxes Improvement

eg2a (85, 80, G, 8, 10) No Path No Path No Path No Path -

(8-way corridor) (85, 80, G, 4, 10) 459.0 33199 400.9 31390 12.7%

(85, 92, G, 4, 10) No Path No Path No Path No Path -

(85, 92, G, 2, 10) 2271.8 153425 2402.3 192916 -5.7%

(85, 99, G, 2, 10) No Path No Path No Path No Path -

(85, 99, G, 1, 10) 5887.4 385814 6190.0 448119 -5.1%

(85, 100, G, 1, 10) No Path No Path No Path No Path -

eg13 (94, 85, D, 8, 10) No Path No Path No Path No Path -

(T-Room) (94, 85, D, 4, 10) 3.1 616 98.9 12212 -3090%

(94, 85, D, 4, 13) - - No Path No Path -

(94, 85, D, 2, 13) 6.2 1187 417.7 47292 -6637%

(94, 85, D, 2, 14) - - No Path No Path -

(94, 85, D, 1, 14) 9.8 1974 1553.7 184559 -15754%

(94, 85, D, 1, 15) - - No Path No Path -

TABLE II: (a) Eg2a shows the sensitivity to length ℓ2 as ε changes. (b) Eg13 shows the sensitivity to bandwidth κ as ε
changes.

of T at any moment constitute a subdivision of B0. Each

node B ∈ T is classified using a soft predicate C̃ as C̃(B) ∈
{MIXED, FREE, STUCK/} = {0,+1,−1}. Only MIXED leaves

with radius ≥ ε are candidates for expansion. We need to

maintain three auxiliary data structures:

• A priority queue Q which contains all candidate boxes.

Let Q.GetNext() remove the box of highest priority

from Q. The tree T grows by splitting Q.GetNext().
• A connectivity graph G whose nodes are the FREE

leaves in T , and whose edges connect pairs of boxes

that are adjacent, i.e., that share a (d− 1)-face.

• A Union-Find data structure for connected components

of G. After each Split(B), we update G and insert

new FREE boxes into the Union-Find data structure and

perform unions of new pairs of adjacent FREE boxes.

Let BoxT (α) denote the leaf box containing α (similarly

for BoxT (α)). The SSS Algorithm has three WHILE-loops.

The first WHILE-loop will keep splitting BoxT (α) until it

becomes FREE, or declare NO-PATH when BoxT (α) has

radius less than ε. The second WHILE-loop does the same

for BoxT (β). The third WHILE-loop is the main one: it will

keep splitting Q.GetNext() until a path is detected or Q is

empty. If Q is empty, it returns NO-PATH. Paths are detected

when the Union-Find data structure tells us that BoxT (α)
and BoxT (β) are in the same connected component. It is

then easy to construct a path. Thus we get:

SSS Framework:
Input: Configurations α, β, tolerance ε > 0, box B0 ∈ Cspace.

Initialize a subdivision tree T with root B0.
Initialize Q,G and union-find data structure.

1. While (BoxT (α) 6= FREE)
If radius of BoxT (α)) is < ε, Return(NO-PATH)
Else Split(BoxT (α))

2. While (BoxT (β) 6= FREE)
If radius of BoxT (β)) is < ε, Return(NO-PATH)
Else Split(BoxT (β))

⊲ MAIN LOOP:
3. While (Find(BoxT (α)) 6= Find(BoxT (β)))

If QT is empty, Return(NO-PATH)
B ← T .GetNext()
Split(B)

4. Generate and return a path from α to β using G.

The correctness of our algorithm does not depend on how

the priority of Q is designed. See [11] for the correctness of

this framework under fairly general conditions.

	Introduction
	Configuration Space of Non-Crossing Robot.
	Resolution-Exact Planning
	Subdivision for Non-Crossing 2-Link Robot
	Extension to Diagonal Band
	Implementation and Experiments
	Conclusion and Limitations
	References

