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Abstract

The Morse-Smale complex is an important tool for global topological analysis in various problems
of computational geometry and topology. Algorithms for Morse-Smale complexes have been presented
in case of piecewise linear manifolds. However, previous research in this field does not provide certified
methods in the case of smooth functions. In the current paper we use interval methods to compute
a topologically correct approximation of Morse-Smale complex of smooth functions of two variables.
The algorithm can also compute approximations that are arbitrarily close to the true geometric
complex. Preliminary implementation results are reported.
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1 Introduction
Geometrical shapes occurring in the real world are often extremely complex. To analyze them, one
associates a sufficiently smooth scalar field with the shape, e.g., a density function or a function
interpolating gray values. Using this function, topological and geometrical information about the
shape may be extracted, e.g., by computing its Morse-Smale complex. The cells of this complex are
maximal connected sets consisting of orthogonal trajectories of the contour lines—curves of steepest
ascent—with the same critical point of the function as origin and the same critical point as destina-
tion. The leftmost plots in Figures 1(a) and 1(b) illustrate the level sets of such a density function h,
and the rightmost pictures the Morse-Smale complex of h as computed by the algorithm in this paper.
This complex reveals the global topology of the shape. Recently, the Morse-Smale complex has been
successfully applied in different areas like molecular shape analysis, image analysis, data and vector
field simplification, visualization and detection of voids and clusters in galaxy distributions [6, 10].
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(a) Contour plot (left) and Morse-Smale complex
(right) of h(x, y) = cos x sin y + 0.2 (x + y) inside box
[−3.5, 3.5] × [−3.5, 3.5]. CPU-time: 11 seconds.
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(b) Contour plot (left) and Morse-Smale Complex
(right) of h(x, y) = 10x −

13

2
(x2 + y2) + 1

3
(x2 + y2)2

inside box [−5, 5] × [−5, 5]. CPU-time: 0.5 seconds.

Figure 1: Contour plots of Morse-Smale functions, and their Morse-Smale complexes.

¶1. Problem statement. A Morse function h : R2 → R is a real-valued function with non-
degenerate critical points (i.e., critical points with non-singular Hessian matrix). Non-degenerate
critical points are isolated, and are either maxima, or minima, or saddle points. They correspond
to singular points of the gradient vector field ∇h of h, of type sink, source or saddle, respectively.
Regular integral curves of the gradient vector field ∇h are orthogonal trajectories of the regular
level curves of h. We are interested in the configuration of integral curves of the gradient vector
field. A stable (unstable) separatrix of a saddle point is the set of all regular points whose forward
(backward) integral curve emerges from the saddle point. A non-degenerate saddle point has two
stable and two unstable separatrices. A Morse-Smale function is a Morse function whose stable
and unstable separatrices are disjoint. In particular, the unstable separatrices flow into a sink, and
separate the unstable regions of two sources. Similarly, the stable separatrices emerge from a source,
and separate the stable regions of two sinks. The corresponding gradient vector field is called a
Morse-Smale system (MS-system). The Morse-Smale complex (MS-complex for short) is a complex
consisting of all singularities, separatrices and the open regions forming their complement, of the MS-
system. In other words, a cell of the MS-complex is a maximal connected subset of the domain of h
consisting of points whose integral curves have the same origin and destination. See also [7, 8, 19]1.
The MS-complex describes the global structure of a Morse-Smale function.

Existing algorithms for MS-complexes [7, 8] compute the complex of a piecewise linear function
on a piecewise linear manifold, or, in other words, of a discrete gradient-like vector field. When
h is an analytic function, we cannot use these algorithms without first creating a piecewise linear
approximation h̃. However, the topology of the MS-complex of h̃ is not guaranteed to be topologically
equivalent to that of the corresponding smooth vector field. The topological correctness depends on
how close the approximation h̃ is to h. Here topological correctness means the computation of a
complex, which is topologically equivalent (homeomorphic, or even isotopic) and ε-close to the ’true’

1These notions are also defined more precisely in Appendix 7, which is not part of this extended abstract, but added
for convenience of the reviewers.
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Morse-Smale complex (for some a priory specified ε > 0). As far as we know this problem has never
been rigorously studied. Therefore the Main Problem of this paper is to compute a piecewise-linear
complex that is isotopic to the MS-complex of a smooth Morse-Smale function h. In short, we seek an
exact computation in the sense of the Exact Geometric Computation (EGC) paradigm [14]. Note that
it is unclear whether many fundamental problems from analysis are exactly computable in the EGC
sense. In particular, the current state-of-the-art in EGC does not (yet) provide a good approach for
coping with degenerate situations, and, in fact, we it might well this paradigm needs to be extended
to incorporate degeneracies. Therefore, we have to assume that the gradients we start out with are
Morse-Smale systems. However, generic gradients are Morse-Smale systems [19], so the presence
of degenerate singularities and of saddle-saddle connections is exceptional. Note that in restricted
contexts, like the class of polynomial functions, absence of degenerate critical points (the first, and
local, Morse-Smale condition) can be detected. However, even (most) polynomial gradient systems
cannot be integrated explicitly, so absence of saddle-saddle connections (the second, and global,
Morse-Smale condition) cannot be detected with current approaches. Detecting such connections
even in a restricted context remains a challenging open problem.

¶2. Overview. We present a solution for the Main Problem which produces output such as
illustrated in Figures 1(a)-(b). In particular, our algorithm produces:

• (arbitrarily small) isolated certified boxes each containing a unique saddle, source or sink;
• certified initial and terminal intervals (on the boundary of saddleboxes), each of which is guaran-
teed to contain a unique point corresponding of a stable or unstable separatrix;
• disjoint certified funnels (strips) around each separatrix, each of which contains exactly one sepa-
ratrix, and as close to the separatrix as desired.

The construction of the MS-complex of a gradient system ∇h consists of two main steps: constructing
disjoint certified boxes for its singular points, and constructing disjoint certified strips (funnels)
enclosing its separatrices. Singular points of the gradient system are computed by solving the system
of equations hx(x, y) = 0, hy(x, y) = 0. This is a special instance of the more general problem of
solving a generic system of two equations f(x, y) = 0, g(x, y) = 0. Here, generic means that the
Jacobi matrix at any solution is non-singular (geometrically it means the two curves f = 0 and
g = 0 intersect transversally). Section 3 presents a method to compute disjoint isolating boxes for
all solutions of such generic systems of two equations in two unknowns. In Section 4 these boxes are
refined further. Saddle-boxes are augmented with four disjoint intervals in their boundary, one for
each intersection of the boundary with the stable and unstable separatrices of the enclosed saddle
point. We also show that these intervals can be made arbitrarily small, which is crucial in the second
stage of the algorithm. Sink- and source-boxes are refined by computing boxes—not necessarily axis-
aligned—around the sink or source on the boundaries of which the gradient system is transversal
(pointing into the sink-box and out of the source-box). This implies that all integral curves reaching
(emerging from) such a refined sink-box (source-box) lie inside this box beyond (before) the points
of intersection.

Having constructed isolating boxes for the critical points of the MS-function h, we isolate the two
unstable (stable) separatrices of each saddle point by tracing them in forward (backward) direction
to the sinks (sources) that are their destination (origin). Reliable techniques for this tracing step
are not readily available. In the simplest case where h is a polynomial (with rational coefficients),
isolating the critical points can be done using known algebraic algorithms. But even in this restricted
context integral curves are non-algebraic, so computing isolating sets for separatrices is a problem.
To do so, we turn the Euler method for tracing integral curves into a certified algorithm, applying
quantitative error bounds on the Euler method from [13] to construct isolating strips for all separa-
trices. Section 5 describes the second stage of the algorithm, in which isolating strips (funnels) for
the stable and unstable separatrices are constructed. The boundary curves of funnels enclosing an
unstable separatrix are polylines with initial point on a saddle box and terminal point on a sink box.
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The gradient vector field is transversally pointing inward at each point of these polylines. The initial
points of the polylines are connected by the unstable interval through which the separatrix leaves its
saddle box, and, hence, enters the funnel. The terminal points of these polylines lie on the boundary
of the same sink-box. See also Figure 6. Given this direction of the gradient system on the boundary
of the funnel, the unstable separatrix enters the sink-box and tends to the enclosed sink, which is
its destination. Although the width of the funnel may grow exponentially in the distance from the
saddle-box, this growth is controlled in a known way. We exploit the computable (although very
conservative) upper bound on this growth rate to obtain funnels that isolate separatrices from each
other, and, hence, form a good approximation of the Morse-Smale complex together with the source-
and sink-boxes. These upper bounds are also used to prove that the algorithm, which may need sev-
eral subdivision steps, terminates. We have implemented this algorithm, using Interval Arithmetic.
Section 7 presents sample output of our algorithm.

Remark 1. In this paper, the domain D of h is a finite union of axis-aligned dyadic boxes. Fur-
thermore, we (have to) assume that all stable and unstable separatrices of the saddle points are
transversal to the boundary. Computationally this means that any sufficiently close approximation
of these separatrices is transversal to the boundary as well. �

¶3. Related Work. Milnor [17] provides a basic set-up for Morse theory. The survey paper [5],
focussing on geometrical-topological properties of real functions, gives an excellent overview of recent
works on MS-complexes. Originally, Morse theory was developed for smooth functions on smooth
manifolds. Banchoff [4] introduced the equivalent definition of critical points on polyhedral surfaces.
Many of the recent developments on MS-complexes are based on this definition. A completely
different discrete version of Morse theory is provided by Foreman [9].

Different methods for computation. In the literature there are two different method for comput-
ing the Morse-Smale complexes: (a) boundary based approaches and (b) region based approaches.
Boundary based methods compute boundaries of the cells of the MS-complex, i.e., the integral curves
connecting a saddle to a source, or a saddle to a sink [23, 3, 8]. On the other hand, watershed algo-
rithms for image segmentation are considered as region based approaches [16]. Edelsbrunner et.al [8]
computes the Morse-Smale complex of piecewise linear manifolds using a paradigm called Simula-
tion of Differentiability. In higher dimensions they give an algorithm for computing Morse Smale
complexes of piecewise linear 3-manifolds [7].

Morse-Smale complexes have also been applied in shape analysis and data simplification. Com-
puting MS-complexes is strongly related to vector field visualization [11]. In a similar context,
designing vector fields on surfaces has been studied for many graphics applications [25]. Cazals
et.al. [6] applied discrete Morse theory to molecular shape analysis.

This paper contributes to the emerging area of Exact Numerical Algorithms for geometric prob-
lems [24]. Recent algorithms of this genre (e.g., [20, 15]) are numerical subdivision algorithms based
on interval function evaluation and sign evaluation.

2 Preliminaries
Our computational model2 has two simple foundations: (1) BigFloat packages and (2) interval arith-
metic (IA) [18]. Together, these are able to deliver efficient and guaranteed results in the im-
plementation of our algorithms. A BigFloat package is a software implementation of exact ring
(+,−,×) operations, division by 2, and exact comparisons, over the set F = {m2n : m,n ∈ Z} of
dyadic numbers. In practice, we can use IEEE machine arithmetic as a filter for BigFloat compu-
tation to speed up many computation. Range functions form a basic tool of IA: given any function

2See Appendix 7 for additional details.
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F : Rm → Rn, a range function F for F computes for each m-dimensional interval I (i.e., an
m-box) an n-dimensional interval F (I), such that F (I) ⊂ F (I). A range function is said to be
convergent if the diameter of the output interval converges to 0 when the diameter of the input
interval shrinks to 0. Convergent range functions exist for the basic operators and functions, so all
range functions are assumed to be convergent. Moreover, we assume that the sign of functions can
be evaluated exactly at dyadic numbers. All our boxes are dyadic boxes, meaning that their corners
have dyadic coordinates. A useful technique here is the interval form of the implicit function theorem
(see Appendix 7.)

3 Isolating boxes for singularities of gradient fields
As a first step towards the construction of the Morse-Smale complex of h we construct disjoint
isolating boxes for the singular points of ∇h. To this end, we first show how to compute isolating
boxes for the solutions of a generic system of two equations in two unknowns, which are confined
to a bounded domain in the plane, which is a finite union of dyadic boxes. Applying this general
method to the case in which the two equations are defined by the components of the gradient vector
field ∇h we obtain isolating boxes for the singularities of this gradient field.

¶4. Certified solutions of systems of equations We consider a system of equations

f(x, y) = 0, g(x, y) = 0, (1)

where f and g are C1-functions defined on a bounded axisparallel box D ⊂ R2 with dyadic vertices.
Furthermore, we assume that the system has only non-degenerate solutions, i.e., the Jacobian deter-

minant ∂(f,g)
∂(x,y)

∣∣∣
(x0,y0)

is non-zero at a solution (x0, y0). Geometrically this means that the curves Zf

and Zg, given by f(x, y) = 0 and g(x, y) = 0, respectively are regular near a point of intersection
(x0, y0) and the intersection is transversal. Since D is compact, the system has finitely many solutions
in D.

Our goal is to construct a collection of axis-aligned boxes B1, . . . ,Bm and B′
1, . . . ,B

′
m such that

(i) box Bi is concentric with and strictly contained in B′
i, (ii) the boxes B′

i are disjoint, (iii) each
solution of (1) is contained in one of the boxes Bi, and (iv) each box B′

i contains exactly one solution
(contained inside the enclosed box Bi). The box pair (Bi,B

′
i) is certified : Bi contains a solution, and

B′
i provides positive clearance to other solutions.

In fact, the sequence of boxes will satisfy the following stronger conditions: 1. The curves Zf and Zg

each intersect the boundary of B′
i transversally in two points.

2. There are disjoint intervals I0i (f), I0i (g), I1i (f) and I1i (g) in the boundary of B′
i (in this order),

where the first and the third interval each contain one point of intersection of Zf and ∂B′
i, and the

second and fourth interval each contain one point of intersection of Zg and ∂B′
i.

3. The (interval) Jacobian determinant of f and g does not vanish on B′
i, i.e., 0 6∈ ∂(f,g)

∂(x,y)(B
′
i).

¶5. Construction of certified box pairs. We first subdivide the domain D into equal-sized
boxes I (called grid-boxes), until all boxes satisfy certain conditions to be introduced now. For a
(square, axis-aligned) box I let N̺(I) be the box obtained by multiplying box I from its center by
a factor of 1 + ̺, where 1

2 ≤ ̺ ≤ 1. We also denote N1(I) by N(I); this is the box formed by the
union of I and its eight neighbor grid-boxes. The algorithm subdivides D until all grid-boxes I satisfy
C0(I) ∨

(
C1(I) ∧ C2(I)

)
, where the clauses Ci(I), i = 0, 1, 2, are the following predicates:

C0(I) : 0 6∈ f(I) ∨ 0 6∈ g(I)

C1(I) : 0 6∈
∂(f, g)

∂(x, y)
(N(I))

C2(I) : C2(I, f) ∧ C2(I, g), where C2(I, f) = 〈
∇f

|| ∇f ||
(N(I)),

∇f

|| ∇f ||
(N(I))〉 ≥ cos

π

30
.
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If C0(I) holds, box I does not contain a solution, so it is discarded. The second predicate guarantees
that N(I) contains at most one solution. This is a consequence of Proposition 8. Condition C2(I) is
a small angle variation condition, guaranteeing that the variation of the unit normals of the curves
Zf ∩N(I) and Zg ∩N(I) do not vary too much, so these curves are regular, and even ‘nearly linear’
(the unit normal of Zf is the normalized gradient of f).

Remark 2. Condition C1(I) implies that there is a computable positive lower bound α(I) on the
angle between ∇f(p) and ∇g(q) where p, q range over the box I. More precisely, to compute α(I),

we first compute a lower bound L on the quantity ∂(f,g)
∂(x,y)

1
‖∇f‖·‖∇g‖ . This L may be obtained by an

interval evaluation of this quantity at N(I); note that L > 0 iff condition C1(I) holds. We define
α(I) as arcsin(L). �

Our algorithm will construct disjoint certified boxes surrounding a box I. Since the surrounding
boxes N(I) and N(J) of disjoint boxes I and J may intersect, we consider smaller surrounding boxes
for a grid box I. If N(J) ∩ I = ∅, then N1/2(I) and N1/2(J) have disjoint interiors. This is a key
observation with regard to the correctness of our algorithm.

Lemma 3. Let I be a box such that conditions ¬C0(I), C1(I) and C2(I) hold. Let d be the length of
its edges, and let 1

2 ≤ ̺ ≤ 1.
1. If Zf intersects I, it intersects the boundary of N̺(I) transversally at exactly two points. At a
point of intersection of Zf and an edge e of ∂N̺(I) the angle between Zf and e is at least 1

15π.
2. If I contains a point of intersection of Zf and Zg, then the points of intersection of Zf and ∂N̺(I)
are at distance at least 2̺d tan 1

2α(I) from the points of intersection of Zg and ∂N̺(I). On ∂N̺(I),
the points of intersection with Zf and with Zg are alternating.

If f and g are linear functions, the previous result is easy to check. The proof of the general case
uses the small angle variation of ∇f and ∇g. Note that this Lemma already establishes the existence
and isolation of a solution of (1) in case we can certify that Zf and Zg intersect I.

¶6. Towards an algorithm. For each grid-box I, the algorithm calls one of the following:
• Discard(I), if it decides that I does not contain a solution. It marks box I as processed.
• ReportSolution(I). It returns the certified pair (N1/2(I), N(I)), and marks all boxes contained
in N(I) as processed.

In the latter case a solution is found inside N1/2(I), but, as will become clear later, it may not
be contained in the smaller box I. In view of C1(I) none of the grid-boxes in N(I) contain a solution
different from the one reported, so they are marked as being processed.

Decisions are based on evaluation of the signs of f and g at the vertices of the grid-boxes (or at
certain dyadic points on edges of grid-boxes). An edge of a box is called bichromatic (monochromatic)
for f if the signs of the value of f at its vertices are opposite (equal).

Algorithm, case 1: I has a bichromatic edge for f and a bichromatic edge for g. Then
Zf and Zg intersect I, and, according to Lemma 3, part 1, both curves intersect the boundary of
N1/2(I) transversally in exactly two points. For each of the two points in ∂N1/2(I) the algorithm

computes an isolating interval—called an f -interval—on ∂N1/2(I) of length 1
2d tan 1

2α(I). The two
g-intervals are computed similarly. If the f - and g-intervals are not interleaving, there is no solution
of (1) in box I—even though there may be a solution in N1/2(I)—and Discard(I) is called. This
follows from Lemma 3, part 2. If the intervals are interleaving, then there is a point of intersection
inside N1/2(I), so the algorithm calls ReportSolution(I).

Algorithm, case 2: I contains no bichromatic edge for f (g), and at least one bichro-
matic edge for g (f , respectively). We only consider the case in which all edges of I are
monochromatic for f . Then the algorithm also evaluates the sign of f at the vertices of the box
N1/2(I). If N1/2(I) has no disjoint bichromatic edges (as in the fourth and fifth configuration of
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Figure 2: Sign patterns of the box N1/2(I) enclosing the grid-box I with monochromatic edges for f . The
three leftmost configurations are ruled out by the small normal variation condition C2(I). The fourth, fifth
and sixth configuration are all possible, but only in the sixth situation Zf may intersect the inner box.

Figure 2), the isocurve Zf does not intersect I, so the algorithm calls Discard(I). To deal with the
remaining case, in which N1/2(I) has two disjoint bichromatic edges (as in the sixth configuration in
Figure 2) we need to evaluate the sign of f at certain dyadic points of these bichromatic edges.

To make this more precise, let e be the edge of I closest to the (monochromatic) edge of N1/2(I) at
whose vertices the sign of f is the opposite of the sign of f at the vertices of I (this is the bottom edge
of the outer box in the sixth configuration of Figure 2). Let let l and r be the points of intersection of
the line through e and the edges of the surrounding box N̺(I), perpendicular to e. See also Figure 3.
The intervals on the boundary of this surrounding box with length 1

4(1 + ̺)d, centered at l and r,
respectively, are denoted by L̺(e) and R̺(e), where d is the length of the edges of I, and 1

2 ≤ ̺ ≤ 1.

Lemma 4. Let I be a box such that ¬C0(I), C1(I) and C2(I) hold, and let e be one of its edges. Let
1
2 ≤ ̺ ≤ 1.
1. If Zf intersect an edge e of the boundary of I in at least two points, then it transversally intersects
∂N̺(I) in exactly two points, one in each of the intervals L̺(e) and R̺(e).
2. If Zf intersects ∂N̺(I) in the intervals L̺(e) and R̺(e), then these intersections are transversal,
and Zf intersects ∂N̺(I) at exactly two points, one in each of these intervals.

p

q
r

s
l

d

∂N̺(I)

̺d̺d

∇f

Zf

L̺(e)
R̺(e)

1√
3
(1 + ̺)d

Figure 3: Intervals containing points Zf ∩ ∂N̺(I).

Algorithm, case 2 (cont’d). By evaluating the signs of f at the (dyadic) endpoints of the
interval L̺(e) and R̺(e) the algorithm decides whether they contain a point of intersection with
Zf . If at least one of these intervals is disjoint from Zf , then Discard(I) is called. Otherwise, the
algorithm computes isolating f - and g-intervals of length 1

2d tan 1
2α(I). As in case 1, the algorithm

calls ReportSolution(I) if these intervals are interleaving, and Discard(I) otherwise.

Algorithm, case 3: all edges of I are monochromatic for both f and g. Again, let e be
the (unique) edge of I closest to the edge of N1/2(I) which is monochromatic for f , at whose vertices
the sign of f is the opposite of the sign of f at the vertices of I. Edge e′ of I is defined similarly for
g.
Case 3.1: e = e′. In this case Zf or Zg does not intersect I. Indeed, if Zf intersects I, it intersects
e in at least two points, so there is a point p ∈ Zf at which ∇f(p) is perpendicular to e. Condition
C1(I) guarantees that ∇g is nowhere parallel to ∇f(p), so Zg does not intersect e, and, hence, does
not intersect I. Therefore, Discard(I) is called.
Case 3.2: e 6= e′. If Zf does not intersect L̺(e) or R̺(e), or if Zg does not intersect L̺(e

′) or R̺(e
′),

then, as in case 2, the algorithm calls Discard(I). Otherwise, L̺(e) or R̺(e) are isolating f -intervals
which are disjoint from the isolating g-intervals L̺(e

′) or R̺(e
′). If e and e′ are perpendicular, then

these f - and g-intervals are interleaving, and, hence, ReportSolution(I) is called. Otherwise, there
is no solution in I, so Discard(I) is called.

6



¶7. Refinement: disjoint surrounding boxes. We would like distinct isolating boxes I, J to
have disjoint surrounding boxes N(I), N(J). There is a simple way to ensure this: we just use the
predicate C1(N(I)) to instead of C1(I) in the above subdivision process. Then, if the interior of
N(I) ∩N(J) is non-empty, we can discard any one of I or J.

4 Construction of source-, saddle- and sink-boxes
Using the previous method we construct disjoint isolating boxes B′

1, . . . ,B
′
m for the singularities of

∇h, which are refined further to facilitate the construction of the MS-complex.
Each saddlebox is augmented by computing four disjoint intervals in its boundary, one for each

intersection of a stable or unstable separatrix with the box boundary. See the leftmost picture in
Figure 4. These isolating separatrix intervals can be made arbitrarily small. These intervals are
constructed as the intersection of disjoint stable and unstable wedges along the boundary of which
the gradient vector field is pointing outward and inward, respectively. Therefore, these wedges enclose
the stable and unstable separatrices, respectively. In the full paper we show how the width of these
wedges can be made arbitrarily small, provided the saddlebox satisfies some additional (computable)
criteria.

Inside each source- and sink-box we construct a box on the boundary of which the ∇h is pointing
outward or inward, respectively. These boxes are contained in the source- and sinkboxes constructed
in the previous section, but are not necessarily axes-aligned. They are aligned with approximations
of the (orthogonal) eigenvectors of the Hessian of h at the center of the source- or sinkbox, however.
See the rightmost picture in Figure 4.

Γu
β

Γu
−β

V s

V u

Cs
β

Cu
β

I

N(I)

∇h
Xβ

J1

J2

J3

I1

I2

ψ2 = 0

V1

V2

Figure 4: Left: The unstable wedge Cu
β enclosing the unstable separatrix, and the stable wedge Cs

β enclosing
the stable separatrix. The gradient vector field ∇h, represented by solid arrows, is transversally pointing
inward along the boundary of the unstable wedge, and outward along the boundary of the stable wedge. At
points of the unstable wedge boundary the vector field Xβ is (anti)parallel to the unstable eigenvector V u

of the Hessian of h at the center of the box, so ∇h makes an angle −β with V u or −V u there. Right:
Sink-/source-boxes, nearly aligned with the eigenvectors of the Hessian matrix of h at the center of the box,
at the boundaries of which ∇h is transversal (pointing inward/outward).

5 Isolating funnels around separatrices
We continue by constructing certified funnels around separatrices inside the region D∗ = D \∪m

i=1B
′
i,

where B′
1, . . . ,B

′
m are the boxes isolating the singular points of ∇h. If the forward orbits of the

endpoints of an unstable separatrix interval have the same sink of ∇h as destination, these forward
orbits bound a region around the unstable separatrix leaving the saddle box via this unstable segment.
This region is called a funnel for the separatrix (this terminology is borrowed from [13]). In this
section we show how to construct a (slightly larger) certified funnel for each separatrix, the boundaries
of which are two polylines, each starting from an endpoint of the corresponding separatrix interval
in the saddle box of the separatrix. These polylines are integral curves of ∇h through a point p
by enclosing it between (approximations of) the forward orbits of Xϑ and X−ϑ through p, where
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X±ϑ is the vector field obtained by rotating the vector field X = ∇h over an angle ±ϑ, i.e., Xϑ =(
cosϑ − sinϑ
sinϑ cosϑ

)(
hx

hy

)
. See Figure 5 (Right).

¶8. Small angle variation. We subdivide the region D∗ into square boxes over which the angle
variation of ∇h is at most ϑ, where ϑ is to be determined later. If X = (f, g) is a vector field on R2,
then the angle variation over a regular curve Γ is given by [2, Section 36.7]:

∫
Γ

g df−f dg
f2+g2 . If X = ∇h,

this angle variation is equal to
∫

Γ

(hxhxy − hyhxx) dx+ (hxhyy − hyhxy) dy

h2
x + h2

y

.

The next result gives an upper bound for the size of grid-boxes such that the angle variation of
∇h over any box in D∗ is less than ϑ. It also provides a construction of a ’box-wise’ funnel around
integral curves of ∇h.

Lemma 5. Let C0 be a constant such that max
D∗

(

∣∣∣∣
hxhxy − hyhxx

h2
x + h2

y

∣∣∣∣ ,
∣∣∣∣
hxhyy − hyhxy

h2
x + h2

y

∣∣∣∣ ) ≤ C0, and let

0 < ϑ < π
2 , and let the width w of grid-boxes in D∗ satisfy w ≤ ϑ

2C0

√
2
. Then

1. The angle variation of ∇h over any gridbox is less than ϑ.
2. Let p be a point on an edge of a gridbox, and let qϑ (q−ϑ) be the point on the boundary of the
gridbox into which Xϑ(p) (X−ϑ(p)) is pointing, such that the line segment pqϑ (pq−ϑ) has direction
Xϑ(p) (X−ϑ(p)). See Figure 5. Then ∇h is pointing rightward along the (directed) line segment pqϑ
and leftward along pq−ϑ.
3. The function h is strictly increasing on the line segments pqϑ and pq−ϑ.

p p

ϑ
ϑ q−ϑ

q−ϑqϑ qϑ

∇h
∇h

∇hL+ϑ

L−ϑ

Figure 5: Left: The orientation of ∇h with respect to Xϑ(p) does not change over a grid box. Right: A
funnel formed by two polylines covered by two vertical ε-strips, one ε-box and three horizontal ε-strips. Here
ε is six times the width of a grid box. L+ϑ intersects the ε-box in a single edge, which is quasivertical but
not quasihorizontal. All edges of L−ϑ inside the ε-box are quasivertical as well (and some of them are also
quasihorizontal). ∇h points inward, and the enclosed separatrix (not shown) runs from left to right.

The third property will be crucial for constructing fences around separatrices that cross each grid-box
at most once.

¶9. Fencing in the separatrices. For each isolating unstable separatrix interval J on the bound-
ary of a saddle box we construct two polylines (called fences) L−ϑ(J) and Lϑ(J) as follows. The initial
points of these polylines are the endpoints q− and q+ of J, where q− comes before q+ in the coun-
terclockwise orientation of the boundary of the saddle box. The polyline Lϑ(J) is uniquely defined
by requiring that its vertices q+ = p0, p1, . . . , pn ly on grid edges, with the property that (i) The line
segment pi−1pi, 0 < i ≤ n, lies in a (closed) grid box of D∗, and has direction Xϑ(pi−1), and (ii) pn,
the last vertex, lies on the boundary of D∗. The polyline L−ϑ(J) is defined similarly with respect to
q− and X−ϑ. If the endpoints of the fences Lϑ(J) and L−ϑ(J) lie on the same connected component
of the boundary of D∗, then these fences split D∗ into two connected regions. See Figure 6. In this
case, the region containing the separatrix interval J in its boundary is called the funnel of J (with
angle ϑ) denoted by Fϑ(J). Its boundary consists of J, the two fences Lϑ(J) and L−ϑ(J), and a curve
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L−ϑ

L−ϑL−ϑ

LϑLϑLϑ γ

γ
γ

Figure 6: Fences around a separatrix γ. If the fences end in the same connected component of the boundary
of D∗, and enclose a simply connected region in D∗, then this region isolates the separatrix from the source-,
sink- and saddle-boxes (rightmost picture).

J∗ on the boundary of ∂D connecting the endpoints of these fences. The fences L±ϑ(J) start from
the endpoints of J. New line segments are added until a fence hits the boundary of D∗, or until the
width of the enclosed funnel becomes larger than a positive number ε (to be specified later). To
define the width of a funnel more precisely, we distinguish quasihorizontal and quasivertical parts of
a funnel, and show that the width of a funnel does not increase substantially at transitions between
these quasihorizontal and quasivertical parts. A nonzero vector v = (v1, v2) is called quasihorizontal
if |v2| ≤ 2|v1|, and quasivertical if |v1| ≤ 2|v2|. Note that each nonzero vector is quasihorizontal,
quasivertical, or both. A horizontal ε-strip is the union of a sequence of boxes where successive boxes
share a vertical edge, such that the horizontal edge of the rectangle thus obtained has length at most
ε. A vertical ε-strip is defined similarly. An ε-box is a square box with edge length at most ε which
is the union of a number of boxes.

The construction of a funnel is illustrated in Figure 5 (Right). If both inital segments of L±ϑ

are quasihorizontal (quasivertical), the width of the funnel (under construction) is measured in the
vertical (horizontal) direction. As long as the width is less than ε, the funnel crosses the next
vertical (horizontal) ε-strip by extending L±ϑ with one or two line segments. As soon as one of
the new segments of Lϑ or L−ϑ ceases to be quasihorizontal (quasivertical), the funnel is extended
through a square box of minimal width. Upon exit of this square box the edges of Lϑ are both
quasivertical (quasihorizontal). See Figure 5 (Right). This observation, together with a standard
result from Dynamical Systems Theory [13, Theorem 4.4.1] on the growth of the deviation of the
Euler approximation from the integral curve it approximates, yields the following (rather conserva-
tive) upper bound on the growth of the funnel width of a separatrix having M transitions between
quasihorizontal and quasivertical parts (which are bounded by singularity-boxes or ε-boxes).

Lemma 6. Let T be the (computable) edge length of a bounding square of the domain D of h, and let
M be the total number of quasihorizontal and quasivertical parts of the polylines bounding a separatrix
funnel. There are computable constants3 ϑ0, c1, c2 and C, which only depend on D∗ and h, such
that the width of the funnel does not exceed (c1ϑ + c2w) eCMT , provided ϑ ≤ ϑ0. In particular, this
width is at most ε if c1ϑ+ c2w ≤ ε e−CMT .

6 Construction of the MS-complex
¶10. The algorithm. The construction of the MS-complex of h is a rather straightforward
application of the preceding results. It uses a parameter M , the (a priori unknown) number of
transitions (at ε-boxes) between quasihorizontal and quasivertical parts of a funnel. Let T be the
edge length of a bounding square of the domain D of h. Then the algorithm performs the following
steps.
Step 1. Construct certified isolating boxes B′

1, . . . ,B
′
m for the singularities of ∇h (cf Section 3).

Step 2. Let D∗ be the closure of D\ (B′
1 ∪ · · ·∪B′

m). Compute the constants ϑ0, c1, c2 and C, which
depend only on h and D∗. Set ε to the minimum of the width of the source-, sink- and sinkboxes.

3See Appendix 7—not part of the actual paper—for a precise definition of these constants, and for a proof of
Lemma 6.
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Step 3. Let ϑ and w be such that w ≤ ϑ
2C0

√
2
, ϑ ≤ min( π

40 , ϑ0), and c1ϑ + c2w ≤ ε e−CMT (cf

Lemma 6). Subdivide D∗ until all gridboxes have maximum width w. For each saddle box, compute
four separatrix intervals on its boundary, of width at most w.
Step 4. For each stable and unstable separatrix interval do the following. Start the computation
of a funnel for a separatrix by setting M to a small number M0 (say 4). Compute the fences L−ϑ

and Lϑ, keeping track of the width of the enclosed funnel under construction and of the number m
of transitions between quasihorizontal and quasivertical parts of this funnel.

If the width of the funnel exceeds ε or the number of transitions m exceeds M , then abort the
computation of the current funnel, discard all funnels constructed so far, set M to twice its current
value and goto Step 3.

If the funnel intersects an already constructed funnel, or a source- or sinkbox on which it does
not terminate (i.e., if only one of its fences intersects this box), then set ε to half its current value,
discard all funnels constructed so far, and goto Step 3.

If the funnel intersects a saddlebox B′
i, then decrease the size of B′

i by a factor of two via subdi-
vision, discard all funnels constructed so far, set ε to half its current value, and goto Step 2. (Note
that D∗ gets larger, so the constants in Step 2 have to be recomputed.)

Otherwise, the fences end on the same component of the boundary of ∂D∗. The enclosed funnel
is simply connected, and does not intersect any of the funnels constructed so far. Add the funnel to
the output, and reset M to M0 (and repeat until all separatrices have been processed).

¶11. Termination. Since the gradient field ∇h is a 2D Morse-Smale system, its separatrices are
disjoint. Their intersections with D∗ are compact, and have positive distance (although this distance
is not known a priori). In the main loop of the algorithm, the maximal funnel width ε is bisected if
funnels intersect, and saddleboxes intersected by the funnel are subdivided, so after a finite number
of iterations of the main loop its value is less than half the minimum distance between any pair of
distinct separatrices, and funnels stay clear from saddleboxes (apart from the one containing the
origin or destination of the enclosed separatrix).

Separatrices that intersect ∂D do so transversally, cf Remark 1. Therefore, after a finite number
of subdivision steps, both fences around such separatrices will intersect ∂D transversally. Hence,
eventually all funnels become disjoint, at which point the algorithm terminates after returning a
topologically correct MS-complex for ∇h.

7 Implementation and experimental results
The algorithm has been implemented using the Boost library [1] for IA. All experiments have been
performed on a 3GHz Intel Pentium 4 machine under Linux with 1 GB RAM using the g++ compiler,
version 3.3.5. Figures 1(a)-(b) and 7(a)-(b) depict the output of our algorithm, for several Morse-
Smale functions. In our implementation the parameter θ, used in the construction of separatrix-
funnels, is π

30 , which is larger than the theoretical bound given by Lemma 6. The algorithm halves
this angle several times, depending on the input, until the funnels are simply connected, mutually
disjoint, and connect a saddle-box to a source-box (for stable separatrices) or sink-box (for unstable
separatrices), in which case a topologically correct MS-complex has been computed. Each of the
funnels with deep black boundaries contains an unstable separatrix, whereas a funnel with light
black boundaries contains a stable separatrix. The CPU-time for computing a MS-system increases
with the number of critical points and the complexity of the vector field, as indicated in the captions
of the figures.
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APPENDIX A: Preliminaries

¶12. Morse function. A function h : D ⊂ R2 → R is called a Morse function if all its critical
points are non-degenerate. The Morse lemma [17] states that near a non-degenerate critical point
a it is possible to choose local co-ordinates x, y in which h is expressed as h(x, y) = h(a) ± x2 ± y2.
Existence of these local co-ordinates implies that non-degenerate critical points are isolated. The
number of minus signs is called the index ih(a) of h at a. Thus a two variable Morse function has
three types of non-degenerate critical points: minima (index 0), saddles (index 1) and maxima (index
2).

¶13. Integral curves. An integral curve x : I ⊂ R → D passing through a point p0 on D is a
unique maximal curve satisfying:

{
ẋ(t) = ∇h(x(t))
x(0) = p0

(2)

for all t ∈ I. Integral curves corresponding to the gradient vector field of a smooth function h : D → R

has the following properties:

1. Two integral curves are either disjoint or same.

2. The integral curves cover all the points of D.

3. The integral curves of the gradient vector field of h form a partition of D.

4. The integral curve x(t) through a critical point p0 of h is the constant curve x(t) = p0.

5. The integral curve x(t) through a regular point p of h is injective, and if lim
t→∞

x(t) or lim
t→−∞

x(t)

exists, it is a critical point of h. This implies integral curves corresponding to gradient vector
field are never closed curves.

6. The function h is strictly increasing along the integral curve of a regular point of h.

7. Integral curves are perpendicular to the regular level sets of h.

¶14. Stable and unstable manifolds. Consider the integral curve x(t) passing through a point
p. If the limit lim

t→∞
x(t) exists, it is called the ω-limit of p and is denoted by ω(p). Similarly,

lim
t→−∞

x(t) is called the α-limit of p and is denoted by α(p) – again provided this limit exists. The

stable manifold of a singular point p is the set W s(p) = {q ∈ D | ω(q) = p}. Similarly, the unstable
manifold of a singular point p is the set W u(p) = {q ∈ D | α(q) = p}. Here we note that both W s(p)
and W u(p) contain the singular point p itself [12].

Now, the stable and unstable manifolds of a saddle point are 1-dimensional manifolds. A stable
manifold of a saddle point consists of two integral curves converging to the saddle point. Each of
these integral curves (not including the saddle point) are called the stable separatrices of the saddle
point. Similarly, an unstable manifold of a saddle point consists of two integral curves diverging
from the saddle point and each of these integral curves (not including the saddle point) are called
the unstable separatrices of the saddle point.

¶15. The Morse-Smale complex. A Morse function on D is called a Morse-Smale (MS) function
if its stable and unstable separatrices are disjoint. In particular, a Morse-Smale function on a two-
dimensional domain has no integral curve connecting two saddle points, since in that case a stable
separatrix of one of the saddle points would coincide with an unstable separatrix of the other saddle
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Figure 8: Morse-Smale complex

point. The MS-complex associated with a MS-function h on D is the subdivision of D formed by the
connected components of the intersections W s(p) ∩W u(q), where p, q range over all singular points
of h.
The regions of the MS-complex are characterized by the following result.

Lemma 7 (Quadrangle Lemma ([8])).
If D = R2, then each region of the MS-complex is a quadrangle with vertices of index 0, 1, 2, 1, in

this order around the region.

¶16. Stability of equilibrium points. We note that a gradient vector field of a MS-function
h : D → R can have three kinds of equilibria or singular points, namely, sinks (corresponding to
maxima of h), saddles (saddles of h) and sources (corresponding to minima of h). These singular
points can be distinguished based on the local behavior of the integral curves around those points.
Locally, a sink has a neighborhood, which is a stable 2-manifold. Similarly, locally a source has a
neighborhood, which is an unstable 2-manifold. Locally, a saddle has a stable 1-manifold and an
unstable 1-manifold crossing each other at the saddle point. A sink is called a stable equilibrium
point, where as a source or a saddle is called unstable equilibrium point. We note that, a source
corresponding to a MS-function h is a sink corresponding to the function −h.

Interval implicit function theorem

To introduce a useful tool from IA, we recall some notation for interval matrices. An n× n interval
matrix M is defined as

M = {M |Mij ∈ Mij , i, j ∈ {1 . . . n}}

Also note that we write
0 /∈ det M

if there exists no matrix M ∈ M such that detM = 0.
Consider a system of equations:

f(x, y) = 0, g(x, y) = 0, (3)

and let F : R2 → R2 be the function with components f and g.
Let I = Ix × Iy be a 2D-interval (box) in R2. Define the interval Jacobian determinant Jx,yF as
the 2 × 2 interval determinant given by

Jx,yF (I) =

∣∣∣∣∣∣∣∣

∂f

∂x
(I)

∂f

∂y
(I)

∂g

∂x
(I)

∂g

∂y
(I)

∣∣∣∣∣∣∣∣
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The following theorem gives a necessary condition guaranteeing that there is at most one solution of
the system (3) in I.

Theorem 8. (Interval Implicit Function Theorem, Snyder [21, 22]) Let F : R × R → R be
a C1-map. If I ⊂ R × R is a box for which

0 /∈ Jx,yF (I),

then the system (3) has at most one solution in I.

APPENDIX B: The constants in Lemma 6

A gridbox is called quasihorizontal (quasivertical) if it contains a point at which ∇h is quasihorizontal
(quasivertical). Again, a gridbox may be both quasihorizontal and quasivertical.

An integral curve of ∇h in a quasihorizontal gridbox [x0, x1] × [y0, y1] is the graph of a function
x 7→ y(x), where y(x) is a solution of the differential equation

y′(x) = F (x, y(x)), (4)

y(x0) = y0,

where F (x, y) =
hy(x, y)

hx(x, y)
. Here x ranges over the full interval [x0, x1] if y0 ≤ y(x) ≤ y1. Other-

wise, the range of x is restricted to a suitable maximal subinterval [ξ0, ξ1], such that (ξ0, y(ξ0)) and
(ξ1, y(ξ1)) are points on the boundary of the gridbox. Similarly, a trajectory of Xϑ in a quasihori-
zontal gridbox [x0, x1] × [y0, y1] is the graph of a function x 7→ y(x), where y(x) is a solution of the
differential equation

dy

dx
= Fϑ(x, y), (5)

with

Fϑ(x, y) =
hx(x, y) sinϑ+ hy(x, y) cosϑ

hx(x, y) cosϑ− hy(x, y) sinϑ
.

Similarly, a trajectory of X−ϑ is the graph of a function y 7→ x(y), where x(y) is a solution of the
differential equation

dx

dy
= Gϑ(x, y),

with

Gϑ(x, y) =
1

Fϑ(x, y)
=
hx(x, y) cosϑ− hy(x, y) sinϑ

hx(x, y) sinϑ+ hy(x, y) cosϑ
.

Here y ranges over the full interval [y0, y1] if x0 ≤ x(y) ≤ x1, or a suitable maximal subinterval
otherwise.

The union of all quasihorizontal gridboxes in D∗ is denoted by D∗
qh, and the union of all qua-

sivertical gridboxes by D∗
qv.

Even though the width of a funnel may grow exponentially in the number of grid boxes it traverses,
this growth is controlled. To this end, we introduce several computable constants that only depend
on the function h and (the size of) its domain D∗. Let Aqh, Aqv, Bqh, Bqv, Cqh and Cqv be positive
constants such that

max
(x,y)∈D∗

qh

|F (x, y)| ≤ Aqh, max
(x,y)∈D∗

qv

|G(x, y)| ≤ Aqv,

max
(x,y)∈D∗

qh

|
∂F

∂x
(x, y)| ≤ Bqh, max

(x,y)∈D∗
qv

|
∂G

∂y
(x, y)| ≤ Bqv,

max
(x,y)∈D∗

qh

|
∂F

∂y
(x, y)| ≤ Cqh, max

(x,y)∈D∗
qv

|
∂G

∂x
(x, y)| ≤ Cqv.

15



Note that

Fϑ(x, y) − F (x, y) =
(hx(x, y)2 + hy(x, y)

2) sinϑ

hx(x, y)2 cosϑ− hx(x, y)hy(x, y) sinϑ
.

Let M
(1)
qh be a dyadic number such that

max
(x,y)∈D∗

qh

∣∣∣∣
hy(x, y)

hx(x, y)

∣∣∣∣ ≤M
(1)
qh . (6)

Take ϑqh ∈ (0, 1
2π) such that tanϑqh ≤

1

2M
(1)
qh

. Finally, let M
(2)
qh be a constant such that

max
(x,y)∈D∗

qh

∣∣∣∣
hx(x, y)2 + hy(x, y)

2

hx(x, y)2 cosϑqh

∣∣∣∣ ≤M
(2)
qh . (7)

Taking Mqh =
M

(2)
qh

2M
(1)
qh

, we have, for |ϑ| ≤ ϑqh:

max
(x,y)∈D∗

qh

|Fϑ(x, y) − F (x, y)| ≤Mqh sinϑ. (8)

Similarly, there are (computable) constants Mqv and ϑqv such that

max
(x,y)∈D∗

qv

|Gϑ(x, y) −G(x, y)| ≤Mqv sinϑ, (9)

for |ϑ| ≤ ϑqv. Finally, let the constants c0, c1 and ϑ0 be defined by

c0 = 2 max(Cqh +AqhBqh, Cqv +AqvBqv) (10)

c1 = max(
1

2MqhKqh
,

1

2MqvKqv
) (11)

ϑ0 = max(ϑqh, ϑqv). (12)

The next result provides an upper bound for the growth of the funnel width along a quasihorizontal
part of its bounding polylines. We assume that the funnel runs from left to right, so its initial points
are on the line with smallest x-coordinate. If the funnel runs from right to left, a similar result is
obtained.

Lemma 9. Let yϑ,w, y−ϑ,w : [a, b] → [c, d] be the piecewise linear functions the graphs of which are
quasihorizontal parts of the polylines Lϑ and L−ϑ for a grid with edge length w, respectively. Let ∆
be an upper bound for the distance of the initial points of these polylines, i.e.,

|yϑ,w(a) − y−ϑ,w(a)| ≤ ∆.

Then the width of the fence, bounded by Lϑ and L−ϑ, is bounded:

|yϑ,w(x) − y−ϑ,w(x)| ≤ ∆ eCqh(x−a) + (c0w + c1 sinϑ)
eCqh(x−a) − 1

Cqh
.

Proof. Let y±ϑ(x) be the exact solution of the rotated system with initial condition y±ϑ(a). In
particular, |yϑ(a) − y−ϑ(a)| ≤ ∆. Then (8) implies

∣∣dy±ϑ

dx
(x) − F (x, y±ϑ(x))

∣∣ =
∣∣F±ϑ(x, y±ϑ(x) − F (x, y±ϑ(x))

∣∣ ≤Mqh sinϑ.
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Therefore, according to the Fundamental Inequality [13, Theorem 4.4.1] we have

|yϑ(x) − y−ϑ(x)| ≤ ∆ eCqh(x−a) +
2Mqh sinϑ

Cqh
(eCqh(x−a) − 1). (13)

The interval [a, b] is subdivided into a finite number of subintervals of length at most w, where the
endpoints correspond to the x-coordinates of the breakpoints of the fences Lϑ and L−ϑ. Let yϑ,w be
the Euler approximation to the ordinary differential equation (5). Its graph is (a quasihorizontal)
part of the fence Lϑ. Theorem 4.5.2 in [13] gives the following explicit bound for the error in Euler’s
method:

|yϑ,w(x) − yϑ(x)| ≤ w
Bqh +AqhCqh

Cqh
(eCqh(x−a) − 1). (14)

We get a similar inequality for the Euler approximation y−ϑ,w of y−ϑ. Combining (13) and (14), and
using (10) and (11), yields

|yϑ,w(x) − y−ϑ,w(x)| ≤ ∆ eCqh(x−a)+

2(w(Bqh +AqhCqh) +Mqh sinϑ)
eCqh(x−a) − 1

Cqh

= ∆ eCqh(x−a) + (c0w + c1 sinϑ)
eCqh(x−a) − 1

Cqh
.

A similar result holds for quasivertical trajectories. Next we need to control the increase of the funnel
width upon transition from a quasihorizontal to a quasivertical part its bounding polylines (or from
a quasivertical to a quasihorizontal part).

¶17. Transitions: bounded increase of funnel width. Transition from a quasihorizontal to a
quasivertical, or from a quasivertical to a quasihorizontal part of the funnel takes place at an ε-box.
If the width of the funnel at the ’entry’ of the box is less than the width w of a grid box, then the
width may increase, but it will not be greater than 2w at the exit. This is made more precise by the
following result.

Lemma 10. Let J be a ε-box, where, moreover, the initial points p and q of Lϑ ∩ J and L−ϑ ∩ J,
respectively, are on the boundary of the gridboxes containing the vertices of edge e of J. If the distance
between p and q is at least w, then the distance between the terminal points p and q of Lϑ ∩ J and
L−ϑ ∩J, respectively, is less than the distance of p and q. If the distance between p and q is less than
w, then the distance of p and q is at most 2w.

Proof. Assume that the first edge of Lϑ is quasivertical, but not quasihorizontal. Edge e of J is then
vertical. Assume that this polyline consists of a single edge, namely the line segment pp. Let β+ be
the angle between pp and edge e, then arctan 1

2 ≤ β+ ≤ ϑ+ arctan 1
2 . Let β− be the angle between

the line segment qq and edge e, then β− is inbetween the smallest and largest slope of any edge of
L−ϑ. Since the angle variation of X over J is less than π

20 , the angle β− is greater than β+ − π
20 . Let

a be the distance of p to the nearest vertex of e, then a ≤ w. If d ≥ w, the distance d between p and
q satisfies

d = (d+ a) tanβ− − a tanβ+

≤ d tan(β+ + π
20) + a (tan(β+ + π

20) − tanβ+)

< 3
4d+ 1

4a

≤ d,
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Figure 9: The distance between the two polylines upon entry and exit of a box. Left: If the distance d between
the initial points p and q of the polylines is less than the edge-length w of a grid box, then the distance d
between the terminal points p and q is less than 2w. Right: Otherwise, the distance d between the terminal
points is less than d.

since a ≤ w ≤ d. Here we used tanβ+ ≤ 1
2 to get

tan(β+ + π
20) =

tanβ+ + tan π
20

1 − tanβ+ tan π
20

≤
1
2 + tan π

20

1 − 1
2 tan π

20

≤ 3
4 .

Since arctan 1
2 −

π
40 ≤ arctan 1

2 −ϑ ≤ β+ ≤ arctan 1
2 , a short computation shows that tan(β+ + 1

20π)−
tanβ+ < 1

4 .
If d < w, then q lies in the same gridbox as p, or in a gridbox adjacent to it. Then it is easy

to see that p lies in the same grid box as p, and q also lies in this box, or in a box adjacent to it.
Therefore, d ≤ 2w in this case.
If L−ϑ consists of a single edge, then the argument is similar.

Lemmas 9 and 10 provide the following result on the upper bound on the funnel width of a
separatrix with M transitions between quasihorizontal and quasivertical parts.

Corollary 11. Let T be the maximum of the width and the height of the box B (the domain of the
function h), and let M be the total number of quasihorizontal and quasivertical parts of the polylines
bounding a separatrix funnel. Let C = max(Cqh, Cqv) and let D = min(Cqh, Cqv). Then the width of
the funnel does not exceed

(c1 sinϑ+ c2w)
eCMT − 1

D
,

where c2 = 2 +
c0
C

, with c0 and c1 given by (10) and (11), respectively.

In particular, this width is at most ε if

c1 sinϑ+ c2w ≤
D

eCMT − 1
ε. (15)

Proof. Let D∗ ⊂ [a, b] × [c, d], then T ≤ max(b − a, d − c). There are M − 1 transitions from
quasihorizontal to quasivertical parts of the funnel, each occurring at an ε-box. Let ∆0 be the width
of the initial separatrix interval, and let ∆1, . . . ,∆M−1 be the width of the funnel at the entry of
the corresponding boxes, in other words, ∆k is the width at the end of the k-th part of the funnel.
Using induction, we will prove that, for k = 1, . . . ,M :

∆k ≤ 2w ekCT +
c0w + c1 sinϑ

D
(ekCT − 1). (16)
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Since (16) for k = M is the claim of the lemma, this is all we have to prove.
So assume (16) holds for k = n− 1. If ∆n−1 > w, the initial width of the n-th part of the funnel

does not exceed ∆n−1, cf Lemma 10. Assume that the n-th part of the funnel is quasihorizontal,
then Lemma 9 implies that the width of this part at a point with horizontal coordinate x is at most

∆n−1 e
Cqh(x−a) + (c0w + c1 sinϑ)

eCqh(x−a) − 1

Cqh
,

so in particular, since D ≤ Cqh ≤ C and 0 ≤ x− a ≤ T :

∆n ≤ ∆n−1 e
AT +

c0w + c1 sinϑ

D
(eCT − 1).

Therefore, (16) holds for k = n. If ∆n−1 ≤ w, then the initial width of the n-th part of the funnel is
at most 2w, cf Lemma 10. Therefore, Lemma 9 implies that the width of this part at a point with
horizontal coordinate x is at most

2w eCqh(x−a) + (c0w + c1 sinϑ)
eCqh(x−a) − 1

Cqh
,

so in particular

∆n ≤ 2w eCT +
c0w + c1 sinϑ

D
(eCT − 1)

≤ 2w enCT +
c0w + c1 sinϑ

D
(enCT − 1),

which is (16) for k = n.
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