
Constructive Root Bound for k-Ary Rational

Input Numbers

Sylvain Pion 1

INRIA Sophia-Antipolis,
BP 93, 06902 Sophia-Antipolis cedex, France.

Chee K. Yap 1

Courant Institute of Mathematical Sciences, New York University
New York, NY 10012, USA

Abstract

Guaranteeing accuracy is the critical capability in Exact Geometric Computation,
an important paradigm for constructing robust geometric algorithms. Constructive
root bounds is the fundamental technique needed to achieve such guaranteed accu-
racy. Current bounds are overly pessimistic in the presence of general rational input
numbers. In this paper, we introduce a method which greatly improves the known
bounds for k-ary rational input numbers. Since a majority of input numbers in sci-
entific and engineering applications are either binary (k = 2) or decimal (k = 10),
our results could lead to a significant speedup for a large class of applications. We
apply our method to two of the best available constructive root bounds, the BFMSS
Bound and the Degree-Measure Bound. Implementation and experimental results
based on the Core Library are reported.

Key words: Constructive root bounds, exact geometric computation, robust
numerical algorithms, k-ary rational numbers

Email addresses: Sylvain.Pion@sophia.inria.fr (Sylvain Pion),
yap@cs.nyu.edu (Chee K. Yap).
1 This research is supported by NSF/ITR Grant #CCR-0082056. Sylvain’s work is
conducted under a postdoc fellowship with this grant.

Preprint submitted to Elsevier Science 12 September 2006

1 Introduction

The critical idea of the Exact Geometric Computation (EGC) approach to
robust geometric algorithms is “geometric exactness”. This amounts to ensur-
ing that all computational decisions in a program are error free. It translates
to the ability to guarantee the sign of real numerical quantities. Guarantee-
ing the sign is a special form of “guaranteed accuracy computation” [16]. In
guaranteed accuracy computation, we can pre-specify an accuracy for each nu-
merical quantity. Guaranteeing the sign of a number amounts to guaranteeing
one relative bit of the number. Such techniques have been encoded into two
general libraries LEDA real [6,1] and Core Library [4,5]. To ensure this form
of numerical control, the use of root bounds is central.

To illustrate this idea, suppose α is an algebraic number that is given via some
expression E, involving constants and numerical operations. Now, suppose we
have some method for computing a number β(E) with the property that if
the value of E (which is α) is non-zero then |α| ≥ β(E). Such a number β(E)
is called a root bound for E (or, for α) in this paper. For example, let α0 be

the value of the expression E0 =
√

2 +
√

3 −
√

5 + 2
√

6. It is known that we
can choose β(E0) = 2−54 for our root bound (see Table 1 below). Now, if we
approximate α0 to at least 55 bits of absolute accuracy, and discover that the
approximate α0 is less than 2−55, we can conclude that α0 is in fact 0. On a
typical hand calculator, we carry out such an approximation of α0 and obtain
the approximate value 6.3376× 10−38. So α0 must be 0.

Now there are many known classical root bounds (e.g., [9]), but these are usu-
ally non-constructive in the sense that it depends on parameters that cannot be
easily deduced from the expression E. What we need are called constructive
root bounds in [8]. Such bounds are defined relative to some set E of alge-
braic expressions. It is constructive in two ways: (i) First, for each expression
E ∈ E , we define a set of mutually recursive parameters u1(E), . . . , um(E) (ii)
Second, there is an explicit computable root bound function β(u1, . . . , um)
such that if E is well-defined and E 6= 0, then

|E| ≥ β(u1(E), . . . , um(E)). (1)

We will write β(E) instead of β(u1(E), . . . , um(E)). To be more precise, we
may call β an exclusion root bound; if the inequality in (1) were reversed,
we would have an inclusion root bound.

The first example of such constructive root bounds is Mignotte’s constructive
Measure Bound [10], applied to the problem of “identifying algebraic num-
bers”. The measure bound has been sharpened by Sekigawa [14]. In EGC,
such bounds were first introduced in the Real/Expr Package [17], where the

2

degree-height bounds [17] and degree-length bounds [15, p. 177] were used.
Scheinerman [12] gave a constructive bound for algebraic integers based on
eigenvalues. Burnikel et al. [2] introduced the BFMS Bound that turns out to
be extremely effective for division-free expressions. Recently, this bound was
improved to what we will call 2 the BFMSS Bound [3]. In [8,7], we introduced
another constructive root bound that overcomes some of the shortcomings of
BFMS. If β, β′ are root bound functions, we can compare them in two ways:
(i) efficiency and (ii) effectiveness. Efficiency refers to the complexity of com-
puting the root bounds, and effectivity refers to the size of the bounds (a
larger β(E) is more effective). Generally, the most interesting comparison is
based on effectiveness (efficiency is less of an issue in most applications be-
cause the running time is usually dominated by the multiprecision arithmetic).
If β′(E) ≥ β(E) for all E ∈ E , we say β′ dominates β (over E). Among the
current constructive root bounds, there are three that are not dominated by
any others over the class of constructible expressions: degree-measure [10,2],
BFMSS [3] and Li-Yap [8]. We give a comparison of the effectiveness of these
three root bounds in Section 6.

The starting point of this paper is the observation that (a) current construc-
tive bounds are quite effective for division-free input expressions involving only
integer inputs, and (b) the bounds become considerably worse in the presence
of division. Even when the expression is division-free, the presence of rational
input numbers counts as introducing division into the expression. Such inef-
fective bounds can make some computations impractical. We note that these
ineffective bounds are sometimes intrinsic, because it is easy to see that the
worst case requires exponential bit sizes. Fortunately, this is not the end of
the story. The vast majority of numerical input in scientific and engineering
applications involves k-ary rationals for some integer k ≥ 2. Invariably k = 2
(binary) or k = 10 (decimal). By a k-ary rational we mean a rational number
whose denominator is a power of k. Thus k-ary rationals are generalizations
of integers.

We shall introduce a general technique that can take advantage of k-ary ratio-
nals. The technique seems orthogonal to previous techniques in the sense that
for any current constructive root bound β, we can modify it to a “k-ary ver-
sion” βk which is more effective. In this paper, we introduce the k-ary version
of the BFMSS and Measure Bounds. These will be referred to as the BFMSS[k]
and Measure[k] Bounds. In algorithms, especially in computer algebra, it is a
well-known phenomenon that rational number arithmetic is much slower than
integer arithmetic. However, k-ary rational number arithmetic has a complex-
ity that is intermediate between these two extremes. The techniques of this
paper will yield the same kind of intermediate complexity for root bounds of
expressions with k-ary input numbers.

2 The BFMS and BFMSS bounds are both named after the initials of their authors.

3

Some Examples. We briefly illustrate the possible improvements with our
new technique. Instead of the root bound β(E), we usually consider the cor-
responding bit-bound, defined as − lg β(E).

An example from [8] is the identically zero expression E1(x, y) =
√

x +
√

y −√
x + y + 2

√
xy. Suppose x, y are L-bit binary numbers (i.e., numerators are

L-bit integers and denominators are L-bit powers of 2). Table 1 compares
some bit-bounds and timings (cf. [3]). Line 1 gives the bit-bound as a function
of L. Line 2 gives the range of bit-bounds computed by our Core Library
implementation when 10 random choices of double precision floating-point
machine numbers are substituted for x and y. Line 3 gives the time to evaluate
the 10 random examples of Line 2 for 100 times each.

Table 1
Comparison of BFMSS, Li-Yap and BFMSS[2]

Method BFMSS Li-Yap BFMSS[2]

1 Bit-Bound function 96L + 30 28L + 60 8L + 30

2 Bit-Bound Range (L = 53) 4926-5118 2085-2165 426-462

3 Timing (L = 53, 100× 10 times) 46.7 s 8.35 s 3.58 s

When x, y are rational numbers whose numerators and denominators are L-bit
integers, the Bit-Bound functions for BFMSS and Li-Yap are just 96L+30 and
28L + 60 (as in Line 1) while BFMSS[2] drops to 8L + 30. On the other hand,
when x, y are L-bit integers, the Bit-Bound function for all three methods is
the same and equal to 7.5L+30. This example illustrates our previous remark,
that our new bit-bounds for k-ary input numbers lie between the bit-bounds
for integers and for rational numbers. Indeed, they are only slightly worse than
the integer case.

Next, consider the important and common situation of evaluating n × n de-
terminants where the input numbers are L-bit binary numbers. Such numbers
have the form m2−k where |m| < 2L and 0 ≤ k ≤ L. Let E0 be an expression
for such a determinant. First, assume E0 is the co-factor expansion of the de-
terminant (this is a polynomial with n! terms). Then the BFMSS Bound for
E0 gives a root-bit bound that is more than

(n!)nL. (2)

This is exponentially worse in n than our binary version of the BFMSS Bound,
which gives a root-bit bound of 2nL.

In our experiments (Section 6), we use a more efficient determinant expression:
let E1 be the determinant expression obtained by using dynamic programming
principles. Thus E1 is a DAG while E0 is a tree. E.g., when the input is a

4

random 5×5 matrix and L = 100, our BFMSS implementation gives the bound
− lg |E| ≥ 10, 282, while our binary version of BFMSS gives − lg |E| ≥ 326.

Overview. Section 2 gives a high-level view of what our k-ary transformation
does to any constructive root bound. Section 3 reviews the BFMSS Bound,
while Section 4 gives the new BFMSS[k] Bound. We show that BFMSS[k]
dominates BFMSS. Section 5 gives the new Measure[k] Bound, and again we
show that Measure[k] dominates Measure. Experiments and comparisons are
given in Section 6. We conclude in Section 7.

2 Generic k-Ary Method

We propose a meta-method for exploiting k-ary input numbers. The meta-
method is applicable to any constructive root bounding method. In particular,
we will apply it to the BFMSS Bound and the Measure Bound. In general,
if β is a root bound function as in (1), our k-ary transformation produces a
related root bound function βk. Writing βbfmss and βmeas for the root bound
functions corresponding to the BFMSS and Measure Bounds, we will describe
their k-ary versions, βbfmss

k and βmeas
k .

As usual, we consider the class of expressions which are DAGs with 3 rational
numbers at the leaves and whose internal nodes are algebraic operators. The
typical class of algebraic operators are +,−,×,÷ and algebraic root extrac-
tion, but this may vary depending on context. Let val(E) be the algebraic
number denoted by E. Since algebraic operators are partial functions, val(E)
may be undefined. In any inequality involving val(E), it is understood that
the inequality is in effect only when both sides are defined. We usually write
“E” instead of val(E) when this is clear from context.

The basic idea of the k-ary transformation is to transform an expression E to
another expression Ek, such that E and Ek are connected by

E = kvk(E)Ek (3)

for some vk(E) ∈ Z. What are the constraints on this transformation? If β(E)
is the original root bound function, this transformation will lead naturally to

3 In previous papers on constructive root bounds, leaves of expressions are assumed
to be integers (e.g.. Table 2). This is because rational numbers can be simulated by
a division step. In the present paper, we allow k-ary rationals at the leaves in order
to avoid introducing a general division. But since k may vary, we simply admit all
rational numbers in this discussion.

5

a corresponding k-ary root bound βk(E). In this paper, our basic goal is to
ensure that βk dominates β:

βk(E) ≥ β(E) (4)

for E ∈ E . Achieving this inequality will depend on the nature of β. Assuming
both sides of (3) are well-defined, we have

E 6= 0⇒Ek 6= 0

⇒|Ek| > β(Ek)

⇒|E| > kv(E)β(Ek).

Thus we define
βk(E) := kv(E)β(Ek)

and so the inequality (4) amounts to β(kv(E)Ek) ≤ kv(E)β(Ek).

To simplify 4 the presentation below, we will choose k = 2. Also, we will sim-
ply write v(E) instead of v2(E). Generalizing this to a general k > 2 is mostly
straightforward. A further generalization is to maintain the powers of two or
more k’s simultaneously. It seems that (k′, k′′) = (2, 5) will yield most of the
benefits of the method, since actual input numbers in computation are over-
whelmingly decimal or binary. This amounts to the following transformation
(cf. (3)):

E = 2v2(E)5v5(E)E2,5 (5)

where vk(E) ∈ Z (for k = 2, 5).

3 The BFMSS Bound

We first review the BFMSS Bound [2,3] for algebraic expressions. Let E be
an expression as represented by a DAG, with integers at its leaves, and whose
internal nodes correspond to the operators in column 1 of Table 2. The “dia-
mond operator” in the last row of the Table extracts the jth largest real root
of the polynomial

∑n
i=0 FiX

i where Fi are expressions. For this instance of the
diamond operator, we associate an inclusion root bound function (in the sense
of [3]),

Φ(an−1, . . . , ai, . . . , a0) (6)

4 The case k = 2 is the most important case. Also, the resulting formulas are easier
to read as we avoid the use of the variable k.

6

where each ai is to be replaced by Fi/Fn. We will simply write “Φ(. . . , ai, . . .)”
instead of (6) where it is understood that the index i decreases from n − 1
to 0. In other words, Φ(. . . , ai, . . .) is an upper (i.e., inclusion) bound on all
real roots of the polynomial Xn + an−1X

n−1 + · · ·+ a0. Since there are several
possible choices Φ1, Φ2, etc for Φ, we may just compute the bound given by
each Φi and take the best. This procedure amounts to the observation that
if Φ1 and Φ2 are inclusion root bound functions, then min{Φ1, Φ2} is also an
inclusion root bound.

Table 2
BFMSS Rules

E u(E) `(E)

integer n |n| 1

E′ ± E′′ u′`′′ + `′u′′ `′`′′

E′ × E′′ u′u′′ `′`′′

E′ ÷ E′′ u′`′′ `′u′′

p
√

E′ min(p
√

u′`′p−1, u′) min(`′, p
√

u′p−1`′)

�(j, Fn, Fn−1, . . . , F0)
Φ(. . . , (Dn)i−1Dn−i, . . .)

where Di is given in (7)
Dn

The BFMSS bound constructively maintains two real parameters u(E) and
`(E) as shown in Table 2. Intuitively, each expression E denotes a value that
can be expressed as U(E)/L(E) where U(E) and L(E) are algebraic integers
(i.e., given by division-free expressions). Then u(E) (resp., `(E)) is an upper
bound on absolute values of all the conjugates of U(E) (resp., L(E)). To avoid
clutter in the table, we write u′, u′′ for u(E ′) and u(E ′′); similarly for `′, `′′.
Furthermore, the diamond operator involves subexpressions F0, F1, . . . , Fn; in
this case, we write

Di :=
u(Fi)

`(Fi)

n∏
j=0

`(Fj). (7)

The degree of a node in E is p if the node is the operator p
√
· · ·, and n if the

node is the diamond operator of degree n. Otherwise the degree is 1. Moreover,
let D(E) be the product of all the degrees of the distinct nodes in the DAG of
E. The degree of val(E) is bounded by D(E). The BFMSS bound says that
if val(E) 6= 0 then

|val(E)| ≥ 1

u(E)D(E)−1`(E)
. (8)

7

Hence we may define the BFMSS root bound function as

βbfmss(u, `,D) :=
1

uD−1`
, (9)

with the usual convention that we write βbfmss(E) for β(u(E), `(E), D(E)).
The BFMSS Rules are given in Table 2. Our rule for p

√
E ′ in this table is

a unification of the two cases in the BFMSS presentation. The advantage of
having these two cases 5 was shown by Yap (see [3]).

4 Generalization of BFMSS

Let α be an algebraic number. As in [8], let µ(α) = max{|αi| : i = 1, . . . , n}
where α = α1, . . . , αn are all conjugates of α. We call a triple (u′, `′, v) a set
of ul[2]-parameters for α if u′, `′ ∈ R≥0 and v ∈ Z and there exist algebraic
integers α1, α2 such that

α = 2v α1

α2

, (10)

µ(α1) ≤ u′ and µ(α2) ≤ `′. If “2” is replaced by an integer k > 2, we have
the analogous set of ul[k]-parameters. When α is non-zero with degree D, we
have

|α| ≥ β2(u
′, `′, v, D) := 2v 1

u′D−1`′
(11)

where β2(u
′, `′, v, D) = βbfmss

2 (u′, `′, v, D) is the binary version of the BFMSS
root bound function. The expression (10) is non-unique. Indeed, there is some
leeway for designing a suitable set of ul[2]-parameters for α because in general
the best choice is not easily given by a fixed rule. Thus, if (u′, `′, v) is a set of
ul[2]-parameters for α, then so is either (u′2v, `′, 0) or (u′, `′2−v, 0), depending
on whether v ≥ 0 or not. More generally, it is always possible to reduce |v|
towards 0 in any set of parameters (u′, `′, v). A set of ul[2]-parameters is a
generalization of the BFMSS parameters, since the BFMSS parameters may
be regarded as the special case of v = 0.

The BFMSS[2] Rules. The binary transformation of BFMSS is given in
Table 3. The table incorporates a refinement of the ul[2]-parameters, whereby
v(E) is represented by two numbers v+(E) ≥ 0 and v−(E) ≥ 0 satisfying the

5 Namely, this modification dominates the original BFMS Rules.

8

relation
v(E) = v+(E)− v−(E).

This refinement will better quantify our gain over the original BFMSS bound
(see Lemma 1 below). In actual implementation, it is sufficient to only main-
tain v(E). In this case, to apply the rules, we will define v+(E) to be v(E) if
v(E) ≥ 0 and otherwise let v+(E) = 0. Similarly, v−(E) is defined to be −v(E)
if v(E) < 0 and otherwise v−(E) = 0. Call this variation the reduced version
of the BFMSS[2] Rules (in contrast to the refined version where v+, v− are
independent).

Table 3
The Refined BFMSS[2] Rules

E u2 = u2(E) `2 = `2(E) v+ = v+(E) v− = v−(E)

binary rational

n2m
|n| 1 max(0, m) max(0,−m)

E′ ± E′′ 2v′++v′′−−v+
u′2`′′2

+2v′−+v′′+−v+
`′2u′′2

`′2`′′2
min(v′+ + v′′−,

v′− + v′′+)
v′− + v′′−

E′ × E′′ u′2u′′2 `′2`′′2 v′+ + v′′+ v′− + v′′−

E′ ÷ E′′ u′2`′′2 `′2u′′2 v′+ + v′′− v′− + v′′+

p√
E′, 2v′u′2 ≥ `′2

p
√

2ev−pv+
u′2`′2

p−1 `′2

⌊
ṽ/p

⌋
where

ṽ = v′+ + (p − 1)v′−
v′−

p√
E′, 2v′u′2 < `′2 u′2

p
√

2ev−pv−u
′p−1
2 `′2 v′+

⌊
ṽ/p

⌋
where

ṽ = (p − 1)v′+ + v′−

�(j; Fn, , . . . , F0)
Φ(. . . , Ci−1

n Cn−i, . . .)

(see (14))
2−wn Cn 0 wn (see (13))

When α is represented by an expression E (in the DAG form), this table
defines a unique set of ul[2]-parameters for E,

(u2(E), `2(E), v(E)).

The BFMSS[2] root bound for E is

E 6= 0 ⇒ |E| ≥ 2v(E)

u2(E)D(E)−1`2(E)
. (12)

In the table, (u′, `′, v′) denotes the ul[2]-parameters of the subexpression E ′;
similarly (u′′, `′′, v′′) is for E ′′.

Most of the rules in Table 3 can be read off the table; but the more complex
diamond operator will be explained here. We want a set of ul[2]-parameters for
�(j; Fn, Fn−1, . . . , F0). Suppose Φ(an−1, an−2, . . . , a0) is a root bound function,
as in (6). Write vi for v+

i − v−i = v+(Fi)− v−i (Fi). Define

wi := vi +

 n∑
j=0

v−j

= v−0 + · · ·+ v−i−1 + v+

i + v−i+1 + · · ·+ v−n

9

(13)

and

Ci = 2wi
u2(Fi)

`2(Fi)

n∏
j=0

`2(Fj). (14)

Just as in BFMSS, the diamond operator (if well-defined)
�(j; Fn, Fn−1, . . . , F0) specifies an algebraic number α where α = U/L
and U,L are algebraic integers satisfying

µ(U) ≤ Φ(. . . , (Cn)i−1Cn−i, . . .), µ(L) ≤ Cn.

Also, a set of ul[2]-parameters for α is

(Φ(. . . , (Cn)i−1Cn−i, . . .), 2
−wnCn,−wn). (15)

This justifies the rule for diamond operator in Table 3 (other rules will be
justified below).

If we know more about the nature of Φ, improved bounds may be possible.
E.g., using the Lagrange-Zassenhaus bound [15], we get the simpler set of
ul[2]-parameters,

(Φ(. . . , Dn−i, . . .), 1, 0)

where Dn−i is given by (7).

BFMSS[2] dominates BFMSS. We first prove a key relationship between
the BFMSS Rules and the new BFMSS[2] Rules.

Lemma 1 Let

(u, `), (u2, `2, v
+, v−)

be the parameters for an expression E given by Table 2 and Table 3, respec-
tively. Then

u = 2v+

u2, ` = 2v−`2.

PROOF. We use induction on the structure of E. The base case is obvious.

10

CASE E = E ′ ± E ′′:

u
`

= u′`′′+`′u′′

`′`′′

=
2v′++v′′−u′2`′′2+2v′−+v′′+`′2u′′2

2v′−+v′′−`′2`′′2

=
2v+

(2v′++v′′−−v+
u′2`′′2+2v′−+v′′+−v+

`′2u′′2)

2v′−+v′′−`′2`′′2

= 2v+
u2

2v−`2

where v+ = min(v′++v′′−, v′−+v′′−) and v− = v′−+v′′−. We want to conclude
from this derivation that

u = 2v+

u2, ` = 2v−`2.

This is only valid if, in the above derivation, we never apply any cancellation
rules between the numerator and denominator. The reader may verify this is
the case. In other words, although we presented the argument as a sequence
of equations involving ratios, it should be read as a pair of parallel transfor-
mations involving the numerator and denominator separately. This will also
be true in all the other derivations in this proof.

CASE E = E ′ × E ′′:

u
`

= u′u′′

`′`′′
(BFMSS)

=
2v′++v′′+u′2u′′2
2v′−+v′′−`′2`′′2

(induction)

= 2v+
u2

2v−`2
(BFMSS[2])

where v+ = v′+ + v′′+ and v− = v′− + v′′−. The division case is similar.

CASE E = E ′ ÷ E ′′:

u
`

= u′`′′

`′u′′
(BFMSS)

=
2v′++v′′−u′2`′′2
2v′−+v′′+`′2u′′2

(induction)

= 2v+
u2

2v−`2
(BFMSS[2])

where v+ = v′+ + v′′− and v− = v′− + v′′+.

CASE E = p
√

E ′: The rules here split into two cases, depending on whether
or not 2vu′2 ≥ `′2. The critical observation is that 2vu′2 ≥ `′2 is equivalent to
u′ ≥ `′ (the corresponding criterion for choosing between the two cases in the
BFMSS Rule). First assume 2v′u′2 ≥ `′2. Let ṽ = v′+ + (p− 1)v′−, v+ = bṽ/pc

11

and v− = v′−. We have

u
`

=
p√

u′`′p−1

`′
(BFMSS)

=
p
√

2v′++(p−1)v′−u′2`′p−1
2

2v′−`′2
(induction)

= 2v+
u2

2v−`2
(BFMSS[2]).

The other case, when 2v′u′2 < `′2 is similar but not shown.

CASE E = �(Fn, . . . , F0): For i = 0, . . . , n, we have

Di = u(Fi)
`(Fi)

∏n
j=0 `(Fj) (BFMSS)

= 2wi u2(Fi)
`2(Fi)

∏n
j=0 `2(Fj) (induction)

= Ci (BFMSS[2]).

Thus

u(E) = Φ(. . . , (Dn)i−1Dn−i, . . .)

= Φ(. . . , (Cn)i−1Cn−i, . . .)

= u2(E) = 2v+

u2(E).

Similarly, `(E) = Dn = Cn = 2wn`2(E) = 2v−`2(E).

Our main result concerning the BFMSS and BFMSS[2] Rules is the following
domination relation:

Theorem 2 For any expression E supported by Table 2, we have

βbfmss
2 (E) ≥ βbfmss(E).

PROOF. Let β(E) = 1
uD−1`

and β2 = 2v

uD−1
2 `2

be (respectively) the BFMSS

and BFMSS[2] bounds for expression E. From Lemma 1, we conclude

β2

β
=

2v · (2v+
u2)

D−1 · (2v−`2)

uD−1
2 `2

= 2v+D ≥ 1.

Correctness and the Umbral Convention. We now justify the BFMSS[2]
Rules in Table 3. The correctness of a set (u2, `2, v) of ul[2]-parameters for an
expression E depends on the existence of algebraic integers U2, L2 such that

E = 2v U2

L2

(16)

12

with u2 ≥ µ(U2), `2 ≥ µ(L2). We have not given explicit rules for maintaining
U2, L2, but these are easily deduced from Table 3. That is because the rules
for maintaining u2, `2 is a “shadow” of the corresponding rules for U2, L2. Let
us illustrate this: when E = E ′ ± E ′′, we have the rule

u2 = 2v′++v′′−−v+

u′2`
′′
2 + 2v′−+v′′+−v+

`′2u
′′
2. (17)

This is a “shadow” of the corresponding 6 rule for U2:

U2 = 2v′++v′′−−v+

U ′
2L

′′
2 ± 2v′−+v′′+−v+

L′
2U

′′
2 . (18)

REMARKS: The original BFMSS rules also have such an umbral connection
between (u, `) and the pair of expressions (U,L), although this was only im-
plicit. Such a shadowing technique is similar to the mnemonic device called
symbolic or “umbral calculus” from the invariant theorists, and developed by
Rota and his collaborators [11] as a form of linear operator.

The umbral relation between (u2, `2) and (U2, L2) is justified by the following:

Lemma 3 For any expression E,
(i) The expressions U2(E) and L2(E) are algebraic integers.
(ii) The following inequalities hold:

u2 ≥ µ(U2), `2 ≥ µ(L2). (19)

PROOF. (i) We sketch the justification of the rules for U2(E); the justifica-
tion of L2(E) is analogous. Consider the case when E = E ′±E ′′. Then U2(E)
is given by (18), and this is an algebraic integer because v′++v′′−−v+ ≥ 0 and
v′− + v′′+ − v+ ≥ 0 (also, inductively, the subexpressions U ′

2, U
′′
2 are algebraic

integers). In the case of radicals, we use the fact that p
√

E ′ is an algebraic
integer when E ′ is an algebraic integer. The remaining cases are just as easily
shown. (ii) We sketch the argument for part (ii). The relationship (19) holds
because for algebraic integers A, B, if a ≥ µ(A) and b ≥ µ(B) then

a + b ≥ µ(A±B), ab ≥ µ(AB), p
√

a ≥ µ(
p
√

A).

In particular, this justifies why (17) is an upper bound on the algebraic integer
(18).

We are ready to prove the correctness of our rules.

6 Note that the rules for u2, `2 shadow the rules for U2, L2, but not vice-versa,
because ± for U2, L2 becomes a + for u2, `2. This can be seen by comparing (17)
and (18).

13

Theorem 4 Table 3 is correct: for each expression E, the triple
(u2(E), `2(E), v(E)) is a set of ul[2]-parameters for E.

PROOF. Since we already know Lemma 3, it remains to show the rela-
tion (16). The BFMSS rules produce a pair of algebraic integer expressions
U(E), L(E) such that E = U(E)/L(E). Lemma 1 shows that

u

`
=

2v+
u2

2v−`2

.

From the umbral relation between (u, `) and (U,L), and also between (u2, `2)
and (U2, L2), we conclude that

U

L
=

2v+
U2

2v−L2

= 2v U2

L2

.

Generalization. We can generalize the ul[2]-parameters to ul[k]-parameters
for any integer k > 2. Since the majority of input constants in scientific
and engineering computations is covered by the ul[2] or ul[10], the following
generalization will be useful: if q1, . . . , qn ≥ 2 are relatively prime, it is easy to
define a set

(u(E), `(E), vq1(E), . . . , vqn(E))

of ul[q1, . . . , qn]-parameters for E, so that

E =
u(E)

l(E)

n∏
i=1

q
vqi
i .

Special Cases. The binary BFMSS Rules allow the root bounds of a floating
point constant to behave like an integer (i.e., `(E) = 1). As long as there is
no explicit division in our expression, the expression continues to behave like
an integer. This is a very important case in practice.

Let us consider some specialization of our rules. Suppose E ′ and E ′′ are “almost
division-free” in the sense that `′2 = `′′2 = 1 (they may not be algebraic integers
since v′, v′′ can be negative). Then the rule for E = E ′ ± E ′′ in Table 3 gives

u2 = 2v′++v′′−−v+

u′2 + 2v′−+v′′+−v+

u′′2. (20)

When v′ = v′′, this further simplifies to u2 = u′2 + u′′2. Similarly `2 = 1 and
v = v′. Suppose x, y are two L-bit binary numbers. Such numbers can be
represented by a binary string of length L with a binary point somewhere in
the string. So the triple (4L, 1,−L) is a set of ul[2]-parameters for x and for
y. From the preceding, x+ y has ul[2]-parameters (2 · 4L, 1,−L). Similarly, xy

14

has the ul[2]-parameters (42L, 1,−2L). Now suppose E is the determinant of
an n × n matrix with entries which are L-bit binary numbers. Viewing E as
the standard sum of n! terms, we easily see that E has

(4nLn!, 1,−nL) (21)

as a set of ul[2]-parameters. Furthermore, since D(E) = 1, βbfmss
2 (E) = 2−nL.

This justifies the root bit bound given in (2).

5 The k-ary Measure Bound

The Measure Bound Rules from Li-Yap [8] (cf. [10,1]) is shown in the first two
columns of Table 4. For each expression E, it maintains M(E) according to
the table. The degree bound D(E) is independently computed as usual. If E ′

is a subexpression, we write M′ and D′ for M(E ′) and D(E ′); similarly for M′′

and D′′.

Notice that Line 7 refers 7 to the Root(Fn, . . . , F0) operator. This is just a
special case of the diamond operator of BFMSS in which the Fi’s are now
explicit integers. Thus, such root operators are (essentially) leafs in an expres-
sion DAG. This case is not only the most important, it is the version for which
efficient algorithms exist. The general diamond operator does not seem easy
to implement. Again, we use any inclusion bounding function Φ. Extracting
v(E) from the arguments Fi is relatively straightforward in practice, assuming
a binary representation of integers.

The binary version of the measure bound is shown in the last two columns of
Table 4. For each expression E, this maintains v(E) and M2(E). Note that
in Line 5 (E = p

√
E ′), we choose v to be the rounding of v′/p towards 0, to

simplify the proof of Lemma 6.

Binary Measure Parameters. Call (x, y) ∈ Z×R≥1 a set of binary mea-
sure parameters for an expression E if there exists an expression E2 such
that

E = 2xE2, M(E2) ≤ y. (22)

Lemma 5 If v(E) and M2(E) are defined as in Table 4, then (v(E), M2(E))
is a set of binary measure parameters for E.

7 Like the diamond operator, one must also specify some parameter to identify a
particular root of the polynomial. This extra parameter is omitted here since the
root bounds do not depend on it.

15

Table 4
Binary Measure Bound

E M(E) v(E) M2(E)

0 Constant 1 1 0 1

1 2v′ a
b
E′′ (v′ ∈ Z)

max{2v′+ |a|,

2v′− |b|}D′′
M′′

v′ + v′′ max{|a|, |b|}D′′
M′′

2

2 E′ × E′′ M′D′′
M′′D′

v′ + v′′ M′D′′
2 M′′D′

2

3 E′ ÷ E′′ M′D′′
M′′D′

v′ − v′′ M′D′′
2 M′′D′

2

4 E′ ± E′′ M′D′′
M′′D′

2D(E)
v = sign(v′)min{|v′|, |v′′|}

if v′v′′ ≥ 0; else v = 0.

2D+dM′D′′
2 M′′D′

2 ,

d = |v′ − v′′|D′D′′

5 Radical
p
√

E′ M′ v = bv′/pc if v′ ≥ 0;

v = dv′/pe else.

2|m|D′
M′

2,

m = v′ − vp

6 Power E′k M′k v′k M′k
2

7

Root(Fn, . . . , F0),

Fi = 2viai,

vi ≥ 0 (0 ≤ i ≤ n)

Φ

(
Fn−1

Fn
, . . . , F0

Fn

)
v = −max{d : vi ≥ id, 1 ≤ i ≤ n}

Φ

(
fn−1

fn
, . . . , f0

fn

)
,

and fi = 2vi+ivai.

Table 5
Correctness of Binary Measure Bound

E v(E) M2(E) E2

0 Constant 1 0 1 1

1 2v′ a
b
E′′ (v′ ∈ Z) v′ + v′′ max{|a|, |b|}D′′

M′′
2

a
b
E′′

2

2 E′ × E′′ v′ + v′′ M′D′′
2 M′′D′

2 E′
2 × E′′

2

3 E′ ÷ E′′ v′ − v′′ M′D′′
2 M′′D′

2 E′
2 ÷ E′′

2

4 E′ ± E′′ v = sign(v′) min{|v′|, |v′′|}

if v′v′′ ≥ 0; else v = 0.

2D(E)+dM′D′′
2 M′′D′

2 ,

d = |v′ − v′′|D′D′′
2v′−vE′

2 + 2v′′−vE′′
2

5 Radical
p
√

E′ v = bv′/pc if v′ ≥ 0;

v = dv′/pe else.

2|m|D′
M′

2,

m = v′ − vp

p
√

2mE′
2

6 Power E′k v′k M′k
2 E′k

2

7

Root(Fn, . . . , F0),

Fi = 2viai,

vi ≥ 0 (0 ≤ i ≤ n)

v = −max{d : vi ≥ id, 1 ≤ i ≤ n}
Φ

(
fn−1

fn
, . . . , f0

fn

)
,

and fi = 2vi+ivai.
Root(fn, . . . , f0)

PROOF. We first claim that E = 2v(E)E2 for a suitable E2. We augment
Table 4 with another column showing how E2 is defined inductively; the result
is displayed as Table 5.

Most of the entries in the last column are straightforward, so we skip the
verification. We only verify two cases for M2(E):

Line 4, E = E ′±E ′′. Here, we have E2 = 2v′−vE ′
2 +2v′′−vE ′′

2 , and based on the
Measure Rules, we can compute M(2v′−vE ′

2) = 2|v
′−v|D′

M′
2 and M(2v′′−vE ′′

2) =

16

2|v
′′−v|D′′

M′′
2. Hence

M(2v′−vE ′
2 + 2v′′−vE ′′

2) = 2DM(2v′−vE ′
2)

D′′
M(2v′′−vE ′′

2)D′

= 2D+(|v′−v|+|v′′−v|)D′D′′
M(E ′

2)
D′′

M(E ′′
2)D′

= 2D+|v′−v′′|D′D′′
M(E ′

2)
D′′

M(E ′′
2)D′

= 2D+dM(E ′
2)

D′′
M(E ′′

2)D′
.

This justifies the rule for M2(E
′ ± E ′′).

Line 7, E = Root(Fn, . . . , F0) where each Fi = 2viai and vi ≥ 0. Let
P (X) =

∑n
i=0 FiX

i. From E = 2vE2, we conclude that E2 is a root of the poly-
nomial Q(X) = P (2vX) =

∑n
i=0 2vi+ivaiX

i. But v = −max{d : vi ≥ id, i =
1, . . . , n} ≥ 0 implies that Q(X) =

∑n
i=0 2vi+ivaiX

i is an integer polynomial.
With fi = 2vi+ivai, we see that M2(E) = M(E2) = Φ(fn−1/fn, . . . , f0/fn) is a
valid rule.

17

Domination. Let β(E) and β2(E) be the root bound functions associated
with the original measure bound and the binary measure bound. Indeed,

β(E) =
1

M(E)
, β2(E) =

2v(E)

M2(E)
. (23)

It is easy to see that β2(E) is a root bound for E since E 6= 0 implies

|E| = 2v(E)|E2| (by validity of β2)

≥ 2v(E)/M(E2) (the usual measure bound)

≥ 2v(E)/M2(E) (since M(E2) ≤ M2(E), putting y = M2(E) in (22))

= β2(E).

Our goal is to prove that β2 dominates β in the sense that β2(E) ≥ β(E)
for all E supported by the operators in Table 4. Unfortunately, we cannot do
this without further information about the root bound function Φ(· · ·). We
get around this problem by modifying Line 7 in Table 4 so that v(E) = 0 and
M2(E) = M(E). Call this the “trivial rule” for the root operator. We prove a
basic inequality:

Lemma 6 Let E be any expression involving the operators of Table 4. Assum-
ing the trivial rule for the root operator, we have

M(E) ≥ 2|v(E)|D(E)M2(E).

PROOF. We verify this lemma for each line of the Table 4.
Line 0. When E = 1, the lemma is immediate since v(E) = 0 and M(E) =
M2(E).
Line 1. Actually, Line 1 is a special case of Line 2, with E ′ = 2v′a/b (so
D′ = 1). So we just have to check that M ′

2 = M(a/b) = max{|a|, |b|}.
Line 2, E = E ′E ′′.

M(E) = M′D′′
M′′D′

(Measure Rules)

≥ 2(|v′|+|v′′|)D′D′′
M′D′′

2 M′′D′
2 (by induction)

≥ 2|v
′+v′′|DM′D′′

2 M′′D′
2 (|v′|+ |v′′| ≥ |v′ + v′′|, D′D′′ ≥ D)

= 2|v|DM2(E) (Measure[2] Rules).

Line 3, E = E ′/E ′′. This is similar to the proof of Line 2, since the usual
Measure Rules for division is exactly the same as for multiplication. However,
in the Measure[2] Rules, v = v′ − v′′. This changes one justification in the
preceding proof, replacing |v′|+ |v′′| ≥ |v′+v′′| = |v| by |v′|+ |v′′| ≥ |v′−v′′| =

18

|v|.
Line 4, E = E ′ ± E ′′.

M(E) = 2DM′D′′
M′′D′

(Measure Rules)

≥ 2D+(|v′|+|v′′|)D′D′′
M′D′′

2 M′′D′
2 (by induction)

≥ 2D+(|v|+|v′−v′′|)D′D′′
M′D′′

2 M′′D′
2 (|v′|+ |v′′| ≥ |v|+ |v′ − v′′|, valid even for v = 0)

≥ 2|v|D2D+|v′−v′′|D′D′′
M′D′′

2 M′′D′
2 (D′D′′ ≥ D)

= 2|v|DM2(E) (Measure[2] Rules).

Line 5, E = p
√

E ′.

M(E) = M′ (Measure Rules)

≥ 2|v
′|D′

M ′
2 (by induction)

= 2(p|v|+|m|)D′
M ′

2 (|v′| = p|v|+ |m|)

= 2|v|DM2(E) (D = pD′, Measure[2] Rules).

Note that |v′| = |v|+ |m| holds because of rounding towards 0.
Line 6, E = E ′k.

M(E) = M′k (Measure Rules)

≥ 2|v
′|kD′

M ′k
2 (by induction)

= 2|v|DM2(E) (Measure[2] Rules).

Line 7, E = Root(Fn, . . . , F0). If we adopt the trivial rule where v(E) = 0
then the inequality of this lemma is also trivial.

The main domination result is now easy to show:

Theorem 7 Let E be any expression involving the operators of Table 4. As-
suming the trivial rule for the root operator, we have

β(E) ≤ β2(E).

PROOF. We have

β(E) = 1
M(E)

(by definition)

≤ 1
M2(E)2|v(E)|D (preceding Lemma)

≤ 2v(E)

M2(E)
(|v(E)|D + v(E) ≥ 0)

= β2(E).

19

Table 6
Relative effectiveness of 3 Root Bounds on CORE Test Suite

original BFMSS BFMSS[2] BFMSS[2,5]

BFMSS family 55712/4016 55726/14214 55746/15277

Li-Yap 51669/33 41531/19 40472/3

degree-measure 4/4 4/4 0/0

Total number of expressions 55749 55749 55749

6 Experimental Results

The timings in this paper are based on runs on an Ultrasparc 10 machine
with a 440 MHz CPU. The software is Core Library Version 1.5+, which
implements 8 the Measure Bound, the Li-Yap Bound and a choice between
the original BFMSS, the BFMSS[2], or the BFMSS[2,5] Bound.

To give empirical data on the relative effectiveness of these three bounding
functions, we ran the Core Library Test Suite and counted the number of
times that each bounding function is the best one. The results are shown
in Table 6. Note that more than one bounding function may be best for an
expression. So for each bounding function β, we give a pair m/n of numbers
where m is the number of times that β achieves the best bound, and n is the
number of times β is the unique best bound. Thus m ≥ n. The first column
gives the result of a run with the original BFMSS Bound used, the second
column gives the result of a run with the BFMSS[2] Bound used, and the
third column gives the result of a run with the BFMSS[2,5] Bound used. We
conclude from this table that the (2, 5)-ary version of BFMSS, for all practical
purposes, dominates the other two bounding functions in our test suite.

Experiment 1 involves the expression E1(x, y) given in the introduction. We
assume that E1(x, y) does not share subexpressions. For example, we can
reduce the degree from 16 to 8 by sharing, and the bit-bound function for
BFMSS improves to 48L + 22.

Experiment 2 involves the expression E2(x, y) =
√

x−√y

x−y
−

√
x−√y

x−y
, an example

from [3]. When x, y are integers, the bit-bound from BFMSS and Li-Yap are

8 Version 1.5+ refers to the modifications of the released Version 1.5 necessary
to support the experiments of this paper. Our implementation of these bounds
will generally return slightly worse bounds than the theory predicts because we
maintain upper bounds on lg M(E), lg u2(E), etc, instead of M(E), u2(E), etc. The
Core Library Test Suite is a set of about 30 sample programs that is distributed
with the library.

20

Table 7
Bitbound for dynamic programming determinant for random binary entries (L =
100)

n (n!)nL BFMSS nL BFMSS[2]

2 400 164 200 101

3 1800 657 300 169

4 9600 2267 400 248

5 60, 000 10, 468 500 326

6L + 64 and 65L + 91, respectively. But when x, y are L-bit binary numbers,
the bit-bound of BFMSS[2] is 7.5L+11. When we substitute various machine
double values, we obtain bit-bounds whose ranges are: 1643-1707 (BFMSS),
323-331 (BFMSS[2]). Running these 1000 times gives timings of 36 seconds
(BFMSS) and 22.8 seconds (BFMSS[2]). Although there is an improvement,
it is not of the order of magnitude one might expect from bit-bound ranges;
this seems to be an implementation-induced effect.

Determinants. Experiment 3 involves the determinant example in the intro-
duction. Let A be a n× n matrix whose entries are L-bit binary rationals.
By definition, the entries have the form n2−k where 0 ≤ n < 2L and 0 ≤ k ≤ L.
There are two special cases that we consider:
(1) If n ≥ 2L−1, we say the L-bit binary rational is strict. All the numbers in
A are strict in our experiment.
(2) If k = L, then we say the L-bit binary rational is normal.

We noted that if E0 is the co-factor expansion of matrix A, then the BFMSS
bound gives − lg βbfmss(E0) ≤ (n!)nL, while the binary BFMSS bound gives
− lg βbfmss

2 (E) ≤ nL. If E ′ is the dynamic programming implementation of
the determinant of A, then βbfmss(E ′) may be strictly greater than β(E). For
instance, if a, b, c are L-bit binary numbers then βbfmss(a(b + c)) = 3L while
βbfmss(ab + ac) = 4L. On the other hand, βbfmss

2 (a(b + c)) = βbfmss
2 (ab + ac).

Table 7 compares the root bit bounds of BFMSS and the binary version on
random matrices whose entries are 100-bit binary rationals. These empirical
bounds are (as expected) better than the worst case estimate. If we use normal
100-bit binary rationals, then Table 8 gives the same comparison when those
entries are normalized 100-bit binary rationals. Our implementation of the
βbfmss

2 bound practically matches the theoretical upper bound of nL.

We next compare timing for BFMSS, BFMSS[2] and BFMSS[2,5]. Despite the
wide gap in the root bounds, the timings are not expected to be different
for random matrices. That is because a random determinant is unlikely to be
zero and so the floating point filter will be in effect. Instead, we convert the
above data into degenerate matrices, just by making the last row a duplicate
of the previous row. Surprisingly, there was no detectable difference in tim-

21

Table 8
Bitbound for dynamic programming determinant for random normal binary entries
(L = 100)

n (n!)nL BFMSS nL BFMSS[2]

2 400 400 200 200

3 1800 1497 300 300

4 9600 6364 400 400

5 60, 000 32, 282 500 499

Table 9
Dynamic programming determinant for degenerate strict matrices with 50-digit
decimal rationals

n BFMSS BFMSS[2] BFMSS[2,5]

time bitbd time bitbd time bitbd

2 4.4 352 4.3 300 4.4 175

3 15.2 648 13.9 538 14.1 236

4 57.5 2624 58 1984 35 339

5 568 15,427 572 12,202 107 444

ing between BFMSS and BFMSS[2]. This could be explained by two effects.
The first is that the internal representation of the numbers are in binary, and
even when the root bound asks for many bits of precision, our implementation
of BigFloat ensures that trailing zeroes are omitted. The second is that the
precision of the internal approximation is increased each time by a factor of
two until the bitbound is reached. This gives a “step effect” in the function
expressing the running time in terms of the bitbound. The improvement of the
BFMSS[2] bitbound over BFMSS must be greater than a factor of 2 in order
to guarantee observability. In fact, a slight slowdown is sometimes detectable
because of the extra steps to maintain the 2-ary version of BFMSS. To over-
come the first effect, we avoid inputs that are purely binary; our next set of
experiments use decimal rationals. The second effect, unfortunately, persists.
We use random (degenerate) matrices whose entries are strict 50-digit decimal
rationals. Table 9 compares the speed of BFMSS, BFMSS[2] and BFMSS[2,5].
The timings are for 10, 000 evaluations of each determinant.

7 Open Problems and Future Work

This paper introduced the factoring technique into constructive root bounds,
and demonstrated its effectiveness. In general, the problem of constructive root

22

bounds will become more important as EGC techniques and such algorithms
become more widely used. The trade-offs between effectiveness (i.e., small
root-bit bounds) and efficiency (i.e., low computational complexity) is not
understood. Between the extremes of simple recursive rules (that constitute
the bulk of current bounds) and (say) computing minimal polynomials, we
would like to see methods with intermediate computational complexity. Our
factoring method can be seen as one step in this direction. We list some open
problems and future work:

• Our k-ary method can be generalized to maintain arbitrary rational factors,
in addition to k-ary factors. (e.g., transform E to q2vE2 where v ∈ Z,
q ∈ Q). The benefit of the rational factors is less predictable, and hence
experimentation is called for.

• Current constructive root bound techniques are mostly static in nature.
More dynamic root bound techniques should be exploited. An idea of Seki-
gawa [14] can be pursued. Sekigawa proposed some methods in the case of
the measure bound, but they do not seem to have been implemented. We
could combine with the most significant bit (MSB) bound that is maintained
in the Core Library [7].

• It is clear that the k-ary method can also be applied to the Li-Yap Bound.
• The general treatment of the diamond operators under the Measure Bound

is a subject for further research.
• The incorporation of the Sekigawa improvements into the current Mea-

sure[2] Rules is immediate if there is no division. It is possible to give rules
that incorporate these improvements for division, but it is unclear how to
ensure that the binary bound dominates the original bound.

Postscript. Recently, Susanne Schmitt [13] has extended the techniques of
this paper for the diamond operator �(Fn, . . . , F0), and validated the theoret-
ical improvements by experiments.

References

[1] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact geometric
computation made easy. In Proc. 15th ACM Symp. Comp. Geom., pp 341–
450, 1999.

[2] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily
computable separation bound for arithmetic expressions involving radicals.
Algorithmica, 27:87–99, 2000.

[3] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation
bound for real algebraic expressions. In 9th ESA, volume 2161 of Lecture Notes
in Computer Science, pp 254–265. Springer, 2001.

23

[4] Core Library homepage, Since 1999. Software downloads, documentation and
links: http://cs.nyu.edu/exact/core/.

[5] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core library for robust
numerical and geometric libraries. In Proc. 15th ACM Symp. Comp. Geom.,
pp 351–359, 1999.

[6] LEDA Homepage, Since 1994. URL http://www.mpi-sb.mpg.de/LEDA/.
Library of Efficient Data Structures and Algorithms (LEDA) Project. From
the Max Planck Institute of Computer Science.

[7] C. Li. Exact Geometric Computation: Theory and Applications. Ph.D. thesis,
New York University, Department of Computer Science, Courant Institute, Jan.
2001. Download from http://cs.nyu.edu/exact/doc/.

[8] C. Li and C. Yap. A new constructive root bound for algebraic expressions. In
Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, pp 496–505, Jan. 2001.

[9] M. Marden. The Geometry of Zeros of a Polynomial in a Complex Variable.
Math. Surveys. American Math. Soc., New York, 1949.

[10] M. Mignotte. Identification of algebraic numbers. J. of Algorithms, 3:197–204,
1982.

[11] G.-C. Rota. Finite Operator Calculus. Academic Press, Inc, 1975.

[12] E. R. Scheinerman. When close enough is close enough. Amer. Math. Monthly,
107:489–499, 2000.

[13] S. Schmitt. Improved separation bounds for the diamond operator. Technical
Report ECG-TR-363108-01, ECG Project (Effective Computational Geometry
for Curves and Surfaces). INRIA Sophia-Antipolis, 2004. (13 pages)
ftp-sop.inria.fr/prisme/ECG/Reports/Month36/ECG-TR-363110-01.ps.gz.

[14] H. Sekigawa. Using interval computation with the Mahler measure for zero
determination of algebraic numbers. Josai Information Sciences Researches,
9(1):83–99, 1998.

[15] C. K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University
Press, 2000.

[16] C. K. Yap. On guaranteed accuracy computation. In F. Chen and D. Wang,
editors, Geometric Computation. World Scientific Publishing Co., Singapore,
2004.

[17] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and
F. K. Hwang, editors, Computing in Euclidean Geometry, pp 452–486. World
Scientific Press, Singapore, 2nd edition, 1995.

24

