
A Real Elementary Approach to the Master Recurrence and

Generalizations∗

Chee Yap
Courant Institute of Mathematical Sciences

New York University
New York, NY 10012, USA

and
Korea Institute of Advanced Study

Seoul, Korea

January 20, 2011

Abstract

The master theorem is the solution of a well-known divide-and-conquer recurrence in computer science,
called here the master recurrence. This paper proves two generalizations of this master theorem. The
first extends the treated class of driving functions to a natural class of exponential-logarithmic functions.
The second extends the result to the multiterm master recurrence. Our approach views recurrences as
real recurrences, stressing the use of elementary techniques and real induction.

This is the full version of an extended abstract published in TAMC 2011 [37]. It is revised on 18 Aug
2020.

1 Introduction

Recurrences arise naturally in Computer Science from the analysis of algorithms, combinatorial analysis and
through probabilistic analysis of computation. Techniques for solving recurrences are among the standard
repertoire of algorithmic textbooks (e.g., [21, 2, 9, 27, 28, 8, 26, 3, 19]). See Weide [35] and Lueker [24]
for early surveys for solving such recurrences. Recurrences are as varied as there are algorithms. A typical
recurrence in combinatorial analysis is the linear recurrence, F (n) = d(n) +

∑k
i=1 aiF (n − i). Such F (n)’s

are normally exponential in n. In the census of combinatorial structures (e.g., [4, 15]), functions that grow
double exponentially also arise. But such fast growing functions are atypical in the analysis of efficient
algorithms. Here, the proto-typical recurrence has the form

T (n) = aT (n/b) + d(n) (1)

where a > 0 and b > 1 are arbitrary real numbers, and d(n) ≥ 1 is the driving function. Solving this
recurrence and its generalizations is the focus of this paper.

∗This work is partially supported by National Science Foundation Grant #CCF-0728977, and also by the Korea Institute of
Advanced Study (KIAS) when the author was visiting as a KIAS Scholar.
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Two well-known examples of (1) arise in Mergesort (where a = b = 2, d(n) = n) and in Strassen’s matrix
multiplication (where a = 7, b = 2, d(n) = n2). In attempts to improve Strassen’s algorithm, we see some
rather exotic examples of (1). E.g., Pan’s 1978 matrix multiplication algorithm where a = 143640, b =
70, d(n) = n2 (see [6]). In contrast to linear recurrences, the master recurrence has polynomial-bounded
solutions unless d(n) itself is non-polynomial. We will call (1) the master recurrence since theorems that
provide solutions to this recurrence are now widely known as “master theorems”. The solutions depend on
the nature of d(n). The case where d(n) is multiplicative, i.e., d(nm) = d(n)d(m), is treated in [3, p. 301].
In an influential note, Bentley, Haken and Saxe proved a master theorem ([6, Table 1, p.39]) under a fairly
general hypothesis on d(n). The master recurrence can be generalized to

T (n) =

k∑
i=1

aiT (n/bi) + d(n) (2)

where ai > 0 and bi > 1 are arbitrary real constants (k ≥ 2). We will call this the multiterm master
recurrence. An important case is the 2-term master recurrence T (n) = T (n/b1) + T (n/b2) + n. When
1
b1

+ 1
b2
< 1 the solution is linear, T (n) = Θ(n). This is the basis of the fast median algorithm of Blum,

Floyd, Pratt, Rivest and Tarjan [7]. Variants of their median algorithm led to different values for (b1, b2).
E.g., (b1, b2) = (5, 10/7) in [20] and (b1, b2) = (5, 4/3) in [23]. Another 2-term recurrence is T (n) = T (n/2)+
T (n/4) + log7 n. The solution T (n) = Θ(nα) where α = 0.694 . . . is the query time for the so-called
conjugation tree of Edelsbrunner and Welzl [11].

In discussing the literature, it is useful to begin with the “standard” master theorem which solves the
master recurrence (1). This is given as Proposition 1 below. There are two kinds of generalizations of this
result: (A) The first kind, as in Verma [33], extends the class of driving functions d(n) that are captured by
the standard master theorem. Verma’s main result [33, Theorem 13] provided integral bounds on solutions
when the driving functions d(n) satisfy some general convergence or growth properties. (B) The second kind
of generalization comes from extending the master recurrence itself. Thus, Wang and Fu [34, Theorem 3.5]
gave an integral bound on solutions to a parametric form of (1) in which the constants a, b are now functions
of n. Of course, the multiterm master recurrence (2) represents a generalization of the second kind. An
early treatment is found in Purdom and Brown [28]. The first multiterm master theorems in the literature
are from Kao [17] and Akra and Bazzi [5]. Akra and Bazzi used an “order transform” of real functions
to prove an integral bound [5, Theorem 3] on solutions to (2); their master theorem is inferred from this
bound. Leighton [22] provides an alternative exposition of [5], and discussed the removal of the ceiling and
floor functions. Roura [31, Theorem 2.3] provides a general multiterm master theorem; but in addition, he
introduced a “continuous master recurrence” to treat recurrences arising from probabilistic analysis (see also
[30, 29]). We will compare our results with these papers at the appropriate junctures.

We prove two main results: Theorem A in Section 4 solves the master recurrence for an infinite family of
driving functions d(n). It can be viewed as a natural completion of several known extensions of the standard
master theorem. Thus Theorem A belongs to the first kind of generalization. Theorem B in Section 6
extends the master theorem to the multiterm master recurrence. Thus it belongs to the second kind of
generalization. All our proofs use only elementary arguments.

The approach in this paper has two special emphases.

• Our first emphasis is on “real” recurrences: we regard (1) and (2) as real recurrences in the sense that
n is a real variable, T (n) a real function and all constants a, b, ai, bi are real numbers. The standard
approach in the algorithms literature is to regard n as an integer variable. An example is the following
multiterm recurrence taken from Kao [17]:

T (n) =

{
c · nα · logβ n+

∑k
i=1 aiT (dbine) for n ≥ n0

cn for n < n0
(3)
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where n and k are positive integers, c, cn, ai are positive constants, α, β are non-negative constants,
bi ∈ (0, 1) and n0 ≥ maxki=1

1
1−bi . The integer viewpoint is also found in the cited work of Wang-Fu,

Akra-Bazzi and Roura.

Although the original interpretation of T (n) is only meaningful for integer values of n, we note that
most driving functions are naturally real functions. E.g., d(n) =

√
n and d(n) = n log n. Hence our

real extension remains well-defined if we simply omit the integer-valued functions such as ceilings or
floors; e.g., in (3), we simply write “T (bin)” instead of “T (dbine)”. Since the recursive treatment
of ceiling/floor is ugly, there is another standard approach, by domain restriction. Taking master
recurrence (1) as example, we restrict the domain of T (n) to only positive powers of b (e.g., [8, p. 145,
Problem 4.44] or [33]). Of course, b is also restricted to be integer. Finally, to enlarge this restricted
domain to all n, one use special arguments involving floors and ceilings (e.g., [9, pp. 81–84]) or makes
smoothness assumptions on T (n). But this restricted domain approach is somewhat problematic for
multiterm master recurrences (2). We hope to show the simplicity and beauty of the real approach
in this paper. Although the idea of real recurrences is nascent in several of the cited papers (e.g.,
[5, 33, 31]), it seldom takes on a full-blown form. In this paper, we develop basic tools to rigorously
treat real recurrences.

• The second emphasis is to solve T (n) up to Θ-order. This is conventional wisdom in the algorithmic
literature (e.g., [2, 6]) because it yields more robust, implementation-independent conclusions about
complexity. In fact, the above omission of ceiling or floor functions is justified on the ground that
such actions preserve the Θ-order of solutions under very mild and usually automatic restrictions.
Despite their Θ-order emphasis, many authors do not fully exploit the simplifications that it affords
(cf. [33, 34, 31]). But up to Θ-order, solutions are insensitive to the initial conditions and simple
variations in the recurrences – these are the “Θ-robustness” properties of the solution space. For this
reason, we generally do not include initial conditions in our recurrences, but assume the following
default initial condition (DIC):

T (n) = 1, (n ≤ n0) (4)

for some real n0, and the recurrence equation is assumed to be operative for n > n0. For instance,
using real recurrences under DIC, Kao’s recurrence (3) would be simply written as

T (n) = nα logβ n+

k∑
i=1

aiT (bin)

Roura [31] and Leighton [22] also discuss robustness issues. Furthermore, the analysis tools in textbooks
are much sharper than what is strictly needed for Θ-order analysis. For instance, a summation is often
bounded via the exact Euler-Maclaurin formula (14) (Section 2). We seek to replace such calculus
tools by cruder but elementary tools which suffice for Θ-order bounds. Here “elementary” means the
avoidance of calculus or continuous methods like limits.

Our use of elementary methods has two advantanges: the pedagogical advantage of avoiding calculus
is obvious, but the other methodological advantage is that our driving function d(n) need not be
differentiable or even continuous (weaker Lipschitz type bounds suffice). As another remark: we are
not interested in generalizations that leaves the solution T (n) as an integral or as an open sum (cf. [34])
The usefulness of the Master theorem is that it provides ready-to-use closed form solutions.

These two emphases explain the title of this paper. In summary, we believe the main advantage of our
overall approach is simplicity and power.

¶1. On the Master Theorem. It is important to understand the “standard” master theorem as it
provides the basic motif for generalizations. With respect to the master recurrence (1), let us define a
watershed constant

α := logb a (5)

3



and an associated watershed function w(n) = nα. The watershed terminology derives from the fact that
the master theorem says that the solution to the ma to the master recurrence has three cases, obtained
by comparing d(n) to the watershed function w(n):

Proposition 1 (Master Theorem) The solution to (1) has the form:

T (n) =

 Θ(nα) if d(n) = O(w(n)n−ε) for some ε > 0 [CASE (−)]
Θ(nα log n) if d(n) = Θ(w(n)) [CASE (0)]
Θ(d(n)) if “d(n) = Ω(w(n)nε)” for some ε > 0 [CASE (+)].

(6)

This is taken from [9, p. 73], except we now interpret T (n) as the solution to a real recurrence (so we
allow a > 0 instead of their a ≥ 1). The three cases of this theorem correspond to, respectively, d(n) being
polynomially-slower [CASE (−)], being Θ-order of [CASE (0)], and being polynomially-faster [CASE (+)]
than the watershed function. The condition for CASE (+) is written in quotes in (6) because the original
paper of Bentley et al [6, p. 39] defines the Ω-notation in an unusual way: “d(n) = Ω(w(n)nε)” if there exists
K > 0 such that for all c > 1,

d(n) ≥ K · cα+ε · d(n/c) (ev. n). (7)

Here, the qualification “(ev. n)” reads as “eventually n”, and asserts that the statement is true for sufficiently
large n. Cormen et al [9] replaces this by the weaker regularity condition: there exists C > 1 such that

d(n) ≥ C · a · d(n/b) (ev. n). (8)

Note that (7) implies (8). Assuming that d(n) ≥ 1 for n > 0, (8) implies that for some ε > 0, d(n) ≥
Kw(n)nε (ev.), which is the standard definition of “d(n) = Ω(w(n)nε)” (see definitions below).

By treating (1) as a real recurrence, we can verify the master theorem relatively easily as follows. By
induction on i = 0, 1, . . ., we see that

T (n) = ai+1T
(
n/bi+1

)
+

i∑
j=0

aj · d
( n
bj

)
.

Assuming T (n) = 0 for n < 1 (this is justified below), and setting m = dlogb ne, we obtain the open sum,

T (n) =

m∑
j=0

ajd(n/bj). (9)

The 3 cases can now be verified by plugging in the corresponding bounds for d(n).

It is well-known that the 3 cases of the standard master theorem are non-exhaustive. For instance, the
case d(n) = w(n) logδ n (δ 6= 0) is not covered. However, the master recurrence is amenable to two general
transformation techniques called domain transformation (or change of variable) and range transfor-
mation (or summation factor). See, e.g., [8, pp. 130-137]. Using these transformation methods, we obtain
a transformed version of (9), and as a result we can easily provide a solution for the case d(n) = w(n) logδ n.
This yields the following extension of Proposition 1:

Proposition 2 (Brassard-Bratley) Let T (n) be the solution to the master recurrence (1).

T (n) =


Θ(d(n)) if d(n) satisfies the regularity condition (8) [CASE (+)] ,

Θ(d(n) log n) if d(n) = Θ(nα logδ n)) for some δ > −1 [CASE (0)] ,

Θ(d(n) log n log log n) if d(n) = Θ(nα logδ n)) where δ = −1 [CASE (1)] ,

Θ(nα) if d(n) = O(nα logδ n) for some δ < −1 [CASE (−)] .
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REMARKS:
1. Proposition 2 generalizes the standard master theorem (6) because the original CASE (−) is subsumed by
the new CASE (−), the original CASE (0) is subsumed by the new CASE (0), and CASE (+) is unchanged
(assuming we originally use the regularity condition (8)). But CASE (1) is new.
2. Proposition 2 is from [8, p. 145] (cf. [9, p.84, Ex.4.4-2]), slightly sharpened. In particular, we state CASE
(+) in terms of the regularity condition, thus allowing d(n) to be arbitrarily complex. Because [8] focuses
on integer recurrences, they assume that n has the form n0b

i for integers n0 ≥ 1 and b ≥ 2 (but a > 0 real).
3. Wang and Fu also has a version of this Proposition (see §4.3 and the last row of Table 1 in [34]). Roura
[30] noted an abbreviated form of Proposition 2 but missed CASE (1). Theorem 1 of Verma [33] is also a
form of Proposition 2, but his case 3 is weaker than our CASE (0) because he assumes δ ≥ 0.
4. What is the next step to take? Observe that Proposition 2 is silent when the driving functions are

d0(n) = nα log n log log n, d1(n) = nα(log log n)r, d2(n) = nα
(log log log n)s)

log n log log n
(10)

for all r ∈ R and s > −1. Note that d0(n) appears in the recurrence for the Schönhage-Strassen multiplication
algorithm [32] with α = 1. Theorem A below will provide solutions for an infinite class of driving functions
that are natural generalizations of such examples. The solutions corresponding the driving functions of (10)
are

T0(n) = Θ(nα · log2 n log log n), T1(n) = Θ(nα · log n(log log n)r), T2(n) = Θ(nα(log log log n)s+1).

But another generalization of Proposition 2 is to prove its multiterm analogue; this is our Theorem B.

¶2. Notations for Partial Functions. We recall some basic concepts of complexity analysis. We take
special care in discussing partial functions since they are usually not systematically treated (cf. [36]). Let
f : R → R be a partial real function. If f is undefined at x ∈ R, we write f(x) ↑; otherwise write f(x) ↓.
Let domain(f) := {x ∈ R : f(x) ↓} and range(f) := {f(x) : x ∈ R, f(x) ↓} denote the proper domain and
proper range of f . We may call R the nominal domain and nominal range of f . A real predicate
is a partial function P : Rk → {0, 1}. We say the predicate P holds at x ∈ Rk, written “P (x) holds”, if
P (x) ↑ or P (x) = 1. Thus, there are two possibilities when P holds at x: (1) Either P (x) ↑, in which
case we say P (x) holds vacuously (2) Or P (x) = 1, in which case we say P is valid at x. We say P
is eventually valid, if there is some c such that P (x) = P (x1, . . . , xk) = 1 for all xi > c. Thus “validity”
always implies the underlying functions in the definition of P are defined. For example, we say f(x) is
eventually increasing if x < y implies f(x) < f(y) is eventually valid. In particular, this implies that f is
eventually defined.

Examples. Our real predicates P (x) are typically constructed from partial functions f . E.g., “f(x) ≥ 0”
represents the predicate Pf where Pf (x) ↑ if f(x) ↑, otherwise Pf (x) ↓ and Pf (x) = 1 iff f(x) ≥ 0. This
generalizes in the obvious way to the multivariate setting and possibly involving several partial functions.
E.g., P (x) is “f0(x) ≤ f1(x)” or P (x, y) might be “f0(x, y) = f1(x) + f2(y)”. Thus, the predicate “

√
x ≥ 0”

is valid since
√
x is non-negative whenever defined. But the predicate “log x ≥ 0” is (only) eventually valid.

A complexity function is a partial real function f such that f(x) ↓ (ev.). The running time T (n)
of an algorithm is often defined only for n ∈ N. We turn T into a complexity function f by defining
f(x) := sup {T (n) : n ≤ x, T (n) ↓}; thus, f(x) ↑ iff for all n ≤ x, T (n) ↑.

For complexity functions f and g, say f dominates g, written f � g if there is some K > 0 such that
f(x) ≥ Kg(x) is eventually valid. We write g = O(f) (big-Oh) if g : f � g � 0. Here, we follow [9] in
requiring g � 0 (i.e., g is eventually non-negative). Similarly, g = Ω(f) (big-Omega) if g � f and g � 0. and
g = Θ(f) (big-Theta) if g = O(f) and f = O(g). The notation f = o(g) (small-oh), is usually defined using
limits. In the spirit of avoiding calculus, we can define it as follows: f = o(g) if for all C > 0, 0 ≤ f ≤ C · g
(ev.).
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Let log x denote the real-valued logarithm function, to some unspecified base b > 1. Thus, we have log x ↑
for x ≤ 0. Let ln and lg denote the logarithm to the natural base b = e and base b = 2, respectively. We
mostly use lg because it suits our elementary arguments (this is the “computer science logarithm”). The
iterated logarithm function (to base 2) is defined as

``gk(x) := lg(lg(· · · (lg(x)) · · · ))︸ ︷︷ ︸
k times

for k ∈ N. E.g., ``g0(x) = x, ``g1(x) = lg x, ``g2(x) = lg lg x. We may extend the index k to range over all

the integers: for k ∈ N, define ``g−(k+1)(x) := 2``g−k(x). Thus ``g−1(x) = 2x and ``g−2(x) = 22
x

. When we
compose these functions, the following is valid: ``gm(``gn(x)) = ``gm+n(x). Note that the left-hand side
may be undefined even when the right-hand side is defined; but by our definition of predicates constructed
from partial functions, this counts as satisfying the predicate (vacuously).

2 Elementary Summation Techniques

¶3. Summing Values of Real Functions. Given a partial real function f : R → R, we consider two
kinds of discrete summation on values of f between arbitrary real limits a, b ∈ R:∑b

x≥a f(x) := f(b) + f(b− 1) + f(b− 2) + · · ·+ f(b− bb− ac), (descending)

∑b
x=a f(x) := f(a) + f(a+ 1) + f(a+ 2) + · · ·+ f(a+ bb− ac) (ascending)

 (11)

Both sums are by definition equal to 0 when b < a. If b ≥ a, the descending sum will include the term
f(b) while the ascending sum will include f(a). But neither will not include both f(a) and f(b) unless
b− a ∈ N. The distinction between ascending and descending sums is indicated by way we write their lower
limits: “

∑
x≥a” versus “

∑
x=a”. For instance,

∑π
x≥1 f(x) = f(π) + f(π − 1) + f(π − 2) while

∑π
x=1 f(x) =

f(1) + f(2) + f(3) where π = 3.14159 . . .. Another convention concerning summation over partial functions

is this: if a summand is undefined, it is replaced by 0. Thus, the sums
∑b
x≥a f(x) and

∑b
x=a f(x) are always

defined. E.g.,
∑4
x≥1 lg lg lg lg(x) = 0 since lg lg lg lg(x) ↑ for x ≤ 4. The following identity connects these 2

summation conventions:
b∑

x≥0

f(x) ≡
b∑

x=0

f(b− x). (12)

These conventions afford rigorous tools for manipulation of real valued discrete sums in the algorithmic
literature.

Our main focus will be descending sums of the form

Sf (n) :=

n∑
x≥1

f(x) (13)

for real values of n. Traditionally, the sum Sf (n) (for n ∈ N) is bounded using the Euler-Maclaurin summa-
tion formula,

n−1∑
i=1

f(i) =

∫ n

i

f(x)dx+

( ∞∑
i=1

Bif
(i−1)(x)

i!

)x=n
x=1

(14)

where Bi is the ith Bernoulli number (e.g., [13, p. 217]). But we seek cruder but easier-to-use elementary
methods which can determine Sf (n) up to Θ-order.
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¶4. Summation Rules. We classify complexity functions f by their growth properties:

• We say f is polynomial-type if f ≥ 0, f is non-decreasing, and for some K > 0,

f(x) ≤ Kf(x/2) (ev.). (15)

E.g., f(x) = 1 is polynomial-type. So are the following functions:

f0(x) = x, f1(x) = log max {1, x} , f2(x) = f0(x)f1(x), f3(x) = (f0(x))a (a > 0).

The requirement “f ≥ 0” says that, whenever f(x) ↓, it must be non-negative. Hence the partial
function log x is not polynomial-type; its modified version f1(x) is polynomial-type.

• We say f is increasing exponential-type if f > 0 and there are real numbers C > 1 and k > 0 such
that

f(x) ≥ C · f(x− k) (ev.). (16)

E.g., the following functions are increasing exponential-type.

g0(x) = 2x, g1(x) = x!, g2(x) = g0(x)g1(x), g3(x) = 2g0(x)

• We say f is decreasing exponential-type if f > 0 and there are real numbers 0 < c < 1 and k > 0
such that

f(x) ≤ c · f(x− k) (ev.). (17)

E.g., the following functions are decreasing exponential-type.

h0(x) = 2−x, h1(x) = x−x, h2(x) = h0(x)h1(x), h3(x) = 2h0(x)

We say f is exponential-type if it is an increasing or decreasing exponential-type. The following is
immediate from the above definition of the growth types:

• If f is polynomial-type then f(x) = O(xlgK).

• If increasing exponential-type then f(x) = Ω(Cx/k).

• If decreasing exponential-type then f(x) = O(cx/k).

We say the discrete sum Sf (n) given by (13) is polynomial-type or exponential-type, according
to the above classification of f . We may also say “increases/decreases exponentially” to describe the two
exponential-types.

Theorem 3 (Summation Rules)
(i) If f is polynomial-type, then Sf (n) = Θ(nf(n)).
(ii) If f is exponential-type,

Sf (n) =

{
Θ(f(n)) if f increases exponentially,
Θ(1) if f decreases exponentially.

Proof. (i) For a polynomial-type sum, using the fact that f is non-decreasing, we get the upper bound
Sf (n) ≤

∑n
x≥1 f(n) = nf(n). For lower bound, we also use the fact that f(x) ≤ Cf(x/2) (ev.) for some

7



C > 0. Eventually, we have

Sf (n) ≥
n∑

x≥n/2

f(x)

≥
n∑

x≥n/2

f(n/2) ≥ bn/2c f(n/2)

≥ bn/2c f(n)

C
= Ω(nf(n)).

(iia) For an increasing exponential sum, there are constants C > 1, k > 0 and n0 > 0 such that for all
n ≥ n0 + k, we have f(n) ↓ and f(n) ≥ Cf(n− k). By increasing n0 and k if necessary, we may assume k is
an integer. Next, for each n ≥ n0 + 2k, we may pick n1 ∈ [n0 + k, n0 + 2k) so that n− n1 is divisible by k.
Note that although n1 depends on n, it is at most n0 + 2k. Thus,

Sf (n) = f(n) + f(n− 1) + · · ·+ f(n1 + 1) + Sf (n1)

We subdivide the sum f(n) + f(n − 1) + f(n − 2) + · · · + f(n1 + 1) into k different sub-sums, each of the
form

Tκ := f(n− κ) + f(n− κ− k) + f(n− κ− 2k) + · · ·+ f(n1 − κ+ k) (18)

for some κ = 0, 1, . . . , k − 1. Each sub-sum Tκ satisfies

Tκ ≤ f(n− κ)

[
1 +

1

C
+

1

C2
+ · · ·

]
= f(n− κ)

C

C − 1
= O(f(n− κ)) = O(f(n)).

Thus Sf (n) = Sf (n1) +
∑k−1
κ=0 Tκ = O(f(n)), since n1 ≤ n0 + 2k. The lower bound Sf (n) ≥ f(n) is

immediate.

(iib) For a decreasing exponential sum, there is some c < 1, k > 0 and n0 > 0 such that for all n ≥ n0,
we have f(n) ↓ and f(n + k) ≤ cf(n) and f(n0) ≥ f(n). Again we may choose k and n0 such that k ∈ N.
Next, for each n ≥ n0 + 1, we may choose n1 ∈ [n0, n0 + 1) such that n− n1 ∈ N (again, n1 depends on n).
Then,

Sf (n) ≤ Sf (n1) + f(n1 + 1) + f(n1 + 2) + · · · = Sf (n1) +

∞∑
i=1

f(n1 + i).

The sum
∑∞
i=0 f(n1 + i) can be broken up into k sub-sums, as in (18). Each sub-sum is bounded as

f(n1 − κ+ k) + f(n1 − κ+ 2k) + f(n1 − κ+ 3k) + · · ·
≤ f(n1 − κ+ k)

[
1 + c+ c2 + · · ·

]
≤ f(n1)

1

1− c
= O(1).

Thus Sf (n) = O(1). But Sf (n) ≥ f(n1) > 0 and hence Sf (n) = Θ(1). Q.E.D.

Our polynomial-type functions is just Verma’s “slowly growing functions” [33]. But we do not have his
“slowly diminishing functions” because their sums do not seem to allow any simple Θ-order rule as in The-
orem 3. For instance, f(x) = x, f(x) = 1, f(x) = 1/x, f(x) = 1/x2, f(x) = 1 are all slowly diminishing, but
Sf (n) is Θ(n2),Θ(n),Θ(log n),Θ(1). Our theorem is elementary and easy to use: once we have determined
the type of the sum, we can mechanically write down its Θ-order. This is illustrated in the following:
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• Polynomial sums:

n∑
x≥1

xk = Θ(nk+1) for k > 0,

n∑
x≥1

log2 x = Θ(n log2 n),

n∑
x≥1

x2/ log x = Θ(n3/ logn). (19)

• Increasing Exponential Sums.

n∑
x≥1

2x = Θ(2n),

n∑
x≥1

x−522x = Θ(n−522n),

n∑
x≥1

x! = Θ(n!) . (20)

• Decreasing Exponential Sums.

n∑
x≥1

2−x = Θ(1),

n∑
x≥1

x2x−x = Θ(1),

n∑
x≥1

x−x = Θ(1) . (21)

¶5. Closure Properties. The usefulness of the summation rules comes from shifting the burden of
estimating sums Sf (n) to verifying the growth type of f . To determine growth types, we exploit the fact
that many functions are constructed out of simpler functions, and the constructions preserve or systematically
transform growth types. Here are some common construction methods:

Lemma 4 Let a ∈ R.
(i) Polynomial-type functions f, g are closed under addition, multiplication, raising to any positive power
a > 0, summation Sf (n), and function composition f ◦ g.
(ii) Exponential-type functions g are closed under addition, multiplication, raising to any power a. If g is
increasing exponential-type, it is closed under summation Sg(n). In case a > 0, the function ga will not
change its subtype (increasing or decreasing). In case a < 0, the function ga will change its subtype.
(iii) If f is polynomial-type then the composition f ◦ log is also polynomial-type. If, in addition we have
f > 1 (ev.), then log ◦f is also polynomial-type. If g is exponential-type and a > 1 then so is ag.

Proof. All the inequalities in the following derivations are assumed to be eventually valid. In brief:
(i) Assume f(n) ≤ Kf(n/2) and g(n) ≤ Kg(n/2) for some K > 1. Then f(n) + g(n) ≤ K(f(n/2) + g(n/2)),
f(n)g(n) ≤ K2f(n/2)g(n/2), and for any a > 0, f(n)a ≤ Kaf(n/2)a. For summation, we have

Sf (n) =

n∑
x≥1

f(x) ≤
n∑
x≥1

Kf(x/2) ≤
n/2∑
x≥1/2

K[f(x− 1
2 ) + f(x)] ≤

n/2∑
x≥1/2

2Kf(x) = O(Sf (n/2)).

For function composition, we may assume K is a power of 2:

f(g(n)) ≤ f(K · g(n/2)) ≤ K · f(K/2 · g(n/2)) ≤ · · · ≤ K lgK · f(g(n/2)).

(ii) For i = 0, 1, assume gi(n) ≥ Cgi(n−k) and hi(n) ≤ chi(n−k) for some C > 1, c < 1. Also, write g = g0,
h = h0. Closure under addition: g0(n) + g1(n) ≥ C(g0(n−k) + g1(n−k)) and h0(n) +h1(n) ≤ c(h0(n−k) +
h1(n−k)). Closure under product: g0(n)g1(n) ≥ C2g0(n−k)g1(n−k)) and h0(n)h1(n) ≤ c2h0(n−k)h1(n−k).
Closure under raising to power a: If a > 0, then ga(n) ≥ Caga(n−k) and ha(n) ≤ caha(n−k) where Ca > 1
and ca < 1. If a < 0, then ga(n) ≤ Caga(n − k) and ha(n) ≥ caha(n − k) where Ca < 1 and ca > 1. For
summation of increasing exponential-types, we have

Sg(n) =

n∑
x≥1

g(x) ≥
n∑
x≥1

C · g(x− k) ≥ C
n−k∑
x≥1−k

g(x) ≥ CSg(n− k).

9



(iii) Assume f(n) ≤ Kf(n/2) (ev.). Then f(log(n)) ≤ Kf(log(n)/2) ≤ Kf(log(n/2)), showing f ◦ log is
polynomial-type. If f > 1 (ev.), then using the fact that f is non-decreasing, we have log(f(n/2)) ≥ ε (ev.)
for some ε > 0. So log(f(n)) ≤ (logK) + log(f(n/2)) ≤ (1 + (logK)/ε) log(f(n/2)). Thus proves log ◦f is
polynomial-type. Q.E.D.

Although the growth type of f is usually easy to determine, there are exceptions. Moreover, the following
example shows that our two growth types are not exhaustive:

Lemma 5 The function f(x) = xln x is not polynomial-type and not exponential-type.

Proof. It is easily seen that f(x) is not polynomial-type. By way of contradiction, suppose f(x) is
exponential-type. It must be increasing exponentially, so there exists C0 > 1 and k > 0 such that

f(x) ≥ C0f(x− k) (ev.). (22)

We will use the elementary estimate

lnx ≤ ln(x− k) + (2k/x) (ev.). (23)

Eventually, we have

f(x) =
[
(x− k)(1 + k

x−k )
]ln x

≤ (x− k)ln(x−k)+(2k/x)(1 + k
x−k )ln x (by (23))

= f(x− k) · (x− k)2k/x · eln(1+
k

x−k ) ln x

≤ f(x− k) · e2k ln(x−k)/x · e
k ln x
x−k (since ln(1 + y) < y for |y| < 1)

= f(x− k) · C1(x)

where C1(x) := e2k ln(x−k)/x · e
k ln x
x−k . Since lnC1(x) = (2k ln(x− k)/x) + (k lnx/(x− k)) → 0 as x →∞, we

conclude that C1(x) < C0 (ev.). This show f(x) < f(x− k)C0 (ev.), contradicting (22). Q.E.D.

3 Summation in Elementary Terms

¶6. Exponential-Logarithmic Functions. To generalize Proposition 2, we now introduce a family of
partial real functions, based on iterated logarithms or exponentials. For a ∈ R, the a-th power of ``gk(x)
is denoted ``gak(x) := (``gk(x))a. An exponent sequence is any finite sequence e = (e0, e1, . . . , e`), ` ≥ 0,
of real numbers. We say e is normalized if either ` = 0 or e0e` 6= 0. Given k ∈ Z and e = (e0, . . . , e`), we
define1 an elementary term to be an expression of the form

ELe
k(x) :=

∏`
i=0 ``g

ei
k+i(x). (24)

E.g., EL
(−2,0,π)
0 (x) = x−2(lg lg(x))π and EL

(−2,0,π)
1 (x) = lg−2(x)(lg lg lg(x))π.

Each elementary term represents a partial real function, called an EL-function. The trivial EL-

function is EL
(0)
k (x) = 1 for all x and k. Conversely, each EL-function f(x) can be represented by an

elementary term (24). If f(x) is non-trivial, the elementary term (24) is unique when e is normalized. The

1Here, “elementary” refers to functions composed from logarithms and exponentials, not in the sense of avoiding calculus.
EL is mnemonic for both ELementary and Exp-Log.
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order of f is k, and its exponent is e where ELe
k(x) is the unique elementary term for f . If f is trivial,

we define its order to be 0 and its exponent to be (0). Denote the order and exponent of f by Ord(f) and
Exp(f), respectively.

The set of EL-functions is totally ordered by the lexicographical ordering <L of their exponents and
order. Given an order k and exponent e = (e0, . . . , e`), let the (k-shifted) augmented exponent σk(e) be
the doubly infinite sequence σk(e) = (. . . , d−1; d0, d1, d2, . . .) where di+k = ei for i = 0, . . . , `, and di+k = 0
for i > ` or i < 0. We mark the “origin” d0 of the doubly infinite sequence with a semicolon, (. . . , d−1; d0, . . .),
viewing σk(e) as the pair of infinite sequences, (d0, d1, d2, . . .) and (d−1, d−2, . . .). If e is not all zeros, and
if i is is the smallest index such that ei 6= 0, we call ei the leading power in e. Say e is negative (resp.,
positive) if its leading power is negative (resp., positive). Clearly, σk(e) is negative or positive according as
e is negative or positive, independent of k. Given two order-exponent pairs (k,d) and (`, e), we order them
as

(k,d) <L (`,d)

if the component-wise difference σk(d) − σ`(e) is negative. We write f <L g iff (Ord(f), Exp(f)) <L
(Ord(g), Exp(g)). Also write f ≤L g for f = g or f <L g. The following ordering of EL-functions is
well-known:

Lemma 6 Let f, g be EL-functions.
(i) f is a complexity function. Moreover, f ≥ 0 and is monotone increasing or monotone decreasing.
(ii) If Exp(f) is positive, then f is strictly monotone increasing (ev.), and if Exp(f) is negative, f is strictly
monotone decreasing (ev.).
(iii) f ≺ g iff (Ord(f), Exp(f)) <L (Ord(g), Exp(g))
(iv) If Ord(f) 6= Ord(g) then f ≺ g iff f = o(g)
(v) An EL-function is polynomial-type if its order is non-negative; otherwise, it is exponential-type.
(vi) If f is exponential-type, then it is increasing exponentially if its leading power is positive, and it is
decreasing exponentially if its leading power is negative.

We omit the simple proofs.

Lemma 6(iii) implies that the EL-functions are totally ordered under the domination relation; this is a
special case of the total ordering of algebraico-logarithmic functions of Hardy [16]. From Lemma 6(v) and
Lemma 5, we conclude2 that f(x) = xlg x is not an EL-function. Nevertheless, lg f(x) is an EL-function.
The following transformation of EL-functions is immediate from the definitions: ELe

k(2x) = ELe
k−1(x) and

ELe
k(lg x) = ELe

k+1(x). More generally, we have

ELe
k(``g`(x)) = ELe

k+`(x). (25)

¶7. Error Notation. In the following proofs, we use a convenient notation for additive error terms from
from [36]: in any numerical expression, each occurrence of the symbol “±” is replaced by “+θ” where θ is an
anonymous variable satisfying |θ| ≤ 1. Thus, we write x = y ± ε to mean that x = y + θε for some θ where
|θ| ≤ 1. This is equivalent to saying |x − y| ≤ |ε|. Each occurrence of ± introduces a new θ variable. Like
the big-Oh notation, we view it as a variable hiding device.

For instance, consider the summation S =
∑n
i=1 f(n± c) for some constant c. The ith summand f(n± c)

in S may depend on i, but it is hidden by ± convention (i.e., S =
∑n
i=1 f(n+ θic) where |θi| ≤ 1). Then we

2Of course, the expression xln x is not an EL-expression, but it might be possible to express the same function using some
other EL-expression.
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have
S = nf(n± c). (26)

This follows easily from the fact if f is continuous then

a · f(x) + b · f(y) = (a+ b)f(x± (y − x)) (27)

whenever a, b are non-negative. If f is monotone (as in our applications), there is a unique solution for
x± (y − x) in (27). For k ≥ −1, we also have

ELe
k(n) = Θ(ELe

k(n± c)) (28)

for any c ∈ R. For k ≥ 0, this follows from the fact that f(n) = O(f(n ± c)) if f is polynomial-type. This
bound is also valid for k = −1 since (2n)e = Θ((2n±c)e).

¶8. Elementary Sums. Call Sf (n) an elementary sum when f is an EL-function. If f(x) = ELe
k(x),

then we denote the elementary sum by

Se
k (n) :=

n∑
x≥1

ELe
k(x). (29)

For any exponent sequence e = (e0, e1, . . . , e`), we use the convenient notation,

e + 1 := (1 + e0, e1, . . . , e`). (30)

The following transformation of elementary sums is the key to our elementary proofs:

Lemma 7 Assume k ≥ 0 and e = (e0, e1, . . . , e`). For all real n,

Se
k (n) = Θ(Se+1

k−1(lg n)).

Proof. Let e′ = (e1, . . . , e`) with the convention that e′ = (0) if ` = 0. Initially, assume n+ 1 is a power of 2:

Se
k (n) =

∑n
x≥1 ELe

k(x) =
∑lg(n+1)
p=1

∑2p−1
x=2p−1 ELe

k(x) (since n+ 1 is a power of 2)

=
∑lg(n+1)
p=1

∑2p−1
x=2p−1 ELe

k(2p±1)

=
∑lg(n+1)
p=1 2p−1ELe

k(2p±1) (by (26))

=
∑lg(n+1)
p=1 2p−12(p±1)e0ELe′

k+1(2p±1)

= Θ
(∑lg(n+1)

p=1 2(p±1)(1+e0)ELe′

k+1(2p)
)

(by (28), ELe′

k+1(2p±1) = Θ(ELe′

k (p)))

= Θ
(∑lg(n+1)

p=1 ELe+1
k (2p±1)

)
(by definition of e + 1)

= Θ
(∑lg(n+1)

p=1 ELe+1
k−1(p± 1)

)
(by (25))

= Θ
(∑lg(n+1)

p=1 ELe+1
k−1(p)

)
(by (28))

= Θ(Se+1
k−1(lg(n+ 1))) (by definition of Se+1

k=1)

Thus we have shown that
Se
k (n) = Θ(Se+1

k−1(lg(n+ 1))), (31)

when n + 1 is a power of 2. Next let n ≥ 3 be arbitrary. So there is some n′ such that (n − 1)/2 ≤ n′ < n
where n′ + 1 is the power of two. Thus 2n′ + 2 is also a power of 2. Hence

Se
k (n′) ≤ Se

k (n) ≤ Se
k (2n′ + 1).
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From (31), we have
Se
k (2n′ + 1) = Θ(Se+1

k−1(lg(2n′ + 2))) (by (31))

= Θ(Se+1
k−1(lg(n′ + 1)± 1))

= Θ(Se+1
k−1(lg(n′ + 1)))

= Θ(Se
k (n′)) (by (31)).

This shows that Se
k (n) = Θ(Se

k (2n′ + 1)). Moreover,

Se
k (n) = Θ(Se

k (2n′ + 1))

= Θ(Se+1
k−1(lg(2n′ + 2)))

= Ω(Se+1
k−1(lg n)). (32)

Se
k (n) = Θ(Se

k (n′))

= Θ(Se+1
k−1(lg(n′ + 1)))

= O(Se+1
k−1(lg n)). (33)

From (32),(33), we see that (31) is valid for all n. Q.E.D.

The next theorem shows that, up to Θ-order, elementary functions are closed under summation. In other
words, for any order k and exponent sequence e, there is an elementary function f such that Se

k (n) = Θ(f).
To explicitly describe f , we make two preparatory steps:

• An elementary term ELe
k(n) is said to be in reduced form if k and e = (e0, . . . , e`) satisfy

k ≤ 0 and (k = 0 or e0 6= 0). (34)

Note that every elementary function can be represented by a reduced form by repeated application of
the transformation

ELe
k(n)↔ EL

(0,e)
k−1 (n)

where (0, e) = (0, e0, . . . , e`). This transform does not change the value of the function, and can be
applied either direction. If k > 0, we use the forward direction to replace k by k − 1. If k < 0 and
the exponent sequence has the form (0, e), we use the backward direction to replace (0, e) with e.
The elementary term is reduced iff neither transformation is applicable. Termination of this process is
clear. Also, an elementary sum Se

k (n) is in reduced form if k and e satisfy (34).

• Given e = (e0, . . . , e`), let h be the largest index among {0, 1, . . . , `+ 1} such that e0 = e1 = · · · =
eh−1 = −1 and either h = ` + 1 or eh 6= −1. We may extend e to (e0, . . . , e`, 0) = (e0, . . . , e`, e`+1)
where e`+1 = 0. Then we define

e∗ :=


(0, 0, . . . , 0︸ ︷︷ ︸

h times

, 1 + eh, eh+1, . . . , e`+1) if eh > −1

(0) if eh < −1
. (35)

In particular, h = `+ 1 then e = (−1,−1, . . . ,−1︸ ︷︷ ︸
h times

) and e∗ = (0, 0, . . . , 0︸ ︷︷ ︸
h times

, 1). The next notation is also

helpful:

LLh(n) :=

h∏
i=1

``gi(n) = lg n · lg lg n · ``g3(n) · · · ``gh(n). (36)

Then, in case eh > −1, we see that

ELe∗

0 (n) = ELe
0(n)LLh(n). (37)
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Theorem 8 Let Se
k (n) be an elementary sum in reduced form with e = (e0, . . . , e`).

Se
k (n) = Θ


ELe

k(n) if (k ≤ −1 ∧ e0 > 0),

ELe∗

0 (n) if k = 0,
1 if (k ≤ −1 ∧ e0 < 0)

(38)

= Θ

 ELe
k(n) if (k ≤ −1 ∧ e0 > 0),

ELe
0(n)LLh(n) if (k = 0 ∧ eh > −1)

1 if (k ≤ −1 ∧ e0 < 0) or (k = 0 ∧ eh < −1)
(39)

where (e0, . . . , e`, 0) = (−1, . . . ,−1, eh, . . . , e`+1) and eh 6= −1.

Proof. Suppose k ≤ −1. Since the elementary sum is in reduced form, e0 6= 0. If e0 > 0, then Se
kn is an

increasing exponential sum; if e0 < 0, it is decreasing exponential sum. So the formula (38) for the two cases
of k ≤ −1 follows by our summation rules for exponential sums (Theorem 3).

Suppose k = 0. Let e′ = (e1, . . . , e`) be obtained from e by dropping e0. In case ` = 0, e′ = (0). We
have:

Se
0 (n) = Θ(Se+1

−1 (lg n)) (by Lemma 7)

= Θ(
∑lgn
p≥1 2(1+e0)pELe′

0 (p)).

Now the function F (p) := (21+e0)pELe′

0 (p) is equal to Θ(ELe′

0 (p)) if e0 = −1; it is increasing exponentially
if e0 > −1; and it is decreasing exponentially if e0 < −1. Applying the summation rules of Theorem 3 to
SF (log n), we conclude:

Se
0 (n) = Θ


(21+e0)lgnELe′

0 (lg n) if e0 > −1,∑lgn
p=1 ELe′

0 (p) if e0 = −1,

1 if e0 < −1.

= Θ


ELe+1

0 (n) if e0 > −1,

Se′

0 (lg n) if e0 = −1,
1 if e0 < −1.

(40)

Note that (40) includes the case where e = (0), in which case e+1 = (1) and S
(0)
0 (n) = Θ(EL

(1)
0 (n)) = Θ(n).

We may write e = (−1,−1, . . . ,−1, eh, eh+1, . . . , e`) for some h ∈ {0, 1, . . . , `+ 1}. Let

d =

{
(eh, eh+1, . . . , e`) if h ≤ `
(0) if h = `+ 1

We view (40) (case e0 = −1) as a transformation rule for Se
0 (n). Applying this transformation for h times,

we obtain

Se
0 (n) = Θ(Se′

0 (lg n))

= · · ·
= Θ(Sd

0 (``gh(n))).

Applying transformation (40) once more, to Sd
0 (``gh(n)), we have three possibilities:

(a) If eh < −1, then
Sd
0 (``gh(n)) = Θ(1).

(b) If h = `+ 1, then d = (0) and

Sd
0 (``gh(n)) =

``gh(n)∑
p≥1

EL
(0)
0 (p) = ``gh(n) +O(1). (41)
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(c) If eh > −1, then

Sd
0 (``gh(n)) = ELd+1

0 (``gh(n))

= ELe∗

0 (n)

where e∗ = (0, 0, . . . , 0︸ ︷︷ ︸
h times

, 1 + eh, eh+1, . . . , e`). The three possibilities (a)-(c) are captured by our formula (38):

Se
k (n) = Θ(ELe∗

0 (n)).

We can also regroup the cases of (38) as in (39), to show the three distinct solution functions. Q.E.D.

We note some consequences of Theorem 8. The simplest case is when k = 0 and e = (c), and f(x) = xc

(for any c ∈ R). Then (38) becomes

Sf (n) =

n∑
x=1

xc = Θ

 nc+1 if c > −1,
lg n if c = −1,
1 if c < −1.

This result combines, within a common proof framework, three standard estimates: (i) the “generalized
arithmetic sum”

∑n
i=1 i

k = Θ(nk+1) (k ∈ N), (ii) the harmonic numbers Hn = Θ(lg n), and (iii) the
decreasing exponential series

∑n
i=1 b

i = Θ(1) (0 < |b| < 1). Other instances of (38) include:

n∑
x≥1

(lg lg lg x)c

x lg x lg lg x
= Θ((lg lg lg n)c+1), (c > −1)

and
n∑
x≥1

1

x lg x · ``g2(x) · · · ``gk(x)
= Θ(``gk+1(n)).

The last Θ-bound corresponds to exact integral formulas from calculus (e.g., Goursat [14, p. 349]. [1, p. 69,
§4.1.52] has the formula for k = 1).

4 Generalized Master Theorem

Proposition 2 extended the standard master theorem to include driving functions of the form d(n) = nα logc n.
Our generalized3 master theorem next completes this generalization to allowing d(n) to be any EL-function.

Theorem A – Generalized Master Theorem.
Consider the master recurrence (1) with α = logb a as the watershed constant, and d(n) = ELe

k(n)
as driving function. Assume k ≤ 0 and e = (e0, . . . , e`) is in reduced form. Let (e1, . . . , e`, 0) =
(−1,−1, . . . ,−1, eh, . . . , e`+1) for some h = 1, . . . , `+ 1 where e`+1 = 0 and eh 6= −1. Then

T (n) = Θ


d(n) if (k < 0 ∧ e0 > 0) or (k = 0 ∧ e0 > α), [CASE (+)]
d(n)LLh(n) if (k = 0 ∧ e0 = α ∧ eh > −1), [CASE (h− 1)]
nα if (k < 0 ∧ e0 < 0) or (k = 0 ∧ e0 < α) or (k = 0 ∧ e0 = α ∧ eh < −1). [CASE (−)]

(42)

Before giving the proof, we make a few remarks:
1. Theorem A has infinitely many cases, corresponding to h = 1, 2, 3, . . .. Note that CASE (0) and CASE

3We are generalizing the (standard) master theorem, not solving a “generalized master recurrence”. As there are many
generalizations of the master recurrence, we decline to call any particular formulation “the” generalized master recurrence.
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(1) of Proposition 2 correspond to h = 1 and h = 2, respectively. By the definition of LLh(n) (see (36)), the
solution to CASE (h− 1) can also be written T (n) = Θ(nα``gh(x) instead of T (n) = Θ(d(n)LLh(n)).
2. Although the driving functions covered by these infinitely many cases are in some sense complete, there
are many driving functions that are not covered; Verma’s Theorem 13 [33] can capture some of these.
3. To make Theorem A fully comparable to Proposition 1, we could have formulated CASE (+) to include
the possibility of d(n) satisfying the regularity condition (8).
Proof. Let n = bm. From (9), we have

T (n) =

m∑
i=0

aid(n/bi) =

m∑
i≥0

am−id(bi) (by (12))

= nα
m∑
i≥0

a−id(bi)

= nα
m∑
i≥0

a−iELe
k(bi). (43)

If k ≤ −1, the function F (i) := a−iELe
k(bi) is increasing exponentially when e0 > 0, and decreasing exponen-

tially when e0 < 0. Applying our summation rules (Theorem 3) to (43),

T (n) = nα ·Θ
{
a−mELe

k(bm) if e0 > 0
1 if e0 < 0

= nα ·Θ
{
n−αELe

k(n) if e0 > 0
1 if e0 < 0

= Θ

{
ELe

k(n) if e0 > 0
nα if e0 < 0

.

This proves our theorem in case k ≤ −1. Next assume k = 0. Then (43) becomes Let d = (e1, . . . , e`, 0) =
(e1, . . . , e1+`), i.e., e without the leading entry e0, with an appended 0 = e1+`).

T (n) = nα
m∑
i≥0

a−iELe
0(bi)

= nα
m∑
i≥0

a−i · be0i · ELd
1 (bi)

= nα
m∑
i≥0

(be0/a)i · ELd
1 (bi). (44)

Now,

(be0/a)

 > 1 if e0 > α,
= 1 if e0 = α,
< 1 if e0 < α.

Hence the sum (44) is exponential-type when e0 6= α, and is polynomial-type when e0 = α. Again, our
summation rules yield

T (n) = nα ·Θ


a−mELe

0(bm) if e0 > α,∑m
i≥0 ELd

1 (bi) if e0 = α,

1 if e0 < α

= Θ


ELe

0(n) if e0 > α,

nα ·
∑m
i≥0 ELd

0 (i lg b) if e0 = α,

nα if e0 < α.

(45)
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Thus, the theorem is shown for the case k = 0 and e0 6= α. It remains to consider the case k = 0 and e0 = α.
With h as in the theorem, let d+ = (0, 0, . . . , 0︸ ︷︷ ︸

h times

, 1 + eh, . . . , e1+`). Starting from (45),

T (n) = Θ(nα ·
∑m
i≥0 ELd

0 (i lg b))

= Θ(nα ·
∑m
i≥0 ELd

0 (i)) (lg b is constant in a polynomial-type sum)

= Θ(nα · Sd
0 (m)) (definition of Sd

0 (m))

= Θ(nα · ELd+

0 (m)) (by Theorem 8)

If eh < −1, d+ = (0) (by (35)) and this proves our theorem in this case.

Q.E.D.

5 Real Induction

The principle of natural induction, or induction on N, is well-known. Briefly, if P (n) is a predicate on natural
numbers, then to prove the validity of P (n), we must show that P (0) holds (basis), and that if P (n) holds,
then P (n+ 1) holds (inductive step). In strong natural induction, we deduce P (n+ 1) from P (0), . . . , P (n).
Properties of integer recurrences can often be proved with this principle. But in our transition to real
recurrences, we appear to have lost this tool. We now provide such a substitute.

Induction on real numbers is seldom found in the literature. But the need for such induction principles
arises in automatic correctness proofs of programs involving real numbers [10], or involving timing logic [25],
or in the programming language Real PCF [12].

Principle of (Archimedean) Real Induction.
Let P (x) be a real predicate (see ¶2). Suppose there exist real numbers x1 and γ > 0 satisfying the following
conditions:

Real Basis: For all x < x1, P (x) holds.

Real Induction Step: For all y ≥ x1, if (∀x ≤ y − γ)[ P (x) holds ] then P (y).

Then P (x) is valid.

It is helpful to re-formulate the Real Induction Step as follows: For all y ≥ x1,

P ∗(y)⇒ P (y)

where P ∗(y) ≡ (∀x ≤ y − γ)[P (x) holds]. We call P ∗(y) the Real Induction Hypothesis.

We call γ > 0 the gap constant of this instance of Real Induction; it plays the role of the constant 1 in
natural induction. Similarly, x1 plays the role of 0 in natural induction, and is called the cutoff parameter.
This principle is called “Archimedean” because its justification exploits the Archimedean property of real
numbers: let x1 and γ > 0 be any real constant. Then for all real x, there is smallest natural number
n = n(x) such that x ≤ x1 + nγ. Showing the validity of Real Induction can be reduced to a strong natural
induction on n = n(x). We omit the straightforward proof.

To use this principle to prove the validity of a predicate P (x), we need to show (1) the real basis, and (2)
the real induction step. Typically, it is the real basis that is tedious; the real induction step is often quite
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intuitive. The predicate “(∀x ≤ y− γ)[ P (x) holds ]” in the real induction step is called the real induction
hypothesis. In showing the real induction step, we would need to invoke the real induction hypothesis. In
our applications below, there will be a constant x0 such that P (x) is vacuously true for x ≤ x0. E.g., P (x)
has the form “x ≥ x0 ⇒ . . .” Typically, we need to choose the cutoff parameter such that x1 > x0.

We next illustrate the use of this real induction principle.

¶9. Multiterm Regularity Condition. Consider the multiterm recurrence (2). We say its driving
function d(n) satisfies the multiterm regularity condition if the following is valid:

k∑
i=1

aid

(
n

bi

)
≤ c · d(n) (46)

for some 0 < c < 1. We may again associate with (2) a watershed constant α satisfying the equation

k∑
i=1

ai
bαi

= 1. (47)

Clearly α exists and is unique. Equation (47) is known as the characteristic equation of (2) [17, 5].

Lemma 9 The multiterm regularity condition implies that d(n) = Ω(nα+ε) for some ε > 0.

Proof. For some D > 0 and n0, we want to prove the validity of the following predicate P (n): “for all n ≥ n0,
d(n) ≥ D · nα+ε”. The real basis says there is some n1 > n0 such that the predicate P (n) holds whenever
n < n1. The real induction step is:

d(n) ≥ 1
c

∑k
i=1 aid(n/bi) (by multiterm regularity)

≥ 1
c

∑k
i=1 aiD · (n/bi)α+ε (by real induction hypothesis)

= D
c n

α+ε
∑k
i=1

ai
bα+ε
i

= Dnα+ε.

The last equality follows if we choose ε to satisfy the equation

c =

k∑
i=1

ai

bα+εi

.

Since c < 1, such a choice is clearly possible.

It remains to show the real basis for induction, and how to choose D,n0, n1. Our derivation so far imposes
no conditions on these, so they can be determined from the initial conditions. Choose n0 ≥ 1 large enough
so that d(n) is defined for n ≥ n0. There is some Archimedean constant γ ∈ (0, 1) such that for all n ≥ n0,

nγ <
k

min
i=1
{n/bi} ≤

k
max
i=1
{n/bi} ≤ n− γ. (48)

We choose the cutoff parameter to be n1 = n0/γ. Finally, choose D > 0 such that 1 ≥ Dnα+ε holds for
all n ∈ [n0, n1]. With these choices, the real basis holds non-vacuously because, by assumption, d(n) ≥ 1.

Q.E.D.

This lemma shows that regularity condition on d(n) implies that d(n) is lower bounded by the watershed
function nα: Variations of the parameters n0 and n1 in this proof will be used again in the proof of Theorem
B.
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6 The Multiterm Master Theorem

Our next theorem has the same structure as Proposition 2, but generalized to the multiterm master recur-
rence. We are no longer in possession of a summation formula for its solution T (n) analogous to (9), and so
the previous proof breaks down. One alternative approach is to use integral calculus, but it seems that real
induction gives the most direct argument.

Theorem B – Multiterm Master Theorem.
Let T (n) satisfy the multiterm recurrence (2), with driving function d(n) and watershed constant α. Then

T (n) =


Θ(d(n)) if d(n) satisfies the multiterm regularity condition (46) [CASE (+)] ,

Θ(d(n) lg n) if d(n) = Θ(nα lgδ n)) for some δ > −1 [CASE (0)] ,

Θ(d(n) lg n lg lg n) if d(n) = Θ(nα lgδ n)) where δ = −1 [CASE (1)] ,

Θ(nα) if d(n) = O(nα lgδ n) for some δ < −1 [CASE (−)] .

Note that restricted versions of Theorem B have appeared in the literature: they all have 3 cases, without
our CASE (1), in analogy with Proposition 1. Kao [17] assumes d(n) = nα logδ n, and gave an inductive
proof for the case k = 2 only. A full proof in his setting (3) of integer recurrences and initial conditions
would be quite involved. Roura [31, Theorem 2.3] treats driving functions d(n) that are somewhat more
general than Kao’s. Akra and Bazzi [5] deduced their result from a more general integral bound with a long
proof. Here we give a direct proof based real induction. Leighton’s [22] simplification of Akra and Bazzi also
uses induction.

Proof. First we first prove the real induction steps for each of the cases, leaving the real bases for the
end.

CASE (+): This is the easiest case. The lower bound T (n) = Ω(d(n)) is trivial. For the upper bound,
we will show T (n) ≤ D1d(n) (ev.), for some D1:

T (n) = d(n) +
∑k
i=1 aiT

(
n
bi

)
≤ d(n) +

∑k
i=1 aiD1d(n/bi) (by real induction hypothesis)

= d(n) +D1cd(n) (by regularity)
≤ D1d(n) (choosing D1 ≥ 1/(1− c))

CASE (0): Assume that d(n) = nα lgδ n for some δ > −1. We first show that T (n) ≤ D1d(n) lg n. We
have

T (n) = d(n) +
∑k
i=1 aiT

(
n
bi

)
≤ nα lgδ n+

∑k
i=1 aiD1

(
n
bi

)α
lgδ+1

(
n
bi

)
(by real induction hypothesis)

= nα lgδ n+D1n
α lgδ+1 n

[∑k
i=1

ai
bαi

(
1− lg bi

lgn

)δ+1
]

= D1n
α lgδ+1 n

[
1

D1 lgn +
∑k
i=1

ai
bαi

{
1− (δ + 1) lg bi

lgn (1 + o(1))
}]

(where o(1)→ 0 as n→∞)

= D1n
α lgδ+1 n

[
1 + 1

lgn

{
1
D1
− (δ + 1)

∑k
i=1

ai lg bi
bαi

(1 + o(1))
}]

≤ D1n
α lgδ+1 n

provided D1 is sufficiently large to verify

1

D1
< (δ + 1)

k∑
i=1

ai lg bi
bαi

.
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Here the condition δ > −1 is necessary. Similarly, we show the lower bound T (n) ≥ D2d(n) lg n using the
same derivation above, but with reversed inequalities. The provision is that D2 is small enough to verify

1

D2
> (δ + 1)

k∑
i=1

ai lg bi
bαi

.

CASE (1): Assume that d(n) = nα/ lg n. We first show that T (n) ≤ D1d(n) lg lg n.

T (n) = d(n) +
∑k
i=1 aiT

(
n
bi

)
≤ nα

lgn +
∑k
i=1 aiD1

(
n
bi

)α
lg lg

(
n
bi

)
(by real induction hypothesis)

= D1n
α
[

1
D1 lgn +

∑k
i=1

ai
bαi

lg
{

(lg n)
(

1− lg bi
lgn

)}]
= D1n

α
[

1
D1 lgn +

∑k
i=1

ai
bαi

{
lg lg n+ lg

(
1− lg bi

lgn

)}]
= D1n

α
[
lg lg n+ 1

D1 lgn +
∑k
i=1

ai
bαi

lg
(

1− lg bi
lgn

)]
= D1n

α
[
lg lg n+ 1

D1 lgn −
∑k
i=1

ai
bαi

lg bi
lgn (1 + o(1))

]
= D1n

α
[
lg lg n+ 1

lgn

{
1
D1
−
∑k
i=1

ai lg bi
bαi

(1 + o(1))
}]

≤ D1n
α lg lg n

provided D1 is large enough to verify

1

D1
<

k∑
i=1

ai lg bi
bαi

.

Similarly, the lower bound T (n) ≥ D2n
α lg lg n uses the above derivation with inequalities reversed, and D2

small enough to verify

1

D2
>

k∑
i=1

ai lg bi
bαi

.

CASE (−): Assume 0 ≤ d(n) ≤ nα lgδ n for some δ < −1. This is the trickiest case: to show T (n) =
O(nα), the hypothesis T (n) ≤ D1n

α will not do. The trick is to use a stronger hypothesis of the form

T (n) ≤ D1n
α
[
1−K lgδ+1 n

]
(ev.) for some positive D1,K. Note that this hypothesis requires δ < −1.

T (n) = d(n) +
∑k
i=1 aiT

(
n
bi

)
≤ nα lgδ n+

∑k
i=1 aiD1

(
n
bi

)α [
1−K lgδ+1

(
n
bi

)]
(by induction hypothesis)

= D1n
α
[
lgδ n
D1

+ 1−K
∑k
i=1

ai
bαi

lgδ+1
(
n
bi

)]
= D1n

α

[
lgδ n
D1

+ 1−K lgδ+1 n
∑k
i=1

ai
bαi

(
1− lg bi

lgn

)δ+1
]

= D1n
α
[
1−K lgδ+1 n

{
− 1
KD1 lgn +

∑k
i=1

ai
bαi

(
1− (δ + 1) lg bi

lgn

)
(1 + o(1))

}]
= D1n

α
[
1−K lgδ+1 n

{
1− 1

KD1 lgn −
(δ+1)
lgn

∑k
i=1

ai lg bi
bαi

(1 + o(1))
}]

= D1n
α
[
1−K lgδ+1 n

{
1− 1

lgn

(
1

KD1
+ (δ + 1)

∑k
i=1

ai lg bi
bαi

(1 + o(1))
)}]

≤ D1n
α
[
1−K lgδ+1 n

]
provided KD1 is small (sic) enough to verify

1

KD1
> −(δ + 1)

k∑
i=1

ai lg bi
bαi

. (49)
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The introduction of K is crucial: otherwise, if K is fixed global constant, then condition (49) imposes a
lower bound on D1 which may be difficult to satisfy in the real basis.

For the lower bound, we show that T (n) ≥ D2n
α(1 + lgδ+1 n). The derivations is essentially the same,

except inequalities are reversed:

T (n) = d(n) +
∑k
i=1 aiT

(
n
bi

)
≥ nα lgδ n+

∑k
i=1 aiD2

(
n
bi

)α [
1 + lgδ+1

(
n
bi

)]
(by induction hypothesis)

=
...

= D2n
α
[
1 + lgδ+1 n

{
1 + 1

lgn

(
1
D2
− (δ + 1)

∑k
i=1

ai lg bi
bαi

(1 + o(1))
)}]

≥ D2n
α
[
1 + lgδ+1 n

]
since δ + 1 < 0. This time, there are no restrictions on D2 except through the initial conditions. This
completes the real inductive step for the 4 cases.

We now provide the real bases for each of the above real induction. Choose n0 so that d(n) is defined
and the recurrence (2) for T (n) holds non-vacuously, for all n ≥ n0. Let γ = γ(n0) be the Archimedean
constant defined as in (48). The cutoff parameter n1 will be chosen to be at least n0/γ in the cases below,
ensuring that the real induction hypothesis holds nonvacuosly.

• CASE (+): Choose n1 = n0/γ. Finally, let

D1 := max

(
1

1− c
, sup
n0≤n≤n1

{
T (n)

d(n)

})
where 1/(1− c) is the constant noted in the derivation of this case.

• CASE (0): For upper bound, first let n2 be large enough so that the o(1) term have absolute value
< 1/2. Then choose n1 = max {n2, n0/γ}. Choose

D1 = max

(
2

(δ + 1)
∑
i
ai lg bi
bi

, sup
n0≤n≤n1

{
T (n)

d(n) lg n

})
.

For lower bound, we choose analogous n2 and then n1. Choose

D2 = min

(
2

3(δ + 1)
∑
i
ai lg bi
bi

, inf
n0≤n≤n1

{
T (n)

d(n) lg n

})
.

• CASE (1): This case is similar to the previous, and is omitted.

• CASE (−): For upper bound, we first choose the product KD1 to be equal to the reciprocal of

−(δ + 1)
∑k
i=1

3ai lg bi
2bαi

. Now, let n2 be large enough so that the o(1) term have absolute value < 1/2,

and such that for n ≥ n2, the function

f(n) = nα − (KD1) lgδ+1 n

is increasing and ≥ 1. Then n1 is chosen to be maxn0/γ, n2. Finally, choose

D1 := sup
n0≤n≤n1

{
T (n)

f(n)

}
.

Note that f(n) ≤ D1n
α(1−K lgδ+1 n) and hence T (n) ≤ f(n) ≤ D1n

α(1−K lgδ+1 n) for n ∈ [n0, n1].

Q.E.D.
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7 Robustness Results

In this section, we make prove some theorems about the insensitivity of our Θ-order solutions to variations
in (2). There are 3 specific issues: (i) choice of initial conditions, (ii) Θ-order modifications to the driving
functions, and (iii) perturbations of the recursive arguments. For example, we may perturb the recursive
argument n/bi in (2) into dn/bie+ e for some small constant e.

Item (i) is especially useful for simplifying multiterm recurrences because keeping track of the initial
conditions can be tedious (cf. Leighton [22]). In real induction proofs, this tedium translates into providing
a real basis for induction. Intuitively, item (i) exploits the that (2) is a non-homogeneous recurrence with
a positive driving function, d(n) ≥ 1 (ev.). This is natural in algorithms since d(n) represents the cost
of “subdividing and combining” subproblems. Item (ii) justifies the standard disregard for multiplicative
constants, and item (iii) justifies discarding the ceilings or floor functions.

By a divide-and-conquer scheme we mean a sequence of complexity functions of the form

(d,G, b1, . . . , bk) = (d(n), G(n, x1, . . . , xk), b1(n), . . . , bk(n)).

This scheme defines the set
SOL = SOL(d,G, b1, . . . , bk)

of complexity functions T (n) that eventually satisfies the following recurrence

T (n) = d(n) +G(n, T (b1(n)), . . . , T (bk(n))). (50)

The scheme (d,G, b1, . . . , bk) is regular if the following properties are eventually satisfied non-vacuously:

• d(n) ≥ 1 and non-decreasing;

• G(n, x1, . . . , xk) > 0 and is increasing in each component;

• G(n, x1, . . . , xk) is sublinear: this means for all C > 0,

G(n,Cx1, . . . , Cxk) ≤ C ·G(n, x1, . . . , xk).

• Each bi is Archimedean: this means bi increases unboundedly, and 0 < bi(n) < n − γ for a fixed
constant γ > 0.

We call γ > 0 the gap constant of the regular scheme. For a regular scheme, there exists a constant
n0 = n0(d,G, b1, . . . , bk) such that for all n ≥ n0 and xi ≥ n0 (i = 1, . . . , k), all the above properties are non-
vacuously satisfied. We call d(n) the driving function, each bi(n) a divide function and G(n, x1, . . . , xk)
the combine function of the scheme.

Example and non-examples of regular schemes:

• Typical driving functions include d1(n) = 1, d2(n) = logn or d2(n) = nk (k ≥ 1). However, d(n) = 0
or d(n) = 1/n would be irregular, and disallowed.

• The combine function in the multiterm master recurrence is G(n, x1, . . . , xk) =
∑k
i=1 aixi where ai are

positive constants. Clearly G is sublinear and increasing in each component.
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We may generalize G so that each ai is be replaced by polynomials in n with positive leading coefficients:
e.g., G(n, x, y) = n2x + (2n − 3)y. This is basically the class of parametric multiterm master
recurrences introduced by Wang and Fu [34]:

G(n, x1, . . . , xk) =

k∑
i=1

ai(n)xi (51)

where the ai’s are complexity functions satisfying ai(n) > 0 and increasing (ev.).

However, non-linear terms in the x’s such as G(n, x, y) = x2y would be irregular.

• The following divide functions are easily seen to be Archimedean: for constants C > 1, c > 0,

b1(n) = n/C, b2(n) = n− c, b3(n) =
n

2
+

n

lg n
.

The function b1(n) occurs in the Master Recurrence, b2(n) occurs in Fibonacci Recurrence, and b3(n)
occurs in a recurrence of [22].

• Our divide-and-conquer schemes do not capture the “full history” recurrences of Roura [31], where T (n)
may depend on all previous values T (n− 1), T (n− 2), . . . , T (n− bnc). Nevertheless, such recurrences
can sometimes be transformed into the parametric form (51). For instance, the quicksort recurrence
[31, equation (4)] is a full history of the form:

T (n) = n+ 1 +
2

n

n−1∑
i≥0

T (i) (52)

Note that we view (52) as the real version of the usual integer recurrence of quicksort. By subtract-
ing (n − 1)T (n − 1) from nT (n), the full-history recurrence (52) becomes a (single-term) parametric
recurrence,

T (n) = 2 +
n+ 1

n
T (n− 1). (53)

Let K,K ′ be two classes of complexity functions. We say K is big-Oh of K ′, written K = O(K ′), if for
all f ∈ K and f ′ ∈ K ′, we have f ′ = O(f). If K = O(K) (i.e., K = K ′ in the previous definition), then we
say K is Θ-robust. Note Θ-robustness of K means that any two functions in K are Θ-order of each other.
We now establish some robustness properties of the class

SOL = SOL(d,G, b1, . . . , bk),

of solutions to a regular scheme.

• Lemma 10 Each T ∈ SOL is eventually increasing.

Proof. Assume for all n ≥ n1, T satisfies its defining recurrence. We may assume that n1 > n0 =
n0(d,G, b1, . . . , bk). If n′ > n ≥ n1, then:

T (n′) = d(n′) +G(n′, T (b1(n′)), . . . , T (bk(n′))) (n′ > n1)
≥ d(n) +G(n, T (b1(n)), . . . , T (bk(n))) (G is increasing, and by Real Induction Hypothesis)
≥ T (n) (n > n1).

Q.E.D.

• Lemma 11 SOL is non-empty
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Proof. It suffices to construct one solution T0 ∈ SOL. Let n1 := max
{
b−1i (n0) : i = 1, . . . , k

}
where

n0 = n0(d,G, b1, . . . , bk). Note that n1 is uniquely defined since bi(n) < n and is increasing for n > n0.
It follows that n0 < n1. Let x1 :=n1 + γ. We define T0 recursively as follows:

T0(n) =

{
0 if n < x1,
d(n) +G(n, T (b1(n)), . . . , T (bk(n))) if n ≥ x1.

We must show that T0(n) is well-defined. We use the Principle of Real Induction: the Real Basis is
trivially true, as it corresponds to the case n < x1. When n ≥ x1 = n1 + γ, the Archimedean Property
implies bi(n) ≤ n− γ. So we may invoke the Real Induction Hypothesis which says that each T (bi(n))
is well-defined. It follows that T (n) is well-defined, as claimed. Q.E.D.

• Theorem 12 (Robustness) SOL is Θ-robust.

Proof. The previous lemma has shown that SOL is non-empty. Suppose T1, T2 ∈ SOL. We must show
that T1 = O(T2). Choose n1 larger than n0 = n0(d,G, b1, . . . , bk) so that for all n ≥ n1, T1 and T2
satisfy the recurrences

T1(n) = d(n) +G(n, T1(b1(n)), . . . , T1(bk(n))),

T2(n) = d(n) +G(n, T2(b1(n)), . . . , T2(bk(n))).

Let n2 := max
{
b−1i (n1) : i = 1, . . . , k

}
and finally x1 :=n2 + γ. For n ∈ [n1, x1) we see that

Tj(n) ≥ 1 (j = 1, 2) because n ≥ n0. Hence we may define the positive constant
C := max {T1(n)/T2(n) : n ∈ [n1, x1)}. Consider the predicate:

P (n) ≡ [n ≥ n1 ⇒ T1(n) ≤ CT2(n)]

We prove the validity of P (n) by real induction. Let x1 be the cutoff constant of real induction. Clearly,
P (n) is valid for n < x1, by definition of C. For n ≥ x1, we see that

T1(n) = d(n) +G(n, T1(b1(n)), . . . , T1(bk(n))) (n ≥ n1)
≤ d(n) +G(n,C · T2(b1(n)), . . . , C · T2(bk(n))) (by Real Induction Hypothesis)
≤ d(n) + C ·G(n, T2(b1(n)), . . . , T2(bk(n))) (by sublinearity of G)
≤ C[d(n) +G(n, T2(b1(n)), . . . , T2(bk(n)))] (we may assume C ≥ 1)
= CT2(n) (n ≥ n1).

The Real Induction Hypothesis needs some justification, and it amounts to the claim that T1(bi(n)) ≤
C · T2(bi(n)) for each i. To justify it, we must ensure that bi(n) is (i) not too large (bi(n) ≤ n − γ)
and (ii) not too small (bi(n) ≥ n1). Condition (i) follows from the Archimedean Property of bi(n).
We need condition (ii) because our predicate P (n) has the requirement “n ≥ n1”. This is justified by
bi(n) > bi(n2) ≥ bi(b−1i (n1)) = n1. This proves that T1 = O(T2), as desired. Q.E.D.

• Lemma 13 Let SOL′ = SOL(d′, G, b1, . . . , bk). If d′ = O(d) then SOL′ = O(SOL)

We omit the proof as it is similar to the previous proof.

(hide)

• Next consider perturbations in the divide functions: let b′i and bi be related as follows

b′i(n+ δ(n))
(a)

≤ bi(n) + δ(n)
(b)

≤ n− γ (54)

where δ(n) ≥ 0 and γ > 0 is a constant. We call b′ a δ-perturbation (or simply, a perturbation) of
b, and δ = δ(n) is called a perturbation function.

We illustrate some possible perturbation functions. Consider the divide functions in multiterm recur-
rences with

bi(n) = n/ci, b′i(n) = dn/cie+ e, (i = 1, . . . , k)
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where e > 0 and ci > 1. Define δ(n) as the constant (e+1)c
c−1 where c = min {ci : i = 1, . . . , k}. Then

(54)(a) is verified as follows:

b′i(n+δ(n)) =

⌈
n+ δ(n)

ci

⌉
+e <

n+ (e+ 1)c/(c− 1)

ci
+(1+e) =

n

ci
+
( (e+ 1)c

ci(c− 1)
+1+e

)
≤ bi(n)+δ(n).

Moreover (54)(b) clearly holds eventually. Or consider Leighton’s divide function [22]

b′(n) =
n

2
+

n

lg n
. (55)

Let b(n) :=n/2 and define the perturbation function δ(n) := 3n
logn . We may verify (54)(a) will eventually

hold:

b′(n+ δ(n)) =
n+ δ(n)

2
+

n+ δ(n)

lg(n+ δ(n))
<

n+ δ(n)

2
+
n+ δ(n)

lg n

=
n

2
+
δ(n)

2
+
n+ δ(n)

lg n

<
n

2
+

3n

lg n

= b(n) + δ(n).

Moreover, b(n) + δ(n) < n− γ (ev.).

• Theorem 14 (Perturbation Theorem)
Let T ∈ SOL(d,G, b1, . . . , bk) and T ′ ∈ SOL(d,G, b′1, . . . , b

′
k) where each b′i(n) is a δ(n)-perturbation

of bi(n) as in (54). Then there exists a constant C = C(T, T ′) > 0 such that

T ′(n+ δ(n)) ≤ C · T (n) (ev.).

Before giving the proof of this theorem, we state its main corollary: Since δ(n) ≥ 0, T ′(n) = O(T (n)),
i.e.,

SOL′ = O(SOL).

The point is that δ(n) does not appear in this conclusion. Nevertheless, the proof requires the trick of
proving a stronger assertion.

Proof. The proof is by Real Induction. We first do the Real Induction Step:

T ′(n+ δ(n)) = d(n) +G(n, T ′(b′1(n+ δ(n))), . . . , T ′(b′k(n+ δ(n)))) (ev.)
≤ d(n) +G(n, T ′(b1(n) + δ(n)), . . . , T ′(bk(n) + δ(n))) (by (54))
≤ d(n) +G(n,CT (b1(n)), . . . , CT (bk(n))) (Real Induction Hypothesis; G is increasing)
≤ C[d(n) + ·G(n, T (b′1(n)), . . . , T (b′k(n)))] (by sublinearity of G; C ≥ 1)
= CT (n) (ev.)

As usual, it is a bit tedious to set up the ”eventual” conditions to justify the Real Induction Hypothesis;
it is through this process that the reader will discover how to choose the constant C. However, we will
omit the details as it is similar to the proof of Theorem 12 above. Q.E.D.

• We may apply Theorem 14 to show the robustness of our Multiterm Master Theorem (Theorem B).
It frequently happens that multiterm recurrences involve ceiling or flour functions and small additive
constants in the recursive calls, say

T ′(n) = d(n) +

k∑
i=1

aiT
′(dn/bie+ e).

Then using the perturbation function δ(n) = (1+e)c/(c−1), we conclude that T ′(n+δ(n)) ≤ C ·T (n).
Hence T ′(n) = O(T (n)), i.e., up to Θ-order, the original bounds are valid.
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• Our formulation of δ(n) leads to some surprisingly large perturbations. Leighton [22] considered
perturbations of the form

δ(n) = O(logα n), (α < −1).

Moreover, it is suggested that if we use a larger perturbation such as α = −1/2, we obtain qualitatively
different results. More precisely, Leighton suggested that if we use

b′(n) =
n

2
+

n√
lg n

(56)

instead of b(n) = n/2 in the mergesort recurrence

T (n) = n+ 2T (b(n))

then the solution T ′(n) would not be Θ-order of T (n). We contradict this by showing that b′(n) is a
δ(n)-perturbation of b(n) if we define

δ(n) :=
3n√
lg n

.

It is justified in the same way as (55). Therefore we conclude T ′(n) = O(T (n)) = O(n log n).

REMARKS:
1. Since our solutions are insensitive to initial conditions, we can exploit the ability to choose initial condi-
tions to find exact solutions in very simple forms. E.g., the recurrence T (n) = 2T (n/2) + n has the elegant
solution of T (n) = n lg n if we choose T (n) = n lg n for all 1 ≤ n < 2, and use the recurrence for n ≥ 2.
2. Our treatment could be extended to treat recurrence inequalities, e.g., T (n) ≥ d(n) +
G(n, T (g1(n)), . . . , T (gk(n))). This is useful when we are unable to prove a Θ-bound, but may settle
for some upper and lower bound on T (n) i.e., O- and Ω-bounds.

8 Conclusion

As noted by Karp [18], we seek “cookbook theorems” or easy-to-use solutions of recurrences. That is the
appeal of the standard master theorem. Theorem B certainly has the same cookbook qualities of the master
theorem. Theorem A is still cookbook, though the generality of its class of driving functions calls for some
deciphering of the notations. Clearly further generalizations of Theorems A and B are possible, some of
which are suggested by the cited references; the challenge is to make them more cookbook.

Cormen et al [9, p. 90] noted that some generalized master theorems are not easy use. One reason is that
some bounds are left in the form of integrals. But another reason may be be the presence of tedious details
that ought to be factored out, and relegated to general robustness properties of solutions. As illustrated in
this paper, we can go a long way to distill the essence of such recurrences when we exploit Θ-robustness
and embrace real recurrences whole-heartedly. A tool that ought to be used more widely in this context are
principles of real induction. The focus on Θ-robust results ought also lead to much greater use of elementary
techniques.

We feel these ideas to be pedagogically sound. For instance, the elementary summation rules in Section 2
are easily taught in an introductory class in algorithms, eschewing the calculus that are often used to prove
such bounds. Indeed, our perspectives have been developed from classroom experience.
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[12] M. H. Escardó and T. Streicher. Induction and recursion on the partial real line with applications to
Real PCF. Theoretical Computer Science, 210(1):121–157, 1999.

[13] G. H. Gonnet. Handbook of Algorithms and Data Structures. International Computer Science Series.
Addison-Wesley Publishing Company, London, 1984.
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[19] J. Kleinberg and É. Tardos. Algorithm Design. Addison Wesley, Boston, 2005.

[20] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-Wesley,
Boston, 1972.

[21] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 1-3. Addison-Wesley,
Boston, 1973-1981.

[22] T. Leighton. Notes on better master theorems for divide-and-conquer recurrences, 1996. Class notes.

[23] H. R. Lewis and L. Denenberg. Data Structures and their Algorithms. Harper Collins Publishers, New
York, 1991.

[24] G. S. Lueker. Some techniques for solving recurrences. Computing Surveys, 12(4):419–436, 1980.

[25] B. P. Mahony and I. J. Hayes. Using continuous real functions to model timed histories. In Proc. 6th
Australian Software Engineering Conf. (ASWEC91), pages 257–270. Australian Comp. Soc., 1991.

[26] U. Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, Reading, Mass., 1989.

[27] K. Mehlhorn. Datastructures and Algorithms, volume Volumes 1-3. Springer-Verlag, Berlin, 1984.

[28] J. Paul Walton Purdom and C. A. Brown. The Analysis of Algorithms. Holt, Rinehart and Winston,
New York, 1985.

[29] S. Roura. Divide-and-Conquer Algorithms and Data Structures. PhD thesis, Universitat Politècnica de
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