
Resolution-Exact Planner for Thick
Non-Crossing 2-Link Robots?

Chee K. Yap, Zhongdi Luo, and Ching-Hsiang Hsu

Department of Computer Science
Courant Institute, NYU

New York, NY 10012, USA
{yap,zl562,chhsu}@cs.nyu.edu

Abstract. We consider the path planning problem for a 2-link robot
amidst polygonal obstacles. Our robot is parametrizable by the lengths
`1, `2 > 0 of its two links, the thickness τ ≥ 0 of the links, and an angle κ
that constrains the angle between the 2 links to be strictly greater than
κ. The case τ > 0 and κ ≥ 0 corresponds to “thick non-crossing” robots.
This results in a novel 4DOF configuration space R2× (T2 \∆(κ)) where
T2 is the torus and ∆(κ) the diagonal band of width κ.
We design a resolution-exact planner for this robot using the framework
of Soft Subdivision Search (SSS). First, we provide an analysis of the
space of forbidden angles, leading to a soft predicate for classifying con-
figuration boxes. We further exploit the T/R splitting technique which
was previously introduced for self-crossing thin 2-link robots.
Our open-source implementation in Core Library achieves real-time per-
formance for a suite of combinatorially non-trivial obstacle sets. We also
show that our algorithm performs very favorably compared with several
state-of-art sampling algorithms in the OMPL software.

1 Introduction

Motion planning is one of the key topics of robotics [7, 3]. The dominant ap-
proach to motion planning for the last two decades has been based on sampling,
as represented by PRM [5] or RRT [6] and their many variants. An alternative
(older) approach is based on subdivision [2, 16, 1]. Recently, we introduced the
notion of resolution-exactness which might be regarded1 as the well-known
idea of “resolution completeness” with a suitable converse [12, 13]. This provides
the theoretical basis for exploiting the concept of soft predicates, which is
roughly speaking the numerical approximation of exact predicates. Such pred-
icates avoids the hard problem of deciding zero, leading to much more practi-
cal algorithms than exact algorithms. To support this new class of algorithms,
and inspired by the success of the PRM framework, we introduce an algorithmic
framework [13, 14] based on subdivision called Soft Subdivision Search (SSS).
The present paper continues our exploration of algorithms in this framework.

? This work is supported by NSF Grants CCF-0917093 and CCF-1423228.
1 In the theory of computation, a computability concept that has no such converse

(e.g., recursive enumerability) is only “partially complete”.

2

θ2 θ1

A0

A2

A1

A1

A2

A5

A0
A2

(d) Thick R2 Robot

A0

(a) Thin R2 Robot

A1

A4

A3

(b) Chain Robot
(c) Spider Robot

A0

Fig. 1: Link Robots

Link robots offer a compelling class of non-trivial robots for exploring path
planning (see [4, chap. 7]). In the plane, the simplest example of a non-rigid
robot is the 2-link robot, R2 = R2(`1, `2), with links of lengths `1, `2 > 0. The
two links are connected through a rotational joint A0 called the robot origin
as illustrated in Figure 1(a). The 2-link robot is in the intersection of two well-
known families of link robots (see [9] for definition): chain robots and spider
robots (Figure 1(b,c)).

One limitation of link robots is that the usual model of links as line segments
is not physically realistic. On the other hand, a model of mechanical links in-
volving complex details may require algorithms that currently do not exist (at
least in the case of exact algorithms) or have high computational complexity. As
a compromise, we introduce thick links by forming the Minkowski sum of each
link with a ball of radius τ > 0 (and recover “thin links” by setting τ = 0). See
Figure 1(d). To our knowledge, no exact algorithm for thick R2 is known; for a
single link R1, an exact algorithm based on retraction follows from [10]. In this
paper, we further parametrize the 2-link robot by a “bandwidth” κ which con-
strains the angle between the 2 links to be strictly larger than κ (“self-crossing”
links is recovered by setting κ < 0). Thus, our full robot model is denoted

R2(`1, `2, τ, κ).

To illustrate the non-crossing constraint, we use a simple “T-room” environ-
ment as shown in Figure 2. Suppose the robot has to move between the two
indicated configurations in Figure 2(a): from start configuration α (above) to
goal configuration β (below). There is an obvious path from α to β as illustrated
in Figure 2(b): the robot origin moves directly from its start to goal positions,
while the link angles simultaneously adjust to their goal angles. However, such
paths require the two links to cross each other. To achieve a “non-crossing” so-
lution from α to β, we need a less obvious path as illustrated in Figure 2(c): the
robot origin must first move away from the goal configuration towards the T-
junction, in order to maneuver the two links into the appropriate relative order
before it can move toward the goal configuration.

3

(a) α (above) and β (below) (b) Self-crossing path (c) Non-crossing path

Fig. 2: Path from configurations α to β in T-Room Environment

We had chosen ε = 2 in Figure 2(b,c); furthermore, κ = 7 for the non-
crossing instance. But if we increase either ε to 3 or κ to 8, then the non-
crossing instance would report NO-PATH. The self-crossing instance still finds
a path with ε = 3. It is important to know that the NO-PATH output from
resolution-exact algorithms is not never due to exhaustion (“time-out”). It is a
principled answer, guaranteeing the non-existence of paths with clearance > K ·ε
(for some K > 1 depending on the algorithm). This is the key strength in
our approach: in contrast to sampling approaches, there is no “narrow passage”
for resolution-exact algorithms. Ultimately, we view the narrow passage as just
the “halting problem” for path planning: how do you detect non-existence of
paths? If, as our experimental study below indicates, our algorithms are just as
fast (usually faster) than the sampling approaches, then it seems reasonable to
say that the “narrow passage problem” has been solved, albeit through a non-
sampling approach, and up to 4DOF. But we suspect this is not really about
DOF’s.

The T-Room Environment has trivial combinatorial complexity, designed to
illustrate the non-crossing phenomenon. But our algorithm scales well with the
combinatorial complexity of the environment; all our solutions are “realtime”.
An interesting environment is Figure 3 with 100 randomly generated triangles.

Overview of Paper. This paper explains the theory and construction of
a resolution-exact planner for thick non-crossing 2-link robots. For the reader’s
convenience, we provide an appendix describing the theory of resolution-exactness,
soft predicate and the SSS Framework. This appendix will be removed in the
final paper. Besides implementing our SSS algorithm in our open-source Core
Library [15], we also conduct experiments to compare with state-of-art sampling
algorithms found in OMPL [11].

4

(a) Trace of the robot origin (b) Sub-sampled path (c) Subdivision boxes

Fig. 3: 100 Random Triangles Environment: non-crossing path found (κ = 115◦)

2 Configuration Space of Non-Crossing 2-Link Robot

The configuration space of R2 is Cspace := R2 × T2 where T2 = S1 × S1 is the
torus and S1 = SO(2) is the unit circle. We represent S1 by the interval [0, 2π]
with the identification 0 = 2π. Closed angular intervals of S1 are denoted by
[s, t] where s, t ∈ [0, 2π] using the convention

[s, t] :=

{
{θ : s ≤ θ ≤ t} if s ≤ t,
[s, 2π] ∪ [0, t] if s > t.

In particular, [0, 2π] = S1 and [2π, 0] = [0, 0]. The standard Riemannian metric
d : S1×S1 → R≥0 on S1 is given by d(θ, θ′) = min {|θ − θ′|, 2π − |θ − θ′|}. Thus
0 ≤ d(θ, θ′) ≤ π.

To represent the non-crossing configuration space, we must be more specific
about interpreting the parameters in a configuration (x, y, θ1, θ2) ∈ Cspace: there
are two natural interpretations, depending on whether we view R2 as a chain
robot or a spider robot (see Figure 1(b,c)). We choose the latter view, in which
case (x, y) is the footprint of the joint A0 at the center of the spider. Then the
angles θ1, θ2 of the two links are independent. This leads to somewhat simpler
analysis. It is not entirely unclear to us what possible tradeoffs might accrue
by viewing R2 as a chain robot, but certainly the subdivision process would be
organized differently; this is future research. If we consider chain robots Rk for
k ≥ 3, we would be forced to explore this alternative. In the terminology of
[9], the robot R2 has three named points A0, A1, A2. Viewing R2 as a spider
robot, then point A0 is the spider center (or origin) as shown in Figure 1(a).
The footprints of these points at configuration γ = (x, y, θ1, θ2) are given by

A0[γ] := (x, y),

A1[γ] := (x, y) + `1(cos θ1, sin θ1),

A2[γ] := (x, y) + `2(cos θ2, sin θ2).

5

The thin footprint of R2 at γ, denoted R2[γ], is defined as the union of the
line segments [A0[γ], A1[γ]] and [A0[γ], A2[γ]]. Finally the thick footprint of
R2 is given by Fprintτ (γ) := D(0, τ)⊕R2[γ], the Minkowski sum ⊕ of the thin
footprint with the disc D(0, τ) centered at the origin 0 of radius τ .

The non-crossing configuration space of bandwidth κ is defined to be

Cspace(κ) := R2 × (T2 \∆(κ))

where ∆(κ) is the diagonal band

∆(κ) :=
{

(θ, θ′) ∈ T2 : d(θ, θ′) ≤ κ
}
⊆ T2.

Note three special cases:

– If κ < 0 then ∆(κ) is the empty set.
– If κ = 0 then ∆(0) is a closed curve in T2.
– If κ ≥ π then ∆(κ) = S1.

Configurations in R2×∆(0) are said to be self-crossing; all other configurations
are non-crossing. Here we focus on the case κ ≥ 0. For our subdivision below,
we will split T2\∆(0) into two connected sets: T2

< :=
{

(θ, θ′) ∈ T2 : 0 ≤ θ < θ′ < 2π
}

and T2
> :=

{
(θ, θ′) ∈ T2 : 0 ≤ θ′ < θ < 2π

}
. For κ ≥ 0, the diagonal band ∆(κ)

retracts to the closed curve ∆(0). In R2, if we omit such a set, we will get two
connected components. In contrast, that T2 \∆(κ) remains connected. CLAIM:
T2 \∆(κ) is topologically a cylinder with two boundary components. The point is
that the non-crossing constraint has changed the topology of the configuration
space. To see claim, consider the standard model of T2 represented by a square
with opposite sides identified as in Figure 4(a) (we show the case κ = 0). By
rearranging the two triangles T2

< and T2
> as in Figure 4(b), our claim is now

visually obvious.

(b)

0
T2
>

T2
<

α

∆(0)

γγ

θ2

θ1

β

(a)

α
β

γ′

γ′

T2
>

T2
<

0 2π

2π

Fig. 4: Paths in T2 \∆(0) from α ∈ T2
> to β ∈ T2

<

6

3 Forbidden Angle Analysis of Thick Links

Towards the development of a soft-predicate for thick links, we must first extend
our analysis in [9] which introduced the concept of forbidden angles for thin
links. Let L(`, τ) be a single link robot of length ` > 0 and thickness τ ≥ 0. Its
configuration space is SE(2) = R2 × S1. Given a configuration (b, θ) ∈ SE(2),
the footprint of L(`, τ) at (b, θ) is

Fprint`,τ (b, θ) := L⊕D(0, τ)

where ⊕ denotes Minkowski sum, L is the line segment [b, b + `(cos θ, sin θ)]
and D(0, τ) is the disk as above. When `, τ is understood, we simply write
“Fprint(b, θ)” instead of Fprint`,τ (b, θ).

Let S, T ⊆ R2 be closed sets. An angle θ is forbidden for (S, T) if there
exists s ∈ S such that Fprint(s, θ) ∩ T is non-empty. If t ∈ Fprint(s, θ) ∩ T ,
then the pair (s, t) ∈ S × T is a witness for the forbidden-ness of θ for (S, T).
The set of forbidden angles of (S, T) is called the forbidden zone of S, T and
denoted Forb`,τ (S, T). Clearly, θ ∈ Forb`,τ (S, T) iff there exists a witness pair
(s, t) ∈ S×T . Moreover, we call (s, t) a minimum witness of θ if the Euclidean
norm ‖s−t‖ is minimum among all witnesses of θ. If (s, t) is a minimum witness,
then clearly s ∈ ∂S and t ∈ ∂T .

Lemma 1. For any sets S, T ⊆ R2, we have

Forb`,τ (S, T) = π + Forb`,τ (T, S).

Proof. For any pair (s, t) and any angle α, we see that

t ∈ Fprint(s, α) iff s ∈ Fprint(t, π + α).

Thus, there is a witness (s, t) for α in Forb`,τ (S, T) iff there is a witness (t, s)
for π + α in Forb`,τ (T, S). The lemma follows. Q.E.D.

¶1. The Forbidden Zone of two points Consider the forbidden zone
Forb`,τ (V,C) defined by two points V,C ∈ R2 with d = ‖V −C‖. (The notation
V suggests a vertex of a translational box Bt and C suggests a corner of the
obstacle set.) In our previous paper [9] on thin links (i.e., τ = 0), this case
is not discussed for reasons of triviality. When τ > 0, the set Forb`,τ (V,C) is
more interesting. Clearly, Forb`,τ (V,C) is empty iff d > `+ τ (and a singleton if
d = `+ τ). Also Forb`,τ (V,C) = S1 iff d ≤ τ . Henceforth, we may assume

τ < d < `+ τ. (1)

The forbidden zone of V,C can be written in the form

Forb`,τ (V,C) := [ν − δ, ν + δ]

for some ν, δ. We call ν the nominal angle and δ the correction angle. From
the symmetry of the footprint, we see that nominal angle ν is equal to θ(V,C).

7

V

C

V

U

(a) (b)

ν

U ′

C

ν

U

d

δ

`

δ

τ

d

`τ

Fig. 5: Forb`,τ (V,C)

It remains to determine δ. Consider the configuration (V, θ) ∈ SE(2) of our
link L(`, τ) where link origin is at V and the link makes an angle θ with the
positive x-axis. The angle δ is determined when the point C lies on the boundary
of Fprint(V, θ). The two cases are illustrated in Figure 5 where θ = ν + δ and
other endpoint of the link is U ; thus ‖V U‖ = ` and ‖V C‖ = d, and δ = ∠(CV U).
Under the constraint (1), there are two ranges for d:

(a) d is short: d2 ≤ τ2 + `2. In this case, the point C lies on the straight portion
of the boundary of the footprint, as in Figure 5(a). From the right-angle
triangle CU ′V , we see that δ = arcsin(τ/d).

(b) d is long: d2 > τ2 + `2. In this case, the point C lies on the circular portion
of the boundary of the footprint, as in Figure 5(b). Consider the triangle
CUV with side lengths of d, `, τ . By the cosine law, τ2 = d2 + `2 − 2d` cos δ
and thus

δ = arccos

(
`2 + d2 − τ2

2d`

)
.

This proves:

Lemma 2. Assume ‖V C‖ = d satisfies (1). Then

Forb`,τ (V,C) = [ν − δ, ν + δ]

where ν = θ(V,C) and

δ = δ(V,C) =

{
arcsin(τ/d) if d2 ≤ τ2 + `2,

arccos
(
`2+d2−τ2

2d`

)
if d2 > τ2 + `2.

(2)

¶2. The Forbidden Zone of a Vertex and a Wall Recall that the
boundary of a box Bt is divided into four sides, and two adjacent sides share

8

a common endpoint which we call a vertex. We now determine Forb`,τ (V,W)
where V is a vertex and W a wall feature. Choose the coordinate axes such that
W lies on the x-axis, and V = (0,−σ) lies on the negative y-axis, for some σ > 0.
Let the two corners of W be C,C ′ with C ′ lying to the left of C. See Figure 6.

C ′ x
τ

Xmax

X∗

VV

` + τ
`

OX∗
x

y

X∗

τ

Xmax
X∗Xmax

(a) (b)

CC ′

C

` + τ
`

y

O

Fig. 6: Stop Analysis for Forb`,τ (V,W) (assuming σ > τ)

We first show that the interesting case is when

τ < σ < `+ τ. (3)

If σ ≥ `+ τ then Forb`,τ (V,W) is either a singleton (σ = `+ τ) or else is empty
(σ > ` + τ). Likewise, the following lemma shows that when σ ≤ τ , we are to
point-point case of Lemma 2:

Lemma 3. Assume σ ≤ τ . We have

Forb`,τ (V,W) =

{
S1 if D(V, τ) ∩W 6= ∅,
Forb`,τ (V, c) else

where c = C or C ′.

Proof. Recall that we have chosen the coordinate system so that W lies on the
x-axes and V = (0,−σ). It is easy to see that Forb`,τ (V,W) = S1 iff the disc
D(V, τ) intersects W . So assume otherwise. In that case, the closest point in W
to V is c, one of the two corners of W . The lemma is proved if we show that

Forb`,τ (V,W) = Forb`,τ (V, c).

It suffices to show Forb`,τ (V,W) ⊆ Forb`,τ (V, c). Suppose θ ∈ Forb`,τ (V,W).
So it has a witness (V, c′) for some c′ ∈ W . However, we see that the minimal
witness for this case is (V, c). This proves that θ ∈ Forb`,τ (V, c). Q.E.D.

9

In addition to (3), we may also assume the wall lies within the annulus of
radii (τ, τ + `) centered at V :

‖V C‖, ‖V C ′‖ ∈ (τ, `+ τ) (4)

Using the fact that V = (0,−σ) and W lies in the x-axis, the following is
immediate:

Lemma 4. Assume (3) and (4).
Then Forb`,τ (V,W) is a non-empty connected interval of S1,

Forb`,τ (V,W) = [α, β] ⊆ (0, π).

Our next goal is to determine the angles α, β in this lemma. Consider the foot-
prints of the link at the extreme configurations (V, α), (V, β) ∈ SE(2). Clearly,
W intersects the boundary (but not interior) of these footprints, Fprint(V, α)
and Fprint(V, β). Except for some special configurations, these intersections
are singleton sets. Regardless, pick any A ∈ W ∩ Fprint(V, α) and B ∈ W ∩
Fprint(V, β). Since α is an endpoint of Forb`,τ (V,W), we see that A ∈ (∂W) ∩
∂(Fprint(V, α)). We call A a left stop for the pair (V,W) because2 for any
δ′ > 0 small enough, A ∈ Fprint(V, α+ δ′) while W ∩ (V, α− δ′) = ∅. Similarly
the point B is called a right stop for the pair (V,W). Clearly, we can write

α = θ(V,A)− δ(V,A), β = θ(V,B) + δ(V,B)

where δ(V, ·) is given by Lemma 2. We have thus reduced the determination of
angles α and β to the computation of the left A and right B stops.

We might initially guess that the left stop of (V,W) is C, and right stop
of (V,W) is C ′. But the truth is a bit more subtle. Define the following points
X∗, Xmax on the positive x-axis using the equation:

‖OX∗‖ =
√

(`+ τ)2 − σ2

‖OXmax‖ =
√
`2 − (σ − τ)2

These two points are illustrated in Figure 6. Also, let X∗ and Xmax be mirror
reflections of X∗ and Xmax across the y-axis. The points X∗, X∗ are the two
points at distance ` + τ from V . The points Xmax, Xmax are the left and right
stops in we replace W by the infinite line through W (i.e., the x-axis).

With the natural ordering of points on the x-axis, we can show that

X∗ < Xmax < O < Xmax < X∗

where O is the origin. Since ‖V C‖ and ‖V C ′‖ lie in (τ, τ + `), it follows that

X∗ < C ′ < C < X∗.

Two situations are shown in Figure 6. The next lemma is essentially routine,
once the points Xmax, Xmax have defined:

2 Intuitively: At configuration (V, α), the single-link robot can rotate about V to the
right, but if it tries to rotate to the left, it is “stopped” by A.

10

Lemma 5. Assume (3) and (4).
The left stop of (V,W) isC ′ if Xmax ≤ C ′ (L1)

Xmax if C ′ < Xmax < C (L2)
C if C ≤ Xmax (L3)

The right stop of (V,W) is
C if C ≤ Xmax (R1)
Xmax if C ′ < Xmax < C (R2)
C ′ if Xmax ≤ C ′ (R3)

The cases (L1-3) and (R1-3) in this lemma suggests 9 combinations, but 3 are
logically impossible: (L1-R1), (L1-R2), (L2-R1). The remaining 6 possibilities for
left and right stops are summarized in the following table:

(R1) (R2) (R3)

(L1) * * (C ′, C ′)

(L2) * (Xmax, Xmax) (Xmax, C
′)

(L3) (C,C) (C,Xmax) (C,C ′)

Observe the extreme situations (L1-R3) or (L3-R1) where the the left and
right stops are equal to the same corner, and we are reduced to the point-point
analysis.

Once we know the left and right stops for (V,W), then we can use Lemma 2
to calculate the angles α and β.

¶3. The Forbidden Zone of a Side and a Corner We now consider
the forbidden zone Forb`,τ (S,C) where S is a side and C a corner feature. Note
that is complementary to the previous case of Forb`,τ (V,W) since C and V are
points and S and W are line segments. We can exploit the principle of reflection
symmetry of Lemma 1:

Forb`,τ (S,C) = π + Forb`,τ (C, S)

where Forb`,τ (C, S) is provided by previous Lemma (writing C, S in place of
V,W).

¶4. Cone Decomposition We have now provided formulas for computing
sets of the form Forb`,τ (V,W) or Forb`,τ (S,C); such sets are called cones. We
now address the problem of computing Forb`,τ (Bt,W) where Bt ⊆ R2 is a
(translational) box. We show that this set of forbidden angles can be written as
the union of at most 3 cones, generalizes a similar result in [9]. Towards such
a cone decomposition, we first classify the disposition of a wall W relative to a
box Bt. But there is a preliminary case: if W intersects Bt ⊕D(0, τ), then it is
we see that

Forb`(B
t,W) = S1.

11

V S

Corner (C)
S ′

S

S ′

W

V

S ′

V ′V

H(S)

C ′

Wall (W)
C

H(S) ∩H(S ′)

W

W

W

C ′ C

W

C C

C

C ′

S

S

KEY:

Side (S)

vertex (V)

H(S) Halfspace (H(S))

S

V ′

V ′

H(S) S

(III)

(IIb)

(IIa)(Ia)

(Ib)

V ′V V

Fig. 7: Cases (I-III) of Forb`,τ (Bt,W)

Call this Case (0). Assuming W does not intersect Bt⊕D(0, τ), there are three
other possibilities, Cases (I-III) illustrated Figure 7.

We first need a notation: if S ⊆ ∂(Bt) is a side of the box Bt, let H(S)
denote the open half-space which is disjoint from Bt and is bounded by the line
through S. Then we have these three cases:

(I) W ⊆ H(S) for some side s of box Bt.
(II) W ⊆ H(S) ∩H(S′) for two adjacent sides S, S′ of box Bt.

(III) None of the above. This implies that W ⊆ H(S)∪H(S′) for two adjacent
sides S, S′ of box Bt.

Theorem 1. Forb`,τ (Bt,W) is the union of at most three thick cones.

Sketch proof: we try to reduce the argument to the case τ = 0 which is given in
[9]. In that case, we could write

Forb`(B
t,W) = C1 ∪ C2 ∪ C3

where each Ci is a thin cone or an empty set. In the non-empty case, the cone
Ci has the form Forb`(Si, Ti) where Si ⊆ ∂Bt, Ti ⊆ W . The basic idea is that
we now “transpose” Forb`(Si, Ti) to the thick version C ′i := Forb`,τ (Si, Ti). In
case Ci is empty, C ′i remains empty. Thus we would like to claim that

Forb`(B
t,W) = C ′1 ∪ C ′2 ∪ C ′3.

This is almost correct, except for one issue. It is possible that some Ci is empty,
and yet its transpose C ′i is non empty. In the full paper, we will fill in these
detail.

Remark: in case of thin cones, the Ci’s are non-overlapping (i.e., they may
only share endpoints). But for thick cone decomposition, the cones will in general
overlap.

12

4 Subdivision for Thick Non-Crossing 2-Link Robot

A resolution-exact planner for a thin self-crossing 2-link robot was described in
[9]. We now extend that planner to the thick non-crossing case.

We will briefly review the ideas of the algorithm for the thin self-crossing
2-link robot. We begin with a box B0 ⊆ R2 and it is in the subspace B0 × T2 ⊆
Cspace where our planning problem takes place. We are also given a polygonal
obstacle set Ω ⊆ R2; we may decompose its boundary ∂Ω into a disjoint union of
corners (=points) and edges (=open line segments) which are called (boundary)
features. Let B ⊆ Cspace be a box; there is an exact classification of B as
C(B) ∈ {FREE, STUCK, MIXED} relative to Ω. But we want a soft classification

C̃(B) which is correct whenever C̃(B) 6= MIXED, and which is equal to C(B)

when the width of B is small enough. Our method of computing C̃(B) is based
on computing a set φ(B) of features that are relevant to B. A box B ⊆ Cspace
may be written as a Cartesian product B = Bt ×Br of its translational subbox
Bt ⊆ R2 and rotational subbox Br ⊆ T2. In the T/R splitting method (simple
version), we split Bt until the width of Bt is ≤ ε. Then we do a single split
of the rotational subbox Br into all the subboxes obtained by removing all the
forbidden angles determined by the walls and corners in φ̃(Bt). This “rotational
split” of Br is determined by the obstacles, unlike the “translational splits” of
Bt.

¶5. Boxes for Non-Crossing Robot. Our basic idea for representing
boxes in the non-crossing configuration space Cspace(κ) is to write it as a pair
(B, XT) where XT ∈ {LT, GT}, and B ⊆ Cspace. The pair (B, XT) represents the set
B∩ (R2×T2

XT) (with the identification T2
LT = T2

< and T2
GT = T2

>). It is convenient
to call (B, XT) an X-box since they are no longer “boxes” in the usual sense.

An angular interval Θ ⊆ S1 that3 contains a open neighborhood of 0 = 2π
is said to be wrapping. Also, call Br = Θ1 × Θ2 wrapping if either Θ1 or Θ2

is wrapping. Given any Br, we can decompose the set Br ∩ (T2 \∆(κ)) into the
union of two subsets BrLT and BrGT, where BrXT denote the set Br ∩ T2

XT. In case
Br is non-wrapping, this decomposition has the nice property that each subset
BrXT is connected. For this reason, we prefer to work with non-wrapping boxes.
Initially, the box Br = T2 is wrapping. The initial split of T2 should be done
in such a way that the children are all non-wrapping: the “natural” (quadtree-
like) way to split T2 into four congruent children has4 this property. Thereafter,
subsequent splitting of these non-wrapping boxes will remain non-wrapping.

Of course, BrXT might be empty, and this is easily checked: say Θi = [si, ti]
(i = 1, 2). Then Br< is empty iff t2 ≤ s1. and Br> is empty iff s2 ≥ t1. Moreover,
these two conditions are mutually exclusive.

3 Wrapping intervals are either equal to S1 or has the form [s, t] where 2π > s > t > 0.
4 This is not a vacuous remark – the quadtree-like split is determined by the choice

of a “center” for splitting. To ensure non-wrapping children, this center is neces-
sarily (0, 0) or equivalently (2π, 2π). Furthermore, our T/R splitting method (to be
introduced) does not follow the conventional quadtree-like subdivision at all.

13

We now modify the algorithm of [9] as follows: as long as we are just splitting
boxes in the translational dimensions, there is no difference. When we decide to
split the rotational dimensions, we use the T/R splitting method of [9], but
each child is further split into two X-boxes annotated by LT or GT (they are
filtered out if empty). We build the connectivity graph G (see Appendix A) with
these X-boxes as nodes. This ensures that we only find non-crossing paths. Our
algorithm inherits resolution-exactness from the original self-crossing algorithm.

The predicate isBoxEmpty(Br, κ, XT) which returns true iff (BrXT)∩(T2\∆(κ))
is empty is useful in implementation. It has a simple expression when restricted
to non-wrapping translational box Br:

Lemma 6.
Let Br = [a, b]× [a′, b′] be a non-wrapping box.
(a) isBoxEmpty(Br, κ, LT) = true iff κ ≥ b′ − a or 2π − κ ≤ a′ − b.
(b) isBoxEmpty(Br, κ, GT) = true iff κ ≥ b− a′ or 2π − κ ≤ a− b′.

5 Implementation and Experiments

We implemented our thick non-crossing planner in C++ and OpenGL on the
Qt platform (the Qt part is new). A preliminary heuristic version appeared
[9, 8]. Our code, data and experiments are distributed5 with our open source
Core Library. To evaluate our planner, we compare it with several sampling
algorithms in the open source OMPL [11]. The platform for our experiments is
Mac OS X 10.10.5 (Yosemite) on MacBook Pro (Mid 2015). The processor is
a 2.5 GHz Intel Core i7 with 16GB DDR3-1600 MHz RAM and 500GB Flash
Storage. Details about each of these experiments are found in a folder in Core
Library for this paper, and should be reproducible from the data there. This
includes our configurations for OMPL.

Two preliminary remarks are in order before discussing Table 1. Our plan-
ner shares some of the code base for the SSS framework begun in [12]. Similar
to previous work, our planner can choose one of several search strategies; for
simplicity, below we will consistently use the Greedy Best First (GBF) strategy,
which is generally one of our best strategies. Next, OMPL does not natively
support articulated robots such as R2. So for the experiments in Table 1, we
artificially set `2 = 0 so that it is effectively a one-link thick robot; Table 2 will
discuss the consequences of this artifice. Our planner, unlike those in OMPL,
needs an ε parameter; we fix ε = 2 in Table 1. On the other hand, OMPL has
various tuning parameters, but we choose the default.

Each row of Table 1 represents an experiment, which is specified by an en-
vironment, robot parameters and initial and goal configurations. For reference,

5 http://cs.nyu.edu/exact/core/download/core/.

14

Table 1: Comparison with Sampling-based Planners in OMPL

(a) Maze (b) Narrow Passage (c) 8-Way Corridor (d) Double Bugtrap

Fig. 8: Some environments in our experiments

the experiment is named after the environment. Figure 8 depicts6 all the envi-
ronments which we have not met earlier. The robot parameters are the length `1
and thickness τ of the first link (see Column 1). E.g., `1 = 30, τ = 4 in the Maze
experiment. For each experiment, we perform 100 runs of the following planners:
RRT, PRM, BIT*, EST (all in OMPL) and ours. Each planner produces these
4 statistics:

Average Time / Best Time / Standard Deviation / Success Rate.

These 4 statistics are abbreviated as Avg/Best/STD/Success, respectively.
Success Rate is the fraction of the 100 runs for which the planner finds a path
(assuming there is one) out of 100 runs. But if there is no path, our planner will
always discover this, so its Success is 1; simultaneously, the sampling meth-
ods will time out and hence their Success is 0. All our time is in milliseconds
(ms). Column 2 contains the Record Statistics, i.e., the row optimum for these
4 statistics. For instance, the Record Statistics for the T-Room experiment is
186.91/27.07/6.57/1. This tells us the row optimum for Avg is 186.91 ms,

6 These environments are described in [9].

15

for Best is 27.06 ms, for STD is 6.57 ms, and for Success is 1. Note that
“optimum” for the first 3 statistics (resp., last statistic) means minimum (resp.,
maximum) value. These 4 optimal values may be achieved by different planners.
In the rest of the Table, we have one column for each Planner, showing the ratio
of the planner’s statistics relative to the Record Statistics of that row. The best
performance is always indicated by the ratio of 1. The ratio for Avg/Best/STD
(resp., Success) is ≥ 1 (resp., ≤ 1). E.g., for T-Room experiment, the row max-
imum for Success is 1, and it is achieved by every planner. The row minimum
for Avg and STD are achieved by Our planner, but the row minimum for Best
is achieved by RRT.

We regard the achievement of row optimum for Success and Avg (in that
order) to be the main indicator of superiority. In this sense, Table 1 shows
that our planner is consistently superior to the sampling based planners, with
one exception: in the Double Bug Trap, RRT has minimum Avg, but we are
only 1.64 times slower. In the final paper, we expect to remedy the lack of an
articulated planner in OMPL in order to give a more accurate picture.

Table 2: Comparing the effects of Crossing and Non-Crossing Planners

Table 2 shows the effects of increasing `2 starting from 0, and the effects
of non-crossing constraint. We see that they are negligible in the experiments
(the slow down in time is always less than 2), but the largest ratio in the entire
table is the value of 3.35 for STD (this large value appears to be a fluke since
our algorithm is deterministic, and the only randomness comes from background
processes). In other words, the performance of our planner in Table 1 has not
been much affected by the fact that we set `2 = 0. There are three version of our

16

algorithm with fixed ε = 2. In Ours(0), the length of the second link is `2 = 0,
so this is effectively a single link. In Ours(I), we choose `2 to be 20 (resp., 20,
10, 10, 10, 5, 5) for the first (resp., second to seventh) experiment. In Ours(II),
the length of `2 are as in Ours(I) except that the links are non-crossing (δ = 0).

Table 3: Narrow Passages

Table 3 illustrates the “narrow passage” problems for the sampling approaches:
in each experiment, we choose the largest (integer) thickness τ for which there
is a path; in other words, if we increase the thickness to τ + 1, our program will
report no path. In fact, we include a case (the last row, Double Bug Trap-B) for
which there is no path. Again, we have three version of our algorithm with fixed
ε = 1. The fair comparison would be Ours(0) against the Sampling methods,
because this runs the single link robot, but we perform better than Sampling
methods even with Ours(I) and Ours(II).

Instead of using default 1 second time-out, we set time-out to be 30 seconds.
We see that BIT* (resp., EST) has the best (worst) success rate among the
Sampling methods. BIT* was able to find paths for all, with the exception of
Narrow Passage and Double Bug Trap-A. EST could not find paths for any, with
the exception of T-Room.

6 Conclusion and Limitations

The introduction of non-crossing link robots is theoretically novel, and points the
way for many similar extensions. Our work is a contribution to the development
of practical and theoretically sound subdivision planners [12, 13].

One might expects a tradeoff between the stronger guarantees of subdivision
approaches versus the faster performance of sample approaches. But our exper-
iments suggest no such tradeoffs since subdivision is consistently faster than
sampling. Of course, our conclusions are preliminary because the experimental

17

settings for the two approaches are far from ideal. Also, we accepted all the
default parameters of OMPL; perhaps tuning these parameters would greatly
improve their performance. We expect to remedy some of this in the final paper.

Moreover, conventional wisdom maintains that subdivision will not scale to
higher DOF’s, and our current experiments are limited to at most 4DOF. But
we interpret this wisdom as telling us that new subdivision techniques (such
as the T/R splitting idea) are needed to make higher DOF’s robots perform in
real-time. It is a nontrivial but worthy challenge.

References

1. M. Barbehenn and S. Hutchinson. Toward an exact incremental geometric robot
motion planner. In Proc. Intelligent Robots and Systems 95., volume 3, pages
39–44, 1995. 1995 IEEE/RSJ Intl. Conf., 5–9, Aug 1995. Pittsburgh, PA, USA.

2. R. A. Brooks and T. Lozano-Perez. A subdivision algorithm in configuration space
for findpath with rotation. In Proc. 8th IJCAI – Vol. 2, pp. 799–806, San Francisco,
CA, USA, 1983. Morgan Kaufmann Publishers Inc.

3. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Boston, 2005.

4. S. L. Devadoss and J. O’Rourke. Discrete and Computatational Geometry. Prince-
ton University Press, 2011.

5. L. Kavraki, P. Švestka, C. Latombe, and M. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robotics
and Automation, 12(4):566–580, 1996.

6. J. J. Kuffner Jr and S. M. LaValle. RRT-connect: An efficient approach to single-
query path planning. In Robotics and Automation, 2000. Proceedings. ICRA’00.
IEEE International Conference on, volume 2, pages 995–1001. IEEE, 2000.

7. S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
8. Z. Luo. Resolution-exact Planner for a 2-link planar robot using Soft Predicates.

Master thesis, New York Univ., Jan. 2014. Department’s Master Thesis Prize 2014.
9. Z. Luo, Y.-J. Chiang, J.-M. Lien, and C. Yap. Resolution exact algorithms for

link robots. In Proc. 11th Intl. Workshop on Algorithmic Foundations of Robotics
(WAFR’14), vol. 107 of Springer Tracts in Advanced Robotics , pp. 353–370, 2015.

10. M. Sharir, C. O’D’únlaing, and C. Yap. Generalized Voronoi diagrams for moving
a ladder II: efficient computation of the diagram. Algorithmica, 2:27–59, 1987.

11. I. Şucan, M. Moll, and L. Kavraki. The Open Motion Planning Library. IEEE
Robotics & Auto. Magazine, 19(4):72–82, 2012. http://ompl.kavrakilab.org.

12. C. Wang, Y.-J. Chiang, and C. Yap. On Soft Predicates in Subdivision Motion
Planning. In 29th ACM Symp. on Comp. Geom., pages 349–358, 2013. SoCG’13,
Rio de Janeiro, Brazil, June 17-20, 2013. Journal version in Special Issue of CGTA.

13. C. K. Yap. Soft Subdivision Search in Motion Planning. In A. Aladren et al., editor,
Proceedings, 1st Workshop on Robotics Challenge and Vision (RCV 2013), 2013.
A Computing Community Consortium (CCC) Best Paper Award, Robotics Sci-
ence and Systems Conference (RSS 2013), Berlin. In arXiv:1402.3213.

14. C. K. Yap. Soft Subdivision Search and Motion Planning, II: Axiomatics. In
Frontiers in Algorithmics, volume 9130 of Lecture Notes in Comp.Sci., pages 7–22.
Springer, 2015. Plenary Talk at 9th FAW. Guilin, China. Aug 3-5, 2015.

18

15. J. Yu, C. Yap, Z. Du, S. Pion, and H. Bronnimann. Core 2: A library for Exact
Numeric Computation in Geometry and Algebra. In 3rd Proc. Int’l Congress on
Mathematical Software (ICMS), pp. 121–141. Springer, 2010. LNCS No. 6327.

16. D. Zhu and J.-C. Latombe. New heuristic algorithms for efficient hierarchical path
planning. IEEE Transactions on Robotics and Automation, 7:9–20, 1991.

19

APPENDIX A: Elements of Soft Subdivision Search

We review the the notion of soft predicates and how it is used in the SSS Frame-
work. See [12, 13, 9] for more details.

¶6. Soft Predicates. The concept of a “soft predicate” is relative to some
exact predicate. Define the exact predicate C : Cspace → {0,+1,−1} where
C(x) = 0/ + 1/− 1 (resp.) if configuration x is semi-free/free/stuck. The semi-
free configurations are those on the boundary of Cfree. Call +1 and −1 the
definite values, and 0 the indefinite value. Extend the definition to any
set B ⊆ Cspace: for a definite value v, define C(B) = v iff C(x) = v for all
x. Otherwise, C(B) = 0. Let (Cspace) denote the set of d-dimensional boxes

in Cspace. A predicate C̃ : (Cspace) → {0,+1,−1} is a soft version of C

if it is conservative and convergent. Conservative means that if C̃(B) is a

definite value, then C̃(B) = C(B). Convergent means that if for any sequence

(B1, B2, . . .) of boxes, if Bi → p ∈ Cspace as i → ∞, then C̃(Bi) = C(p)

for i large enough. To achieve resolution-exact algorithms, we must ensure C̃
converges quickly in this sense: say C̃ is effective if there is a constant σ > 1
such if C(B) is definite, then C̃(B/σ) is definite.

¶7. The Soft Subdivision Search Framework. An SSS algorithm main-
tains a subdivision tree T = T (B0) rooted at a given box B0. Each tree node
is a subbox of B0. We assume a procedure Split(B) that subdivides a given leaf
box B into a bounded number of subboxes which becomes the children of B
in T . Thus B is “expanded” and no longer a leaf. For example, Split(B) might
create 2d congruent subboxes as children. Initially T has just the root B0; we
grow T by repeatedly expanding its leaves. The set of leaves of T at any moment
constitute a subdivision of B0. Each node B ∈ T is classified using a soft predi-
cate C̃ as C̃(B) ∈ {MIXED, FREE, STUCK/} = {0,+1,−1}. Only MIXED leaves with
radius ≥ ε are candidates for expansion. We need to maintain three auxiliary
data structures:

– A priority queue Q which contains all candidate boxes. Let Q.GetNext()
remove the box of highest priority from Q. The tree T grows by splitting
Q.GetNext().

– A connectivity graph G whose nodes are the FREE leaves in T , and whose
edges connect pairs of boxes that are adjacent, i.e., that share a (d−1)-face.

– A Union-Find data structure for connected components of G. After each
Split(B), we update G and insert new FREE boxes into the Union-Find data
structure and perform unions of new pairs of adjacent FREE boxes.

Let BoxT (α) denote the leaf box containing α (similarly for BoxT (α)). The
SSS Algorithm has three WHILE-loops. The first WHILE-loop will keep splitting
BoxT (α) until it becomes FREE, or declare NO-PATH when BoxT (α) has radius
less than ε. The second WHILE-loop does the same for BoxT (β). The third
WHILE-loop is the main one: it will keep splitting Q.GetNext() until a path is
detected or Q is empty. If Q is empty, it returns NO-PATH. Paths are detected
when the Union-Find data structure tells us that BoxT (α) and BoxT (β) are in
the same connected component. It is then easy to construct a path. Thus we get:

20

SSS Framework:
Input: Configurations α, β, tolerance ε > 0, box B0 ∈ Cspace.

Initialize a subdivision tree T with root B0.
Initialize Q,G and union-find data structure.

1. While (BoxT (α) 6= FREE)
If radius of BoxT (α)) is < ε, Return(NO-PATH)
Else Split(BoxT (α))

2. While (BoxT (β) 6= FREE)
If radius of BoxT (β)) is < ε, Return(NO-PATH)
Else Split(BoxT (β))

. MAIN LOOP:
3. While (Find(BoxT (α)) 6= Find(BoxT (β)))

If QT is empty, Return(NO-PATH)
B ← QT .GetNext()
Split(B)

4. Generate and return a path from α to β using G.

The correctness of our algorithm does not depend on how the priority of Q
is designed. See [13] for the correctness of this framework under fairly general
conditions.

