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ABSTRACT
Many problems in Computational Science & Engineering
(CS&E) are defined on the continuum. Standard algorithms
for these problems are numerical and approximate. Their
computational techniques include iteration, subdivision, and
approximation. Such techniques are rarely seen in exact or
algebraic algorithms. In this tutorial, we discuss a mode of
computation called exact numerical computation (ENC)
that achieves exactness through numerical approximation.
Through ENC, we can naturally incorporate iteration, sub-
division and approximation into the design of exact algo-
rithms for computer algebra and computational geometry.
Such algorithms are both novel and practical. This tutorial
on ENC is divided into three equal parts:
(a) Zero Problems
(b) Explicitization Problems
(c) Techniques and Complexity Analysis of Adaptivity

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity ]: Nonnumerical Algorithms and Problems —Geometri-

cal Problems and Computations; I.1.2 [Symbolic and Al-

gebraic Manipulation]: Algorithms—Algebraic Algorithms

General Terms
Algorithms, Theory

Keywords
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1. INTRODUCTION
The algorithms of theoretical computer science are strik-

ingly discrete, combinatorial and exact. This fact is often
celebrated by computer scientists, and rightly so. This ex-
act view is also resonant with computer algebra. There is
also an impulse to extend this view into a universal truth
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about all computation (e.g., Zeilberger [12]). The attitude
is that, since all computation is discrete, the notion of con-
tinuous computation is an unnecessary abstract construct.
But there is a very big world of continuous computation out
there. Computational Science and Engineering (CS&E) is a
convenient label for this world. The problems of CS&E are
largely set in the continuum and are solved numerically and
approximately. The continuum often refers to the real num-
bers R, but for our purposes, we may expand its reference
to any locally compact topological space such as C or Rn.

The continuous world has a similar impulse to universalize
its view point. In contrast to the exact and finitistic view,
the experience of numerical computation suggests the oppo-
site view: “most problems of continuous mathematics cannot

be solved in finite time” [11, p. 323, Appendix]. But this is
not a problem, says the algebraist/computer scientist: we
can compute in R just as we do in any ring or field. Use
the Real RAM model, and we are back in the world of dis-
crete exact computation. But this model, though useful for
other purposes, does not suffice if you want to solve prac-
tical numerical problems in CS&E. One difference between
computing in R and fields such as GFp or Q is the awk-
ward matter of uncountability of R: only a vanishing frac-
tion of the elements in R are even representable. Despite
this, we can build profound mathematical theories on the
continuum. Computing in the continuum is another mat-
ter: we can only do this very delicately, by making careful
choices and circumscriptions. We must impose conditions
on our input in order to assure solvability – continuity, Lip-
schitz, smoothness, Morseness, non-singularity, well-posed,
well-conditioned, etc. Such conditions are well-studied in
applied mathematics. In discrete computation, we can al-
ways invoke the “brute force search algorithm” when all else
fails. No such super-algorithm exists in continuous compu-
tation.

2. EXACT NUMERICAL COMPUTATION
This tutorial is about a synthesis of the above two views

of computation. This synthesis might be called exact nu-

merical computation or ENC for short. Through ENC,
we can produce algorithms that are practical and relevant
to the problems of CS&E. New forms of exact algorithms
will arise in computer algebra and computational geometry.

This talk is divided into three 45-minutes parts, briefly
introduced in the following subsections.



2.1 Zero Problems
This work originated with computational geometers who

wanted to solve the numerical non-robustness issues that
plague geometric algorithms [10]. Computational Geome-
try gave us unique insights into what it means to compute
exactly in the continuum. This can be precisely located in
the so-called Zero Problems. Based on this, a mode of nu-
merical computation was invented that amounts to exact
computation with algebraic numbers. This is encoded in li-
braries such as LEDA or Core Library. Surprisingly, there
is no analogue in computer algebra, which has many other
techniques for computing with algebraic numbers (e.g., [2]
or [5, Chap. 4]).

The key difference is that in geometric applications, we
are less interested in the algebraic properties embedded in
R or C than in their analytic properties. This remark ap-
plies also to most applications of CS&E. But we do need to
exploit the algebraic properties of numbers, but only for the
purposes of deciding zero. Thus we use a “stripped-down”
form of algebraic computation, which is ultimately more ef-
ficient than a purely algebraic approach.

In this section, we will review this mode of exact numeri-
cal computation, touching on the topics of precision-driven
evaluation and filter technology. The focus is on construc-
tive zero bounds.

2.2 Explicitization Problems
In CAD/CAM, a surface S is said to be implicit if it is

given by a defining equation f(x, y, z) = 0. In many ap-
plications, we desire some mesh or triangulation T that is
a simplicial approximation of S. Various properties can be
imposed on T : the most common ones being (1) T is isotopic
to S, and (2) T is ε-close to S. This is then called the mesh

generation problem. Mesh generation in 1-dimension is
well-known in computer algebra: if S is the zero set of a
univariate polynomial f(x), then (1) amounts to root iso-
lation and (2) amounts to root refinement. Meshing is a
special case of the general explicitization problem, that
of computing an explicit approximation T from some im-
plicit representation S. The representation “f(x, y, z) = 0”
encodes S exactly, but the analytic properties of S are not
easily accessible. A simple example is where S is given by

the expression
p

25 −
√

624, and T might be 0.1414. Explic-
itization is the critical first-step in many CS&E applications:
subsequent processes (from visualization to computing alge-
braic invariants) rely on the combinatorial representation T .

There are many approaches to meshing problems as sur-
veyed in [1]. In this section, we describe an approach origi-
nating in Plantinga and Vegter’s work on meshing of nonsin-
gular surfaces [8]. It serves as a paradigm for numerical ap-
proaches to geometric problems. We will discuss the compu-
tational basis for ENC (computational rings, box functions)
and extensions of Plantinga-Vegter: non-algebraic functions,
singularities [3], improved techniques [7], and the arbitrary
dimensional case from Galehouse’s thesis [6].

2.3 Complexity Analysis and Techniques: Adap-
tivity Issues

A main characteristic of numerical computation is its adap-

tivity, namely its complexity can vary greatly for different
input instances of the same input size. Adaptive algorithms
are usually favored by practitioners because, in a certain
measure-theoretic sense, the difficult inputs are rare. This

is in sharp contrast to algebraic algorithms that are largely
non-adaptive. One of the biggest challenge in exact numer-
ical algorithms is to develop complexity analysis techniques
that could account for adaptivity. Until recently, all adap-
tive complexity analysis relies on some probabilistic assump-
tion. We introduce the technique of integral analysis that
makes no probabilistic assumption [4]. We also touch on
another important theme, computational approaches to es-
timating zero bounds, drawing on recent work of Sagraloff,
Kerber and Hemmer [9].
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