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Abstract. We address the fundamental problem of computing range1

functions f for a real function f : R → R. In our previous work in IS-2

SAC 2021, we introduced a family of recursive interpolation range func-3

tions based on the Cornelius–Lohner (CL) framework of decomposing4

f as f = g + R. The CL framework requires computing g(I) “exactly”5

for an interval I. There are 2 problems: this approach limits the order6

of convergence to 6, and exact computation is impossible to achieve in7

practice. We generalize the CL framework by allowing g(I) to be approx-8

imated by strong range functions g(I; ε), where ε > 0 is a user-specified9

bound on the error. This new framework allows, for the first time, the10

design of interval forms for f with any desired order of convergence. To11

achieve our strong range functions, we generalize Neumaier’s theory of12

constructing range functions from expressions over a Lipschitz class Ω13

of primitive functions. We show that the class Ω is very extensive and14

includes all common hypergeometric functions. Traditional complexity15

analysis of range functions is based on individual evaluation on an inter-16

val. Such analysis cannot differentiate between our novel recursive range17

functions and classical Taylor-type range functions. Empirically, our re-18

cursive functions are superior in the “holistic” context of the root isola-19

tion algorithm Eval. We now formalize this holistic approach by defin-20

ing the amortized complexity of range functions over a subdivision tree.21

Our theoretical model agrees remarkably well with the empirical results.22

Among our previous novel range functions, we identified a Lagrange-type23

range function L′
3 f as the overall winner. In this paper, we introduce a24

Hermite-type range function H
4 f that is even better. We further explore25

speeding up applications by choosing non-maximal recursion levels.26

1 Introduction27

Given a real function f : R → R, the problem of tightly enclosing its range28

f(I) = {f(x) : x ∈ I} on any interval I is a central problem of interval and29

certified computations [11,13]. The interval form of f may be3 denoted f :30

R→ R where R is the set of compact intervals and f(I) contains the range31

f(I). Cornelius & Lohner [3] provided a general framework for constructing such32

f . First, choose a suitable g : R→ R such that for any interval I ∈ R, we can33

3 Definitions of our terminology are collected in Section 1.3.



compute g(I) exactly. Then f(I) = g(I) + Rg(I) where Rg(x) := f(x) − g(x).34

The standard measure for the accuracy of approximate functions like f is their35

order of convergence. Suppose Rg has an interval form Rg with convergence36

order n ≥ 1. Then37

gf(I) := g(I) + Rg(I) (1)

is an interval form for f with order of convergence n. This is an immediate38

consequence of the following theorem.39

Theorem A [3, Theorem 4].

dH(f(I), gf(I)) ≤ w( Rg(I)).

where dH is the Hausdorff distance on intervals and w(I) is the width of inter-40

val I.41

Prior to [3], interval forms with convergence order larger than 2 were unknown.42

Cornelius & Lohner showed that there exists g such that Rg has convergence43

order up to 6.44

Example 1. Let g(x) be the Taylor expansion of f(x) at x = m up to order45

n ≥ 1 and Rg(x) = f(n+1)(ξx)
(n+1)! (x −m)n+1 for some ξx between x and m. Then46

the following is a range function for Rg(I):47

Rg(I) :=
| f (n+1)(I)|
(n+ 1)!

(
w(I)

2

)n+1

, (2)

where I = [a, b], m = (a + b)/2, and w(I) = b − a. Assuming that I ⊆ I0 for48

some bounded I0, we have | f(n+1)(I)|
(n+1)! = O(1). Then (2) implies that Rg(I)49

has convergence order n + 1. If n ≤ 3, then g(I) can be computed “exactly”50

as described in [9, Appendix]. This proves the existence of range functions of51

order 4.52

1.1 Why we must extend the CL framework53

Unfortunately, there is an issue with the CL framework: we cannot compute54

the “exact range g(I)” in any standard implementation models. Standard im-55

plementation models include (i) the IEEE arithmetic used in the majority of56

implementations, (ii) the Standard Model of Numerical Analysis [8,17], or (iii)57

bigNumber packages such as GMP [7], MPFR [6], and MPFI [14]. In practice,58

“real numbers” are represented by dyadic numbers, i.e., rational numbers of the59

form m2n where m,n ∈ Z. So, rational numbers like 1/3 cannot be exactly rep-60

resented. Even if we allow arbitrary rational numbers, irrational numbers like
√
261

are not exact. See, for example, [20] for an extended discussion of exact compu-62

tation. In computer algebra systems, the largest set of real numbers which can be63

computed exactly are the algebraic numbers, but we do not include them under64

“standard implementation models” because of inherent performance issues.65



In [9], we used the term “exact computation of g(I)” in a sense which is66

commonly understood by interval and numerical analysts, including Cornelius67

& Lohner. But first let us address the non-interval case: the “exact computation68

of g(x)”. The common understanding amounts to:69

g(x) can be computed exactly if g(x) has a closed-form
expression E(x) over a set Ω of primitive operations.

(3)

There is no universal consensus on the set Ω but typically all real constants,70

four rational operations (±,×,÷), and
√
· are included. E.g., Neumaier [11, p. 6]71

allows these additional operations in Ω:72

|·|, sqr , exp, ln, sin, cos, arctan,

where4 sqr denotes squaring. Next, how does the understanding (3) extend to73

the exact computation of g(I)? Cornelius & Lohner stated a sufficient condition74

that is well-known in interval analysis [3, Theorem 1]:75

g(I) can be computed exactly if there is an expression E(x)
for g(x) in which the variable x occurs at most once.

(4)

It is implicitly assumed in (4) that, given an expression E(x) for g(x), we can76

compute g(I) by evaluating the interval expression E(I), assuming all the prim-77

itive operators in E(x) have exact interval forms. But this theorem has very78

limited application, and cannot even compute the exact range of a quadratic79

polynomial g(x) = ax2 + bx+ c with ab ̸= 0.80

Example 2. To overcome the limitations of (4) in the case of a quadratic polyno-81

mial g(x) = ax2 + bx+ c, we can proceed as follows: first compute x∗ = −b/2a,82

the root of g′(x) = 2ax+ b. If I = [x, x]), then83

g(I) = [min(S),max(S)],

where

S :=

{
{g(x), g(x)} if x∗ ̸∈ I,
{g(x∗), g(x), g(x)} else.

We call this the “endpoints algorithm”, since we directly compute the end-84

points of g(I). The details when g is a cubic polynomial are derived and imple-85

mented in our previous paper [9, Appendix]. How far can we extend this idea?86

Under the common understanding (3), we need two other ingredients:87

(E1) The function g(x) must be exactly computable.88

(E2) The roots of g′(x) must be exactly computable.89

Note that (E1) is relatively easy to fulfill. For instance, g(x) can be any poly-90

nomial. However, (E2) limits g to polynomials of degree at most 5, since the91

roots of g′ are guaranteed to have closed form expressions when g′ has degree92

at most 4. Cornelius & Lohner appear to have this endpoint algorithm in mind93

when they stated in [3, p. 340, Remark 2] that their framework may reach up to94

order 6 convergence, namely one more than the degree of g.95

4 The appearance of sqr may be curious, but that is because he will later define interval
forms of the operations in Ω.



1.2 Overview96

In Section 2, we present our generalized CL framework for achieving range func-97

tions with any order of convergence. In Section 3, we provide details for a new98

family of recursive range operators5
{ H

4,ℓ : ℓ = 0, 1, . . .
}
with quartic conver-99

gence order and recursion level ℓ ≥ 0, based on Hermite interpolation. In100

Section 4, we present our “holistic” framework for evaluating the complexity of101

range functions. The idea is to amortize the cost over an entire computation102

tree. Experimental results are in Section 5. They show that in the context of103

the Eval algorithm, H
4 is superior to our previous favorite L′

3 . The theoretical104

model of Section 4 is also confirmed by these experiments. Another set of exper-105

iments explore the possible speed improvements by non-maximal convergence106

levels. We conclude in Section 6.107

1.3 Terminology and notation108

This section reviews and fixes some terminology. Let f : Rn → R be a real109

function for some n ≥ 0. The arity of f is n. We identify 0-arity functions with110

real constants. In this paper, we do not assume that real functions are total111

functions. If f is undefined at x ∈ Rn, we write f(x) ↑; otherwise f(x) ↓. If any112

component of x is undefined, we also have f(x) ↑. Define the proper domain of113

f as dom(f) := {x ∈ Rm : f(x) ↓}. If S ⊆ Rm, then f(S) ↑ if f is undefined at114

some x ∈ S; else f(S) := {f(x) : x ∈ S}. Define the magnitude of S ⊆ R as115

|S| := max {|x| : x ∈ S}. Note that we use bold font like x to indicate vector116

variables.117

The set of compact boxes in Rn is denoted Rn; if n = 1, we simply write118

R. The Hausdorff distance on boxes B,B′ ∈ Rn is denoted dH(B,B′). For119

n = 1, it is often denoted q(I, J) in the interval literature. A box form of120

f is any function F : Rn → R. satisfying two properties: (1) conservative:121

f(B) ⊆ F (B) for all B ∈ Rn. (2) convergent : for any sequence (Bi)
∞
i=0 of boxes122

converging to a point, limi→∞ F (Bi) = f(limi→∞ Bi). In general, we indicate123

box forms by a prefix meta-symbol “ ”. Thus, instead of F , we write “ f” for124

any box form of f . We annotate with subscripts and/or superscripts to indicate125

specific box forms. E.g., if or Lf or L
i f are all box forms for f . In this paper,126

we mostly focus on n = 1. A subdivision tree is a finite tree T whose nodes are127

intervals satisfying this property: if interval [a, b] is a non-leaf node of T , then it128

has two children represented by the intervals [a,m] and [m, b]. If I0 is the root129

of T , we call the set D = D(T ) of leaves of T a subdivision of I0.130

For Turing computability of our box functions, we replace real intervals R131

by dyadic intervals D, i.e., intervals whose endpoints are dyadic numbers which132

are elements of D = {m2n : m,n ∈ Z}. A real function f : Rn → R is said to133

be computable if its restriction to dyadic inputs will produce dyadic outputs,134

5 Each H
4,ℓ is an operator that transforms any sufficiently smooth function f : R→ R

into the range function H
4,ℓf for f .



and this restriction is Turing computable. This notion extends to box functions,135

f : Rn → R.136

Let u = (u0, . . . , um) denote a sequence of m + 1 distinct points, where137

the ui’s are called nodes. Let µ = (µ0, . . . , µm), where each µi ≥ 1 is called138

a multiplicity. The Hermite interpolant of f at u,µ is a polynomial hf (x) =139

hf (x;u,µ) such that hf
(j)(ui) = f (j)(ui) for all i = 0, . . . ,m and j = 0, . . . , µi−140

1. The interpolant hf (x) is unique and has degree less than d =
∑m

i=0 µi. If141

m = 0, then hf (x) is the Taylor interpolant; if µi = 1 for all i, then hf (x) is the142

Lagrange interpolant.143

2 Generalized CL Framework144

In this section, we develop an approach to computing range functions of arbitrary145

convergence order. To avoid the exact range computation, we replace g(I) in (1)146

by a range function g(I) for g:147

f(I) := g(I) + Rg(I) (5)

We now generalize Theorem A as follows.148

Theorem B. With f(I) defined as in (5), we have

dH(f(I), f(I)) ≤ dH(g(I), g(I)) + w( Rg(I)).

Proof. Consider the endpoints of the intervals f(I), g(I) and Rg(I) as given by

f(I) = [f(x), f(x)], g(I) = [g(y), g(y)], Rg(I) = [a, b]

for some x, x, y, y ∈ I and a, b. We can also write

g(I) = [g(y), g(y)] + [ε, ε]

for some ε ≤ 0 ≤ ε. Thus we have149

dH(g(I), g(I)) = max {−ε, ε} , (6)

f(I) = [g(y), g(y)] + [ε, ε] + [a, b].

We write the inclusion f(I) ⊆ f(I) in terms of endpoints:

[f(x), f(x)] ⊆ [g(y), g(y)] + [ε, ε] + [a, b].

Hence150

dH(f(I), f(I)) = max
{
f(x)−

(
g(y) + ε+ a

)
,
(
g(y) + ε+ b

)
− f(x)

}
Since w( Rg(I)) = b− a and in view of (6), our theorem follows from151

f(x)−
(
g(y) + ε+ a

)
≤ −ε+ (b− a), (7)(

g(y) + ε+ b
)
− f(x) ≤ ε+ (b− a). (8)



To show (7), we have, since f(x) ≤ f(y),152

f(x)−
(
g(y) + ε+ a

)
≤ f(y)−

(
g(y) + ε+ a

)
=

(
g(y) +Rg(y)

)
−

(
g(y) + ε+ a

)
= Rg(y)− ε− a

≤ −ε+ (b− a).

The proof for (8) is similar.153

2.1 Achieving any order of convergence154

To apply Theorem B, we introduce precision-bounded range functions for g(x)155

denoted g(I; ε), where ε > 0 is an extra “precision” parameter. The output156

interval is an outer ε-approximation in the sense that g(I) ⊆ g(I; ε) and157

dH(g(I), g(I; ε)) ≤ ε.

We also call g(I; ε) a strong box function, since it implies box forms in the158

original sense: E.g., a box form of g may be constructed as follows:159

g(I) := g(I, w(I)). (9)

The box form in (9) has the pleasing property that w(I) is an implicit precision160

parameter.161

Returning to the CL Framework, suppose f = g + Rg where g has a strong162

range function g(I; ε). We now define the following box form of f :163

pbf(I) := g(I; ε) + Rg(I), (10)

where ε = | Rg(I)|. The subscript in pb refers to “precision-bound”. To com-164

pute pbf(I), we first compute JR ← Rg(I), then compute Jg ← g(I, |JR|),165

and finally return Jg + JR.166

Corollary 1. The box form pbf(I) of (10) has the same convergence order as167

Rg(I).168

For any n ≥ 1, if g(x) is a Hermite interpolant of f of degree n, then Rg(I)169

has convergence order n+1 (cf. Example 1.1). We have thus achieved arbitrary170

convergence order.171

Remark 1. Theorem B is also needed to justify the usual implementations of172

“exact g(I)” under the hypothesis (3) of the CL framework. Given an expres-173

sion E(x) for g(x), it suffices to evaluate it with error at most | Rg(I)|. This174

can be automatically accomplished in the Core Library using the technique of175

“precision-driven evaluation” [21, §2].176



2.2 Strong box functions177

Corollary 1 shows that the “exact computation of g(I)” hypothesis of the CL178

framework can be replaced by strong box functions of g. We now address the179

construction of such functions. We proceed in three stages:180

A. Lipschitz Expressions. Our starting point is the theory of evaluations of181

expressions over a class Ω of Lipschitz functions, following [11]. Let Ω denote182

a set of continuous real functions that includes R as constant functions as well183

as the rational operations. Elements of Ω are called primitive functions. Let184

Expr(Ω) denote the set of expressions over Ω ∪ X where X = {X1, X2, . . .} is185

a countable set of variables. An expression E ∈ Expr(Ω) is an ordered DAG186

(directed acyclic graph) whose nodes with outdegree m ≥ 0 are labeled by m-187

ary functions of Ω, with variables in X viewed as 0-ary. For simplicity, assume188

E has a unique root (in-degree 0). Any node of E induces a subexpression. If E189

involves only the variables in X = (X1, . . . , Xn), we may write E(X) for E. We190

can evaluate E at a ∈ Rn by substituting X ← a and evaluating the functions191

at each node in a bottom-up fashion. The value at the root is E(a) and may192

be undefined. If f : Rn → R is a function, we call E an expression for f if the193

symmetric difference dom(E)∆dom(f) is a finite set. E.g., if f(x) =
∑n−1

i=0 xi,194

then E(X1) =
Xn

1 −1
X1−1 is an expression for f since f(a) = E(a) for a ̸= 1, but195

f(1) = n and E(1) ↑. Similarly, we can define the interval value E(B) at the196

box B = (I1, . . . , In) ∈ Rn. If each f in E is replaced by a box form f , we197

obtain a box expression E(X).198

Following [11, pp. 33, 74], we say that E(X) is Lipschitz at B ∈ Rn if the199

following properties hold inductively:200

– (Base case) The root of E is labeled by a variable Xi or a constant function.201

This always holds.202

– (Induction) Let E = f(E1, . . . , Em), where each Ej is a subexpression of E.203

Inductively, each Ei is Lipschitz at B. Moreover, f(E1(B), . . . , Em(B)) is204

defined and f is Lipschitz6 in a neighborhood U of (E1(B), . . . , Em(B)) ⊆205

Rm.206

Theorem C [11, p. 34]. If E(x) is a Lipschitz expression on B0 ∈ Rn, then
there is a vector ℓ = (ℓ1, . . . , ℓn) of positive constants such that for all B,B′ ⊆
B0,

dH(E(B), E(B′)) ≤ ℓ ∗ dH(B,B′),

where dH(B,B′) = (dH(I1, I
′
1), . . . , dH(In, I

′
n)) and ∗ is the dot product.207

Theorem C can be extended to the box form E(X), and thus E(B) is an208

enclosure of E(B). To achieve strong box functions, we will next strengthen209

Theorem C to compute explicit Lipschitz constants.210

6 The concept of a function f (not expression) being Lipschitz on a set U is standard:
it means that there exists a vector ℓ = (ℓ1, . . . , ℓm) of positive constants, such that
for all x,y ∈ U ⊆ Rm, |f(x) − f(y)| ≤ ℓ ∗ |x − y| where ∗ is the dot product and
|x− y| = (|x1 − y1|, . . . , |xm − ym|). Call ℓ a Lipschitz constant vector for U .



B. Lipschitz+ Expressions. For systematic development, it is best to begin with211

an abstract model of computation that assumes f(B) and ∂if(B) are computable.212

Eventually, we replace these by f(B) and ∂if(B), and finally we make them213

Turing computable by using dyadic approximations to reals. This follows the214

“AIE methodology” of [19]. Because of our limited space and scope, we focus on215

the abstract model.216

Call Ω a Lipschitz+ class if each f ∈ Ω is a Lipschitz+ function in this sense217

that f has continuous partial derivatives at its proper domain dom(f) and both f218

and its gradient ∇f = (∂1f, . . . , ∂mf) are locally Lipschitz. Given an expression219

E(X) over Ω, we can define ∇E := (∂1E, . . . , ∂nE), where each ∂iE(X) is an220

expression, defined inductively as221

∂iE(X) =


0 if E = const,

δ(i = j) if E = Xj ,∑m
j=1(∂jf)(E1, . . . , Em) · ∂iEj if E = f(E1, . . . , Em).

Here, δ(i = j) ∈ {0, 1} is Kronecker’s delta function that is 1 if and only if i = j.222

C. Strong Box Evaluation Let f : Rn → R be a Lipschitz+ function. Suppose it223

has a strong approximation function f̃ , i.e.,224

f̃ : Rn × R>0 → R, (11)

such that |f̃(a; ε)−f(a)| ≤ ε. We show that f has a strong box function. Define225

∆(f,B) := 1
2

∑n
i=1 |∂if(B)| · wi(B). Then, for all a ∈ B, we have226

|f(a)− f(m(B))| ≤ ∆(f,B). (12)

by the Mean Value Theorem.227

Lemma 1. Suppose ∆(f,B) ≤ ε/4. If228

J := [f̃(m(B); ε/4)± 1
2ε], (13)

then f(B) ⊆ J and dH(J, f(B)) < ε.229

Motivated by Lemma 1, we say that a subdivision D of B0 is ε-fine if ∆(f,B) ≤230

ε/4 for eachB ∈ D. Given an ε-fine subdivisionD ofB0, let J(D) :=
⋃

B∈D J(B),231

where J(B) is defined in (13).232

Corollary 2. If D is an ε-fine subdivision of B0, then f(B0) ⊆ J(D) and233

dH(f(B0), J(D)) < ε.234

Algorithm 1 shows how to compute an ε-fine subdivision of any given B0.235

Note that the value of ∆(f,B) is reduced by a factor less than or equal236

to (1 − 1
2n ) with each bisection, and therefore the subdivision depth is at most237

ln(ε/∆(f,B0))/ ln(1− 1
2n ). This bound is probably overly pessimistic (e.g., |Ji| =238

|∂if(B)| is also shrinking with depth). We plan to do an amortized bound of this239

algorithm. In any case, we are now able to state the key result.240



Algorithm 1 Fine Subdivision Algorithm

Input: (f,B0, ε)
Output: An ε-fine subdivision D of B0.
1: Let Q,D be queues of boxes, initialized as D ← ∅ and Q← {B0}.
2: while Q ̸= ∅ do
3: B ← Q.pop()
4: (J1, . . . , Jn)← ∇f(B)
5: ∆(f,B)←

∑n
i=1 |Ji| · wi(B)

6: if ∆(f,B) ≤ ε/4 then
7: D.push(B)
8: else
9: i∗ ← argmaxi=1,...,n |Ji| · wi(B)
10: Q.push(bisect(B, i∗)) ▷ Bisect dimension i∗

11: Output D

Theorem D. Let Ω be a Lipschitz+ class, where each f ∈ Ω has a strong241

approximation function as in (11). If E(X) is an expression that is Lipschitz+242

over B ∈ Rn, then the strong interval function E(B; ε) is abstractly computable.243

Proof (Proof sketch). Use induction on the structure of E(X). The base case is244

trivial. If E(X) = f(E1, . . . , Em), then, by induction, Ĩi = Ei(B; εi) is abstractly245

computable (i = 1, . . . ,m). Lemma 1 can be generalized to allow the evaluation246

of f(B̃; ε), where B̃ = (Ĩ1, . . . , Ĩm).247

Which functions satisfy the requirements of Theorem D? One of the most248

extensive classes with strong approximation algorithms is the class of hyper-249

geometric functions; Johansson [10] describes a state-of-the-art library for such250

functions. In [4,5], we focused on the real hypergeometric functions and provide a251

uniform algorithm with complexity analysis for rational input parameters. Note252

that Theorem D also needs strong box functions which were not treated in [5,10];253

such extensions could be achieved because hypergeometric functions are closed254

under differentiation. A complete account of the preceding theory must replace255

the abstract computational model by box functions f , finally giving dyadic256

approximations ˜f following the AIE methodology in [19].257

3 A Practical Range Function of Order 4258

In this section, we consider a new recursive range function based on Hermite259

interpolation which will surpass the performance of L′

3 f [9]. Let h0 be the260

Hermite interpolant of f based on the values and first derivatives at the endpoints261

of the interval I = [a, b], that is, h0 is the unique cubic polynomial with262

h0(a) = f(a), h′
0(a) = f ′(a), h0(b) = f(b), h′

0(b) = f ′(b).

With m = (a+ b)/2 denoting the midpoint of I, it is not hard to show that h0263

can be expressed in centered form as264

h0(x) = c0,0 + c0,1(x−m) + c0,2(x−m)
2
+ c0,3(x−m)

3



with coefficients265

c0,0 =
f(a) + f(b)

2
− f ′(b)− f ′(a)

4
r, c0,1 = 3

f(b)− f(a)

4r
− f ′(a) + f ′(b)

4
,

c0,2 =
f ′(b)− f ′(a)

4r
, c0,3 =

f ′(a) + f ′(b)

4r2
− f(b)− f(a)

4r3
,

where r = (b− a)/2 is the radius of I. Since the remainder Rh0 = f − h0 can be266

written as267

Rh0(x) =
ω(x)

4!
f (4)(ξx), ω(x) = (x− a)

2
(x− b)

2
,

for some ξx ∈ I, we can upper bound the magnitude of Rh0
(I) as268

|Rh0
(I)| ≤ Ω|f (4)(I)|, Ω =

|ω(I)|
4!

=
r4

24
.

To further upper bound |f (4)(I)|, following [9, Sec. 3], we consider the cubic269

Hermite interpolants hj of f (4j) for j = 1, 2, . . . , ℓ:270

hj(x) = cj,0 + cj,1(x−m) + cj,2(x−m)
2
+ cj,3(x−m)

3

with coefficients271

cj,0 =
f (4j)(a) + f (4j)(b)

2
− f (4j+1)(b)− f (4j+1)(a)

4
r,

cj,1 = 3
f (4j)(b)− f (4j)(a)

4r
− f (4j+1)(a) + f (4j+1)(b)

4
,

cj,2 =
f (4j+1)(b)− f (4j+1)(a)

4r
,

cj,3 =
f (4j+1)(a) + f (4j+1)(b)

4r2
− f (4j)(b)− f (4j)(a)

4r3
.

Denoting the remainder by Rhj
= f (4j) − hj and using the same arguments as272

above, we have273

|f (4j)(I)| ≤ |hj(I)|+ |Rhj (I)| ≤ |hj(I)|+Ω|f (4j+4)(I)|. (14)

By repeated application of (14), we get274

|f (4)| ≤ |h1(I)|+Ω|f (8)(I)|
≤ |h1(I)|+Ω

(
|h2(I)|+Ω|f (12)(I)|

)
≤ · · ·

≤
ℓ∑

j=1

|hj(I)|Ωj−1 +Ωℓ| f (4ℓ+4)(I)|,
(15)

resulting in the recursive remainder bound275

|Rh0(I)| ≤ Sℓ, Sℓ :=

ℓ∑
j=1

|hj(I)|Ωj +Ωℓ+1| f (4ℓ+4)(I)|.



Overall, we get the recursive Hermite form of order 4 and recursion level ℓ ≥ 0,276

H
4,ℓf(I) = h0(I) + [−1, 1]Sℓ,

which depends on the 4ℓ+ 4 values277

f (4j)(a), f (4j+1)(a), f (4j)(b), f (4j+1)(b), (j = 0, . . . , ℓ). (16)

If f is analytic and r is sufficiently small, or if f is a polynomial, then S∞ is a278

convergent series and we define H
4 f(I) := H

4,∞f(I) as the maximal recursive279

Hermite form. Clearly, if f is a polynomial of degree at most d− 1, then H
4 f =280

H
4,ℓf for ℓ = ⌈d/4⌉ − 1.281

To avoid the rather expensive evaluation of the exact ranges hj(I), j =282

1, . . . , ℓ, we can use the classical Taylor form for approximating them, resulting283

in the cheaper but slightly less tight range function284

H′

4,ℓf(I) = h0(I) + [−1, 1]S′
ℓ,

where285

S′
ℓ =

ℓ∑
j=1

(
|cj,0|+ r|cj,1|+ r2|cj,2|+ r3|cj,3|

)
Ωj +Ωℓ+1| f (4ℓ+4)(I)|.

In case we also have to estimate the range of f ′, we can compute the 2ℓ+ 2286

additional values287

f (4j+2)(a), f (4j+2)(b), j = 0, . . . , ℓ (17)

and apply H
4,ℓ to f ′. But we prefer to avoid (17) by re-using the data used for288

computing H
4,ℓf(I) in the following way. A result by Shadrin [15] asserts that289

the error between the first derivative of f and the first derivative of the Lagrange290

polynomial L(x) that interpolates f at the 4 nodes x0, . . . , x3 ∈ I satisfies291

|f ′(x)− L′(x)| ≤ |ω
′
L(I)|
4!

|f (4)(I)|, x ∈ I,

for ωL(x) =
∏3

i=0(x− xi). As noted by Waldron [18, Addendum], this bound is292

continuous in the xi, and so we can consider the limit as x0 and x1 approach a293

and x2 and x3 approach b to get the corresponding bound for the error between294

f ′ and the first derivative of the Hermite interpolant h0,295

|f ′(x)− h′
0(x)| ≤

|ω′(I)|
4!
|f (4)(I)|, x ∈ I.

Since a straightforward calculation gives ω′(I) = 8
9

√
3r3[−1, 1], we conclude296

by (15) that297

|R′
h0
(I)| ≤ 8

√
3

9

r3

4!
|f (4)(I)| ≤ 8

√
3

9

r3

4!

Sℓ

Ω
=

8
√
3

9r
Sℓ,



resulting in the recursive Hermite forms298

H
3,ℓf

′(I) = h′
0(I)+

8
√
3

9r
[−1, 1]Sℓ and H′

3,ℓf
′(I) = h′

0(I)+
8
√
3

9r
[−1, 1]S′

ℓ,

which have only cubic convergence, but depend on the same data as H
4,ℓf(I)299

and H′

4,ℓf(I).300

4 Holistic Complexity Analysis of Range Functions301

By the “holistic complexity analysis” of f(I), we mean to analyze its cost over302

a subdivision tree, not just its cost at a single isolated interval. The cost for a303

node of the subdivision tree might be shared with its ancestors, descendants,304

or siblings, leading to cheaper cost per node. Although we have the Eval algo-305

rithm [9, Section 1.2] in mind, there are many applications where the algorithms306

produce similar subdivision trees, even in higher dimensions.307

4.1 Amortized complexity of L′

3 f308

We first focus on the range function denoted L′

3 f in [9]. This was our “function309

of choice” among the 8 range functions studied in [9, Table 1]. Empirically, we310

saw that L′

3 has at least a factor of 3 speedup over T
2 . Note that T

2 was the311

state-of-the-art range function before our recursive forms; see the last column of312

the Tables 3 and 4 in [9]. We now show theoretically that the speedup is also 3 if313

we only consider evaluation complexity. The data actually suggest an asymptotic314

speedup of at least 3.5 – this may be explained by the fact that L′

3 has order 3315

convergence compared to order 2 for T
2 . We now seek a theoretical account of316

the observed speedup7.317

In the following, let d ≥ 2. Given any f and interval [a, b], our general goal
is to construct a range function f([a, b]) based on d derivatives of f at points

in [a, b]. In the case of L′

3 f([a, b]), we need these evaluations of f and its higher
derivatives:

f (3j)(a), f (3j)(m), f (3j)(b), j = 0, . . . , ⌈d/3⌉ − 1,

where m = (a+ b)/2. That is a total of 3 ⌈d/3⌉ derivative values. For simplicity,318

assume d is divisible by 3. Then the cost for computing L′

3 f([a, b]) is 3 ⌈d/3⌉ = d.319

Note that the cost to compute T
2 f(I), the maximal Taylor form of order 2, is320

also d. So there is no difference between these two costs over isolated intervals.321

But in a “holistic context”, we see a distinct advantage of L′

3 over T
2 : the322

7 Note that in our Eval application, we must simultaneously evaluate L′
3 f(I) as well

as its derivative L′
2 f ′(I). But it turns out that we can bound the range of f ′ for no

additional evaluation cost.



evaluation of L′

3 f(I) can reuse the derivative values already computed at the323

parent or sibling of I; no similar reuse is available to T
2 .324

Given a subdivision tree T , our goal is to bound the cost CL
3 (T ) of L′

3 f325

on T , i.e., the total number of derivative values needed to compute L′

3 f(I) for326

all I ∈ T . We will write CL
3 (n) instead of CL

3 (T ) when T has n leaves. This is327

because it is n rather than the actual8 shape of T that is determinative for the328

complexity. We have the following recurrence:329

CL
3 (n) =

{
d if n = 1,
CL

3 (nL) + CL
3 (nR)− d

3 if n ≥ 2,
(18)

where the left and right subtrees of the root have nL and nR leaves, respectively.330

Thus n = nL+nR. Let the intervals I, IL, IR denote the root and its left and right331

children. The formula for n ≥ 2 in (18) comes from summing three costs: (1) the332

cost d at the root I; (2) the cost CL
3 (nL) but subtracting 2d/3 for derivatives333

shared with I; (3) the cost CL
3 (nR)− 2d/3 attributed to the right subtree.334

Theorem 1. (Amortized Complexity of L′

3 )335

CL
3 (n) = (2n+ 1) · d3 . (19)

Thus the cost per node is ∼ d/3 asymptotically.336

Proof. The solution (19) is easily shown by induction using the recurrence (18).337

To obtain the cost per node, we recall that a full binary tree with n leaves has338

2n− 1 nodes. So the average cost per node is 2n+1
2n−1 ·

d
3 ∼ d/3.339

This factor of 3 improvement over T
2 is close to our empirical data in [9].340

4.2 Amortized complexity of H
4 f341

We do a similar holistic complexity analysis for the recursive range function342

H
4,ℓf(I) from Section 3 for any given f and ℓ ≥ 0. According to (16), our re-343

cursive scheme requires the evaluation of 4(ℓ + 1) derivatives of f at the two344

ends of I. Let d = 4(ℓ + 1), so that computing H
4,ℓf(I) costs d derivative eval-345

uations. For holistic analysis, let CH
4 (n) denote the cost of computing H

4,ℓf(I)346

on a subdivision tree with n leaves. We then have the recurrence347

CH
4 (n) =

{
d if n = 1,
CH

4 (nL) + CH
4 (nR)− d

2 if n ≥ 2,
(20)

where nL + nR = n. The justification of (20) is similar to (18), with the slight348

difference that the midpoint of an interval J is not evaluated and hence not349

shared with the children of J .350

8 If d is not divisible by 3, we can ensure a total cost of d evaluations per interval of
the tree but the tree shape will dictate how to distribute these evaluations on the
m+ 1 nodes.



Theorem 2. (Amortized Complexity of H
4 )351

CH
4 (n) = (n+ 1) · d2 . (21)

Thus the cost per node is ∼ d/4 asymptotically.352

Proof. The solution (21) follows from (20) by induction on n. Since a full binary353

tree with n leaves has 2n− 1 nodes, the average cost per node is n+1
2n−1

d
2 ∼ d/4.354

Thus we expect a 4-fold speedup of H
4 when compared to the state-of-art355

T
2 . Or a 4/3-fold or 33% speedup when compared to L′

3 . This agrees with our356

empirical data below.357

4.3 Amortized complexity for Hermite schemes358

We now generalize the analysis above. Recall from Section 1.3 that hf (x) =359

hf (x;u,µ) is the Hermite interpolant of f with node sequence u = (u0, . . . , um)360

and multiplicity µ = (µ0, . . . , µm). We fix the function f : R → R. Assume361

m ≥ 1 and the nodes are equally spaced over the interval I = [u0, um], and all362

µi are equal to h ≥ 1. Then we can simply write h(x; I) for the interpolant on363

interval I. Note that h(x; I) has degree less than d := (m+ 1)h.364

Our cost model for computing f(I) is the number of evaluations of deriva-365

tives of f at the nodes of I. Based on our recursive scheme, this cost is exactly366

d = (m+1)h since I has m+1 nodes. To amortize this cost over the entire sub-367

division tree T , define Nm(T ) to be the number of distinct nodes among all the368

intervals of T . In other words, if intervals I and J share a node u, then we do not369

double count u. This can happen only if I and J have an ancestor-descendant370

relationship or are siblings. Let Tn denote a tree with n leaves. It turns out that371

Nm(Tn) is a function of n, independent of the shape of Tn. So we simply write372

Nm(n) for Nm(Tn). Therefore
9 the cost of evaluating the tree Tn is373

Ch
d (n) := h ·Nm(n), where d = (m+ 1)h.

Since Tn has 2n−1 intervals, we define the amortized cost of a recursive Hermite374

range function as375

C
h

d = lim
n→∞

Ch
d (n)

2n− 1
.

Theorem 3.

Nm(n) = mn+ 1,

Ch
d (n) = h(mn+ 1),

C
h

d = 1
2hm = 1

2 (d− h).

9 The notation “Ch
d (n)” does not fully reproduce the previous notations of CL

3 (n) and

CH
4 (n) (which were chosen to be consistent with L′

3 and H
4 ). Also, d is implicit in

the previous notations.



Proof. We claim that Nm(n) satisfies the recurrence376

Nm(n) =

{
m+ 1 if n = 1,

Nm(nL) +Nm(nR)− 1 if 1 < n = nL + nR.
(22)

The base case is clear, so consider the inductive case: the left and right subtrees377

of Tn are TnL
and TnR

, where n = nL + nR. Then nodes at the root of Tn are378

already in the nodes at the roots of TnL
and TnR

. Moreover, the roots of TnL
and379

TnR
share exactly one node. This justifies (22). The solution Nm(n) = mn+1 is380

immediate. The amortized cost is limn→∞ Ch
d (n)/(2n− 1) since the tree Tn has381

2n− 1 intervals.382

Remark 2. Observe that the amortized complexity C
h

d = d−h
2 is strictly less than383

d, the non-amortized cost. For any given d, we want h as large as possible, but h is384

constrained to divide d. Hence for d = 4, we choose h = 2. We can also generalize385

to allow multiplicities µ to vary over nodes: e.g., for d = 5, µ = (2, 1, 2).386

Remark 3. The analysis of CL
3 (n) and CH

4 (n) appears to depend on whether m387

is odd or even. Surprisingly, we avoided such considerations in the above proof.388

5 Experimental Results389

To provide a holistic application for evaluating range functions, we use Eval,390

a simple root isolation algorithm. Despite its simplicity, Eval produces near-391

optimal subdivision trees [1,16] when we use T
2 f for real functions with simple392

roots; see [9, Sections 1.2, 1.3] for its description and history. We now imple-393

mented a version of Eval in C++ for range functions that may use any recur-394

sion level (unlike [9] which focused on maximal levels). We measured the size395

of the Eval subdivision tree as well as the average running time of Eval with396

floating point and rational arithmetic on various classes of polynomials. These397

polynomials have varying root structures: dense with all roots real (Chebyshev398

Tn, Hermite Hn, and Wilkinson’s Wn), dense with only 2 real roots (Mignotte399

cluster M2k+1), and sparse without real roots (Sn). Depending on the fam-400

ily of polynomials, we provide different centered intervals I0 = [−r(I0), r(I0)]401

for Eval to search in, but always such that all real roots are contained in402

I0. Our experimental platform is a Windows 10 laptop with a 1.8 GHz Intel403

Core i7-8550U processor and 16 GB of RAM. We use two kinds of computer404

arithmetic in our testing: 1024-bit floating point arithmetic and multi-precision405

rational arithmetic. In rational arithmetic,
√
3 is replaced by the slightly larger406

17320508075688773 × 10−16. Our implementation, including data and Makefile407

experiments, may be downloaded from the Core Library webpage [2].408

We tested eleven versions of Eval that differ by the range functions used for409

approximating the ranges of f and f ′; see Tables 1–3. The first three, ET
2 , E

L′

3 ,410

EL′

4 , are the state-of-the-art performers from [9], followed by three non-maximal411

variants of EL′

3 , namely EL′

3,ℓ for ℓ ∈ {10, 15, 20}. The next two, EH
4 and EH′

4 ,412



Table 1. Size of the Eval subdivision tree. Here, Eval is searching for roots in I0 =
[−r(I0), r(I0)].

f r(I0) ET
2 EL′

3 EL′
4 EL′

3,10 EL′
3,15 EL′

3,20 EH
4 EH′

4 EH′
4,10 EH′

4,15 EH′
4,20

T20 319 243 231 243 243 243 239 239 239 239 239
T40 663 479 463 479 479 479 471 479 479 479 479
T80 10 1379 1007 955 1023 1007 1007 967 991 991 991 991
T160 2147 1427 1347 1543 1451 1427 1351 1359 1439 1363 1359
T320 - 2679 2575 3023 2699 2679 2591 2591 2803 2603 2591

H20 283 215 207 215 215 215 199 207 207 207 207
H40 539 423 415 423 423 423 415 419 419 419 419
H80 40 891 679 655 711 679 679 659 683 695 683 683
H160 1435 955 923 1083 959 955 923 927 1023 927 927
H320 - 2459 2415 45287 10423 4419 2455 2499 15967 5195 3119

M21 169 113 109 113 113 113 105 105 105 105 105
M41 339 215 213 215 215 215 219 223 223 223 223
M81

1
683 445 423 507 445 445 427 431 443 431 431

M161 - 905 857 7245 1755 1047 861 861 2663 1079 905

W20 485 353 331 353 353 353 331 335 335 335 335
W40 901 633 613 633 633 633 615 617 617 617 617
W80

1000
1583 1133 1083 2597 1133 1133 1097 1117 1485 1117 1117

W160 - 2005 1935 293509 5073 2005 1959 1993 42413 5289 2817

S100 973 633 609 611 621 625 613 613 595 609 613
S200 10 1941 1281 1221 1211 1227 1237 1231 1231 1165 1187 1201
S400 - 2555 2435 2379 2399 2413 2467 2467 2289 2319 2339

are based on the maximal recursive Hermite forms H
4 f and H

3 f ′ and their413

cheaper variants H′

4 f and H′

3 f ′, respectively, and the last three derive from414

the non-maximal variants of the latter, again for recursion levels ℓ ∈ {10, 15, 20}.415

Table 1 reports the sizes of the Eval subdivision trees, which serve as a mea-416

sure of the tightness of the underlying range functions. In each row, the smallest417

tree size is underlined. As expected, the methods based on range functions with418

quartic convergence order outperform the others, and in general the tree size de-419

creases as the recursion level increases, except for sparse polynomials. It requires420

future research to investigate the latter. We further observe that the differences421

between the tree sizes for EL′

4 and EH′

4 are small, indicating that the tightness422

of a range function is determined mainly by the convergence order, but much423

less by the type of local interpolant (Lagrange or Hermite). However, as already424

pointed out in [9], a smaller tree size does not necessarily correspond to a faster425

running time. In fact, EL′

3 was found to usually be almost as fast as EL′

4 , even426

though the subdivision trees of EL′

3 are consistently bigger than those of EL′

4 .427

In Tables 2 and 3 we report the running times for our eleven Eval versions428

and the different families of polynomials. Times are given in seconds and aver-429

aged over at least four runs (and many more for small degree polynomials). The430

last three columns in both tables report the speedup ratios σ(·) of EH′

4 , EH′

4,15,431

and EL′

3,15 with respect to EL′

3 , which was identified as the overall winner in [9].432

In Figure 1, we provide a direct comparison of the Eval version based on our433

new range function EH′

4 with the previous leader EL′

3 : for the test polynomials434

in our suite, the new function is faster for polynomials of degree greater than435

25, with the speedup approaching and even exceeding the theoretical value of436

1.33 of Section 4.2. In terms of tree size they are similar (differing by less than437

5%, Table 1). Hence, EH′

4 emerges as the new winner among the practical range438

functions from our collection.439



Table 2. Average running time of Eval with 1024-bit floating point arithmetic in
seconds.

f r(I0) ET
2 EL′

3 EL′
4 EL′

3,10 EL′
3,15 EL′

3,20 EH
4 EH′

4 EH′
4,10 EH′

4,15 EH′
4,20 σ

(
EH′

4

)
σ
(
EH′

4,15

)
σ
(
EL′

3,15

)
T20 0.0288 0.0152 0.0153 0.0179 0.0212 0.0243 0.0201 0.0157 0.023 0.0274 0.0316 0.97 0.57 0.72
T40 0.19 0.0669 0.0663 0.0723 0.068 0.0726 0.078 0.0637 0.0864 0.0944 0.102 1.05 0.71 0.98
T80 10 1.35 0.379 0.363 0.366 0.386 0.397 0.398 0.327 0.465 0.494 0.49 1.16 0.77 0.98
T160 8.23 1.82 1.71 1.23 1.35 1.45 1.61 1.38 1.56 1.78 2.04 1.31 1.02 1.35
T320 - 12.7 12.1 5.11 5.44 6.19 10.4 9.53 6.68 7.84 9.29 1.33 1.62 2.34

H20 0.0242 0.0127 0.013 0.0149 0.0177 0.0204 0.0159 0.0128 0.0191 0.0226 0.0256 0.99 0.56 0.72
H40 0.15 0.0575 0.058 0.0632 0.0601 0.0652 0.0709 0.0547 0.0862 0.092 0.0923 1.05 0.63 0.96
H80 40 0.881 0.259 0.255 0.26 0.263 0.266 0.273 0.225 0.324 0.349 0.346 1.15 0.74 0.98
H160 5.47 1.22 1.16 0.854 0.872 0.953 1.1 0.972 1.1 1.23 1.38 1.26 1.00 1.4
H320 - 11.6 11.4 77.4 21.2 10.3 9.88 9.21 38.4 15.7 11.3 1.26 0.74 0.55

M21 0.0223 0.00767 0.00726 0.00826 0.0101 0.0123 0.00881 0.0072 0.0104 0.0125 0.0143 1.07 0.61 0.76
M41 0.103 0.032 0.0319 0.0349 0.0325 0.035 0.0391 0.0309 0.0417 0.0444 0.0489 1.03 0.72 0.99
M81

1
0.707 0.169 0.159 0.179 0.168 0.173 0.174 0.14 0.203 0.217 0.214 1.21 0.78 1.01

M161 - 1.2 1.13 5.96 1.68 1.09 1.05 0.898 2.96 1.53 1.62 1.34 0.79 0.72

W20 0.0492 0.0222 0.0201 0.0212 0.0211 0.0211 0.0261 0.0205 0.0256 0.026 0.0256 1.08 0.85 1.05
W40 0.282 0.0873 0.0874 0.096 0.0918 0.0995 0.114 0.0858 0.111 0.112 0.111 1.02 0.78 0.95
W80

1000
1.82 0.426 0.416 0.936 0.449 0.439 0.467 0.38 0.706 0.576 0.562 1.12 0.74 0.95

W160 - 2.74 2.65 257 5.56 2.68 2.52 2.22 49.8 7.52 4.59 1.23 0.37 0.49

S100 1.33 0.351 0.337 0.293 0.331 0.351 0.35 0.286 0.378 0.436 0.461 1.23 0.81 1.06
S200 10 9.55 2.32 2.21 1.2 1.41 1.59 2.02 1.77 1.6 1.98 2.31 1.31 1.18 1.65
S400 - 16.6 15.9 4.89 5.84 6.66 13.4 12.5 6.46 8.28 9.98 1.34 2.01 2.85

Table 3. Average running time of Eval with multi-precision rational arithmetic in
seconds.

f r(I0) ET
2 EL′

3 EL′
4 EL′

3,10 EL′
3,15 EL′

3,20 EH
4 EH′

4 EH′
4,10 EH′

4,15 EH′
4,20 σ

(
EH′

4

)
σ
(
EH′

4,15

)
σ
(
EL′

3,15

)
T20 0.0411 0.0223 0.0245 0.0269 0.0325 0.0378 0.0417 0.0233 0.0347 0.0429 0.0505 0.96 0.52 0.69
T40 0.261 0.11 0.111 0.121 0.109 0.117 0.146 0.0959 0.126 0.141 0.156 1.15 0.78 1.01
T80 10 1.76 0.631 0.611 0.62 0.644 0.658 0.824 0.524 0.769 0.805 0.781 1.2 0.78 0.98
T160 11.3 3.14 2.87 2.23 2.36 2.62 3.82 2.41 2.7 2.96 3.36 1.3 1.06 1.33
T320 - 31.8 30.8 13.7 14.1 15.9 36.2 21.8 16.6 18.5 21.8 1.46 1.72 2.25

H20 0.03 0.0169 0.0182 0.0205 0.025 0.0296 0.0239 0.0176 0.0273 0.0338 0.0402 0.96 0.50 0.68
H40 0.185 0.0858 0.0885 0.0956 0.0927 0.106 0.131 0.0844 0.109 0.123 0.136 1.02 0.70 0.93
H80 40 1.1 0.399 0.391 0.41 0.412 0.423 0.541 0.329 0.495 0.523 0.504 1.21 0.76 0.97
H160 7.51 1.99 1.89 1.5 1.51 1.65 2.55 1.47 1.81 1.87 2.13 1.35 1.06 1.32
H320 - 29.5 28.9 303 67 27.7 39.1 20.9 123 40.8 26.2 1.41 0.72 0.44

M21 0.0238 0.0115 0.0119 0.013 0.0154 0.0179 0.015 0.0106 0.0162 0.0198 0.0233 1.09 0.58 0.75
M41 0.124 0.0466 0.0478 0.0529 0.0488 0.0537 0.07 0.0471 0.066 0.0746 0.0847 0.99 0.63 0.96
M81

10
0.947 0.298 0.278 0.321 0.288 0.293 0.381 0.236 0.346 0.359 0.344 1.27 0.83 1.04

M161 - 2.18 2.03 13.6 3.29 2.08 2.64 1.57 5.89 2.62 2.42 1.39 0.83 0.66

W20 0.0652 0.0332 0.0346 0.0344 0.0343 0.0346 0.0491 0.0352 0.0445 0.0442 0.0452 0.94 0.75 0.97
W40 0.431 0.18 0.176 0.182 0.163 0.161 0.225 0.143 0.191 0.195 0.191 1.26 0.92 1.1
W80

1000
2.75 0.846 0.826 1.96 0.877 0.847 1.15 0.708 1.41 1.1 1.09 1.2 0.77 0.97

W160 - 6.28 6.1 932 14.6 6.21 8.22 4.78 155 19 10.6 1.31 0.33 0.43

S100 1.35 0.474 0.457 0.451 0.483 0.477 0.663 0.419 0.603 0.591 0.57 1.13 0.80 0.98
S200 10 12 3.65 3.49 2.28 2.59 2.83 4.79 2.68 2.73 3.13 3.59 1.36 1.17 1.41
S400 - 44.8 42.7 16.4 18.9 21.5 51.8 30 19.6 24.2 28.3 1.50 1.85 2.37

5.1 Non-maximal recursion levels440

High order of convergence is important for applications such as numerical dif-441

ferential equations. But a sole focus on convergence order may be misleading as442

noted in [9]: for any convergence order k ≥ 1, a subsidiary measure may be crit-443

ical in practice. For Taylor forms, this is the refinement level n ≥ k and for our444

recursive range functions, it is the recursion level ℓ ≥ 0. Note that Ratschek [12]445

has a notion called “order n ≥ 1” for box forms on rational functions that446

superficially resembles our level concept. When restricted to polynomials, it447



Fig. 1. Speedup σ of EH′
4 with respect to EL′

3 for different families of polynomials and
varying degree: raw (left) and smoothed with moving average over five points (right).

Fig. 2. Speedup σ(ℓ) of EL′
3,ℓ (left) and EH′

4,ℓ (right) against their maximal level coun-
terparts with respect to ℓ for polynomials of degree 125 (top) and 250 (bottom) from
different families.

diverges from our notion. In other words, we propose to use10 the pair (k, ℓ)448

10 This is a notational shift from our previous paper. We previously indexed the re-
cursion level by n ≥ 1. Thus, level ℓ in this paper corresponds to n − 1 in the old
notation.



of convergence measures in evaluating our range functions. In [9] we focused449

on maximal levels (for polynomials) after showing that the ˜T

2 (the minimal450

level Taylor form of order 2) is practically worthless for the Eval algorithm.451

We now experimentally explore the use of non-maximal levels.452

Figure 2 plots the (potential) level speedup factor σ(ℓ) against level ℓ ≥ 0.453

More precisely, consider the time for Eval to isolate the roots of a polynomial454

f in some interval I0. Let k,ℓf be a family of range functions of order k, but455

varying levels ℓ ≥ 0. If Ek,ℓ (resp., Ek) is the running time of Eval using456

k,ℓf (resp., k,∞f), then σ(ℓ) := Ek/Ek,ℓ. Of course, it is only a true speedup457

if σ(ℓ) > 1. These plots support our intuition in [9] that minimal levels are458

rarely useful (except at low degrees). Most strikingly, the graph of σ(ℓ) shows a459

characteristic shape of rapidly increasing to a unique maxima and then slowly460

tapering to 1, especially for polynomials f with high degrees. This suggests that461

for each polynomial, there is an optimal level to achieve the greatest speedup.462

In our tests (see Figure 2), we saw that both the optimal level and the value of463

the corresponding greatest speedup factor depend on f . Moreover, we observed464

that the achievable speedup tends to be bigger for EH′

4 than for EL′

3 and that it465

increases with the degree of the polynomial f .466

6 Conclusions and Future Work467

We generalized the CL framework in order to achieve, for the first time, range468

functions of arbitrarily high order of convergence. Our recursive scheme for such469

constructions is not only of theoretical interest, but are practical as shown by our470

implementations. Devising specific “best of a given order” functions like H
4,ℓf(I)471

is also useful for applications.472

The amortized complexity model of this paper can be used to analyze many473

subdivision algorithms in higher dimensions. Moreover, new forms of range prim-474

itives may suggest themselves when viewed from the amortization perspective.475

We pose as a theoretical challenge to explain the observed phenomenon of476

the “unimodal” behavior of the σ(ℓ) plots of Figure 2 and to seek techniques for477

estimating the optimal recursion level that achieves the minimum time. More-478

over, we would like to better understand why the size of the Eval subdivision479

tree increases with ℓ in the case of sparse polynomials (see Table 1), while it480

decreases for all other polynomials from our test suite.481

Finally, we emphasize that strong box functions have many applications.482

Another future work therefore is to develop the theory of strong box functions,483

turning the abstract model of Section 2.2 into an effective (Turing) model in the484

sense of [19].485

References486

1. Burr, M., Krahmer, F.: SqFreeEVAL: An (almost) optimal real-root isolation al-487

gorithm. J. Symbolic Computation 47(2), 153–166 (2012)488



2. Core Library homepage (since 1999): Software download, source, documentation489

and links: https://cs.nyu.edu/exact/core pages/svn-core.html490

3. Cornelius, H., Lohner, R.: Computing the range of values of real functions with491

accuracy higher than second order. Computing 33(3), 331–347 (Sep 1984)492

4. Du, Z., Eleftheriou, M., Moreira, J., Yap, C.: Hypergeometric functions in exact493

geometric computation. In: V. Brattka, M. Schoeder, K. Weihrauch (eds.) Proc.494

5th Workshop on Computability and Complexity in Analysis, pp. 55–66, 2002495

5. Du, Z., Yap, C.: Uniform complexity of approximating hypergeometric functions496

with absolute error. In: S. Pae, H. Park, (eds.) Proc. 7th Asian Symp. on Computer497

Math, pp. 246–249, 2006498
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