# Real Elementary Approach to the Master Recurrence and Generalizations

#### Chee K. Yap

Courant Institute New York University and Korean Institute of Advanced Study Seoul, Korea

Special Thanks to Asano-san for presenting this talk 8th Theory and Applic. of Models of Computation (TAMC) Tokyo, Japan Mar 23-25, 2011

Master Recurrence and Generalizations

Introduction

### Next...



2 Our Results

3 Some Tools





# Introduction

We introduce the standard Master Theorem and indicate two directions for generalization

## Solving Recurrences in Computer Science

#### Sources of recurrences

- Probabilistic analysis
- Combinatorial analysis
- Analysis of algorithms (this talk)

#### Divide-and-Conquer recurrences

- (Mergesort) T(n) = 2T(n/2) + n
- (Strassen Matrix Mult.)  $T(n) = 7T(n/2) + n^2$
- (Pan Matrix Multiplication)  $T(n) = 143640 \cdot T(n/70) + n^2$

• (Schönhage-Strassen Mult.)  $T(n) = 2T(n/2) + n\log n\log\log n$ 

### The Master Recurrence

#### These are instances of:

- Master Recurrence (M.R.): T(n) = aT(n/b) + d(n)
  - where a > 0 and b > 1 are real constants
  - and d(n) is the driving function.

#### The solution T(n) is controlled by:

- the watershed function  $w(n) := n^{\alpha}$
- where  $\alpha := \log_b a$  (watershed constant)

E.g.,  $\alpha = \log_2 7 = 2.807...$  in Strassen matrix multiplication.

## The Standard Master Theorem (M.T.)

The Master Recurrence solution satisfies a "trichotomy":

By comparing d(n) with  $w(n) = n^{\alpha}$ ,

$$T(n) = \begin{cases} n^{\alpha} & \text{if } d(n) = \mathcal{O}(w(n)n^{-\varepsilon}) \\ n^{\alpha}\log n & \text{if } d(n) = \Theta(w(n)) \\ d(n) & \text{if } "d(n) = \Omega(w(n)n^{\varepsilon}) " \end{cases} \begin{array}{c} \text{Case } (-) \\ \text{Case } (0) \\ \text{Case } (+) \end{array}$$

#### Remarks

From [Bentley-Haken-Saxe 1980, Cormen-Leiserson-Rivest 1990]

• Regularity Condition:  $d(n) = \Omega(w(n)n^{\varepsilon})$  means:  $(\exists C > 1)$  s.t.  $d(n) \ge C \cdot a \cdot d(n/b)$ 

### Two Directions for Generalization

#### A. More General Driving Functions

- Trichotomy captures  $d(n) = \Theta(n^{\alpha})$ , or when  $d(n) = \Theta(n^{\alpha \pm \varepsilon})$  ( $\varepsilon > 0$ )
- Does not capture:  $d(n) = n^{\alpha} f(n)$  s.t. f(n) is polylogarithmic

• E.g.,  $d(n) = n^{\alpha} \log n$  (this arises in integer GCD)

#### B. Multiterm Master Recurrence (M.M.R.)

- Linear Median Algorithm: T(n) = T(n/5) + T(7n/10) + n
- Conjugation tree [Welzl-Edels.]:  $T(n) = T(n/2) + T(n/4) + \log n$
- Generally, the M.M.R. is  $T(n) = d(n) + \sum_{i=1}^{k} a_i T(n/b_i)$

• where  $a_i > 0$  and  $b_i > 1$  are real constants

## Literature

#### A. "Tetrachotomous" Master Theorem

- Trichotomy → "Tetrachotomy" (4 Cases)
- [Brassard-Bratley 1996, Verma 1994, Wang-Fu 1996, Roura 1997]

#### B. Multiterm Master Theorem

- Discussed in [Brown & Purdom (1985, Text, p. 243]
- 2-Term Case: [Kao 1997]
- Trichotomous Version: [Roura 1997, Akra-Bazzi 1998]

#### C. Other Topics

- General Integral bounds: [Akra-Bazzi, Verma, Wang-Fu]
- Master Recurrence with a(n), b(n): [Wang-Fu 1996]
- Robustness issues: [Leighton 1996, Roura 1997]

### "Tetrachotomous" Master Theorem

The Master Recurrence solution satisfies a "tetrachotomy":

By comparing d(n) with  $w(n) \log^{\delta} n$ ,

 $T(n) = \Theta$   $\begin{cases}
n^{\alpha} \\
d(n) \log n \log \log n \\
d(n) \log n \\
d(n) \\
d(n)
\end{cases}$ 

if 
$$d(n) = \mathcal{O}(w(n)\log^{\delta} n), \ \delta < -1$$
Case (-)if  $d(n) = \Theta(w(n)\log^{\delta} n), \ \delta = -1$ Case (1)if  $d(n) = \Theta(w(n)\log^{\delta} n), \ \delta > -1$ Case (0)if " $d(n) = \Omega(w(n)n^{\varepsilon})$ "Case (+)

#### Remarks

- From [Brassard-Bratley 1996, Verma 1994, Wang-Fu 1996, Roura 1997]
- Still does not capture the Schönhage-Strassen recurrence,

Master Recurrence and Generalizations

Our Results

### Next...

Introduction



3 Some Tools



・ロト・西ト・ヨト・ヨー もんぐ

# **Our Results**

We state our two main theorems, and illustrate their applications.

◆□ > ◆昼 > ◆臣 > ◆臣 > ○ ● ○ ● ○ ●

## **Overview of Results**

#### Two Main Theorems

Theorem A extends the Tetrachotomous M.T. to infinitely many cases

• A natural completion of Tetrachotomous M.T.

• Theorem B is a Multiterm generalization of Tetrachotomous M.T.

Proof uses a Principle of Real Induction

#### Our Approach

- We propose a "real approach" to such recurrences
  - Treat all variables in recurrences as real numbers
  - This is essential for the multiterm theorem
- We introduce "elementary techniques" to derive these results
  - "Elementary" means non-calculus
  - Possible because we stress ⊖-order results

## Statement of Theorem B

Recall the Multiterm Master Recurrence (M.M.R.):

$$T(n) = d(n) + \sum_{i=1}^{k} a_i T(n/b_i)$$

Its watershed function  $w(n) := n^{\alpha}$ 

where  $\alpha$  satisfies  $\sum_{i=1}^{k} \frac{a_i}{b_i^{\alpha}} = 1$ .

#### The M.M.R. solution satisfies a "tetrachotomy":

By comparing d(n) with  $w(n)\log^{\delta} n$ ,

 $T(n) = \Theta$   $\begin{cases}
n^{\alpha} & \text{if } c \\
d(n) \log n \log \log n & \text{if } c \\
d(n) \log n & \text{if } c \\
d(n) & \text{if } m
\end{cases}$ 

if 
$$d(n) = \mathcal{O}(w(n)\log^{\delta} n), \ \delta < -1$$
Case (-1)if  $d(n) = \Theta(w(n)\log^{\delta} n), \ \delta = -1$ Case (1)if  $d(n) = \Theta(w(n)\log^{\delta} n), \ \delta > -1$ Case (0)if  $u(n) = \Omega(w(n)n^{\varepsilon})$ "Case (+1)

### Remarks on Theorem B

• The first "tetrachotomous" Multiterm Master Theorem

• "
$$d(n) = \Omega(w(n)n^{\varepsilon})$$
" is the multiterm regularity condition  
( $\exists C > 1$ )  $d(n) \ge C \cdot \sum_{i=1}^{k} a_i \cdot d\left(\frac{n}{b_i}\right)$   
which implies  $d(n) = \Omega(w(n)n^{\varepsilon})$ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

### **Iterated Logarithms**

#### To state Theorem A, we need some preparation:

### Iterated Logarithms • $\ell \ell g_k(x) := \underbrace{\lg(\lg(\cdots(\lg(x))\cdots))}_{k \text{ times}}$ • where $\lg := \log_2 \text{ is "computer science logarithm"}$ • E.g., $\ell \ell g_0(x) = x$ and $\ell \ell g_2(x) = \lg \lg x$ • Extend to negative indices for k: • E.g., $\ell \ell g_{-1}(x) = 2^x$ and $\ell \ell g_{-2}(x) = 2^{2^x}$

## Exponential-Logarithmic (EL) Functions

#### Products of powers of iterated logs

- E.g.,  $f_0(x) = 2^{5x} x^4 \lg^{-3} x (\lg \lg x)^2$
- Exponent sequence of  $f_0(x)$  is  $\mathbf{e} = (5, 4; -3, 2)$

#### Definition

• EL function has the form 
$$f(x) = EL^{\mathbf{e}}(x) := \prod_{i \in \mathbb{Z}} \ell \ell g_i^{\mathbf{e}_i}(x)$$

• where  $e_i = e(i)$  for some  $e : \mathbb{Z} \to \mathbb{R}$  with finite support

- Exponent sequence corresponding to  $\mathbf{e}: \mathbb{Z} \to \mathbb{R}$  can be
  - written as any finite sequence  $\mathbf{e} = (e_{-k}, \dots, e_{-1}, e_0; e_1, \dots, e_{\ell})$ s.t.  $\mathbf{e}(i) \neq 0$  implies  $-k \leq i \leq \ell$
  - E.g.,  $f_0(x) = 2^{5x} x^4 \lg^{-3} x (\lg \lg x)^2$  is denoted  $\operatorname{EL}^{(5,4; -3,2)}(x)$

◆□▶◆□▶◆三▶◆三▶ 三三 のへで

## Theorem A in Action

### Consider d(n) near $n^{\alpha}$ ("at the cusp of convergence")

| Driving Function                                                    | Exponent Sequence                          |                      |
|---------------------------------------------------------------------|--------------------------------------------|----------------------|
| $d_0(n) := n^\alpha \log n \log \log n$                             | $e = (\alpha; 1, 1)$                       | (Schönhage-Strassen) |
| $d_1(n) := n^{\alpha} (\log \log n)^r$                              | $\mathbf{e} = (\boldsymbol{\alpha}; 0, r)$ |                      |
| $d_2(n) := n^{lpha} rac{(\log \log \log n)^s}{\log n \log \log n}$ | $e = (\alpha; -1, -1, s)$                  | ( <i>s</i> ≠ −1)     |

#### Conclusion of Theorem A:

| Solution                                                                                      | Exponent Sequence                                                     |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| $T_0(n) = \Theta(n^{\alpha} \log^2 n \log \log n)$                                            | $e = (\alpha; 2, 1)$                                                  |  |
| $T_1(n) = \Theta(n^{lpha} \log n (\log \log n)^r)$                                            | $\mathbf{e} = (\alpha; 1, \mathbf{r})$                                |  |
| $T_2(n) = \Theta \begin{cases} n^{\alpha} (\log \log \log n)^{s+1} \\ n^{\alpha} \end{cases}$ | $e = (\alpha; 0, 0, s+1),  s > -1 \\ e = (\alpha; 0, 0, 0),  s < -1 $ |  |
|                                                                                               | $e = (\alpha; 0, 0, 0), \qquad s < -1 \int$                           |  |

### Cusp Order

• Suppose 
$$\mathbf{e} = (\alpha; e_1, e_2, \ldots)$$

• Its cusp order is  $h \ge 1$  if •  $\mathbf{e} = (\alpha; -1, -1, \dots, -1, \beta, \dots)$  for some  $\beta \ne -1$ • Also,  $\beta$  is the cusp power

- Transfer these concepts to EL-functions:
- E.g.,  $d_2(n) = n^{\alpha} \frac{(\log \log \log n)^s}{\log n \log \log n} = EL^{(\alpha} \cdot (-1, -1, s))(n)$
- So, its cusp order is 3 and cusp power is s

### Statement of Theorem A

- Recall: Master Recurrence (MR) T(n) = aT(n/b) + d(n)
  - with watershed constant  $\alpha = \log_b a$
- Also let  $d(n) = EL^{e}(n)$ 
  - where  $\mathbf{e} = (e_{-k}, e_{-k+1}, \dots, e_0; e_1, \dots, e_\ell)$ , and  $e_{-k} \neq 0$
- If k = 0, let the cusp order be *h* and cusp power be  $\beta$

#### The Generalized M.T.

The solution to the MR satisfies T(n) =  $\Theta \begin{cases} d(n) & \text{if } (k < 0 \land c > 0) \text{ or } (k \ge 0 \land \mathbf{e}(0) > \alpha), \\ d(n)LL_h(n) & \text{if } (k = 0 \land \mathbf{e}(0) = \alpha \land \beta > -1), \\ n^{\alpha} & \text{otherwise} \end{cases}$ Case (*h*-1) Case (

### Remarks on Theorem A

- Infinitely many cases (for each h = 1, 2, 3, ...,)
- h = 1 is Case (0) in the Standard M.T.
- h = 2 is Case (1) in the "tetrachotomous" M.T.
- h = 3 captures the Schönhage-Strassen recurrence

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Master Recurrence and Generalizations

Some Tools

### Next...

### Introduction

### 2 Our Results





・ロト・西ト・ヨト・ヨー もんぐ

# Some Tools

#### We show three slides describing our basic tools

▲□→ ▲圖→ ▲目→ ▲目→ 三目 → のへで

## Summation based on Growth Types

- Given function  $f : \mathbb{R} \to \mathbb{R}$ , we want to bound the summation  $S^{f}(n) := \sum_{x \ge 1}^{n} f(x) = f(n) + f(n-1) + \dots + f(n-\lfloor n \rfloor + 1)$ where n, x are real variables
- Classify functions  $f : \mathbb{R} \to \mathbb{R}$  as: polynomial-type , increasing or decreasing exponential-type
- THEOREM:  $S^{f}(n) = \Theta \begin{cases} nf(\Theta(n)) & \text{if } f \text{ is polynomial-type,} \\ f(n) & \text{if } f \text{ increases exponentially,} \\ 1 & \text{if } f \text{ decreases exponentially.} \end{cases}$

REMARK: Thus we reduce the problem of summation to classifying growth-types, which is an easier problem. Moreover, growth-types are closed under various basic operations

### **Elementary Sums**

• In case *f* is an EL-function,  $f(n) = EL^{e}(n)$ ,

we write  $S^{e}(n)$  for the sum  $S^{f}(n)$ .

- Call  $S^{e}(n)$  an elementary sum
- THEOREM:

Up to  $\Theta$ -order, an elementary sum is an EL-function. I.e.,  $S^{\mathbf{e}}(n) = \Theta(\mathrm{EL}^{\mathbf{e}'}(n))$ 

where e' can be explicitly constructed from bfe

REMARK: THEOREM A can be reduced to this result on elementary sums.

### Principal of Real Induction

- Let P(x) be a real predicate.
- Principle of Archimedean Induction :

Suppose there exists real numbers  $x_1$  (cutoff constant) and  $\gamma > 0$  (gap constant) such that Real Basis (RB): For all  $x < x_1$ , P(x) holds Real Induction (RI): For all  $y \ge x_1$ , if  $(\forall x \le y - \gamma)P(x)$ , then P(y)

REMARK: Proof of THEOREM B makes essential use of this Principle. The principle is valid because of the Archimedean property of the reals.

Master Recurrence and Generalizations

Final Remarks

### Next...

### Introduction

### Our Results

3 Some Tools



# Final Remarks

・ロシ・4日シ・4日シ・4日シー目・99(で)

### Where are the Initial Conditions?

- We deliberately ignored initial conditions
- We may simply specify a "Default Initial Condition" (DIC): T(n) = C for all  $n \le n_0$  and for some  $n_0, C \ge 0$
- All our ⊖-bounds are robust under any choice of DIC



- Our results provide "Cookbook" Theorems for easy application
  - Theorems A and B have the cookbook form of the standard M.T.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- Our real and elementary approach simplifies current literature
- The full paper will discuss robustness issues, and unified generalization of Theorems A and B.

# Thanks for Listening!

"A rapacious monster lurks within every computer, and it dines exclusively on accurate digits."

— В.D. McCullough (2000)

▲ロ → ▲ 冊 → ▲ 目 → ▲ 目 → の Q ()