
Empirical Study of an Evaluation-Based Subdivision
Algorithm for Complex Root Isolation

Narayan Kamath
Google, Inc

and
Oxford Computing Lab, UK

kamath@kellog.ox.ac.uk

Irina Voiculescu
Oxford Computing Lab

Oxford University, UK
irina@comlab.ox.ac.uk

Chee K. Yap
∗

Courant Institute, NYU, USA
and

Oxford Computing Lab, UK
yap@cs.nyu.edu

ABSTRACT
We provide an empirical study of subdivision algorithms for
isolating the simple roots of a polynomial in any desired
box region B0 of the complex plane. One such class of al-
gorithms is based on Newton-like interval methods (Moore,
Krawczyk, Hansen-Sengupta). Another class of subdivision
algorithms is based on function evaluation. Here, Yakoub-
sohn discussed a method that is purely based on an exclusion
predicate. Recently, Sagraloff and Yap introduced another
algorithm of this type, called Ceval. We describe the first
implementation of Ceval in Core Library. We compare its
performance to the above mentioned algorithms, and also to
the well-known MPSolve software from Bini and Florentino.
Our results suggest that certified evaluation-based methods
such as Ceval are encouraging and deserve further explo-
ration.

1. INTRODUCTION
Isolating roots of univariate polynomials is a highly clas-

sical subject in the mathematical and computational fields.
From a complexity viewpoint, the problem of isolating all
complex zeros of an integer polynomial (we call this the
“benchmark problem”) has been intensely studied [30, 31,
25]. The basic conclusion from Schönhage’s classic paper

[30] says the benchmark problem has bit-complexity Õ(n3L)
where n is the degree and L a bound on the bit sizes of

each coefficient (Õ means we ignore logarithmic terms in n
and L). However, practitioners tend to favor other meth-
ods that do not match this asymptotic complexity. Among
the many current implementations, we have the highly re-
garded MPSolve from Bini and Florentino [2], and an op-
timized Descartes method from Rouillier and Zimmermann

∗This author’s work is performed on a sabbatical visit to
Oxford Computing Lab (2009-10) and is supported by NSF
Grants CCF-0728977 and CCF-0917093.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TO APPEAR: SNC 2011, June 7-9, 2011, San Jose, California.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

(a) Ceval (b) Newton

(c) Krawczyk (d) Hansen-Sengupta

Figure 1: Roots of x(9x9+7x8 +8x7 +8x6 +6x4+5x3 +
2x2 + 1) = 0

[28], albeit for real roots. For instance, Maple’s default algo-
rithm for finding real roots is based on the latter implemen-
tation [28]. Complex roots of univariate polynomials can be
viewed as a special case of solving bivariate real systems.
The latter has been the focus of several recent papers [1, 11,
8, 7]. Our work can also be regarded as a special case of the
general problem of determining the topology of a collection
of planar curves.
This paper is an empirical study of several complex root

isolation methods based on domain subdivision. The ba-
sic paradigm is repeated subdivision of an initial box B0 ⊆
R

2, analogous to binary search. In Figure 1(a,b,c,d), we
provide a visualization of the subdivision boxes produced
by four of the algorithms to be discussed. The polynomial
whose roots were isolated here is x(9x9 +7x8 + 8x7 + 8x6 +
6x4 + 5x3 + 2x2 + 1) = 0.
Many algorithms in this area can be viewed as having 2

or 3 phases, beginning with a subdivision phase. See [16]
for a description of this framework. Such algorithms goes
back to an algorithm of Mitchell [17] for finding real roots
of univariate polynomials to higher dimensional analogues
for computing isotopic curves and surface approximations
[26, 32]. This phase is controlled by an associated predicate
C(B) where B ⊆ B0 is any axes-parallel box. Starting with
B0, we keep subdividing a box B ⊆ B0 into two or four sub-
boxes until every box B satisfies C(B). The complexity of
this subdivision phase often determines the asymptotic com-
plexity of the algorithm. Subdivision algorithms are popular
with implementers because of merits such as ease of imple-
mentation, local complexity, and adaptive complexity. By
“local complexity”, we mean that the computational effort
can be localized to a region-of-interest like B0; in contrast,
the benchmark problem has global complexity. We remark
that the predicate C(B) can be algebraic or geometric ones
(cf. [16]) but we are most interested in numeric ones.

The subdivision predicate C(B) is typically a disjunction
of an exclusion Cout(B), and an inclusion Cin(B), pred-
icate. If a box is excluded, i.e., satisfies Cout(B), it may
be discarded, unless we wish to hold it for visualization
purposes. Ultimately, we need a confirmation predicate
which determines that box B has a unique root. We remark
that Cin(B) is a necessary but not sufficient condition for
confirmation (this is dealt with in subsequent phases). Con-
ceptually, the set of boxes form a subdivision tree T , and
the the goal of subdivision is to ensure that every leaf of
T is either excluded or included. The effectiveness of a
predicate C(B) is measured by the overall complexity of the
subdivision process. Effectiveness of numerical predicates is
seen to depend on two factors: (predicate) efficiency and
efficacy. Efficiency measures the computational effort to
evaluate each predicate. Efficacy measures the size of the
subdivision tree T . The effectiveness of a predicate can be
measured (lower bounded) by the product of the size of T
and worst case cost to evaluate any predicate in T . How-
ever, it is shown in [29] that such a product bound may be a
factor of n larger than the true overall complexity of subdi-
vision. In general, effectiveness involves a tradeoff between
efficacy and (predicate) efficiency. Such a efficiency-efficacy
tradeoff for real root isolation is discussed in [29] (in the
context of comparing predicates based on Sturm, Descartes
and Bolzano principles). Numerical predicates are typically
constructed from interval functions, and so predicate effi-
cacy depends on the range of interval functions; Stahl [33]
contains a comprehensive study of range functions from this
efficacy-complexity viewpoint, and also its application to the
solution of systems of nonlinear equations. This paper is a
contribution along similar lines, except that we deal with
the specific case of a bivariate system from the real and
imaginary curves u(x, y), v(x, y) of a complex polynomial
p(x+ iy) = u(x, y) + iv(x, y) (i =

√
−1).

We first look at a class of predicates from the certified
computation literature [19, 23]. For any real function f :
R

n → R
m, we postulate a corresponding interval function

f : R
n → R

m where R is the set of closed real intervals.
Typically, m = 1 orm = n. We call f a box function for f
if it satisfies two properties: for all n-boxes B,Bi ∈ R

n, (a)
[Inclusion Property] f(B) ⊆ f(B) and, (b) [Convergence
Property] for any point p ∈ R

n, we have f(Bi) → f(p) as
Bi → p (i → ∞). Although Newton’s method is tradition-
ally used for root refinement, Nickel [24], Moore [20], and

Hansen [13] have shown that the interval forms can serve
as confirmation predicate for roots. Such predicates form
the basis for root isolation algorithms [18, 33]. We focus on
three forms of Newton-type predicates: an interval Newton
predicate due to Moore [19], Krawczyk’s predicate [20, 15],
and Hansen and Sengupta’s predicate [12]. These Newton
operators have the form f : Rn → R

n and their inclusion/ex-
clusion predicates have the form

(inclusion) f(B) ⊆ B
(exclusion) f(B) ∩ B = ∅

}
(1)

where B is a box and f is a box function for f . Thus, the
efficacy of these predicates may be reduced to the following
order relation � on their underlying operators: we write
“ f � g” if f(B) ⊆ g(B) for all boxes B. Thus, f � g
implies that, for predicates of the form (1), the predicates
defined by f will succeed whenever the predicates defined
by g succeed. I.e., f is at least as efficacious as g. From
Neumaier [23], we have:

Interval Newton � Hansen-Sengupta � Krawczyk.

The corresponding Krawczyk predicate is therefore the least
efficacious among the three. However, these operators do
not have equal computational costs: the interval Newton
operator involves the inversion of an interval matrix, while
the other two operators do not. Our aim is to implement all
three predicates on a common platform, and compare their
overall performance in isolating the roots of a wide variety
of polynomials.
Another source of predicates comes from function evalua-

tion [10, 36, 34, 6, 5]. Yakoubsohn and Dedieu [10] studied
an exclusion predicate Cout(B) that is basically an interval
form of Taylor expansion. Their inclusion predicate Cin(B)
amounts to the ε-cutoff predicate (i.e., B is included if its
diameter is < ε). Since ε is arbitrary, some adaptivity is lost
and the algorithm only produces a collection of candidate
boxes, which may contain no roots or multiple roots. Re-
cently, Sagraloff and Yap [29] introduced another evaluation-
based algorithm Ceval, but with inclusion and confirma-
tion predicates. We provide the first implementation of Ce-
val, and compare these evaluation-based algorithms to each
other, and to the interval Newton-type predicates above. We
note that for the benchmark problem, the paper [29] proved

that Ceval has bit complexity of Õ(n4L2), thus matching the
best bit complexity for Descartes method or Sturm methods.
However, the Ceval complexity is a stronger result, since
Descartes and Sturm methods only isolate real roots.
The last algorithm in our comparative study is MPSolve, a

complex root algorithm from Bini and Florentino [2, 4]. This
is a highly regarded implementation based on the Aberth-
Erlich method, not subdivision. As such it is a global method
(it must approximate all roots simultaneously). But no con-
vergence proof is known for this method.
Our implementation is released as part of the free and open

source Core Library [38, 9]. We exploit the unique ability
of Core Library to compile a program in different levels of
numerical accuracy. The work reported here is based on the
first author’s Masters Thesis [14].
Postscript. A “simplified” version of Ceval was proposed

in the latest version of the paper [29]. The experiments
reported here are based on the original version of Ceval.
In the full version of this paper, we plan to report on the
relative performance of these two versions.

2. CONTRIBUTIONS
The contributions of this paper are:

• An implementation of three interval Newton-type root
isolation algorithms for bivariate systems on a common
platform. We report on their relative performance for
complex root isolation.

• The first implementation of the Ceval algorithm.

• Comparison of evaluation-based subdivision methods
(Yakoubson, Ceval) with Newton-type methods and
with a state-of-art root solver, MPSolve. We discuss
algorithm engineering issues arising in these implemen-
tations.

• Our empirical evidence suggests that evaluation-based
methods for complex roots are vastly superior to the
(more general) Newton-type methods, and has com-
petitive advantages compared with current state-of-art
methods such as MPSolve.

• Our present work is a contribution to the general area
of designing new exact and certified algorithms for ap-
proximation of zero sets using evaluation-based meth-
ods.

• Distribution of our code with the free open-source
Core Library, allowing further experimentation.

3. EXPERIMENTAL SETUP
The implementation platform is a MacBook Pro with an

Intel Core 2 Duo processor, clocked at 2.53 GHz with 4 GB
of RAM. The operating system is Mac OS X (10.5.8). Our
compiler is gcc-4.2, and our code is compiled using its most
aggressive optimization flag -O3.

Our algorithms are implemented as C++ programs using
the Core Library version 2.0. Recall that the
Core Library [38] is a collection of C++ classes to support ex-
act geometric computation (EGC) [37] with algebraic num-
bers. It is built over the multiprecision libraries of gmp and
mpfr. A unique aspect of Core Library is its numerical
accuracy API, which comes in four levels. Level 1 repre-
sents machine accuracy (IEEE 754 Standard). Level 2 rep-
resents arbitrary precision number types such as BigInt and
BigFloat. Level 3 represents the “EGC Level” and the main
number type here is called Expr (Expression). Exact com-
parison of an Expr is achieved as long as Expr is algebraic.
Level 4 allows a mix of number types from all 3 previous
levels. These four levels are integrated in the sense that
any program that includes Core Library is able to compile
its numbers to any these four levels. For instance, a num-
ber declared as “double” represents the standard machine
double-precision number at Level 1, but it is promoted to
a BigFloat in Level 2, and promoted to an Expr in Level
3. This exploits the operator overloading feature of the C++

language. We mainly use Levels 1 and 2. Level 1 is fast,
but it limits the size of the polynomials that can be treated.
All our experiments are assumed to run at Level 1 unless
otherwise indicated.

For this work, two new number types IntervalT (inter-
vals) and ComplexT (complex numbers) are essential.
Core Library’s polynomial classes are generic (i.e., tem-
plated) and this allows us to evaluate a polynomial p(x) at
interval valued x or complex number x, independent of the
number type of p’s coefficients:

template <typename T> class Polynomial {
// Note that T and NT must be
// either interoperable
// or implicitly convertible .
template <typename NT >

NT eval (const NT &x);
};

The compiler can instantiate for NT=IntervalT,
NT=ComplexT or NT=BigFloat. Typically, we have T=BigInt

or T=int.
Our algorithms are exact because all predicates can be

implemented exactly using BigFloats, assuming the input
numbers are dyadic (i.e., numbers of the form m2n where
m,n ∈ Z). Level 1 accuracy is sufficient for exact com-
putation provided no overflow or underflow occurs. In the
implementation of Ceval, the 8-point test requires rational
numbers, but this will be separately treated below. Speed
without correctness is not worth much. So we validate the
output of our algorithms in two ways: we compare our com-
puted values to a reliable software such as MPSolve, and we
compare Level 1 outputs to the outputs from the same algo-
rithm at Level 2.
The main sources for our test polynomials are the FRISCO

suite [35], and randomly generated polynomials. Our pro-
grams accepts both the FRISCO file format for polynomi-
als as well as a very flexible string based format such as
“3x4y5 − (x2 + 1)(y3 − 1)” or “3x4y5 = (x2 + 1)(y3 − 1)”,
which is useful for command line execution. For each run of
our algorithm, we collect the following statistics:

• Running Time in microseconds, using C’s gettimeof-
day API. This method is sufficiently reliable for our
purposes because our programs are CPU intensive and
do not perform any disk or network I/O.

• Number of Boxes Processed. In tables, this number is
called “Iters” (as it is the number of iterations of the
subdivision loop). Recall that each box is ultimately
included, excluded, or subdivided.

• Number of Excluded (resp., Included) Boxes.

• Number of Unresolved Boxes. In principle, our algo-
rithm will eventually terminate if there are no mul-
tiple roots in the region of interest. But to prevent
underflow (level 1), or to keep the running time rea-
sonable, or to avoid nontermination in case the region-
of-interest contains multiple roots, we can specify a
minimum box size or maximum tree depth; this may
result in unresolved boxes on termination.

In our statistical tables, we will underline the entry that is
the best among the several methods being compared. Also,
the names of the polynomials (for instance, chebyshev20)
have an integer suffix indicating its degree.

4. VISUALIZATION
Visualization is an important aspect of our software, for

debugging and for gaining insight into the behavior of al-
gorithms. Here we extend the previous visualization for
curves analysis from [16], which is based on the OpenGL

library. Typically we wish to visualize a subdivision tree
(Figure 2(a)) and to zoom and pan into details of interest
(Figure 2(b)). To do this we need to retain boxes that have
been excluded in subdivision; command line flags control the

(a) All roots (b) Zoomed in view.

Figure 2: Subdivision tree of Ceval for degree 25
polynomial

handling of these extra information. The color code shows
red for excluded boxes, green for confirmed boxes, blue for
unresolved boxes.

Although the termination of the Ceval algorithm depends
on the assumption that the input polynomial is square-free,
the algorithm is still useful for arbitrary polynomials. Sup-
pose we run Ceval on the polynomial p(z) = (z6+64)2(z6−
729). This is a non-squarefree polynomial with 6 multiple
roots on the circle (centered at the origin) of radius 2, and
6 simple roots on a concentric circle of radius 3. It is now
essential to specify a minimum box size (or maximum sub-
division depth) for termination. Choosing a minimum box
size of 0.0001, and B0 = [−4, 4]× [−4, 4], Ceval produces the
visualization seen in Figure 3. It processed a total of 8645
boxes, confirming 6 green boxes and leaving unresolved 256
blue boxes. The simple roots were all isolated as shown in
this output:

m= [1.498046875 + (-2.599609375)i], r= .01171875

m= [-1.501953125 + (-2.599609375)i], r= .01171875

m= [2.998046875 + (.001953125)i], r= .01171875

m= [1.498046875 + (2.599609375)i], r= .01171875

m= [-3.001953125 + (.001953125)i], r= .01171875

m= [-1.501953125 + (2.599609375)i], r= .01171875

Further details about our implementation may be found in
the thesis [14] and in the Core Library distribution (under
progs/mesh).

5. INTERVAL NEWTON-TYPE METHODS
First, we consider three closely related pairs of predicates

based on Interval Newton methods. They work by finding
the solutions of the bivariate system u(x, y) = v(x, y) = 0
where f(x+iy) = u(x, y)+iv(x, y). But these methods work
more generally for any zero-dimensional system of n polyno-
mials in n variables, so we describe them in these general
terms. We view an n-tuple B of vectors as an n-dimensional
box (or n-box), B ⊆ R

n. The Interval Newton oper-
ator N : R

n → R for a function f : Rn → R is given
by

N(B) = Nf (B) :=m(B)− (J(B))−1 · f(m(B)) (2)

where (J(B))−1 denotes the inverse of the interval Jacobian
of f , and m(B) denotes the midpoint of box B. For bivariate
systems, computing the inverse is not really an issue, but we
must address the situation where J(B) contains 0. The
Krawczyk operator is defined by

K(B) = Kf (B) := y−Y ·f(y)+{I−Y · J(B)}·(B−y) (3)

Figure 3: Subdivision tree for p(z) = (z6 + 64)2(z6 −
729). Blue boxes are unresolved ones around double
roots, and green boxes isolates the simple roots.

where y ∈ B, Y is any nonsingular real matrix, and I the
identity matrix. Typically, we have y ≃ m(B) and Y ≃
J(y)−1, viewed as a preconditioner. The Hansen-Sengupta
approach is a Gauss-Seidel iteration to solve for x in the
equation

J(B)(x− y) + f(y) = 0. (4)

Multiplying by some preconditioning matrix Y as before, the
equation becomes A(x− y) = −Y f(y) where A :=Y · J(B)
(cf. (3)). We can write A as A = U +D+L (disjoint sum of
a strict upper triangular U , a diagonal D, and a strict lower
triangular L matrix). The Gauss-Seidel iteration for solving
Ax = b is given by

x(k+1) = D−1(b− Lx(k+1) − Ux(k))

where x(k) is the kth approximation. This yields theHansen-
Sengupta operator

H(B) = Hf (B) := y−D−1{Y ·f(y)+L(B′−y)+U(B−y)}
(5)

where y, Y are as before and B′ = B ∩H(B). Note that the
use of LB′ in (5) is not recursive, but iterative because L
is lower-triangular: we replace each component of box B by
corresponding entries of B∩H(B) as they become available.
Let G be any of the three operators from (2,3,5) above. It

can be shown [19, 24, 20, 21] that

(i) G(B) ⊆ B implies B has a unique root

(ii) G(B) ∩ B contains all the roots in B

As a consequence of (ii), if G(B)∩B = ∅ thenB has no roots.
This provides an exclusion predicate Cout for subdivision.
Clearly (i)) provides a confirmation predicate, and hence an
inclusion predicate Cin. Since this inclusion predicate is also
a confirmation, the interval Newton-type algorithms do not
need additional phases beyond the subdivision phase.

Another consequence of (ii) is that, in case the inclu-
sion or exclusion predicates fail on B, we can replace B by
B′ :=B ∩ G(B) and then subdivide B′. Although this re-
sults in smaller boxes, there is an associated cost because
the bitsize (of the coordinates) of B′ may increase consid-
erable. If we simply subdivide B, the bitsize increases by a
small constant number (depending on how you count bitsize
of B). The effect of using B′ instead of B implies that the
shapes of boxes are rather arbitrary. This results in irreg-
ular children boxes as seen in Figure 1(b,c) but especially
Figure 1(d) because of extended interval arithmetic.

§1. The Exclusion Predicate C0(B).
Instead of the exclusion predicate G(B)∩B = ∅ above, we

can use predicate C0(B), defined as 0 /∈ u(B) or 0 /∈ v(B).
(cf. [16]). Preliminary experiments show that C0(B) is more
efficient, and all our Newton-type algorithms use this predi-
cate. The interval u(B) can be computed easily using the
Horner scheme. But our tests show that using centered form
[27] of u(B) yields remarkable improvement in efficacy over
Horner. This becomes more apparent with increasing degree
of the polynomial u. This gain in efficacy must be balanced
against the cost of computing centered forms, which amounts
to computing the bivariate Taylor coefficients of our polyno-
mials when expanded at the midpoints of a box B. We
achieve a balance by using a simple scheme: recompute the
coefficients after a fixed number T (threshold) of predicate
failures. It is worth pointing out that this strategy is sensi-
tive to the order in which we process boxes, a “depth first”
type processing will yield better results than a“breadth first”
type processing. Table 1 shows the influence of T on timing
and subdivision for the Chebyshev polynomial of degree 20.
For this particular example, T = 16 gives the best overall
time (indicated by the underlined entry). As a general de-
fault, we have empirically set T = 4 in all our experiments
below.

T Iterations Ambiguous C0 Excludes Time
boxes as % of total (secs)

0 15429 176 11396(73.8) 18.554
2 19845 504 13877(71.2) 3.410
4 23585 744 15218(64.5) 2.190
8 31229 1332 16936(54.2) 1.834
16 40585 2396 17201(42.3) 1.720
32 56945 5908 17700(31.0) 1.951
64 77949 9164 17772(22.7) 2.445

Table 1: Effect of Threshold T on Chebyshev Poly-
nomial of degree 20

§2. Comparing the Inclusion Predicates.
We now return to the inclusion predicate G(B) ⊆ B where

G(B) is one of the operators N(B),K(B) or H(B). These
operators admit several variants in their implementation.
For the interval Newton operator (2), when J(B) contains
a singular matrix, we have a choice to use extended interval
arithmetic (to support division by intervals containing zero)
or we could choose to subdivide B. The latter turns out to
be a consistently better choice. For the Krawczyk operator
(3), we could choose the nonsingular matrix Y to be one of
the following: J(m(B))−1, m(J(B)−1), or identity I . The
first choice turns out to be best. For the Hansen-Sengupta

operator we choose to use extended interval arithmetic in its
implementation. See [14] for more detail. In any case, we
choose the best variant for each inclusion predicate and then
compare them against each other. This final comparison is
shown in Table 2.

Polynomial Hansen-Sengupta Newton Krawczyk

iter Secs. # iter Secs. # iter Secs.

cheby20 18837 24.448 15445 19.731 15429 20.064

chrma22 7621 10.986 6557 9.380 6637 9.578

chrmc23 11229 19.637 9893 16.191 9845 15.328

hermite20 2805 3.453 2645 3.278 2645 3.344

kam3-1 2005 0.439 2005 0.438 2005 0.435

kam3-2 2005 0.444 2005 0.432 2005 0.446

laguerre20 1205 1.491 1037 1.294 1021 1.272

laguerre4 205 0.011 229 0.013 213 0.012

laguerre5 197 0.016 197 0.021 197 0.017

laguerre6 245 0.030 245 0.149 245 0.036

x
10

− 1 3253 1.100 2645 0.796 2629 0.809

x
20

− 1 12693 15.729 10053 12.373 10053 12.267

wilk20 1133 1.433 869 1.110 861 1.096

Table 2: Comparison of Hansen-Sengupta, Newton,
and Krawczyk

The three operators are not very different from each other.
It is somewhat surprising that Hansen-Sengupta did not per-
form better, but this may be because our special problem of
complex roots does not allow the Hansen-Sengupta method
to shine. Another issue is that these methods do not con-
verge in case of roots on the boundary of a subdivision box;
this is treated by Stahl [33] and also in Kamath’s thesis [14].

6. CEVAL & YAKOUBSOHN’S ROOT ISO-
LATION ALGORITHM

For any function f : C → C, and constantK > 0, Sagraloff
and Yap [29] introduced the function tfK : C × R≥0 → R

defined as follows:

tfK(m, r) = K
∑

k≥1

∣∣∣∣
f (k)(m)

f(m)k!

∣∣∣∣ r
k. (6)

The function M(z, t) introduced by [36, 10] corresponds to

the case K = 1. The predicate T f
K(m, r) is then defined

as “tfK(m,r) < 1”. We are also interested in the predicate

T f ′

K (m, r) where f ′ is the derivative of f . If f is understood,

we write TK(m,r) and T ′
K(m, r) instead of T f

K(m, r) and

T f ′

K (m, r). For the T -predicates, circular geometry is more
natural than box geometry. Let D(m, r) denote the disk
centered at m with radius r. It is clear that T1(m, r) is an
exclusion predicate for the disc D(m, r); it is also shown that
if T ′√

2
(m, r) holds then B has at most one root; therefore we

use this as an inclusion predicate. But to have a confir-
mation predicate, we need to ensure that there is at least
one root in B. For this purpose, the following 8-point test
was developed by Sagraloff-Yap: consider 8 compass points

m + 4reijπ/4 for j = 0, . . . , 7 on the boundary of D(m, 4r)
(not D(m, r)). We give them the conventional names N, S,
E, W, NE, NW, SE, SW, as shown in Figure 4.

They define 8 arcs A0, . . . , A7 where Aj = {u(m+4reiθ) :
jπ/4 ≤ θ < (j + 1)π/4}. We say there is an (arcwise)
u-crossing of Ai if the value of u at the endpoints of Ai

changes sign. For instance, the endpoints of A1 is N and
NE, and there is a u-crossing at A1 if u(N)u(NE) < 0. If

E

S

N

SE

NE

W

SW

NW

D4r(m)

Dr(m)

v(x, y) = 0

u(x, y) = 0

m

Figure 4: 8 compass points on D4r.

there are exactly two u-crossings at Aj and Ak, there are
exactly two v-crossings at Aj′ and Ak′ , and these crossing
interleave (i.e., either j < j′ < k < k′ or j′ < j < k′ < k),
then we say the 8-point test passes forD(m, 4r); otherwise
the test fails. The key result is this:

Theorem 1 (Sagraloff-Yap). Suppose that the pred-
icate T ′

6(m, 4r) holds, and the 8-point test is applied to the
disc D(m, 4r).

(i) If the test fails, then D(m, r) is not isolating.

(ii) If the test passes, the D(m, 4r) is isolating.

By choosing m = m(B) and r to be the radius of box
B, this test allows us to reject B (if the test fails) or to
accept a larger disk D(m, 4r). There is an issue of exact-
ness of this test: although the four cardinal points (N, S,
E, W) are dyadic, the other four ordinal points (NE, NW,
SE, SW) are irrational. It is shown [29] that the 8-point test
remains valid when we approximate the ordinal points by
other points on the boundary of D(m, 4r), provided their
angular deviation from the perfect positions is less than
2.5◦. In particular, we can use Pythagorean triples to pro-
vide rational approximations for NE, NW, SE, SW. Such
approximate points lie exactly on the boundary of D(m, 4r)
and can be chosen arbitrarily close to NE, NW, SE, SW.
The simplest Pythagorean triple that is sufficiently close is
(20, 21, 29), with arcsin(20/29) ≈ 43.60◦. A more accurate
triple is (119, 120, 169) with arcsin(119/169) = 44.76◦. Us-
ing such triples, the 8-point test can be implemented without
error using rational arithmetic (not BigFloats). There are
several ways to implement Ceval: let m, r denote the mid-
point and radius of B. The exclusion predicate is given by
Cout(B) ≡ T1(m, r). The inclusion predicate Cin(B) can be
defined be the conjunction of T ′

6(m, 4r), T ′√
2
(m, 8r), and the

passing of the 8-point test on D(m, 4r). Yakoubsohn’s algo-
rithm is much simpler: it has the same exclusion predicate,
but the inclusion predicate is that r < ε (for some ε > 0).
The requirement T ′√

2
(m, 8r) ensures that if two confirmed

discs intersect, we can discard any one of them. Thus we
output exactly one isolating disk per root.

Let us first look at the raw performance of Ceval in Ta-
ble 3. For each test polynomial, we have two experiments:

first to isolate all the roots in the box [−2, 2]× [−2, 2] ⊆ C,
and next to isolate all complex roots. In the latter case, we
use the usual Cauchy bound (basically maximum modulus of
all the coefficients) to determine a box containing all roots.
As expected, the latter takes more iterations and more time.
We do not need a head-to-head comparison between Ceval

with the Newton-type algorithms because Ceval is 3 orders
of magnitude faster.

Polynomial [−2, 2]× [−2, 2] All Roots
Iters Time(ms) Iters Time(ms)

random10 1909 1.741 2615 2.342
nroots10 2037 1.838 2037 1.816
chebyshev20 12805 26.262 18533 39.821
nroots20 7989 16.593 7989 16.444
laguerre20 805 1.747 38253 79.055
hermite20 1685 3.680 17093 35.618
wilk20 581 1.371 40589 97.393
chrma22 4949 10.978 36749 80.626
chrmc23 7101 16.840 43389 107.063
random30 16013 62.602 27413 110.893
random40 27419 178.732 45722 315.381
random50 43160 427.576 71905 743.922
random60 60757 843.580 107746 1495.772
random70 80215 1481.286 108310 2104.210
random80 111795 2685.381 121129 2946.031
random90 139605 4211.166 221837 6789.341

Table 3: Ceval algorithm on B0 = [−2, 2]×[−2, 2]. Run-
times are in milli seconds.

We now turn our attention to the comparison of Ceval

with Yakoubsohn’s method. We need to choose a fixed ε: one
natural choice is to use the standard root separation bound
estimate. But this choice would really slow down Yakoub-
sohn’s algorithm. For our timings, we therefore choose a
fixed value of ε depending on the Core Level. At Level 1, we
choose ε = 0.0001. The performance comparison between
these two approaches can be found in Table 4. As expected,
Yakoubsohn’s method is faster since it does not bear the
burden of confirming roots. However, in our tests the Ce-

val algorithm always operates on a fewer number of boxes
because we can stop subdivision once a box satisfies our in-
clusion predicate. Column 2 in Table 4 shows the number
of output boxes from Yakoubsohn’s algorithm for each test
polynomial. For instance, the first entry is a random polyno-
mial of degree 10, but 76 boxes are output. We expect that
at least 66 of these boxes are spurious (assuming no roots
lie on the boundary of a box). In our tests, his algorithm
tend to produce an average of 8 output boxes around each
root. This may be seen in Table 4 by dividing the number
of output boxes by the degree of the polynomial.
Finally, we compare Ceval with the MPSolve package. which

is based on the Aberth-Erlich simultaneous iteration. The
timings for MPSolve were generated using the UNIX time

command and are not as accurate as the timings generated
from our code and are provided as a rough indicator of per-
formance. The list of timings can be found in Table 5.
Ceval performs about the same as MPSolve for polyno-

mials with degree n < 30. For higher degree polynomials,
their performance starts to diverge with MPSolve being con-
sistently faster. At n = 40 we see that Ceval is generally
up to five or eight times slower. One of the factors that

Boxes Iters Time(ms)
(Yako.) Ceval Yako. Ceval Yako.

random10 76 2615 3105 2.721 2.282
nroots10 96 2037 2581 1.773 1.802
chebysh20 176 18533 19509 38.462 35.544
nroots20 192 7989 8885 16.481 14.526
laguerr20 192 38253 39845 77.991 65.489
hermite20 160 17093 18309 35.690 29.955
wilk20 128 40589 41909 84.321 69.130
random20 147 8201 8985 19.750 14.805
chrma22 168 36749 37661 83.140 67.142
chrmc23 200 43389 43813 101.816 83.464
random30 228 27413 28441 123.294 89.068
random40 296 45722 46957 337.769 245.090
random50 361 71905 73347 783.600 578.127
random60 426 107746 109317 1646.602 1191.557
random70 511 108310 110064 2213.269 1623.679
random80 581 121129 122990 3021.738 2347.435
random90 665 221837 223842 6839.414 5385.514

Table 4: Comparison of Ceval and Yakoubsohn’s
method with ε = 0.0001. Observe that Yakoubsohn’s
method is always faster, yet Ceval is comparable be-
cause it always operates on a fewer number of boxes.

works against Ceval is the estimate of B0 from the Cauchy
bound. For instance, the Wilkinson’s degree 40 polynomial
has an estimated B0 = [−2048, 2048]× [−2048, 2048], which
is much larger than the minimal bound of 40. The number of
iterations of the Aberth-Erlich iteration that are required to
converge to a root is not directly related to the root bounds,
or to the distribution of roots. The behavior of this itera-
tion (and the reason for its seemingly wonderful convergence
properties) is not well understood; a discussion can be found
in [2].

Time(ms)
Ceval MPSolve

chebyshev20 39.821 27
laguerre20 79.055 87
hermite20 35.618 81
wilk20 97.393 49
chrma22 80.626 47
chrmc23 107.063 61
hermite40 525.80 88
wilk40 1142.82 153

Table 5: Comparison of Ceval and MPSolve.

We must keep in mind that the Aberth-Erlich (or in-
deed the Weierstrass-Durand-Kerner) iteration does not out-
put a list of isolating boxes, rather just approximations of
roots. We have no guarantee that the iteration will converge
to “reasonable” approximations. Additionally, the strength
of subdivision based methods is that they can operate on
tight areas of interest while the simultaneous iteration based
methods necessarily have to approximate all roots. Conse-
quently, we cannot provide a comparison of the two methods
operating on such a preselected area because the MPSolve

software [3] does not support such an option.

7. EXPERIMENTS AT LEVEL 2
We now provide a comparison of running times of our al-

gorithms at Core Level 2. Basically, machine double are now
replaced by BigFloat numbers In terms of implementation,
this comes almost for free because of Core Library’s ability
to reuse the same program, just at the cost of re-compilation.
The performance of the three Newton-type operators is

presented in Table 6. As in the case of Level 1, there is no
significant difference between the three operators. At Level
2 however, the interval Newton operator appears to be faster
than the Krawczyk operator by a small but consistent mar-
gin. Given that arithmetic operations are more expensive
at this Level, the method that processes the fewest boxes is
bound to be faster. Also, note that the Hansen-Sengupta
operator lags further behind the other two as a result of its
expensive extended interval arithmetic computations.
These tests are carried out on randomly generated poly-

nomials of the degrees shown. These have been constructed
densely, with each coefficient being separately generated.

Deg Iters Time(ms)

HS N K HS N K
4 325 333 357 0.320 0.334 0.463
6 877 805 829 2.285 1.769 2.164
8 1557 1317 1349 6.972 5.633 6.559

10 2461 2093 2069 19.066 15.730 17.410
12 3445 2965 2965 41.488 35.037 39.390
14 4677 3997 4021 87.262 71.523 77.699

Table 6: Comparison of Newton type operators at
Level 2 on [−2, 2]× [−2, 2]

As in the case of Level 1, Ceval continues to be three
orders of magnitude faster than the Newton type operators.
The results make up Table 7.

Deg Output Iters Time(ms)
(Yako.) Ceval Yako. Ceval Yako.

10 72 1965 2381 0.801 0.876
20 128 7909 8565 12.587 12.257
30 224 16413 17381 65.162 53.582
40 248 29293 30405 203.899 163.549

Table 7: Comparison Ceval with Yakoubsohn’s pure
exclusion approach over [−2, 2]× [−2, 2]

The results of this section show that the performance of
our algorithms at Level 2 is between 20 and 50 times slower
than at Level 1. This is an expected consequence of using
extended precision types. To improve performance, it might
be advantageous to carry out as many operations as possible
at machine precision, and to control precision growth in areas
that require it.
The Ceval implementation is currently not capable of switch-

ing Core levels at run time for portions of the working set;
it must run entirely at Level 1 or Level 2, a decision made
at compile time. This is one aspect of our implementation
that we plan to improve.

8. CONCLUSION AND FUTURE WORK
Our experimental results show that the interval arithmetic

based approaches suffer from a serious degradation in per-
formance as the degree n of the polynomial increases. Some
of this degradation in performance can be attributed to the
overestimation of function range by interval extensions, but
methods to compensate for it tend to be computationally
expensive. Further, these operators suffer from issues due
to roots that lie on box boundaries. Overall, this approach
appears to suffer from various practical and performance is-
sues, and its use cannot be recommended.

Our experimental results for the Ceval algorithm appear
quite encouraging. It is efficient and robust, and works well
on a large range of polynomials, of various degrees and with
densely generated random coefficients. It provides stronger
guarantees than Yakoubsohn’s exclusion based approach at
a comparable speed. Further, both of these approaches per-
form three orders of magnitude faster than the interval arith-
metic based approaches. However, the performance of the
predicate TK breaks down due to the growth of n! for poly-
nomials of degree n > 90. We plan to extend the range of the
achievable degrees in Level 1 (see below). But even without
these extensions, we believe that the algorithm is an efficient
and viable choice for isolating roots of complex polynomials
of degree n < 90. The following plans for future work are
related to the development of Ceval-like algorithms.

• We noted that the latest version of the Ceval paper
(to appear in ISSAC 2011) provided a simplified alter-
native to the 8-point test. Recall that the success of
the predicate T1(m,r) implies that there is no roots in
the disk D(m, r) (see Section 6). The simplification is
based on the observation that the failure of T1(m, r)
could serve as an inclusion predicate, albeit for a much
larger disk: D(m, 2nr). Both versions have the same

asymptotic bound of Õ(n4L2) bit complexity for the
benchmark problem. Since their relative performance
in practice is unclear, the full version of this paper will
compare these two versions.

• As shown above, just switching from Level 1 to Level
2 causes our algorithms to slow down by a factor of up
to 20 to 50. We would like to explore a fixed precision
BigFloat that behaves closer to a machine type, but
with larger number of bits of precision.

• The 8-point-test evaluates the input polynomial at or-
dinal compass points using the BigRat type. Since
the BigRat type is represented by a pair of BigInt in-
stances (a, b) for a

b
, the exponentiation of these values

to a high power will be slow and the representation will
be expensive in terms of memory usage as well. Also,
since the BigRat representation must always contain
no common factors, many expensive GCD operations
are required as well. One possible change in this area
is to use rounded interval arithmetic to estimate the
range of f over the interval lower and upper bound of
the approximate value of the ordinal points. Clearly, if
the interval is either entirely negative or positive, then
so is the sign of f at the exact ordinal point.

• We need to explore approaches that allow TK to re-
main performant for higher degree polynomials as well.
Some of the directions we can look in include the trun-
cated evaluation of the Taylor series and controlled

precision growth (with correct rounding) of our cal-
culations.

• Note that our implementation runs either entirely at
Level 1 or entirely at Level 2. It would be desirable
to implement a wrapper over a machine precision type
that can detect underflows and overflows, and switch
calculation over to Level 2. We are currently working
on the outline of such a type, but a lot of work remains
to be done to test it and integrate it with our Ceval

implementation.

• Recall that Sturm and Descartes’ methods [22, 29] are
subdivision methods for real roots. It is possible to
generalize both to real solutions of bivariate systems.
Their performance against evaluation methods should
be of interest.

9. REFERENCES
[1] E. Berberich, P. Emeliyanenko, and M. Sagraloff. An

elimination method for solving bivariate polynomial
systems: Eliminating the usual drawbacks. In
Workshop on Algorithm Engineering and Experiments
(ALENEX11), 2011. Jan 22, 2011. San Francisco,
California.

[2] D. A. Bini. Numerical computation of polynomial
zeroes by means of Aberth’s method. Numerical
Algorithms, 13:179–200, 1996.

[3] D. A. Bini and G. Fiorentino. MPSolve: manual for
the MPSolve package. http://www.dm.unipi.it/
cluster-pages/mpsolve/mpsolve.pdf.

[4] D. A. Bini and G. Fiorentino. Design, analysis, and
implementation of a multiprecision , polynomial
rootfinder. Numerical Algorithms, 23:127âĂŞ173, 2000.

[5] M. Burr, F. Krahmer, and C. Yap. Continuous
amortization: A non-probabilistic adaptive analysis
technique. Electronic Colloquium on Computational
Complexity (ECCC), TR09(136), December 2009.

[6] M. Burr, V. Sharma, and C. Yap. Evaluation-based
root isolation, 2011. In preparation.

[7] J. Cheng, S. Lazard, L. Peñaranda, M. Pouget,
F. Rouillier, and E. Tsigaridas. On the topology of
planar algebraic curves. In Proc. 25th Symp. on
Comp. Geom. (SoCG’09), pages 361–370, 2009.

[8] J.-S. Cheng, X.-S. Gao, and J. Li. Root isolation for
bivariate polynomial systems with local generic
position method. Mm research preprints, KLMM,
Chinese Academy of Sciences, 2008.

[9] Core Library homepage, since 1999. Software
download, source, documentation and links:
http://cs.nyu.edu/exact/core/.

[10] J.-P. Dedieu and J.-C. Yakoubsohn. Localization of an
algebraic hypersurface by the exclusion algorithm.
Applicable Algbebra in Engineering, Communication
and Computing, 2:239–256, 1992.

[11] D. Diochnos, I. Emiris, and E. Tsigaridas. On the
complexity of real solving bivariate systems. J.

Symbolic Computation, 44:818âĂŞ835, 2009.

[12] E. R. Hansen. On solving systems of equations using
interval arithmetic. Math. Comp., 22, 1968.

[13] E. R. Hansen. A globally convergent interval method
for computing and bounding real roots. BIT,
16:415–424, 1978.

[14] N. Kamath. Subdivision algorithms for complex root
isolation: Empirical comparisons. Master’s thesis,
Oxford University, Oxford Computing Laboratory,
Aug. 2010.

[15] R. Krawczyk. Newton-Algorithmen zur Bestimmung
von Nullstellen mit Fehlerschranken. Computing,
4:187–201, 1969.

[16] L. Lin and C. Yap. Adaptive isotopic approximation of
nonsingular curves: the parameterizability and
nonlocal isotopy approach. Discrete and Comp.
Geom., 45(4):760–795, 2011.

[17] D. P. Mitchell. Robust ray intersection with interval
arithmetic. In Graphics Interface’90, pages 68–74,
1990.

[18] R. Moore and S. Jones. Safe starting regions for
iterative methods. SIAM J. Num.Analysis,
14(6):1051–1065, 1977.

[19] R. E. Moore. Interval Analysis. Prentice Hall,
Englewood Cliffs, NJ, 1966.

[20] R. E. Moore. A test for existence of solution to
nonlinear systems. SIAM J. Numer. Anal., 14:611–615,
1977.

[21] R. E. Moore and L. Qi. A successive interval test for
nonlinear systems. SIAM J. Numer. Anal., 19:845–850,
1982.

[22] B. Mourrain, F. Rouillier, and M.-F. Roy. The
Bernstein basis and real root isolation. In J. E.
Goodman, J. Pach, and E. Welzl, editors,
Combinatorial and Computational Geometry,
number 52 in MSRI Publications, pages 459–478.
Cambridge University Press, 2005.

[23] A. Neumaier. Interval Methods for Systems of
Equations. Cambridge University Press, Cambridge,
1990.

[24] K. Nickel. On the Newton Method in Interval
Analysis. Research Memorandum MRC Technical
Summary Report #1136, University of Wisconsin,
Madison, 1971.

[25] V. Y. Pan. Solving a polynomial equation: some
history and recent progress. SIAM Review,
39(2):187–220, 1997.

[26] S. Plantinga and G. Vegter. Isotopic approximation of
implicit curves and surfaces. In Proc. Eurographics
Symposium on Geometry Processing, pages 245–254,
New York, 2004. ACM Press.

[27] H. Ratschek and J. Rokne. Computer Methods for the
Range of Functions. Horwood Publishing Limited,
Chichester, West Sussex, UK, 1984.

[28] F. Rouillier and P. Zimmermann. Efficient isolation of
a polynomial real roots. J. Comp. and Appl. Math.,
162:33–50, 2003.

[29] M. Sagraloff and C. K. Yap. A simple but exact and
efficient algorithm for complex root isolation. In 36th
Int’l Symp.Symbolic and Alge.Comp. (ISSAC 2011),
2011. To Appear. June 8-11, San Jose, California.

[30] A. Schönhage. The fundamental theorem of algebra in
terms of computational complexity, 1982. Manuscript ,
Department of Mathematics, University of Tübingen.
Updated 2004.

[31] S. Smale. The fundamental theorem of algebra and
complexity theory. Bulletin (N.S.) of the AMS,
4(1):1–36, 1981.

[32] J. M. Snyder. Interval analysis for computer graphics.
SIGGRAPH Comput.Graphics, 26(2):121–130, 1992.

[33] V. Stahl. Interval Methods for Bounding the Range of
Polynomials and Solving Systems of Nonlinear
Equations. Ph.D. thesis, Johannes Kepler University,
Linz, 1995.

[34] G. Taubin. Rasterizing algebraic curves and surfaces.
IEEE Computer Graphics and Applications,
14(2):14–23, 1994.

[35] The FRISCO Consortium. FRISCO Polynomial test
suite. http://www-sop.inria.fr/saga/POL/.

[36] J.-C. Yakoubsohn. Numerical analysis of a
bisection-exclusion method to find zeros of univariate
analytic functions. J. of Complexity, 21:652–690, 2005.

[37] C. K. Yap. Tutorial: Exact numerical computation in
algebra and geometry. In Proc. 34th Int’l Symp.
Symbolic and Algebraic Comp. (ISSAC’09), pages
387–388, 2009. KIAS, Seoul, Korea, Jul 28-31, 2009.

[38] J. Yu, C. Yap, Z. Du, S. Pion, and H. Bronnimann.
Core 2: A library for Exact Numeric Computation in
Geometry and Algebra. In 3rd Proc. Int’l Congress on
Mathematical Software (ICMS), pages 121–141.
Springer, 2010. LNCS No. 6327.

