Real Elementary Approach to the Master Recurrence and Generalizations

Chee K. Yap

Courant Institute
New York University
and
Korean Institute of Advanced Study
Seoul, Korea
Special Thanks to Asano-san for presenting this talk 8th Theory and Applic. of Models of Computation (TAMC)

Tokyo, Japan
Mar 23-25, 2011

Next...

(2) Our Results

(3) Some Tools
4) Final Remarks

Introduction

We introduce the standard Master Theorem and indicate two directions for generalization

Solving Recurrences in Computer Science

Sources of recurrences

- Probabilistic analysis
- Combinatorial analysis
- Analysis of algorithms (this talk)

Divide-and-Conquer recurrences

- (Mergesort) $T(n)=2 T(n / 2)+n$
- (Strassen Matrix Mult.) $T(n)=7 T(n / 2)+n^{2}$
- (Pan Matrix Multiplication) $T(n)=143640 \cdot T(n / 70)+n^{2}$
- (Schönhage-Strassen Mult.) $T(n)=2 T(n / 2)+n \log n \log \log n$

The Master Recurrence

These are instances of:

- Master Recurrence (M.R.): $T(n)=a T(n / b)+d(n)$
- where $a>0$ and $b>1$ are real constants
- and $d(n)$ is the driving function.

The solution $T(n)$ is controlled by:

- the watershed function $w(n):=n^{\alpha}$
- where $\alpha:=\log _{b} a$ (watershed constant)
E.g., $\alpha=\log _{2} 7=2.807 \ldots$ in Strassen matrix multiplication.

The Standard Master Theorem (M.T.)

The Master Recurrence solution satisfies a "trichotomy":

By comparing $d(n)$ with $w(n)=n^{\alpha}$,

$$
\begin{aligned}
& T(n)= \\
& \quad \Theta\left\{\begin{array}{lll|}
n^{\alpha} & \text { if } d(n)=\mathcal{O}\left(w(n) n^{-\varepsilon}\right) \\
n^{\alpha} \log n & \text { if } d(n)=\Theta(w(n)) & \text { Case }(-) \\
d(n) & \text { if "d(n)= }\left(w(n) n^{\varepsilon}\right), & \text { Case }(0) \\
\hline \text { Case }(+) .
\end{array}\right.
\end{aligned}
$$

Remarks

- From [Bentley-Haken-Saxe 1980, Cormen-Leiserson-Rivest 1990]
- Regularity Condition: $d(n)=\Omega\left(w(n) n^{\varepsilon}\right)$ means:
$(\exists C>1)$ s.t. $d(n) \geq C \cdot a \cdot d(n / b)$

Two Directions for Generalization

A. More General Driving Functions

- Trichotomy captures $d(n)=\Theta\left(n^{\alpha}\right)$, or when $d(n)=\Theta\left(n^{\alpha \pm \varepsilon}\right)(\varepsilon>0)$
- Does not capture: $d(n)=n^{\alpha} f(n)$ s.t. $f(n)$ is polylogarithmic
- E.g., $d(n)=n^{\alpha} \log n$ (this arises in integer GCD)
B. Multiterm Master Recurrence (M.M.R.)
- Linear Median Algorithm: $T(n)=T(n / 5)+T(7 n / 10)+n$
- Conjugation tree [Welzl-Edels.]: $T(n)=T(n / 2)+T(n / 4)+\log n$
- Generally, the M.M.R. is $T(n)=d(n)+\sum_{i=1}^{k} a_{i} T\left(n / b_{i}\right)$
- where $a_{i}>0$ and $b_{i}>1$ are real constants

Literature

A. "Tetrachotomous" Master Theorem

- Trichotomy \rightarrow "Tetrachotomy" (4 Cases)
- [Brassard-Bratley 1996, Verma 1994, Wang-Fu 1996, Roura 1997]
B. Multiterm Master Theorem
- Discussed in [Brown \& Purdom (1985, Text, p. 243]
- 2-Term Case: [Kao 1997]
- Trichotomous Version: [Roura 1997, Akra-Bazzi 1998]

C. Other Topics

- General Integral bounds: [Akra-Bazzi, Verma, Wang-Fu]
- Master Recurrence with $a(n), b(n)$: [Wang-Fu 1996]
- Robustness issues: [Leighton 1996, Roura 1997]

"Tetrachotomous" Master Theorem

The Master Recurrence solution satisfies a "tetrachotomy":

By comparing $d(n)$ with $w(n) \log ^{\delta} n$,

$$
T(n)=\Theta
$$

$$
\left\{\begin{array}{ll|}
n^{\alpha} & \text { if } d(n)=\mathcal{O}\left(w(n) \log ^{\delta} n\right), \delta<-1 \\
d(n) \log n \log \log n & \text { if } d(n)=\Theta\left(w(n) \log ^{\delta} n\right), \delta=-1 \\
\hline d(n) \log n & \text { if } d(n)=\Theta\left(w(n) \log ^{\delta} n\right), \delta>-1 \\
d(n) & \text { if } " d(n)=\Omega\left(w(n) n^{\varepsilon}\right), " \\
\hline \text { Case }(0) \\
\hline & \text { Case }(+) \\
\hline
\end{array}\right.
$$

Remarks

- From [Brassard-Bratley 1996, Verma 1994, Wang-Fu 1996, Roura 1997]
- Still does not capture the Schönhage-Strassen recurrence,

Next...

(3) Some Tools
4) Final Remarks

Our Results

We state our two main theorems, and illustrate their applications.

Overview of Results

Two Main Theorems

- Theorem A extends the Tetrachotomous M.T. to infinitely many cases
- A natural completion of Tetrachotomous M.T.
- Theorem B is a Multiterm generalization of Tetrachotomous M.T.
- Proof uses a Principle of Real Induction

Our Approach

- We propose a "real approach" to such recurrences
- Treat all variables in recurrences as real numbers
- This is essential for the multiterm theorem
- We introduce "elementary techniques" to derive these results
- "Elementary" means non-calculus
- Possible because we stress Θ-order results

Statement of Theorem B

Recall the Multiterm Master Recurrence (M.M.R.):

$$
T(n)=d(n)+\sum_{i=1}^{k} a_{i} T\left(n / b_{i}\right)
$$

Its watershed function $w(n):=n^{\alpha}$
where α satisfies $\sum_{i=1}^{k} \frac{a_{i}}{b_{i}^{\alpha}}=1$.
The M.M.R. solution satisfies a "tetrachotomy":
By comparing $d(n)$ with $w(n) \log ^{\delta} n$,

$$
T(n)=\Theta
$$

$$
\left\{\begin{array}{ll|l|}
n^{\alpha} & \text { if } d(n)=\mathcal{O}\left(w(n) \log ^{\delta} n\right), \delta<-1 & \text { Case }(-) \\
d(n) \log n \log \log n & \text { if } d(n)=\Theta\left(w(n) \log ^{\delta} n\right), \delta=-1 & \text { Case }(1) \\
d(n) \log n & \text { if } d(n)=\Theta\left(w(n) \log ^{\delta} n\right), \delta>-1 & \text { Case }(0) \\
d(n) & \text { if } " d(n)=\Omega\left(w(n) n^{\varepsilon}\right), & \text { Case }(+) \\
\hline
\end{array}\right.
$$

Remarks on Theorem B

- The first "tetrachotomous" Multiterm Master Theorem
- " $d(n)=\Omega\left(w(n) n^{\varepsilon}\right)$ " is the multiterm regularity condition :

$$
(\exists C>1) \quad d(n) \geq C \cdot \sum_{i=1}^{k} a_{i} \cdot d\left(\frac{n}{b_{i}}\right)
$$

which implies $d(n)=\Omega\left(w(n) n^{\varepsilon}\right)$.

Iterated Logarithms

To state Theorem A, we need some preparation:
Iterated Logarithms

- $\ell \lg _{k}(x):=\underbrace{\lg (\lg (\cdots(\lg (x)) \cdots))}_{k \text { times }}$
- where $\lg :=\log _{2}$ is "computer science logarithm"
- E.g., $\ell \ell g_{0}(x)=x$ and $\ell \ell g_{2}(x)=\lg \lg x$
- Extend to negative indices for k :
- E.g., $\ell \ell g_{-1}(x)=2^{x}$ and $\ell \ell g_{-2}(x)=2^{2^{x}}$

Exponential-Logarithmic (EL) Functions

Products of powers of iterated logs

- E.g., $f_{0}(x)=2^{5 x} x^{4} \lg ^{-3} x(\lg \lg x)^{2}$
- Exponent sequence of $f_{0}(x)$ is $\mathbf{e}=(5,4 ;-3,2)$

Definition

- EL function has the form $f(x)=\operatorname{EL}^{\mathbf{e}}(x):=\prod_{i \in \mathbb{Z}} \ell \ell g_{i}^{e_{i}}(x)$
- where $e_{i}=\mathbf{e}(i)$ for some $\mathbf{e}: \mathbb{Z} \rightarrow \mathbb{R}$ with finite support
- Exponent sequence corresponding to $\mathbf{e}: \mathbb{Z} \rightarrow \mathbb{R}$ can be
- written as any finite sequence $\mathbf{e}=\left(e_{-k}, \ldots, e_{-1}, e_{0} ; e_{1}, \ldots, e_{\ell}\right)$ s.t. $\mathbf{e}(i) \neq 0$ implies $-k \leq i \leq \ell$
- E.g., $f_{0}(x)=2^{5 x} x^{4} \lg ^{-3} x(\lg \lg x)^{2}$ is denoted $\mathrm{EL}^{(5,4 ;-3,2)}(x)$

Theorem A in Action

Consider $d(n)$ near n^{α} ("at the cusp of convergence")

Driving Function	Exponent Sequence	
$d_{0}(n):=n^{\alpha} \log n \log \log n$	$\mathbf{e}=(\alpha ; 1,1)$	(Schönhage-Strassen)
$d_{1}(n):=n^{\alpha}(\log \log n)^{r}$	$\mathbf{e}=(\alpha ; 0, r)$	
$d_{2}(n):=n^{\alpha} \frac{(\log \log \log n)^{s}}{\log n \log \log n}$	$\mathbf{e}=(\alpha ;-1,-1, s)$	$(s \neq-1)$

Conclusion of Theorem A:

Solution	Exponent Sequence
$T_{0}(n)=\Theta\left(n^{\alpha} \log ^{2} n \log \log n\right.$	$\mathbf{e}=(\alpha ; 2,1)$
$T_{1}(n)=\Theta\left(n^{\alpha} \log n(\log \log n)^{r}\right)$	$\mathbf{e}=(\alpha ; 1, r)$
$T_{2}(n)=\Theta \begin{cases}n^{\alpha}(\log \log \log n)^{s+1} & \mathbf{e}=(\alpha ; 0,0, s+1), \\ n^{\alpha} & \mathbf{e}=(\alpha ; 0,0,0), \\ n^{2}<-1 \\ \end{cases}$	

Cusp Order

- Suppose $\mathbf{e}=\left(\alpha ; e_{1}, e_{2}, \ldots\right)$
- Its cusp order is $h \geq 1$ if
- $\mathbf{e}=(\alpha ; \underbrace{-1,-1, \ldots,-1}_{\leq h-1}, \beta, \ldots)$ for some $\beta \neq-1$
- Also, β is the cusp power
- Transfer these concepts to EL-functions:
- E.g., $d_{2}(n)=n^{\alpha} \frac{(\log \log \log n)^{s}}{\log n \log \log n}=\mathrm{EL}^{(\alpha ;-1,-1, s)}(n)$
- So, its cusp order is 3 and cusp power is s

Statement of Theorem A

- Recall: Master Recurrence (MR) $T(n)=a T(n / b)+d(n)$
- with watershed constant $\alpha=\log _{b} a$
- Also let $d(n)=\operatorname{EL}^{\mathrm{e}}(n)$
- where $\mathbf{e}=\left(e_{-k}, e_{-k+1}, \ldots, e_{0} ; e_{1}, \ldots, e_{\ell}\right)$, and $e_{-k} \neq 0$
- If $k=0$, let the cusp order be h and cusp power be β

The Generalized M.T.

The solution to the MR satisfies $T(n)=$
$\Theta\left\{\begin{array}{ll|l|}d(n) & \text { if }(k<0 \wedge c>0) \text { or }(k \geq 0 \wedge \mathbf{e}(0)>\alpha), & \text { Case }(+) \\ d(n) L L_{h}(n) & \text { if }(k=0 \wedge \mathbf{e}(0)=\alpha \wedge \beta>-1), & \text { Case }(h-1) \\ n^{\alpha} & \text { otherwise } & \text { Case }(-)\end{array}\right.$ where $L L_{h}(n):=\prod_{i=1}^{h} \ell \ell g_{i}(n)=\lg n \cdot \lg \lg n \cdots \ell \ell g_{h}(n)$.

Remarks on Theorem A

- Infinitely many cases (for each $h=1,2,3, \ldots$,)
- $h=1$ is Case (0) in the Standard M.T.
- $h=2$ is Case (1) in the "tetrachotomous" M.T.
- $h=3$ captures the Schönhage-Strassen recurrence

Next...

(2) Our Results

(3) Some Tools

4 Final Remarks

Some Tools

We show three slides describing our basic tools

Summation based on Growth Types

- Given function $f: \mathbb{R} \rightarrow \mathbb{R}$, we want to bound the summation

$$
S^{f}(n):=\sum_{x \geq 1}^{n} f(x)=f(n)+f(n-1)+\cdots+f(n-\lfloor n\rfloor+1)
$$

where n, x are real variables

- Classify functions $f: \mathbb{R} \rightarrow \mathbb{R}$ as: polynomial-type, increasing or decreasing exponential-type
- THEOREM: $S^{f}(n)=\Theta \begin{cases}n f(\Theta(n)) & \text { if } f \text { is polynomial-type, } \\ f(n) & \text { if } f \text { increases exponentially, } \\ 1 & \text { if } f \text { decreases exponentially. }\end{cases}$

REMARK: Thus we reduce the problem of summation to classifying growth-types, which is an easier problem. Moreover, growth-types are closed under various basic operations

Elementary Sums

- In case f is an EL-function, $f(n)=\mathrm{EL}^{\mathrm{e}}(n)$, we write $S^{e}(n)$ for the sum $S^{f}(n)$.
- Call $S^{\mathrm{e}}(n)$ an elementary sum
- THEOREM:

Up to Θ-order, an elementary sum is an EL-function.
l.e., $S^{\mathrm{e}}(n)=\Theta\left(\mathrm{EL}^{\mathrm{e}^{\prime}}(n)\right)$
where \mathbf{e}^{\prime} can be explicitly constructed from bfe
REMARK: THEOREM A can be reduced to this result on elementary sums.

Principal of Real Induction

- Let $P(x)$ be a real predicate.
- Principle of Archimedean Induction :

Suppose there exists real numbers x_{1} (cutoff constant)
and $\gamma>0$ (gap constant) such that
Real Basis (RB): For all $x<x_{1}, P(x)$ holds
Real Induction (RI): For all $y \geq x_{1}$, if $(\forall x \leq y-\gamma) P(x)$, then $P(y)$
REMARK: Proof of THEOREM B makes essential use of this Principle. The principle is valid because of the Archimedean property of the reals.

Master Recurrence and Generalizations
Final Remarks

Next...

2) Our Results
(3) Some Tools

4 Final Remarks

Master Recurrence and Generalizations Final Remarks

Final Remarks

Where are the Initial Conditions?

- We deliberately ignored initial conditions
- We may simply specify a "Default Initial Condition" (DIC):

$$
T(n)=C \text { for all } n \leq n_{0} \text { and for some } n_{0}, C \geq 0
$$

- All our Θ-bounds are robust under any choice of DIC

Conclusion

- Our results provide "Cookbook" Theorems for easy application
- Theorems A and B have the cookbook form of the standard M.T.
- Our real and elementary approach simplifies current literature
- The full paper will discuss robustness issues, and unified generalization of Theorems A and B.

Thanks for Listening!

"A rapacious monster lurks within every computer, and it dines exclusively on accurate digits."

