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ABSTRACT
We describe a new algorithm Miranda for isolating the simple zeros

of a function f : Rn → Rn within a box B0 ⊆ R
n
. The function

f and its partial derivatives must have interval forms, but need

not be polynomial. Our subdivision-based algorithm is “effective”

in the sense that our algorithmic description also specifies the

numerical precision that is sufficient to certify an implementation

with any standard BigFloat number type. The main predicate is the

Moore-Kioustelides (MK) test, based on Miranda’s Theorem (1940).

Although the MK test is well-known, this appears to be the first

synthesis of this test into a complete root isolation algorithm.

We provide a complexity analysis of our algorithm based on

intrinsic geometric parameters of the system. Our algorithm and

complexity analysis are developed using 3 levels of description (Ab-

stract, Interval, Effective). This methodology provides a systematic

pathway for achieving effective subdivision algorithms in general.
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1 INTRODUCTION
Solving multivariate zero-dimensional systems of equations is a

fundamental task with many applications. We focus on the problem

of isolating simple real zeros of a real function

f = (f1, . . . , fn ) : Rn → Rn

within a given bounded box B0 ⊆ R
n
. We do not require f to be

polynomial, only each fi and its partial derivatives have interval
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forms. We require that f has only isolated simple zeros in 2B0.

We call B0 the region-of-interest (ROI) of the input instance. This

formulation of root isolation is called
1
a local problem in [14],

in contrast to the global problem of isolating all roots of f . The
local problem is very important in higher dimensions because the

global problem has complexity that is exponential in n. In geomet-

ric applications we typically can identify ROI’s and can solve the

corresponding local problem much faster than the global problem.

Moreover, if f is not polynomial, the global problem might not be

solvable: E.g., f = sinx , n = 1. But it is solvable as a local problem

as in [28].

In their survey of root finding in polynomial systems, Sherbrooke

and Patrikalakis [26] noted 3 main approaches: (1) algebraic tech-

niques, (2) homotopy, (3) subdivision. They objected to the first two

approaches on “philosophical grounds”, meaning that it is not easy

in these methods to restrict its computation to some ROI B0. Of

course, one could solve the global problem and discard solutions

that do not lie in B0. But its complexity would not be a function of

the roots in 2B0. Such local complexity behavior are provable in

the univariate case (e.g., [4]), and we will also show similar local

complexity in the algorithm of this paper.

Focusing on the subdivision approach, we distinguish two types

of subdivision: algebraic and analytic. In algebraic subdivision, f is

polynomial and one exploits representations of polynomials such as

Bernstein form or B-splines [7, 11, 12, 22, 26]. Analytic subdivision

[15, 23, 27] supports a broader class of functions; this is formalized

in [28] and includes all the functions obtained from composition of

standard elementary functions or hypergeometric functions. Many

algebraic algorithms comes with complexity analysis, while the

analytic algorithms typically lack such analysis, unless one views

convergence analysis as a weak form of complexity analysis. This

lack is natural because many analytic algorithms are what theoreti-

cal computer science call “heuristics” with no output guarantees.

Any guarantees would be highly
2
conditional (cf. [27]). To our

knowledge, there has been no subdivision algorithm that solves the

root isolation problem until the present paper. The subdivision algo-

rithms [7, 11, 12, 22, 26] suffer from two gaps. (1) Non-termination:

they require an input ε > 0 to serve as termination criterion. (2)

Non-isolation: the output box is not guaranteed to be isolating,
i.e., to contain a unique root. So an output box could err in one

of two ways: it may contain no roots or may have more than one

1
Sometimes, an algorithm is called “local” if it works in small enough neighborhoods

(like Newton iteration), and “global” if no such restriction is needed. Clearly, this is a

different local/global distinction.

2
The issue of “unconditional algorithms” is a difficult one in analytic settings. Even

the algorithm in this paper is conditional: we require the zeros of f to be simple

within 2B0 . But one should certainly specify any conditions upfront and try to avoid

conditions which are “algorithm-induced” (see [29]).

1
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root. To avoid the first error, some root existence test is needed: so

Garloff and Smith [11, 12] considered the use of Miranda test. To

avoid the second error, Elber and Kim [7] introduced a cone test to

ensure that there is at most one solution. The cone test generalizes

the hodograph test of Sederberg and Meyers (1988); unfortunately

this is a nontrivial test and details on how to compute the cones

are missing.

1.1 Generic Root Isolation Algorithms
It is useful to formulate a “generic algorithm” for local root iso-

lation (cf. [19]). We postulate 5 abstract modules: three box tests

(exclusionC0, existence EC , Jacobian JC) and two box operators
(subdivision and contraction). Our tests (or predicates, which we
use interchangeably) is best described using a notation: for any set

B ⊆ Rn , #(B) = #f (B) denotes the number of roots, counted with

multiplicity, of f in B. These tests are abstractly defined by these

implications:

C0(B) =⇒ #(B) = 0,

EC(B) =⇒ #(B) ≥ 1,

JC(B) =⇒ #(B) ≤ 1.

 (1)

Unlike exact predicates, these tests are “one-sided” (cf. [28]) since

their failure may have no implications for the negation of the pred-

icate. For root isolation, we need both EC(B) and JC(B) to prove

uniqueness. These 3 tests can be instantiated in a variety of ways.

The exclusion test C0(B) is instantiated differently depending on

the type of subdivision: exploiting the convex hull property of Bern-

stein coefficients (in algebraic case) or using interval forms of f
(in analytic case). For EC , we can use various tests coming from

degree theory or fixed point theory (e.g., [3]). This paper is focused

on a test based on Miranda’s Theorem. The Jacobian test JC is

related to the determinant of the Jacobian matrix but more geo-

metric forms (e.g., cone test [7]) can be formulated. Next consider

the box operators: An n-dimensional box B may be subdivided
into 2

k
subboxes in

(n
k
)
ways (k = 1, . . . ,n), giving a total of 2

n − 1

ways. In practice, k = 1 and some heuristic will choose one of the

n binary splits (see [12] for 3 heuristics). If Bernstein form is used,

then de Casteljau’s algorithm is used to construct the Bernstein

forms for the children. We contract B to B ∩N (B) where N (B) is a
box returned by a Newton-like operator. Let us say the contraction

“succeeds” if the widthw(B ∩ N (B)) is less thanw(B). But success
is not guaranteed, and so this operator always needs to be paired

with some subdivision operator that never fails. It is well-known

that N (B) can also provide exclusion and uniqueness tests:

exclusion: B ∩ N (B) = ∅
unique root: N (B) ⊆ B

}
(2)

Given the above 5 modules, we are ready to synthesize them into a

root isolation algorithm: In broad outline, our algorithm maintains

a queue Q of candidate boxes. Initially, Q contains only the ROI B0,

the algorithm loops until Q is empty:

Simple Isolate(f ,B0)

Output: sequence of isolating boxes for roots in B0

Q ← {B0}

While Q , ∅
B ← Q .pop()
If C0(B) continue; ◁ discard B and repeat loop
If EC(B) ∧ JC(B) ◁ B has a unique root

output B and continue;

Ifw(N (B) ∩ B) < w(B) ◁ if contraction succeeds
Q .push(B)

else

Q .push(subdivide(B))

The partial correctness of Simple Isolate is clear, i.e., if it ter-
minates, the output is correct. But termination is a serious issue:

clearly it depends on instantiations of the three tests. But indepen-

dent of the tests, non-termination can arise in two other ways: (1)

Success of contraction ensures a reduction in the widthw(B), but
this alone may not suffice for termination. (2) Presence of roots on

the boundary of a box (e.g., B0). We next discuss the research issues

around this framework.

1.2 How to derive effective algorithms
In this paper, we describe Miranda, a subdivision algorithm for

root isolation, roughly along the above outline. We forgo the use

of the contraction operator as it will not figure in our analysis.

For simplicity, assume that all our boxes are hypercubes (equi-

dimensional boxes); this means our subdivision splits each box

into 2
n
children. With a little more effort, our analysis can handle

boxes with bounded aspect ratios and thus support the bisection-

based algorithms. As noted, termination depends on instantiations

of our 3 tests: our exclusion and Jacobian tests are standard in

the interval literature. Our existence test, called MK test, is from

Moore-Kioustelides (MK) [20]. Our algorithm is similar
3
to one in

the Appendix of [18, Appendix]. In the normalmanner of theoretical

algorithms, one would proceed to “prove that Miranda is correct
and analyze its complexity”. This will be done, but the way we

proceed is aimed at some broader issues discussed next.

Effectivity: how could we convert a mathematically precise

algorithm (like Miranda) into an “effective algorithm”, i.e., certified

and implementable. One might be surprised that there is an issue.

The non-trivially of this question can be illustrated from the history

of isolating univariate roots: for about 30 years, it is known that

the “benchmark problem” of isolating all the roots of an integer

polynomial with L-bit coefficients and degree n has bit-complexity

Õ(n2L), a bound informally described as “near-optimal”. This is

achieved by the algorithm of Schönhage and Pan (1981-1992). But

this algorithm has never been implemented. What is the barrier?

Basically, it is the formidable problem of mapping algorithms in

the Real RAM model [2] or BSS model [6] into a bit-based Turing-

computable model – see [30].

In contrast, recent progress in subdivision algorithms for uni-

variate roots finally succeeded in achieving comparable complexity

bounds of Õ(n2(L + n)), and such algorithms were implemented

3
In [18, Appendix], only termination was proved (up to the interval level). There was

no complexity analysis and we will correct an error in a lemma.

2
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shortly after! Thus, these subdivision algorithms were “effective”.

For two parallel accounts of this development, see [17, 25] for the

case of real roots, and to [4, 5, 14] for complex roots. What is the

power conferred by subdivision? We suggest this: the subdivision
framework provides a natural way to control the numerical precision
necessary to ensure correct operations of the algorithm. Moreover, the
typical one-sided tests of subdivision avoid the “Zero Problem” and
can be effectively implemented using approximations with suitable
rounding modes.

In this paper, we capture this pathway to effectivity by intro-

ducing 3 Levels of (algorithmic) Abstractions: (A) Abstract Level,
(I) Interval Level, and (E) Effective Level. We normally identify

Level (A) with the mathematical description of an algorithm or

Real RAM algorithms.We assume our effective algorithms approx-
imate real numbers by BigFloat or dyadic numbers, i.e., Z[ 1

2
]. As

illustration, consider the exclusion test C0(B) (viewed as abstract)

has correspondences in the next two levels:

(A): C0(B) ≡ 0 < f (B)
(I): C0(B) ≡ 0 < f (B)

(E):
˜C0(B) ≡ 0 < ˜ f (B)

where f (B) is the exact range of f on B, f (B) is the interval form

of f , and ˜ f (B) the effective form. The 3 range functions here are

related as follows:

f (B) ⊆ f (B) ⊆ ˜ f (B). (3)

In general, for any abstract test C(B), we derive its interval and
effective forms to ensure the implications˜C(B) ⇒ C(B) ⇒ C(B). (4)

This means, the success of
˜C(B) implies the success of C(B),

and hence C(B). An abstract algorithm A is first mapped into an

interval algorithm A. But algorithms still involve real numbers. So

we must map A to an effective algorithm
˜A. Correctness must

ultimately be shown at the Effective Level; the standard missing

link in numerical (even “certified”) algorithms is that one often

stops at Abstract or Interval Levels.

Complexity: The complexity of analytic algorithms is often re-

stricted to convergence analysis. But in this paper, we will provide

explicit bounds on complexity as a function of the geometry of

the roots in 2B0. This complexity can be captured at each of our 3

levels, but we always begin by proving our theorems at the Abstract

Level, subsequently transferred to the other levels. Although it is

the Effective Level that really matters, it would be a mistake to

directly attempt such an analysis at the Effective level: that would

obscure the underlying mathematical ideas, incomprehensible and

error prone. The 3-level description enforces an orderly introduc-

tion of new concerns appropriate to each level. Like structured

programming, the design of effective algorithms needs some struc-

ture. Currently, outside of the subdivision framework, it is hard to

see a similar path way to effectivity.

1.3 Literature Survey
There is considerable literature associated with each of our three

tests: the exclusion test comes down to bounding range of func-

tions, a central topic in Interval Analysis [24]. The Jacobian test

is connected to the question of local injectivity of functions, the

Bieberbach conjecture (or de Branges Theorem), Jacobian Conjec-

ture, and theory of univalent functions. In our limited space, we

focus on the “star” of our 3 tests, i.e., the existence test. It is the

most sophisticated of the 3 tests in the sense that some nontrivial

global/topological principle is always involved in existence proofs.

In our case, the underlying principle is the fixed point theorem of

Brouwer, in the form of Miranda’s Theorem (1940), and intimately

related to degree theory.

We compare two box tests C and C ′ in terms of their relative

efficacy: say C is as efficacious as C ′, written C ⪰ C ′, if for all B,
C ′(B) succeeds implies that C(B) succeeds. The relative efficacy of

several existence tests have been studied [3, 9, 10, 13]. Goldsztejn

considers four common existence tests, and argues that “in practice”

there is an efficacy hierarchy

(IN ) ⪰ (HS) ⪰ (FLS) ⪰ (K) (5)

where (K) refers to Krawcyzk, (HS) to Hansen-Sengupta, (FLS) to

Frommer-Lang-Schnurr, and (IN) to Interval-Newton. Note that

(K), (HS) and (IN) are all based on Newton-type operators (see

(2)). Our Moore-Kioustelidis (MK) test is essentially (FLS). We say

“essentially” because the details of defining the tests may vary to

render the comparisons invalid. In our MK tests, we evaluate f
on each box face using the Mean Value Form expansion at the

center of the face. But the above analysis assumes an expansion is

at the center of the box, which is less accurate. But we may also

compare these tests in terms of their complexity (measured by the

worst case number of arithmetic operations, or number of function

evaluations); a complexity-efficacy tradeoff may be expected. Such

complexity comparisons do not account for adaptive costs: Newton-

type existence tests have non-adaptive costs while theMiranda-type

tests are adaptive (we are testing n pairs of faces, and can break off

as soon as one pair fails the test. Finally, evaluating these tests in

isolation does not tell us how they might perform in the context

of an algorithm. It is therefore premature to decide on the best

existence test.

1.4 Overview
In section 2, we introduce some basic concepts of interval arithmetic

and establish notations. Section 3 introduces the key existence

test based on Miranda’s theorem. Section 4 proves conditions that

ensure the success of these existence test. Section 5 introduces two

Jacobian tests. Section 6 describes our main algorithm. Section 7 is

the complexity analysis of our algorithm. We conclude in Section 8.

All proofs are relegated to the Appendix.

2 INTERVAL FORMS
We first establish notations for standard concepts of interval arith-

metic. Bold fonts indicate vector variables: e.g., f = (f1, . . . , fn ) or
x = (x1, . . . ,xn ).

Let R denote the set of compact intervals in R. Extend this to

Rn for the set of compact n-boxes. In the remaining paper, we

assume that all n-boxes are hypercubes (i.e., the width in each di-

mension is the same). For any box B ∈ Rn , letmB =m(B) denote
its center andwB = w(B) be the width of any dimension. Besides

boxes, we will also use ball geometry: let ∆ = ∆(a, r ) ⊆ Rn denote

the closed ball centered at a ∈ Rn of radius r > 0. If r ≤ 0, ∆(a, r ) is

3
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just the point a. For any positive k > 0, let k∆ and kB denote the di-

lation of the ball ∆ and box B relative to their centers. LetA,B ⊆ Rn

be two sets. We will quantify their “distance apart” in two ways:

their usual Hausdorff distance is denoted q(A,B) and their separa-
tion, inf {∥a − b∥ : a ∈ A,b ∈ B} is denoted as sep(A,B). Note that
q is a metric on closed subsets of Rn but sep(A,B) is no metric.

Consider two kinds of extensions of a function f : Rn → R.
First, the set extension of f refers to the function (still denoted

by f ) that maps S ⊆ Rn to f (S) := { f (x) : x ∈ S}. The second

kind of extension is not unique: an interval form of f is any

function f : Rn → R, satisfying two properties: (i) (in-

clusion) f (B) ⊆ f (B); (ii) (convergence) if p = lim
∞
i=0

Bi then
f (p) = lim

∞
i=0

f (Bi ). For short, we call f a box form of f .
If f = (f1, . . . , fn ) : Rn → Rn , we have corresponding set

extension f (S) and interval forms f : Rn → Rn ,
For any set S ⊆ Rn , let Zerof (S) denote the multiset of zeros

of f in S . We assume that f is analytic and its zeros are counted

with the proper multiplicity. Then #f (S) is the size of the multiset

Zerof (S). We may write Zero(S) and #(S) when f is understood.

The notation “ f ” is a generic box form; we use subscripts to

indicate specific box forms. Thus, the mean value form of f is

M
f (B) = f (m(B)) + ∇f (B)T · (B −m(B))

where ∇f is the gradient of f (viewed as a column vector) and

∇f (B)T is the transpose. The box B −m(B) is now at the origin,

i.e.,m(B −m(B)) = 0. The appearance of the generic “ ∇f (B)” in
the definition of

M
f means that

M
f is still not fully specified.

In our complexity analysis, we assume that for any box form, if

not fully specified, will have at least linear convergence. In this
paper, all the box forms used in our predicates will be mean value
forms. Next, we intend to convert the interval form

M
to some

effective version
˜

M
. One reason that this is necessary may be

seen in the fact that
M
assumes an exact value f (m(B)). Even if

m(B) is a dyadic number, we may need to approximate f (m(B))
(e.g., f (x) = sin(x)).

3 MIRANDA AND MK TESTS
In the rest of this paper, we fix

f := (f1, . . . , fn ) : Rn → Rn (6)

to be a C2
-function (twice continuously differentiable), and f and

its partial derivatives have interval forms. We further postulate that

f has only finitely many simple zeros in any bounded region of

interest (this means 2B0 in our algorithms). A zero α of f is simple

if the Jacobian matrix Jf (α ) is non-singular. For any set S ⊆ R, its

magnitude is defined as |S | := max {|x | : x ∈ S}.
We consider a classical test from Miranda (1940) to confirm that

a box B ∈ Rn contains a zero of f . If the box B is written as

B =
∏n

i=1
Ii with Ii = [a

−
i ,a
+
i ], then it has two i-th faces, namely

B−i := I1 × · · · × Ii−1 ×
{
a−i

}
× Ii+1 × · · · × In .

and B+i , defined similarly. Write B±i to mean either B−i or B+i . Con-

sider the following box predicate called
4
the simpleMiranda Test:

MTf (B) ≡
∧∧ n

i=1
(fi (B

+
i ) > 0) ∧ (fi (B

−
i ) < 0) (7)

where f is given in (6). The following result is classic:

Proposition 1. [Miranda (1940)]
If MTf (B) holds then #f (B) ≥ 1.

For a box B and k > 0, let kB denote the box centered atm(B)
of width k · w(B), called the k-dilation of B. Next, we introduce
the MK Test test MK(B) = MKf (B) that amounts an application

of the simple Miranda test to the box 2B (instead of B), using a

preconditioned form of f :

Abstract MK Test

Input: f and box B
Output: true iff MKf (B) succeeds

1. C ← Jf (m(B)), Jacobian matrix atm(B)

If C−1
does not exist, return false.

2. Construct a “preconditioned version” д:
д← C−1 f = (д1(x), . . . ,дn (x))

3. Apply the Simple Miranda Test to 2B for д:
For i ← 1, . . . ,n:

If дi (2B
+
i ) ≤ 0 or дi (2B

−
i ) ≥ 0, (*)

return false
4. Return true.

The notation “2B±i ” in (*) refers to faces of the box 2B, not
the 2-dilation of the faces of B. Here “MK” refers to Moore and

Kiousteliades [20]; the preconditioning idea first appearing in [16].

The MK Test was first introduced in [18].

Note that MK(B) is mathematically exact and generally not imple-

mentable (even if it were possible, we may still prefer approxima-

tions). We first define its interval form, denoted MK(B): simply by

replacing дi (B
±
i ) in line (*) by interval forms дi (B

±
i ). Finally, we

must define the effective form
˜MK(B) (Section 8). The key property

is the relation (cf. (4)):˜MK(B) ⇒ MK(B) ⇒ MK(B).

4 ON SURE SUCCESS OF MK TEST
The success of the MK test implies the existence of roots. In this

section, we prove some (quantitative) converses.

We need preliminary facts about mean value forms. Given x ,y ∈
R, the notation x ± y denotes a number of the form x + θy, where
0 ≤ |θ | ≤ 1; thus “±" hides the implicit θ in the definition. This

notation is not symmetric: x±y andy±x are generally different. This

notation extends to matrices: let A = (ai j )
n
i, j=1

and B = (bi j )
n
i, j=1

be two matrices. ThenA±B := (ai j ±bi j )
n
i, j=1

. Similarly, for a scalar

λ, we have A ± λ := (ai j ± λ)ni, j=1
. Also, let |x | denote the vector

(|x1 |, . . . , |xn |) where x = (x1, . . . ,xn ). For x ,y ∈ Rn , we write

[x ,y] to denote the line segment connecting x andy. We write ∥x ∥

4
We call it “simple” as we ignore some common generalizations that allow an in-

terchange of “< 0” with “> 0”, or replace f by σ (F ) = (fσ (1), . . . , fσ (n)) for any
arbitrary permutation σ of the indices.

4
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and ∥A∥ for the infinity norms of vector x and matrixA. For convex
setC ⊆ Rn , define the matrixK(C)with entries (K(C)i j )

n
i, j=1

where

K(C)i j :=
∑n

k=1

��� ∂2 fi
∂x j∂xk

(C)
���. (8)

Below, C may be a disc ∆ or a line [x ,y]. Denote by Jf (x) the Jaco-

bian matrix of f at x . We write Jf (x) as J (x) when f is understood.

The following is a simple application of the Mean Value Theorem

(MVT):

Lemma 2 (MVT). Given two points x ,y ∈ Rn , we have:

(a) J (x) = J (y) ± K([x ,y])∥x −y∥,

(b) f (x) − f (y) = (J (y) ± K([x ,y])∥x −y∥) · (x −y).

4.1 Sure Success of abstract MK Test
In this and the next subsection, we consider boxes that contain a

root α of f . We prove conditions that ensures the success of the

MK Test. We first prove this for the abstract test MK(B). The next
section extends this result to the interval test MK(B).

The key definition here is a bound λ1(α ) which depends on α
and f . We prove that if w(B) ≤ λ1(α ), then the abstract MK test

will succeed on B. By a critical point we mean a ∈ Rn where the

determinant of J (a) is zero. By definition, a root α of f is simple if

α is not a critical point.

Suppose S1 and S2 are two sets in Rn . Define

∥ J−1(S1)∥ := maxx ∈S1
∥ J−1(x)∥ and

∥ J−1(S1) · K(S2)∥ := maxx ∈S1,y∈S2
∥ J−1(x) · K(y)∥.

We see that both ∥ J−1(S1)∥ and ∥ J
−1(S1)·K(S2)∥ are finite if S1 does

not contain a critical point of f . Consider the following function

s(r ) := r −
1

18n∥ J−1(∆(α , 2
√
nr )) · K(∆(α , 2

√
nr ))∥

. (9)

We then define λ1(α ) to be the smallest r such that s(r ) = 0, i.e.,

λ1(α ) := argminr {s(r ) = 0}.

Lemma 3. For any simple root α of f , λ1(α ) is well-defined.

From now on, let ∆α denote the dic

∆α :=∆(α , 2
√
nλ1(α )). (10)

The following lemma corrects an gap in the appendix of [18].

Lemma 4. Let box B contain a simple root α of f .
If wB ≤ λ1(α ), the preconditioned system дB := J−1(m(B))f =
(д1, . . . ,дn ) is well-defined, and for all i = 1, . . . ,n,

дi (2B
+
i ) ≥

wB
4

, дi (2B
−
i ) ≤ −

wB
4

.

4.2 Sure Success of Interval MK Test
We now extend the previous subsection on the abstract MK Test

MK(B) to the interval version MK(B). Again, assume B is a box

containing exactly one root α of f . We will give λ2(α ) which is

analogous to λ1(α ) and prove that if wB ≤ λ2(α ), then MK(B)
will succeed.

To prove the existence of such a λ2(α ) as mentioned above,

we need to make some assumptions on the property of the box

functions. As in [21], a box function f is called Lipschitz in a

region S ⊆ Rn if there exists a constant L such that

w( f (B)) ≤ L ·w(B), ∀B ⊆ S . (11)

We call any such L a Lipschitz constant of f on S . For our
theorem, we need to know the specific box function in order to

derive a Lipschitz constant. Consider the mean value form
M
f

on a region S ⊆ Rn .

Lemma 5. Let f be a continuously differentiable function defined
on a convex region S ⊆ Rn . Then a Lipschitz constant for

M
f on S

is
∑n
k=1

��� ∂f
∂x j
(S)

���.
Consider the sign tests of MK(B):

M
дi (2B

+
i ) > 0 and

M
дi (2B

−
i ) < 0

where дi is the i-th component of the system J (m(B))−1 f . We con-

sider the mean value form
M
дi (2B

+
i ) = дi (m(2B

+
i ))+ ∇дi (2B

+
i ) ·

(m(2B+i ) − 2B+i ) and assume that the components of ∇дi (2B
+
i )

are evaluated via the linear combination of

∂fj (2B+i )
∂xk

for j,k =

1, . . . ,n.
We now prove that if B is small enough, MK(B) will succeed.

Recalling the Hausdorff distance q(I , J ) on intervals, we have this

bound from [23].

Proposition 6. Let f : D ⊂ Rn → R be a continuously differen-
tiable function. Then

q(
M
f (B), f (B)) ≤ 2wB

∑n

i=1

w(
∂ f (B)

∂xi
). (12)

For the next theorem, define

λ̂1(α ) :=
1

64n2L · ∥ J−1(∆α )∥
. (13)

where L = Lα is a Lipschitz constant for

∂fj
∂xk

on ∆α (for all

j,k = 1, . . . ,n).

Theorem 7. Let B be a box containing a simple root α of width
wB ≤ λ1(α ).

(a) If w(
∂дi (2B+i )

∂x j
) ≤ 1

32n for each j = 1, . . . ,n, then дB :=

J−1(m(B))f is well-defined and MK(B) will succeed.

(b) IfwB ≤ λ2(α ) with λ2(α ) := min

{
λ1(α ), λ̂1(α )

}
, then MK(B)

will succeed.

5 TWO JACOBIAN CONDITIONS
We define the Jacobian test as follows:

JC(B) ≡ 0 < det(Jf (3B)). (14)

The order of operations in det(Jf (3B)) should be clearly understood:

first we compute the interval Jacobianmatrix Jf (3B), i.e., entries

in this matrix are the intervals ∂x j fi (3B). Then we compute the

determinant of the interval matrix. Also note that we use 3B instead

of B. The following is well-known in interval computation (see [1,

Corollary to Theorem 12.1]):

Proposition 8. [Jacobian test]
If JC(B) holds then #f (3B) ≤ 1.
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Abstract Miranda(f ,B0)

Output: Queue P of non-overlapping isolating boxes of f s.t.

Zf (B0) ⊆
⋃
B∈P Zf (B) ⊆ Zf (2B0)

1. Initialize output queue P ← ∅ and priority queue Q ← {B0}.

2. While Q , ∅ do:
3. Remove a biggest box B from Q .
4. If C0(B) succeeds, continue;
5. If JC(B) succeeds then
6. Initialize new queue Q ′ ← {B}.
7. While Q ′ , ∅ do:
8. B′ ← Q ′.pop().
9. If (B′ = B) ∨ C0(B

′) fails then

10. If MK(B′) succeeds then
11. P .add(2B′).
12. Discard from Q the boxes contained in 3B.
13. Break.

14. Q .push(subdivide(B)).
15. Else

16. Q .push(subdivide(B)).

Figure 1: Root Isolation Algorithm

We next introduce the following strict Jacobian test:

JCs(B) ≡ 0 < (det Jf )(3B) (15)

where (det Jf )(x) denotes expression obtained by evaluating the

determinant of the Jacobian matrix Jf (x) with functional entries

∂x j fi (x). Finally, we evaluate (det Jf )(x) on 3B. Note that JC(B) ⇒

JCs(B) and so the strict test is more efficacious. Unfortunately

JCs(B) cannot be used by our algorithm since it is known that

JCs(B) does not imply #f (3B) ≤ 1. Nevertheless, we now show that

it can serve as a uniqueness test in conjunction with the MK test:

Theorem 9.

If both JCs(B) and MK( 3
2
B) succeed then #f (3B) = 1.

It follows that we could use JCs(B)∧MK(B) in our Simple Isolate
algorithm in the introduction.

6 THE MIRANDA ALGORITHM
Our main algorithm for root isolation is given in Figure 1. We use

MK(B) and JC(B) (respectively) for its existence and Jacobian tests.

It remains to specify the exclusion test C0(B):

C0(B) ≡ (∃i = 1, . . . ,n)[0 < fi (B)] (16)

The algorithm in Figure 1 is abstract. To introduce the interval

version Miranda, just replace the abstract tests by their interval

analogues: MK(B), C0(B) and JC(B). In amounts to replacing

the set theoretic function in the abstract defintion by their interval

analogues:

• C0(B): ∃i = 1, . . . ,n such that 0 < fi (B);
• JC(B): 0 < det(J (3B));
• In the definition of MK(B) (Section 3), replace each дi (2B

±
i )

by дi (2B
±
i ).

Note that all these box forms are really mean value forms
M
. For

the effective version, we use the tests
˜MK(B), ˜C0(B) and ˜JC(B),

which is discussed in Section 8.

Termination of each version of Miranda follows from the com-

plexity analysis below. Even if there are roots on the boundary

of B0, we will terminate, although the isolated root might lie in

2B0 \B0. But we first show that the output is correct when Miranda
halts:

Theorem 10 (Partial Correctness).

1. If Miranda halts, the output queue P is correct.
2. The same holds for Miranda and ˜Miranda.

7 COMPLEXITY UPPER BOUNDS
In this section, we derive a lower bound λ > 0 on the size of boxes

produced by Miranda. That is, any box B with width w(B) ≤ λ
would either be output or rejected. This implies that the subdivision

tree is no deeper than log
2
(w(B0)/λ), yielding an upper bound on

computational complexity. This bound λ will be expressed in terms

of quantities determined by the zeros in 2B0. We first prove this

for the abstract Miranda, then extend the results to Miranda and˜Miranda. From the algorithm, we see that a box B is output if

¬C0(B) ∧ JC(B) ∧ MK(B) holds in line 10; it is rejected if one of the 2

following cases is true: (1) C0(B) holds or (2) it is contained in 3B′

where JC(B′) holds and a box in B′ is output, as indicated in line

12. The boxes that contain a root of f will be finally verified by

the former predicate and the boxes that contain no root of f will

eventually be rejected in one of the 2 cases.

To prove the existence of such a λ, we need to look into the tests
C0(B), JC(B) and MK(B). We will give bounds λJC, λMK and λC0

for

the 3 tests respectively and show that for any box B produced in

the algorithm

(1) if #(B) > 0, it will pass MK(B) whenwB ≤ λMK,
(2) if #(B) > 0, it will pass JC(B) whenwB ≤ λJC;
(3) if #(B) = 0 and B keeps a certain distance from the roots, it will

pass C0(B) whenwB ≤ λC0
.

We have essentially proved item (1) in the Section 4. More precisely,

for each root α , we had defined a constant λ2(α ). We now set

λMK := min

α ∈Zero(2B0)
λ2(α ). (17)

7.1 Sure Success for C0(B) and JC(B)
We study conditions to ensure the success of the tests JC and C0.

We will introduce constants λJC, λC0
in analogy to (17).

First consider JC(B). Let box B contain a simple root α . By Mean

Value Theorem, w(
∂fi
∂x j
(3B)) ≤ 3wB · K(3B)i j (see (8) for defini-

tion). Since
∂fi
∂x j
(α ) ∈

∂fi
∂x j
(3B), it holds

∂fi
∂x j
(3B) ⊆ [

∂fi
∂x j
(α ) −

3wB · K(3B)i j ,
∂fi
∂x j
(α ) + 3wB · K(3B)i j ] (∀i, j = 1, . . . ,n). Denot-

ing U (α ) := max1≤i, j≤n |
∂fi
∂x j
(α )| and V := max1≤i, j≤n ·K(3B)i j ,

we get |
∂fi
∂x j
(3B)| ≤ U (α ) + 3VwB and w(

∂fi
∂x j
(3B)) ≤ 3VwB . By

applying the rules w(I1 + I2) = w(I1) + w(I2) and w(I1 · I2) ≤
w(I1) · |I2 | + w(I2) · |I1 | where I1, I2 are intervals, we may verify

by induction thatw(
∏n

i=1
(

∂fi
∂xσi
(3B)) ≤ 3nV (U (α ) + 3wBV )

n−1wB

6
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for any permutation σ . Hence, it followsw(det(Jf (3B))) ≤ 3n · n! ·

V (U (α ) + 3VwB )
n−1wB .

Set λ3(α ) to be the smallest positive root of the equation

| det(J (α ))| − 3n · n! ·V (U (α ) + 3Vx)n−1 · x = 0. (18)

The following lemma implies the existence of λJC:

Lemma 11. If box B contains a simple root α and wB < λ3(α )
then JC(B) succeeds.

Thus we may choose λJC := minα ∈Zero(2B0)
λ3(α ) and set

ℓ1 := min {λJC, λMK}

Lemma 12 (Lemma A). If #(B) > 0 andwB ≤ ℓ1 then MK(B) and
JC(B) holds.

Corollary 13. Each root in B0 will be output in a box of width
> 3ℓ1/2.

Let R0 ⊆ 2B0 be a region that excludes discs around roots:

R0 := 2B0 \
⋃

α ∈Zero(2B0)
∆̊(α , ℓ1)

where ∆̊ is the interior of ∆. Denote the zero set of fi as Si for
i = 1, . . . ,n and define d0 := infp∈R0

max
n
i=1

sep(p,Si ). Since all

the roots in 2B0 are removed from the set R0, we can verify that

max
n
i=1

sep(p,Si ) > 0 for all p ∈ R0. Combining with the compact-

ness of R0, we obtain d0 > 0. Finally we set

λC0
:=

d0

2

√
n
.

Lemma 14 (Lemma B). Suppose #(B) = 0 with
sep(mB , Zero(2B0)) ≥ ℓ1, ifwB ≤ λC0

then C0(B) holds.

Lemma 15 (Lemma C). Every box produced by the Miranda has
width ≥ 1

4
min

{
λC0
, λJC, λMK

}
.

7.2 Sure Success for C0(B) and JC(B)
We now consider the interval tests JC and C0 under the as-

sumption that the underlying interval forms involved are Lipschitz.

Let L̂ be a global Lipschitz constant for fi and
∂fi
∂x j

for all

i, j = 1, . . . ,n in 3B0. We will develop corresponding bounds λ JC,

λ C0

. Observe that if we replace the bounds λMK, λJC, λC0
in the ab-

stract version by the bounds λ MK, λ JC, λ C0

, all the statements

and proofs in the previous section remain valid. So in this section,

we do not repeat the statements, except to give the bounds λ JC
and λ C0

.

First look at the test JC(B). With the same arguments as in

abstract level, we obtain

λ JC := min

α ∈Zero(2B0)
λ4(α )

where λ4(α ) is the smallest positive root of the

| det(J (α ))| − 3n · n! · L̂(U (α ) + 3L̂x)n−1 · x = 0. (19)

With λ JC and λ MK, we have an interval analogue of Lemma A:

Lemma 16 (Lemma A). If #(B) > 0 andwB ≤ ℓ
′
1
with

ℓ′
1

:= min

{
λ JC, λ MK

}
,

then MK(B) and JC(B) succeeds.

Next look at the test C0(B). Arguing as in the abstract level, we

only consider the boxes in the regionR′
0

:= 2B0\
⋃
α ∈Zero(2B0)

∆̊(α , ℓ′
1
)

with ℓ′
1

:= min

{
λ JC, λ MK

}
. Define u := infp ∈R′

0

max
n
i=1

|fi (p) |
L̂

.

It is easy to see that max
n
i=1

|fi (p) |
L̂

> 0 for any p ∈ R′
0
. Since

the function | fi (x)| is continuous and the set R′
0
is compact, we

obtain that u > 0. Setting λ C0

:= u
2
, we have the following lemma:

Lemma 17 (Lemma B). Let sep(mB , Zero(2B0)) > ℓ
′
1
with

ℓ′
1

:= min

{
λ JC, λ MK

}
. If #(B) = 0 andwB ≤ λ C0

, then C0(B)

succeeds.

Combining Lemma A and Lemma B, we obtain:

Lemma 18 (Lemma C). Every box produced by the Miranda

has width ≥ 1

4
min

{
λ C0

, λ JC, λ MK

}
.

8 EFFECTIVE MIRANDA
We now extend our results from Miranda to

˜Miranda by intro-

ducing the effective tests
˜MK(B), ˜JC(B) and ˜C0(B). Inside these

tests are various box forms, say h(B). Recall that they are actually
mean value forms

M
h(B) (we write “ h(B)” for simplicity). We

convert each h(B) to its effective version
˜h(B), whose output

interval has dyadic endpoints and which satisfies h(B) ⊆ ˜h(B).
The main issue is the accuracy of the effective forms, which we ex-

press by upper bounds on the Hausdorff distance q( h(B), ˜h(B)).
It is always bounded as a linear function of the width wB , i.e.,

q( h(B), ˜h(B)) = O(wB ). However, we cannot stop here – the

implicit constant in the asymptotic notation must be made explicit

for implementation purposes.

Specifically, in
˜C0(B), we require q( fi (B), ˜ fi (B)) ≤

1

16
wB

for each i = 1, . . . ,n. In ˜MK(B), we requireq( Mдi (2B
±
i ), M

дi (2B
±
i ))

≤ 1

16
wB . In ˜JC(B) we require that q( Ji j (3B), ˜ Ji j (3B)) ≤

1

16
·

3wB for each entry
˜ Ji j (3B) of ˜ J (3B). We get effective versions

of all our lemmas and theorems, with modified constants such as

λ JC and λ C0

.

9 CONCLUSION
We have provided the first effective subdivision algorithm Miranda
for isolating simple real roots of a system of equations f = 0,
provided f and its derivatives have interval forms. Our result are

novel for its completeness (previous algorithms need ε-termination

and has no isolation guarantees), its generality (going beyond the

polynomial case), and its complexity analysis (going beyond ter-

mination proofs). We also contributed to the theory of subdivision

algorithms by formalizing a 3-level description to provide a path-

way from abstract algorithms to effective ones. Given that many

existing numerical algorithms still lack effective versions, this is a

promising line of work. In the future, we plan to implement and

develop our algorithm into a practical tool.
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A APPENDIX: ALL PROOFS

Lemma 2 (MVT). Given two points x ,y ∈ Rn , we have:
(a)

J (x) = J (y) ± K([x ,y])∥x −y∥ (20)

(b)

f (x) − f (y) = (J (y) ± K([x ,y])∥x −y∥) · (x −y) (21)

Proof. (a) We apply the Mean Value Theorem to each entry Ji j =
∂fi
∂x j

:

Ji j (x) = Ji j (y) + ∇Ji j (̃y) · (x −y) with ỹ ∈ [x ,y]

= Ji j (y) ± K([x ,y])i j ∥x −y∥

(b) We apply the Mean Value Theorem twice. The first application

gives:

fi (x) − fi (y) = ∇fi (̃y) · (x −y)

= (Ji1 (̃y), . . . , Jin (̃y)) · (x −y)

where ỹ ∈ [x ,y] and Ji j :=
∂fi
∂x j

. Applying the Mean Value Theorem

again to each Ji j (̃y):

Ji j (̃y) = Ji j (y) + ∇Ji j (̂y) · (y − ỹ) with ŷ ∈ [y, ỹ]

= Ji j (y) ± K([x ,y])i j ∥x −y∥

Hence

fi (x) − fi (y) = (Ji1(y) ± K([x ,y])i1∥x −y∥, . . . ,

Jin (y) ± K([x ,y])in ∥x −y∥) · (x −y)

for i = 1, . . . ,n. This proves (21). Q.E.D.

Lemma 3. For any simple root α of f , λ1(α ) is well-defined.
Proof. Note that s(0) is well-defined since α is a simple root. We

also deduce that s(0) < 0 and that s(r ) = s(0) for all r < 0. Thus

λ1(α ) > 0 if it is well-defined. Let r∗ be the smallest radius such

that ∆(α , r∗) contains a critical point; if f has no critical point, then

r∗ is defined to be ∞. It follows that s(r∗) = r∗ − 1

∞ = r∗. Thus

s(0) < 0 < s(r∗). From the fact that ∥ J−1(∆(α , 2
√
nr )) ·K(∆(α , 2r ))∥

is a continuous non-decreasing function of r in the range [0, r∗),
we conclude that there exists some r ∈ (0, r∗) such that s(r ) = 0.

Q.E.D.

Lemma 4. Let box B contain a simple root α of f .
If wB ≤ λ1(α ), the preconditioned system дB := J−1(m(B))f =
(д1, . . . ,дn ) is well-defined, and for all i = 1, . . . ,n,

дi (2B
+
i ) ≥

wB
4

, дi (2B
−
i ) ≤ −

wB
4

.

Proof. For simplicity, we writem(B) asm. From the defintion of

λ1(α ) and the fact that B contains α we know that J−1(α ) is well-
defined.
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Let x be a point on the boundary of the box 2B. Then

дB (x )

= J−1(m)f (x ) (by definition of дB )

= J−1(m)(f (α ) + (J (α ) ± K ([x , α ]) ∥x − α ∥) · (x − α )) (by MVT (21))

= J−1(m)(J (α ) ± K ([x , α ]) ∥x − α ∥) · (x − α ) (since α is a root)

= J−1(m)(J (m) ± K ([α ,m]) ∥α −m ∥ ± K ([x , α ]) ∥x − α ∥) · (x − α )

(by MVT (20))

= J−1(m)(J (m) ± 2K (2B) ∥x − α ∥) · (x − α ) (since ∥m − α ∥ ≤ ∥α − x ∥)

= (1 ± 2J−1(m)K (2B) ∥x − α ∥) · (x − α ) (1 is the identity matrix).

The i-th component in дB (x) is the дi ; thus

дi (x) = (xi − αi ) ± 2(J−1(m)K(2B)∥x − α ∥) · (x − α ).

In the following, we write λ1 for λ1(α ) and note that α ∈ B and

wB ≤ λ1 implies

m ∈ ∆α
2B ⊆ ∆α

}
. (22)

Thus:���дi (x ) − (xi − αi )���
≤ 2∥ J −1(m)K (2B) ∥ · ∥x − α ∥

n∑
j=1

|x j − α j |

≤ 3nwB ∥ J −1(m)K (2B) ∥ · ∥x − α ∥ (as

n∑
j=1

|x j − α j | ≤
3

2

nwB )

≤
9

2

nw2

B ∥ J
−1(m)K (2B) ∥ (as ∥x − α ∥ ≤

3

2

wB )

≤
w2

B

4

(
18n ∥ J −1(m)K (2B) ∥

)
≤
w2

B

4

(
18n ∥ J −1(∆α )K (∆α ) ∥

)
from (22)

=
w2

B

4

·
1

λ1

(definition of λ1)

≤
wB

4

(sincewB ≤ λ1).

This last inequality gives���дi (x) − (xi − αi )��� ≤ wB/4. (23)

It remains to show that дi (2B
+
i ) ≥

wB
4

(the proof that дi (2B
−
i ) ≤

−
wB

4
is similar). This amounts to proving дi (x) ≥

wB
4

holds for all

x ∈ 2B+i . First we note that

xi − αi ≥ wB/2 (24)

since x ∈ 2B+i and α ∈ B. The inequalities (23) and (24) together

implies дi (x) and xi − αi must have the same sign. Since xi − αi is
positive, we conclude that дi (x) must be positive. Combined with

(23) and (24), we conclude that дi (x) ≥ wB/4, as claimed. Q.E.D.

Lemma 5. Let f be a continuously differentiable function defined on
a convex region S ⊆ Rn . Then a Lipschitz constant for

M
f on S is∑n

k=1

��� ∂f
∂x j
(S)

���.
Proof. Recall that

M
f (B) = f (m(B)) + ∇f (B)T · (B −m(B)) =

f (m(B))+ 1

2
wB ·

∑n
k=1

∂f
∂x j
(B) for any B ⊆ S . Thusw(

M
f (B)) =

1

2
wB · w(

∑n
k=1

∂f
∂x j
(B)) = 1

2
wB ·

∑n
k=1

w(
∂f
∂x j
(B)) ≤ wB ·∑n

k=1

��� ∂f
∂x j
(B)

��� ≤ wB ·∑n
k=1

��� ∂f
∂x j
(S)

���. The lemma follows. Q.E.D.

Theorem 7. Let B be a box containing a simple root α of width
wB ≤ λ1(α ).

(a) If w(
∂дi (2B+i )

∂x j
) ≤ 1

32n for each j = 1, . . . ,n, then дB :=

J−1(m(B))f is well-defined and MK(B) will succeed.

(b) IfwB ≤ λ2(α ) with λ2(α ) := min

{
λ1(α ), λ̂1(α )

}
, then MK(B)

will succeed.

Proof. (a) We show the first part of the theorem. In Lemma 4, it is

proven that whenwB ≤ λ1(α ), the system дB is well-defined and

it holds that дi (B
+
i ) ≥

wB
4

and дi (B
−
i ) ≤ −

wB
4
. From Proposition 6,

we have

q(
M
дi (2B

+
i ),дi (2B

+
i )) ≤ 2w(2B)

n∑
j=1, j,i

w(
∂дi (2B

+
i )

∂x j
)

≤ 4nwB · max

1≤j≤n, j,i
w(

∂дi (2B
+
i )

∂x j
).

By the convergence property of box functions,w(
∂дi (2B+i )

∂x j
) ap-

proaches 0 whenwB approaches 0 for j = 1, . . . ,n. Thus whenwB

is small enough, we havew(
∂дi (2B+i )

∂x j
) ≤ 1

32n ,∀j = 1, . . . ,n. Then

M
дi (2B

+
i ) ≥ дi (2B

+
i ) − q( M

дi (2B
+
i ),дi (2B

+
i ))

≥
wB
4

− 4nwB ·
1

32n
=
wB
8

> 0.

Similar argument applies to
M
дi (2B

−
i ). This gives the first part of

the theorem.

(b) Now we prove the second part of the theorem. From the

proof of the first part, it suffices to prove that when wB ≤ λ2(α ),

the inequalityw(
∂дi (2B+i )

∂x j
) ≤ 1

32n holds for all i, j = 1, . . . ,n. To

show this, we observe that

w (
∂дi (2B+i )

∂x j
)

=
∑
k

[J −1(m(B))]ik ·
∂fj
∂xk
(2B+i )

([J −1(m(B))]ik are the entries of J −1(m(B)))

<
∑
k

∥ J −1(∆α ) ∥ ·
∂fj
∂xk
(2B+i ) (2B ⊂ ∆α )

< ∥ J −1(∆α ) ∥ · 2nLwB (

∂fj
∂xk

are Lipschitz on ∆α )

≤
1

32n
(wB ≤

1

64n2L · ∥ J −1(∆α ) ∥
).

Q.E.D.

Lemma 9. If both JCs(B) and MK( 3
2
B) succeed then #f (3B) = 1.

Proof. From [8], the success of MK( 3
2
B) implies∑

y∈Zero(3B)

sign(det Jf (y)) = ±1

where sign(det Jf (y))) is the sign of det Jf (y). By the success of

JC(B), we further know that sign(det Jf (y)) is the same for all y ∈
3B. Thus there is only one root in 3B. Q.E.D.

9
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Theorem 10 (Partial Correctness).

1. If Miranda halts, the output queue P is correct.
2. The same holds for Miranda and ˜Miranda.
Proof.

We first argue that the partial correctness of Miranda and˜Miranda follows from the partial correctness of Miranda by the

general observation
5
that the predicates in Miranda are one-sided,

and (as can be verified below) none of our arguments are predicated

upon the failure of the tests. We need to further note that for the

effective version, we must assume that the ROI B0 is a dyadic box,

so that all subdivisions are done without approximation.

Hence it remains to prove the partial correctness of Miranda:
(1) We note that each output box in P is isolating. A box 2B is output

in line 11 upon passing MK(B). This is inside the inner while loop
for subboxes of some B′ which passes JC(B′). But MK(B) implies

#(2B) ≥ 1 and JC(B′) implies #(3B) ≤ 1. Thus #(2B) = 1.

(2) Next we claim no root is output twice in P . This follows by
showing that if 2B and 2B′ are output, then their interiors are disjoint.
It does not matter if the boundaries of 2B and 2B′ intersect because
there are no roots on their boundary – this is ensured by the success

of the Simple Miranda test on these output boxes. The reason for

our concern comes from the fact that, although the boxes inQ have

pairwise disjoint interiors, each B in Q can cause a larger box (2B)
to be output.

CLAIM: Suppose 2B is output in line 11. Then immediately after
line 12, every box B′ in Q , the interior of 2B′ is disjoint from 2B. Pf:
Suppose the interior of 2B′ intersects 2B. By the priority queue

property, we have w(B′) ≤ w(B). It follows that B′ actually is

contained in the annulus 3B \B. This follows from two facts
6
about

aligned boxes: (a) any two aligned boxes have disjoint interiors

or have a containment relationship, and (b) 3B \ B is a union of 8

aligned boxes. If B′ is contained in this annulus, then line 12 would

have removed it. This proves our claim.

(3) We must show that

Zf (B0)
(∗)
⊆

⋃
B∈P
Zf (B)

(∗∗)
⊆ Zf (2B0).

The second containment (**) is immediate because all our output

boxes have the form 2B where B is an aligned box. Such boxes

are contained in 2B0. To show (*), it suffices to prove that if B′ is
a discarded box, then either B′ has no roots, or any root in B′ is
already output. From the algorithm, a box B′ is discarded in two

lines: The first is Line 4, when C0(B
′) succeeds. But this implies

B has no roots. The second is Line 12 of the algorithm. Since B′

in contained in 3B (where 2B is the output). We know that JC(B)
holds, and thus there is at most one root in 3B. So if B′ contains any
root, it must be the root already identified by 2B. Thus, all discarded
boxes are justified.

Q.E.D.

5
If wewere proving termination, the reverse implication hold: if

˜Miranda terminates

than Miranda terminates.

6
Here aligned boxesmeans those that can arise by repeated subdivision of B0 . Clearly

B and B′ are aligned, but kB and kB′ are not aligned for any k > 1.

Lemma 11. If box B contains a simple root α andwB < λ3(α ) then
JC(B) succeeds.
Proof. The fact α ∈ B implies J (α ) ∈ J (3B). Since α is a sim-

ple root, we have det(J (α )) , 0, and thus λ3(α ) , 0. From the

definition of λ3(α ), we know that if wB < λ3(α ), then 3n · n! ·

V (U (α ) + 3VwB )
n−1 ·wB < | det(J (α ))|, and thusw(det(J (3B))) <

| det(J (α ))|. It follows 0 < det(J (3B)). The test JC(B) succeeds.
Q.E.D.

Lemma 14 (Lemma B). Suppose #(B) = 0 with
sep(mB , Zero(2B0)) ≥ ℓ1, ifwB ≤ λC0

then C0(B) holds.
Proof. Since sep(mB , Zero(2B0)) > ℓ1, we have mB ∈ R0. Thus

max
n
i=1

sep(mB ,Si ) ≥ d0. Combining wB ≤ λC0
, it follows that

max
n
i=1

sep(B,Si ) ≥ d0−
√
nwB ≥ d0/2. Hence there exists i ∈ [1,n]

such that B ∩ Si = ∅. Thus C0(B) holds. Q.E.D.

Lemma 15 (Lemma C). Every box produced by the Miranda has
width ≥ 1

4
min

{
λC0
, λJC, λMK

}
.

Proof.We first give an equivalent statement of the lemma: for any

box B produced in the algorithm, if wB ≤
1

2
min

{
λC0
, ℓ1

}
, then B

has been output or rejected. In what follows, we will prove this

equivalent statement.

Case 1, #(B) > 0: Thus some ancestor of B should have output

according to Lemma 12, a contradiction.

Case 2, #(B) = 0, sep(mB , Zero(2B0)) ≥ ℓ1.We contradict Lemma 14

directly.

Case 3, #(B) = 0, sep(mB , Zero(2B0)) < ℓ1. Without loss of gen-

erality, assume that sep(mB ,α ) < ℓ1. Since wB ≤
1

2
min

{
λC0
, ℓ1

}
,

by the Corollary to Lemma 12, we know that some box B′ con-
taining α of width > ℓ1/2 has been output (this uses the fact that

we process the boxes in a breadth-first-manner). This output also

removes all the boxes in the process queue that intersect the inte-

rior of 3B′. We can see that B intersects 3B′ because wB′ > ℓ1/2,

α ∈ B′ and sep(mB ,α ) < ℓ1. Thus B should have been removed.

Contradiction. Q.E.D.

Lemma 17 (Lemma B). Let sep(mB , Zero(2B0)) > ℓ
′
1
with ℓ′

1
:= min

{
λ JC, λ MK

}
.

If #(B) = 0 andwB ≤ λ C0

, then C0(B) succeeds.
Proof.The Proof is similar to that of Lemma 14. Since sep(mB , Zero(2B0)) >

ℓ′
1
, we havemB ∈ R

′
0
.

By the definition of u, we see max
n
i=1

|fi (mB ) |

L̂
≥ u, which means

that ∃j ∈ [1,n] such that

|fj (mB ) |

L̂
≥ u. By the inclusion property

of box functions, fj (mB ) ∈ fj (B). Since wB ≤ λ C0

= u
2
, we

havew( fj (B)) ≤ L̂ ·wB ≤
u
2
. It follows that fj (B) ≥ fj (mB ) −

w( fj (B)) ≥ u − u
2
> 0. Thus 0 < fj (B) and C0 holds. Q.E.D.
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