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Abstract. Exact rounding of numbers and functions is a fundamental
computational problem. This paper introduces the mathematical and
computational foundations for exact rounding. We show that all the
elementary functions in ISO standard (ISO/IEC 10967) for Language
Independent Arithmetic can be exactly rounded, in any format, and to
any precision. Moreover, a priori complexity bounds can be given for
these rounding problems. Our conclusions are derived from results in
transcendental number theory.

1 Introduction

Modern scientific and engineering computation is predominantly based on float-
ing point computations. Central to such computations is the now ubiquitous
floating-point hardware that performs the four arithmetic operations and square-
root to double or quadruple precision, exactly rounded. The IEEE 754 standard
[11] specifies the various rounding modes that must be supported: round up
or round down, round toward or away from zero, and round to nearest (with
suitable tie-breaking rule).

To supplement these built-in hardware operations, many scientific computa-
tion also need a mathematical library in software for the elementary operations
such as exponentiation, logarithm, trigonometric functions, etc. There is an ISO
standard ISO/IEC 10967 for Language Independent Arithmetic (LIA) which is
compatible with the IEEE 754 standard [18, 3]. The second part of this standard
(known as LIA-2) specifies a list of elementary functions that should be imple-
mented in such libraries. A very similar list of functions from Defour et al [3] is
reproduced in Table 1.

An excellent general reference for the issues of exact rounding, including
various algorithms for elementary functions is Muller [16]. Issues of hardware
implementation and fixed precision formats are also addressed in this book.
There is also a growing interest in arbitrary precision “big number” packages
that need such algorithms. A much larger class of functions than elementary
functions is the class of hypergeometric functions. In [5, 6], we provide algorithms
for computing hypergeometric functions to any desired precision.



Logarithms: log(x), log
2
(x), log

10
(x), log

y
(x), log(1 + x)

Exponentials: exp(x), exp(x) − 1, 2x, 10x, xy

Trigonometric: sin(x), cos(x), tan(x), cot(x), sec(x), csc(x)

Inverse Trigonometric: arcsin(x), arccos(x), arctan(x), arctan(x/y),
arccot(x), arcsec(x), arccsc(x)

Hyperbolic: sinh(x), cosh(x), tanh(x), coth(x), sech(x), csch(x)

Inverse Hyperbolic: arcsinh(x), arccosh(x), arctanh(x), arctanh(x/y),
arccoth(x), arcsech(x), arccsch(x)

Fig. 1. Elementary functions in the LIA-2

The ability to approximate a given function f to any desired precision is a
prerequisite for the general problem1 of exact rounding for the function f . But
this ability alone is insufficient for the exact rounding of f . In general, this only
be resolved by using nontrivial results from transcendental number theory. For
instance, current knowledge does not allow us to exactly round the hypergeo-
metric functions. According to [3], there is no IEEE standard analogous to LIA-2
because the theory of exact rounding for such functions is not understood.

Until the advent of modern computers, various elementary functions are pre-
computed and stored in tables for hand calculation. The Table Maker’s Prob-
lem amounts to producing exactly rounded function values at a finite set G of
inputs, with the function values also exactly rounded to G. We call G a “grid”
for rounding. E.g., G can be the set of IEEE 754 double precision numbers in
binary format. The associated Table Maker’s Dilemma arises because it is
not apparent that there are terminating algorithms to produce the table entries
correctly [10, 16, 13, p. 166]. Indeed, this dilemma is another form of the Zero
Problem [19, 23].

Why is exact rounding important? A exactly rounded math library is the
foundation for trustworthy numerical computations, for code portability, for use
in computed-assisted proofs, etc. See [3, 16] for other considerations. Another
application arises in Computational Geometry, where the problem of numerical
non-robustness is especially acute. A highly successful approach for achieving
robust algorithms is Exact Geometric Computation (EGC) [23]. To speed up
EGC computations, we need floating point filters [2, 15]. A basis for such filters is
exactly rounded arithmetic at machine-level. In our Core Library (version 2), we
introduced transcendental functions in expressions [4]. The corresponding filters
need exactly rounded elementary functions in some fixed precision library, such
as specified by LIA-2.

Let us briefly review some basic results on exact rounding of elementary
functions. In Lefèvre et al [13], the exact rounding problem was solved for ele-
mentary functions for the IEEE double precision format in radix 2. Their general

1 The problem is also known as “correct rounding”. We prefer the terminology of
“exact rounding” as there are situations when we would settle for less stringent
notions of exactness, but consider it to be “correct” nevertheless. For instance, [3]
describes 3 levels of rounding.



approach was to search for the worst case input numbers in the IEEE format.
By exhaustive search, it is determined that the smallest gap between a func-
tion value and a breakpoint is greater than 2−119. (A “break point” is either an
possible input number, or the midpoint between consecutive input numbers.) It
follows that if we evaluate the elementary functions to 119 bits of accuracy, we
can round exactly.

The exhaustive search approach is important for hardware implementation of
exactly rounded functions. But it’s extendability is fragile: a new search must be
mounted for input numbers in other precision, or in other formats. In short, each
choice of a rounding grid G needs its own search. For example, Lefèvre et al [14]
describe the search for the exponential function on 64-bit IEEE numbers in dec-
imal format. They show that exact rounding can be achieved by approximating
the exponential function to 47 digits. With 64-bit inputs, the search space is too
large for naive search. Among the sophisticated search methods they employed
is one based on lattice reduction. But exhaustive search for 128-bit formats is
way beyond current techniques and computing power [16, p. 168].

Another important application for exact rounding is in multiprecision float-
ing point libraries. Unlike hardware implementation applications, we do not need
to determine the worst case precision for a fixed grid. We only need an algorithm
that is guaranteed to produce the exactly rounded answer for any potential in-
put number. One of the most widely used multiprecision libraries is gmp (Gnu
Multiprecision library). The bigfloat subsystem in gmp does not guarantee exact
rounding. The mpfr project [8] aims to remedy this shortcoming; but the under-
lying basis for such algorithms does not seem to have been published. Ziv and
others [25, 9] have proposed to use arbitrary precision computation to achieve
exact rounding. The problem with a naive application of arbitrary precision com-
putation is termination. Only heuristic arguments have been used to argue for
a high probability of termination.

The purpose of the present article is to clearly formulate the fundamental
principles behind exact rounding. We show that there are terminating algorithms
for computing exactly rounded values for the standard elementary functions,
in any format and to any desired precision. In this sense, we solve the Table
Maker’s Dilemma for such functions. Worst case complexity estimates for some
of these algorithms are also given. Our conclusions are based on basic results
from transcendental number theory (TNT). Note that Muller [16, p. 167] had
already observed that Lindemann’s result in TNT can be used to justify exact
rounding; he also gave quantitative bounds from Baker type theory in TNT. A
general reference for TNT is [7].

¶1. Computational Model. We consider only R (the real numbers). Usually, ex-
tensions of our results to C is routine. In computing with reals, we use the
computational model of [22, 24] in which numerical inputs and outputs for al-
gorithms are members of some set F ⊆ R such that F contains the integers Z,
and F is dense in R and is closed under the ring operations (+,−,×) as well
as division by 2 (so x ∈ F implies x/2 ∈ F), and allow exact comparisons. We
may call F the computational ring of our model. There are several common



choices for this ring. Consider the following tower of rings

Z[1/2] ⊆ Z[1/10] ⊆ Q ⊆ A ∩ R

where Z[1/2] = {m2n : m,n ∈ Z} is the set of bigfloats or dyadic numbers,
Z[1/10] = {m10n : m,n ∈ Z} is the set of decimal numbers, Q is the set of
rational integers, and A is the set of algebraic numbers. We can choose F to
be any one of these four rings. For these “standard” choices, our computational
model can be implemented by standard Turing machines [24].

Unlike the computational model of computable analysis [12], ours allows
exact comparison between members of F; this is crucial for the rounding problem.
Note only can we recognize if a given x ∈ F is 0, but we also determine if x is
in Z (resp., Q). E.g., this is needed for rounding for the function yx where the
case x ∈ Q is an exceptional case that is separately treated.

The most important computational ring is F = Z[1/2]; it is also the minimal
computational ring by our axioms. In the following, F = Z[1/2] is our default,
unless otherwise noted. In order to formulate the rounding problem using F as
the rounding target, we need to introduce a “scale” or grading on F. A tower of
proper inclusions F0 ⊆ F1 ⊆ F2 ⊆ · · · such that ∪n≥0Fn = F is called a grading
of F,

For our minimal ring F = Z[1/2], we use the grading in which Fn = Z/2n :={m2−n :
m ∈ Z} for each n ∈ N. In general, for any set G ⊆ R, let2 G/N :={a/N : a ∈ G}
where N 6= 0. We can formulate similar grading for other choices of F, with the
proviso that Z/2n ⊆ Fn. E.g., for Q, we can choose Qn = {m/b : 1 ≤ b ≤
n + 1,m ∈ Z}.

Bigfloats are a convenient abstraction of the finite-precision binary formats
of the IEEE numbers [11]. In particular, the IEEE numbers in double precision
is a finite subset of F1075. The choice F = A∩R is mostly of theoretical interest.
It is conceivable that F = Z[

√
2] has attractive computational properties.

Let f : R → R be any real function. An approximation for f is any function
f̃ : F × N → F with the property that f̃(x, n) ∈ Fn and f̃(x, n) = f(x) ± 2−n

(i.e., f̃(x, n) is correct to n bits). In general, a numerical expression of the form
“x± ε” (involving the symbol ‘±’) denotes some value of the form x + θε where
θ is an implicit variable satisfying |θ| ≤ 1.

Suppose we fix some rounding rule r and some grading {Fn : n ∈ N} of F.
Then an exactly rounded approximation for f is

f̂ : F × N → F (1)

such that (1) f̂ is an approximation for f , and (2) the value f̂(x, n) ∈ Fn is
rounded following the rule r. In the next section, we will clarify the notion of
rounding rules.

Our main task is to provide an algorithm for computing f̂ . For this, we make
two natural assumptions: First, we assume the availability of an algorithm to
compute an approximation f̃ for f . Such algorithms are well-known (e.g., [1, 22,

2 Z/N should not be confused with integers mod N , a concept not used in this paper.



6]). Second, we assume that given x ∈ F and n ∈ N, we know how to round x
in Fn. Both these assumptions are easily satisfied in our computational model,
assuming the standard choices of f and F. We will next see what else is needed
to complete our task.

2 The Rounding Framework

We describe an abstract framework for rounding a real number y. In the context
of our main task of computing f̂ , the number y is the value of the function f at
some point x ∈ F.

Rounding of numbers takes place with respect to some discrete set G of
points: a countable set G ⊆ R that is closed is called a (rounding) grid. Each
g ∈ G is called a grid point. Intuitively, the grid points serve as potential values
for the approximation of real numbers. Note that G may be a finite set.

Examples: Typically, G = Fn in arbitrary precision arithmetic computation.
For hardware-oriented algorithms, G can be the set of IEEE machine doubles. In
evaluation of the arctangent function, it is desirable to output an element y ∈ G
that is in [−π/2, π/2], to ensure monotonicity properties (see [16, 3]). One way
to do this is to can all integer multiples of π/2 into G; it is possible to compute
effective with this extended set [24].

Relative to grid G, we introduce the floor and ceiling functions on y ∈ R:

⌊y⌋G := max{x ∈ G : y ≥ x}, ⌈y⌉G := min{y ∈ G : y ≤ x}.

If y is less than the smallest grid point, ⌊y⌋G = −∞ and if y is greater than the
largest grid point, ⌈y⌉G = +∞. Thus, −∞ and +∞ are implicitly included in
all grids. A rounding rule for G is a function r : R → G ∪ {−∞,+∞} such
that for all y ∈ R, we have r(y) ∈ {⌊y⌋G , ⌈y⌉G}. Here are 5 standard rounding
rules:

r1: Round Up r1(y) = ⌈y⌉G

r2: Round Down r2(y) = ⌊y⌋G

r3: Round toward Zero r3(y) = ⌊y⌋G iff y ≥ 0
r4: Round away from Zero r4(y) = ⌈y⌉G iff y ≥ 0
r∗: Round To Nearest |r∗(y) − y| = min{|y − ⌊y⌋G |, | ⌈y⌉G − y|}

Note rounding to nearest r∗(y) is sometimes denoted ⌊y⌉. But this rule r∗ is
incomplete as stated because when y = (⌊y⌋G + ⌈y⌉G)/2, the round-to-nearest
rule does not give a unique determination of r∗(y). In this case, r∗(y) can be
decided by using one of the other four rules (r1, . . . , r4) as tie-breaker rule. We
denote the corresponding rule by r∗i (i = 1, . . . , 4).

There are two more rounding rules, based on an additional property of G:
suppose there is parity function par : G → {odd, even}. By definition, the
parity function assigns different parity to any two adjacent y’s in G. Clearly,
there are only two possible parity functions for G. The standard parity function
is the one where 0 has even parity. In case G = Fn, this choice assigns to g ∈ Fn



an even parity iff the mantissa of y is even (i.e., y = m2−n and m is even). We
now have two more rounding rules: Round to Even (re) or Round to Odd
(ro). For instance, re(y) = y if y ∈ G; otherwise re(y) is the even parity grid
point from {⌊y⌋G , ⌈y⌉G}. These rules work because ⌊y⌋G and ⌈y⌉G have different
parity when they are distinct. As before, we can also use these two rules as tie-
breaker for round to nearest, and thus obtain the rounding rules denoted by
r∗e and r∗o . We remark that rule r∗e is empirically found to be a good rule for
reducing error in a computation. So it is often the default rounding mode.

Naively, the problem of exact rounding is this: given a rounding rule r : R →
G, construct an algorithm to compute r. This is naive because ordinary algo-
rithms (in the sense of Turing) cannot possibly accept arbitrary real numbers,
which are uncountably many, and which generally has no finite representation.
Instead, suppose each real number y is given by some “black box” which, given
n ∈ N, will return an n-bit approximation of y. Formally, a black box number
(or Cauchy function [12]) is a function ỹ : N → F such that there exists a y ∈ R

with the property that ỹ(n) = y± 2−n for all n ∈ N. Call ỹ a black box for y. In
computable analysis, y is called a computable real number if it has a black
box ỹ that is recursive. Turing machines can be extended to use such black boxes
as inputs and outputs; these are called oracle Turing machines (see [12, 24]).

The black box rounding problem relative to some rounding function r on
grid G is this: given a black box ỹ for y, to compute r(y) ∈ G by using ỹ as an
oracle. The black box ỹ arise naturally when y is the value of an approximable
function f at a point a ∈ F. In this case, ỹ(n) is just f̃(a, n) where f̃ is any fixed
approximation of f .

We call G an effective grid if (1) for all y ∈ F, we can compute ⌈y⌉G and
⌊y⌋G, and (2) for all g ∈ G, we can determine the next larger g+ and next smaller
g− grid point, g− < g < g+. Typically G ⊆ Fn for some n, and the effectiveness
of G is easy to see. But the introduction of non-algebraic grid points like π
requires special considerations which we must address.

Recall the definition of the exactly rounded approximation f̂ in (1). We can

now interpret the problem of computing f̂(x, n) as rounding f(x) to the grid Fn.

3 Two Preconditions of Exact Rounding

Given an effective grid G, and y ∈ R, our goal is to round y in G according
to some rounding rule. Define ‖y‖G := infx∈G |x − y| to be the distance from y
to the nearest grid point. Thus y ∈ G iff ‖y‖G = 0. Clearly, one of these two
equalities must hold:

⌊y⌋G = y − ‖y‖G or ⌈y⌉G = y + ‖y‖G.

For any ε ≥ 0, we say that y is ε-discrete in G provided that y 6∈ G implies
‖y‖G > ε. We shall denote this condition by

∆ε(y,G). (2)

We now state two (alternative) preconditions on (y,G) for this:



– Precondition A: y 6∈ G.
– Precondition B: ∆ε(y,G) holds for a known ε > 0.

Our first result shows that either of these two preconditions suffices to achieve
exact rounding; it further shows that some precondition is unavoidable.

Theorem 1. Let G be a fixed effective grid.
(i) There are oracle Turing machines MA and MB such that for all black boxes
y for y, the machine MX (X = A or B) on y will output ⌈y⌉G if Precondition
X holds.
(ii) For all oracle Turing machines M , there exists black boxes y such that M
on y does not compute ⌈y⌉G.

Proof. The oracle Turing machines MA and MB will be given below. So we only
prove (ii) here. Let M be an oracle Turing machine that takes an input oracle ỹ
(any black box for y ∈ R) and outputs ⌈y⌉G after finitely many steps. Let g < g′

be two consecutive grid points. Let g be a black box for g with g(n) = g−2−n−1

for all n. Then M on input g must output g. Let n0 be the largest value of n such
that the computation of M on g queries the oracle g(n). Now let y = g+2−n0−1,
and choose any black box ỹ for y that agrees with g for the first n0 values. Clearly
M on input ỹ will still output g. This is wrong since ⌈y⌉G = g′. Q.E.D.

¶2. METHOD A. If y 6∈ G, we have the following method for computing ⌈y⌉G:
Compute ỹ(n) = y ± 2−n for n = 0, 1, 2, . . . until the interval [ỹ(n) ± 2−n] =
[ỹ(n) − 2−n, ỹ(n) + 2−n] contains no grid points,

[ỹ(n) ± 2−n] ∩ G = ∅. (3)

We then output ⌈ỹ(n)⌉G.
Correctness: By our assumption about the effective grid G, we can check (3)

since this amounts to checking that | ⌈ỹ(n)⌉G − ỹ(n)| > 2−n and | ⌊ỹ(n)⌋G −
ỹ(n)| > 2−n. Furthermore, (3) ensures that ⌈y⌉G = ⌈ỹ(n)⌉G. Finally, observe
that (3) will eventually hold since y 6∈ G.

¶3. METHOD B. In contrast to the precondition A, the ε-discreteness property
∆ε(y,G) does not exclude the possibility that y ∈ G. The constant ε > 0 (or a
positive lower bound) must be effectively known. We use the following lemma.

Lemma 1 (Discreteness Lemma). Suppose ∆ε(y,G) and ỹ = y±ε/2. Then:
⌊y⌋G < y < ⌈y⌉G iff

⌊y⌋G + ε/2 < ỹ < ⌈y⌉G − ε/2.

Proof. It is enough (by symmetry) to show that y < ⌈y⌉G iff ỹ < ⌈y⌉G − ε/2. If
y < ⌈y⌉G, then by ε-discreteness, y + ε < ⌈y⌉G. Thus ỹ ≤ y + ε/2 < ⌈y⌉G − ε/2.
Conversely, if ỹ < ⌈y⌉G − ε/2, then y ≤ ỹ + ε/2 < ⌈y⌉G. Q.E.D.

METHOD B goes as follows: Fix N = ⌈lg(2/ε)⌉. Compute ỹ(n) = y ± 2−n

for n = 0, 1, 2, . . . until the first time that one of the following cases hold:



Case (i): If (3) holds (as in METHOD A), we output ⌈ỹ(n)⌉G (as before).
Case (ii): [ỹ(n)− 2−n, ỹ(n) + 2−n] ∩G contains exactly one point g and n ≥ N .
We output g in this case.

Note that termination is assured since the interval [ỹ(n) ± 2−n] ∩ G will
eventually have at most one point. The output in case (i) is clearly correct. In
case (ii), by ε-discreteness, we know that y = g and so ⌈y⌉G = g. It should be
observed how ε-discreteness is used in an essential way.

¶4. Other Rounding Modes. The preceding METHODs A and B were for round-
ing up (or r1). They can clearly be modified for rounding down (r2). It can also
be used for round to odd (ro) and round to even (re): assuming that we can
decide if a grid point is odd of even, we first compute ⌈y⌉G.

To extend them to r3 and r4, we need to know the sign of y. Actually, all
we need to know if whether y = 0. If y 6= 0, we can then determine the sign of
y from ỹ. Unfortunately, deciding if y = 0 from ỹ is a well-known undecidable
problem in computable analysis. However, in our applications below, y is the
value of the elementary functions evaluated at dyadic points; we could explicitly
detect when y = 0, and METHOD B will not be invoked if y = 0.

Finally, consider the round to nearest function r∗i (various i). Here, we must
extend the grid G to G′ where G ⊆ G′ and the extra grid points of G′ are the
“breakpoints” that lie midway between two consecutive grid points of G. Method
A extends directly to the grid G′. For Method B, we need some discreteness
property, ∆ε(y,G′) for a suitable ε. This concludes our discussion of the rounding
algorithms.

REMARK: we can extend the above rounding methods to complex grids,
G ⊆ C with grading with Gn = {x + iy : x, y ∈ Fn}.

4 Rounding the Elementary Functions

We now consider exact rounding of the elementary functions found in Table 1.
The functions there can be put into two groups: the “pure” functions are given
by

Exponentiation : exp(x), exp(x) − 1
Trigonometric func. : sin(x), cos(x), tan(x), cot(x), sec(x), csc(x)
Hyperbolic func. : sinh(x), cosh(x), tanh(x), coth(x), sech(x), csch(x)

9

=

;

(4)

together with all their inverses

log(x), log(1 + x); arcsin(x), arccos(x), . . . ; arcsinh(x), . . . .

The inverses (except for log) are multivalued functions: we will assume principal
values for these functions. However, they are easily generalized to allow the
specification of any desired branch, by introducing an extra integer argument.
The second group of functions from Table 1 are

Logarithm : log
2
(x), log

10
(x), log

y
(x)

Exponential : 2x, 10x, xy

Inverse Trigonometric : arctan(x/y)
Inverse Hyperbolic : arctanh(x/y)

9

>

>

=

>

>

;

(5)



This group is treated separately. We appeal to the following classic results from
transcendental number theory:

Proposition 1.
(a) [Lindemann] For any complex number α 6= 0, either α or eα is transcenden-
tal.
(b) [Gelfond-Schneider] For any complex numbers α, β where α(1 − α) 6= 0 and
β is irrational, one of the numbers in the set {α, β, αβ} is transcendental.

In order to apply this proposition, we need some basic facts about algebraic
functions. A partial function f : C → C is algebraic if there is an integer
polynomial F (X,Y ) such that F (x, f(x)) = 0 for all x in dom(f) :={x : f(x) =↓
}, the domain of f . To ensure closure of algebraic functions under composition,
it turns out that we also require that if F (X,Y ) = F1(X)F2(X,Y ) then F1(X)
must be a constant. Here f(x) =↓ means f is defined at x. We say F (X,Y ) is
a defining polynomial for f . The constant function f(x) = c where c ∈ A

is the simplest example of an algebraic function; another is f(x) =
√

x. If a
function is not algebraic, we say it is transcendental. By an inverse function
of f , we mean any partial function g : C → C such that f(g(x)) = x holds for
all x ∈ dom(g). Write f−1(x) to denote any choice of an inverse functions of f .
(The notation f−1 will not be used for 1/f in this paper.) Also, let f ◦ g denotes
function composition, (f ◦ g)(x) = f(g(x)).

Our application of Prop. 1 is reduced to an application of the following:

Lemma 2. Let f be an algebraic function. If x ∈ dom(f) is algebraic then f(x)
is algebraic.

Proof. Let F (X,Y ) be a defining polynomial for f . For algebraic x, the relation
F (x, f(x)) = 0 implies that f(x) is the zero of a polynomial with algebraic
coefficients. Thus f(x) is algebraic. Q.E.D.

Combining this lemma with the results of Lindemann and Gelfond-Schneider
Prop. 1, we conclude:

Corollary 1. Let y ∈ A with y(1 − y) 6= 0. The functions f(x) = ex and
g(x) = yx are transcendental functions.

In this corollary, we could have stated that g(x, y) = yx is a transcendental
(i.e., non-algebraic) function. The definition of algebraic functions on more than
one variable is a straightforward extension of the univariate case; but we avoided
this for simplicity.

Here is the analogue of Lemma 2 for transcendental functions: if f is transcen-
dental, and x ∈ dom(f) is algebraic then f(x) is transcendental. Unfortunately,
this is falsified even by f(x) = ex: just take x = 0. We say x is an exceptional
argument for a function f if both f(x) and x are algebraic. Let Ef ⊆ A de-
note the set of exceptional arguments for a function f . Lindemann says that 0
is the only exceptional argument for the function ex, Ef = {0}. Fortunately,
all the elementary functions has exactly one exceptional argument and they are



easy to detect. Gelfond-Schneider says that the set of exceptional arguments for
g(x) = yx is contained in Q. We easily verify that Eg = Q.

Lemma 3. The exceptional arguments of f−1 are contained in the set f(Ef ) =
{f(x) : x ∈ Ef}. In particular, f−1 cannot have more exceptional arguments
than f .

Proof. Let y be exceptional for f−1. We must show that y = f(x) for some
x ∈ Ef . Then {f−1(y), y} ⊆ A. Writing x = f−1(y), we also have {x, f(x)} ⊆ A.
So x ∈ Ef and y = f(x) as desired. Q.E.D.

The following allows us to conclude that certain functions are algebraic:

Theorem 2 (Closure of Algebraic Functions). If f, g are algebraic func-
tions, so are

f + g, f − g, fg, 1/f,
√

f, f−1, f ◦ g.

Proof. Assume F (x, f(x)) = 0 and G(x, g(x)) = 0. Our basic tool is resul-
tant theory [21, chap. 6]. View F (X,Y ) ∈ Z[X,Y ] as a polynomial in D[X]
where D = Z[X]. Then we can view f(x) as an element of D (algebraic clo-
sure of D). The constructions for f + g, f − g, fg, 1/f are obtained from the
corresponding resultants for adding, subtracting, multiplying and taking recip-
rocals of algebraic numbers (Lemma 6.16 in [21, p.158]). To see that h =√

f is algebraic, let H(X,Y ) = F (X,Y 2). Then H(x, h(x)) = F (x, h(x)2) =
F (x, f(x)) = 0. To see that the inverse h = f−1 is algebraic, let H(X,Y ) =
F (Y,X). Then for all y in the domain of h = f−1, H(y, h(y)) = F (f−1(y), y) =
F (f−1(y), f(f−1(y))) = F (x, f(x)) = 0. For function composition h = f ◦ g, let
H(X,Y ) = resZ(F (Z, Y ), G(X,Z)). Then H(x, f(g(x)) = 0. Q.E.D.

An application of the preceding theorem shows that certain functions are
transcendental:

Corollary 2. If f is transcendental and g is algebraic, then the following are
transcendental:

f + g, f − g, fg, f/g, 1/f,
√

f, f−1, f ◦ g, g ◦ f.

The next theorem assumes the general setting where the set F is the set of
real algebraic numbers.

Theorem 3. Assume F = A ∩ R. Let f or the inverse of f be an elementary
function from the list (4).
(a) f is transcendental with one exceptional argument.
(b) The exact rounding problem for f in an effective grid G ⊆ F is solvable.

Proof. Suppose we have shown part (a), i.e., f is transcendental, and determined
its single exceptional argument x0. Then part (b) follows in a generic way: the
algorithm for exact rounding of f amounts to detecting if an input x ∈ F is



exceptional. If so, explicitly output the exact rounding of f(x0) in G ⊆ F (in-
variably, this is trivial). Otherwise, x is non-exceptional, and we use METHOD
A to round f(x) in the grid G.

Exponential function: If f(x) = ex, we already saw that f(x) is transcenden-
tal provided x 6= 0. If x = 0, we output ex = 1. Otherwise, we use METHOD
A to round f(x) = ex to G. Clearly, the method extends to the variant where
f(x) = ex − 1.

Trigonometric functions: Suppose y = sin(x) (the case y = cos(x) is very
similar). If x = 0, we may output sin(0) = 0. Otherwise, consider f(y) =

f(sin x) :=
√

1 − sin2 x + i sin x =
√

1 − y2 + iy. By Thm. 2, f(y) is an alge-

braic function of y. But f(y) = f(sin x) = eix and ix is non-zero algebraic; so

Lindemann says f(y) = eix is transcendental. From this fact, and Lemma 2, we
conclude that y is transcendental.

Suppose y = tan(x) = s√
1−s

where s = sin(x). Thus, tan(x) is an algebraic

function of sin(x). By Thm. 2, we conclude sin(x) is an algebraic function of
tan(x). If x = 0 then we may output tan(0) = 0. Otherwise, we already know
that sin(x) in transcendental. Then tan(x) is transcendental.

Since cot(x) = 1/ tan(x), sec(x) = 1/ cos(x), csc(x) = 1/ sin(x), it follows
from Corollary 2 that cot(x), sec(x), csc(x) are transcendental functions. More-
over, their exceptional argument are directly obtained from the exceptional argu-
ment of their reciprocals (Lemma 3). We can round exactly at these exceptional
points.

The hyperbolic functions are seen to be transcendental by Corollary 2, since
they are derived from transcendental trigonometric functions using the following
algebraic relations:

sinh(x) = i sin(ix), cosh(x) = cos(ix), tanh(x) = −i tan(ix).

Inverse functions: finally, we address the inverses of all the preceding func-
tions. It is clear from the preceding proofs that these functions are transcendental
and each has exactly one exceptional argument. By Corollary 2, the inverses are
all transcendental. Moreover, by Lemma 3, the inverses has at most one excep-
tional argument. We can directly round the functions at the single exceptional
argument. Q.E.D.

We now turn to the functions (5) of the second group.

Theorem 4. Let F = A∩R and y ∈ A and y(y−1) 6= 0. Consider the functions
f(x) = yx and its inverse g(x) = logy x.
(a) f(x) and g(x) are transcendental with exceptional values Ef = Q and Eg =
{yx : x ∈ Q}.
(b) The exact rounding of f(x) and g(x) to grid G = Fn is solvable.

Proof. (a) We already know that f(x) = yx is transcendental with Ef = Q. The
transcendence of g(x) = logy x with Eg = {yx : x ∈ Q} follows from Lemma 3.
(b) To perform exact rounding for f(x) = yx, we first check if f(x) ∈ G, and if
so, we directly output f(x). If not, we can use METHOD A.



To check if f(x) ∈ G, we proceed as follows: we check if x ∈ Q. If not,
f(x) /∈ G. Otherwise let x = a/b be a rational in lowest terms. If f(x) = yx ∈ G,
let f(x) = m2−n for some positive m ∈ Z. We can compute some approximation
w̃ = 2nyx ± 1/4. Then m = ⌊w̃⌋ or m = 1 + ⌊w̃⌋. So we have to check if one
of two cases hold: 2nyx = ⌊w̃⌋ or 2nyx = 1 + ⌊w̃⌋. Let us focus of testing the
first case (the other case is similar). The height H of E = 2nyx − ⌊w̃⌋ is easy
to determine [15]. It follows that if E 6= 0 then |E| > 1/(1 + H). We compute

an approximation Ẽ = E ± (4(1 + H))−1. If |Ẽ| < (2(1 + H))−1, we know that
E = 0, and we may output f(x) = m2−n ∈ G. Q.E.D.

Finally, we address the two argument functions of arctan(x/y) and arctanh(x/y)
in (5). Let f(x) = arctan(x/y) where y ∈ A is nonzero. By Corollary 2, f(x) is a
transcendental function. Moreover, its only exceptional argument is x = 0, and
f(0) = 0. Thus METHOD A applies for rounding f(x) 6= 0. Similarly, we can
treat arctanh(x/y).

All our algorithms above are based on METHOD A. It is also possible to base
our algorithms on METHOD B but these require ε-discreteness properties. As
we shall see in the next section, current estimates for ε (from TNT) is extremely
pessimistic. So it is best to use METHOD A whenever possible.

5 Complexity of Exact Rounding

No complexity bounds can be deduced using only Precondition A. To deduce
bounds, we need to invoke the ε-discreteness conditions of Precondition B (even
when our algorithms are based on METHOD A). If ∆ε(f(x), G) holds, the com-
plexity of rounding f(x) in G is basically the time to compute f(x) ± ε/2.
When f is an elementary function, Brent [1] tells us that the running time is
O(M(log(1/ε)) log(1/ε)) where M(n) is the time to multiply two n-bit numbers.
One caveat is that Brent’s result is “local”, i.e., it is only applicable when x lies
in a bounded range [20]. More global results are obtained in [6].

The ε-discreteness results are obtained from effective forms of the Linde-
mann or Gelfond-Schneider theorems, such as are provided by Baker’s theory of
linear form in logarithms [7]. In particular, we use some explicit bounds from
Nesterenko and Waldschmidt [17], somewhat simplified.

Proposition 2 (Nesterenko-Waldschmidt, 1995). Let α, β ∈ A with D =
[Q(α, β) : Q] and the heights of α and β are at most H. Define

B1(D,H) := 10550 · D2A · (H + log(A) + log(D) + 1)(D log(D) + 1)

where A = max{H,D−1(1 + H)e}.

– (i) If β 6= 0 then |eβ − α| ≥ exp(−B1(D,H)).

– (ii) If α 6= 0 and log α is any non-zero logarithm of α, then |β − log α| ≥
exp(−B1(D,H)).



Write B1(H) := B1(1,H). If D = 1, then A = (1 + H)e and we have

B1(H) = 10550 · (1 + H)e · (H + log(1 + H) + 2) (6)

Since H ≥ 1, we see that B1(H) > 10550.

¶5. Transfer Functions: Inhomogeneous Case. To make our bounds as useful
as possible, we state them as “transfer functions” that convert bounds such as
B1(D,H) from TNT into ε-discreteness bounds. This is illustrated by the next
lemma.

Lemma 4. Let G = Z/N (n ≥ 0). If x ∈ Q (x > 0) has height at most h0, and
log(x) is real, then

‖ log(x)‖G ≥ exp(−B1(H))

where H = max{h0, N log(e(1 + h0))}.

Proof. Let Λ1 = g − log x where g ∈ G and |Λ1| = ‖ log(x)‖G. So Λ1 6= 0. If
|Λ1| ≥ 1, then our lemma is immediate. Otherwise, |g| ≤ 1 + | log x| ≤ 1 +
log(1 + h0) = log(e(1 + h0)). If g = a/N ∈ Fn then h(g) ≤ max{|a|, N} ≤
max{N log(e(1 + h0)), N}. So h(g) ≤ N log(e(1 + h0)). Hence by Prop. 2(ii),

|g + log x| ≥ exp(−B1(H))

where H = max{h(x), h(g)} ≤ max{h0, N log(e(1 + h0))}. Q.E.D.

We can clearly obtain a similar transfer function for rounding the function
f(x) = ex. Suppose G is the IEEE double precision binary numbers and x ∈ G.
Then h0 ≤ 21075 and N = 21075. Hence H = 21075. Thus it is clear that the bound
B1(H) is nowhere near practical. On the other hand, the worst-case searches from
Lefèvre et al [13, 14] gives very practical bounds for this case. This suggests that
our ability to derive sharp transcendence bounds are rather limited.

¶6. Transfer Function: Homogeneous Case. An expression of the form

Λ = β0 +

m∑

i=1

βi log αi

where αi, βi ∈ A is called a “linear form in logarithms”. The form is homogeneous
when β0 = 0; if, in addition, the βi’s are integers, then Λ is said to be in “algebraic
form”. This is the case (with m = 2) needed for bounding ‖ log2(x)‖G.

Lemma 5. Let Λ0 = β1 log α1 + β2 log α2 where α1, α2 ∈ A and β1, β2 ∈ Z. If
α := α1

β1α2
β2 , then

|Λ0| ≥ exp (−B1 (D,H)) . (7)

where D = [Q(α) : Q] and h(α) = H.



Proof. Note that α ∈ A so that its degree D and height H is well-defined. Thus
|Λ0| = |β1 log α1 + β2 log α2| = | log α|. Then Prop. 2(ii), with β = 0, shows that
|β − log α| = | log α| ≥ exp(−B1(D,H)). Q.E.D.

We now apply this bound:

Lemma 6. Let G = Z/N (n ≥ 0). If x ∈ Q (x > 0) has height at most h0, then

‖ log2(x)‖G ≥ exp(−B1(H))/N

where H = 22N log(1+h0)+2hN
0 .

Proof. Let Λ1 = g − log2 x where |Λ1| = ‖ log2 x‖G and g ∈ G. So Ng ∈ Z, and
(N log 2)Λ1 = Λ0 where

Λ0 = Ng log 2 − N log x.

If |Λ0| ≥ 1, the lemma is true. Otherwise, it is easy to see that |g| ≤ 2/N +
2| log(x)| ≤ 2/N + 2 log(1 + h0). We then use Lemma 5 to lower bound |Λ0|. To
do this, we need to bound the degree D and height H of α = eΛ0 . Clearly, D = 1.
Moreover, H = h(2Ngx−N ) = h(2Ng)h(x−N ) ≤ 2NghN

0 ≤ 22N log(1+h0)+2hN
0 .

Q.E.D.

¶7. Non-algebraic Grid Points. In evaluating the tangent function, it useful to
know the relation of an input argument x ∈ F to multiples of π/2. The complexity
of this comparison, can be deduced from the following result from [17, Theorem
2].

Proposition 3 (Nesterenko-Waldschmidt). Let L ≥ 3. Let ξ be a real alge-
braic number with d = deg ξ and L(ξ) ≤ L. Then

− log |π − ξ| ≤ Bπ(d, L)

where Bπ(d, L) = 1.2 · 106d · (log L + d log d)(1 + log d).

We provide a corresponding transfer function:

Lemma 7. If G = Fn = Z/N then

‖π‖G ≥ exp(−Bπ(5N))

Proof. The Λ = g − π such that g ∈ G and |Λ| = ‖π‖G. If |Λ| ≥ 1, the result is
immediate. Else, |g| < 1+π. If g = a/N then L(g) ≤ |a|+N ≤ N(1+π)+N <
5N . Q.E.D.



¶8. How to Use ε-discreteness for π. Suppose we are given x ∈ Z/N . We

want to determine the sign of arctan(x). Suppose mπ
2 < x < (m+1)π

2 . Then
sign(arctan(x)) = 1 − 2 · parity(m) where parity(m) = 0 if m is odd, and
parity(m) = 1 if m is even. Thus, our goal is to determine m.

We first compute m̃ = 2x
π
±2−3. Let m′ = ⌊m⌉ (rounding, with ties arbitrarily

taken). If |m′ − m̃| > 1/4, we know that m = ⌊m̃⌋, so we can output 1 − 2 ·
parity(⌊m̃⌋).

Otherwise, notice that m′π/2 > x iff π > 2x/m′. But 2x/m′ ∈ Z/(m′N).
According to Lemma 7, − log |π − (2x/m′)| ≤ Bπ(5m′N). Hence we compute
π̃ = π± 2−1−Bπ(5m′N). We then know that π > 2x/m′ iff π̃ > 2x/m′. The latter
is easy to determine. If π̃ > 2x/m′, we output 1 − 2 · parity(m′). Otherwise, we
output 2 · parity(m′) − 1.

The above transfer functions illustrate the three types ε-discreteness bounds
that are of interest. In a full paper, we will describe other transfer functions for
the other elementary functions.

6 Conclusions

As this paper shows, the proper foundations for exact rounding are (1) the com-
putational framework of arbitrary-precision approximation, and (2) the mathe-
matical properties of transcendence.

We have shown that in the most important case of elementary functions,
the exact rounding problem is solvable (thereby avoiding the Table Maker’s
Dilemma). However, pending much improved bounds from transcendental num-
ber theory, the worst-case complexity analysis of these algorithms is hopelessly
pessimistic. Evidence (in the case of single and double precision IEEE number
formats) suggests that the actual bounds are much better than we are able to
prove. In any case, our algorithms based on METHOD A are naturally adaptive
and runs in time (roughly) proportional to the actual bounds.
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