
Transcendental and Algebraic Computation made Easy:

Redesign of Core Library
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Abstract

Expression packages constitute a key technique for achieving the fundamental goals of Exact Geomet-
ric Computation (EGC). In this paper, we address the redesign of the Expression Package in the Core
Library, addressing the following issues:

• Transcendental computation: the current library is developed for algebraic computation but there
is need for transcendental functions in many applications. The integration of algebraic and tran-
scendental computations has major impact on library design.

• Extensibility and modularity: as our library evolve and take on more functionality, these issues have
become more pressing for maintainability and flexibility. In our redesign, two major subsystems
(filters, root bounds) are modularized.

• Efficiency: expression evaluation is the central algorithm in the package. The optimal design of
this algorithm is open, but there are various inefficiencies which we can address. We separate it
into four mutually recursive subroutines (Approx, Sign, uMSB, lMSB) to improve efficiency.

• Bigfloat Kernel: this is the engine for expression evaluation. The dual-role of the current bigfloat
class leads to inefficiencies, calling for a complete overhaul. We now split up into two distinct
bigfloat classes, building upon the MPFR package.

Our redesign preserves the original goals of Core Library, namely, to provide a simple and natural
interface for EGC computation. We present experimental results and timings for our new system, which
is released as Core Library 2.0.
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1 Introduction

Exact Geometric Computation (EGC) has proven to be a highly effective approach for solving numerical
nonrobustness problems in algorithms. By definition, an EGC number library is one that guarantees the
sign evaluation of expressions over the supported operations. We assume the supported operations include
at least ±,×,÷,

√·. More generally, EGC libraries can compute any expression to user-specified relative
accuracy [28]. Two EGC libraries for general algebraic expressions are Core Library [15] and LEDA Real

[3, 20]. Because of such libraries, programmers today can routinely write fully robust geometric algorithms.
This was inconceivable just over a decade ago. In fact, after the basic principles of EGC were initially
understood, one had to manually construct each robust algorithm on a case-by-case basis (e.g., [6, 10]).

In Core Library, guaranteed accuracy is known as Level 3 accuracy. In contrast, the ability to compute
each operation to any specified accuracy is known as Level 2 accuracy. This is basically a generalization of
the IEEE Standard to arbitrary precision. There are many Level 2 libraries available, and in their simplest
form, they simply provide big number arithmetic. Level 3 requires additional sophistication. It is a major
open problem whether Level 3 accuracy is possible for any general class of transcendental computation [29].
This fact underlies some redesign issues of this paper.

Another context for understanding EGC libraries is the general area of real computation. Practically,
the construction of real number libraries pose considerable challenge, and there are various effort currently
going on (e.g., [14]). We consider EGC libraries to be a new breed in this diverse landscape of real number
libraries. Theoretically, we still do not have a consensus about the foundations of a theory of real computation
[1, 26, 16, 30]. Such a foundation would be helpful to guide our practical development.

There are three main motivations for the present work. The first is the desire to incorporate transcen-
dental functions in our expressions. In many computation, we need expressions containing transcendental
constants (π, e, ln 2, etc), elementary functions (sinx, exp x, lnx, etc), or more generally hypergeometric func-
tions [8, 9]. Because we can no longer guarantee sign of such expressions, we must distinguish transcendental
nodes from algebraic ones. Essentially, transcendental values must be computed at Level 2 while algebraic
ones can be computed at Level 3, but a systematic integration is needed. The second motivation is to make
the Expr class more flexible, extensible and modular. There is interest in introducing new operators into
Expr, and we would like to introduce mechanisms to support this. Invisible to users of Expr, the expression
system must provide two critical functions: filters [12, 5, 2] and root bounds [4, 23]. These are currently
integrated into expressions which makes them hard to maintain and extend. The third motivation is the
perpetual quest for improved efficiency. There are two major sources of inefficiency that we address. First,
we reexamine the central algorithm of Expr, its expression evaluation algorithm. This is, in fact, several
co-recursive subroutines, but the optimal way to implement them is unclear. The current system has some
clear inefficiencies that we want to address. We refer to [19] for a survey of the topics mentioned on here:
filters, root bounds, expression evaluation.

A background constraint on our redesign effort is to preserve our basic philosophy to provide a very
simple and natural user interface. This is encoded in the Core Numerical Accuracy API [27]. A contrasting
philosophy is found in CGAL [11], another major EGC library which offers users a choice of various specialized
number types (“kernels”). Such an approach is usually more efficient, if harder to use.

OVERVIEW. In section 2, we review the original design of the Core Library (hereafter called Core

Library 1) and address the issues we faced. In Section 3, we present our new design, which forms the basis
of our new library release (hereafter called Core Library 2). Various experimental benchmark are reported
in Section 4. We conclude and propose some open problems in Section 5. Most of the topics in this paper
appear in greater detail in the thesis [7]. The experiments reported here are available with the Core Library

2 distribution, which is open source. The experimental times are based on a Power Book...

2 Review of Current Core Library

The Core Library features an object-oriented design and is implemented in C++. A basic goal in the
design of the Core Library is to make EGC techniques transparent and easily accessible to non-specialist
programmers [27, 18]. Built upon the Real/Expr package from Yap, Dubé and Ouchi [31, 22], it facilitates
the rapid development of robust geometric applications.

There are three main subsystems in the current Core Library 1.7: expressions class (Expr), real number



class (Real) and big float number class (BigFloat). These are number classes, built up in a layered fashion.
Beneath these three classes are standard big number classes (BigInt, BigRat) which are wrappers around
corresponding number types from GNU’s multiprecision package gmp. The Expr class provides the basic
functionalities of exact geometric computation. In theory, this is the only number interface that users need
to use. But experienced users can also access the underlying number classes directly, mainly for efficiency.

In the following, we raise design and efficiency issues in the current design of the Expr and BigFloat

classes. The Expr class represents expressions that are constructed from real algebraic number constants
by repeated application of four basic arithmetic operations {+,−, ∗, /} and radical ( k

√·). Structurally,
expressions are directed acyclic graphs (DAGs). The expression DAG and most functionalities of Expr are
implemented by an internal class called ExprRep. So Expr is mainly a wrapper for ExprRep. The following
issues arise:

• There are critical facilities in Expr that should be modularized and made extensible. In particular, the
filter facility and the root bound facility have grown considerably over the course of library development
and is now hard to maintain, debug or to extend.

• The main evaluation algorithm of Expr has essentially three co-recursive subroutines. The current
design does not separate their roles clearly, and this can lead to costly unnecessary computations. For
example, the subroutine for computing the sign of a node is always called even though this may not
be necessary.

• We currently support only algebraic expressions. An overhaul of the entire design is needed to add
support for non-algebraic expressions.

• Currently, users cannot easily add new operators to Expr. For instance, it is desirable to add determi-
nants, summation and product, and diamond operators.

• It can be very inefficient to build huge expressions. For example, a naive implementation of the
summation Hn =

∑n
i=1(1/i) would build an unbalanced tree of depth n. For large n, this can easily

cause stack overflow. But for expressions with regular structure such as Hn, we want to automatically
generate and evaluate such expressions on the fly.

Next we address the BigFloat class. It is used by Expr to approximate real numbers, and is critical for
the efficiency of the entire Core Library. It implements an arbitrary precision floating-point number system
on top of BigInt. We represent a BigFloat by the triple 〈m, err, e〉 of integers where m is the mantissa,
err ≥ 0 is the error bound and e is the exponent. The triple represents the interval [(m−err)Be, (m+err)Be]
where B = 214 is the base. We say the bigfloat is normalized when err < B and exact when err = 0. The
following issues arise:

• The interval representation of BigFloat has performance penalty because the current design requires
frequent error normalization, practically after each arithmetic operation. There are important ap-
plications that do not need to maintain error. For example, in Newton-type iterations which are
self-correcting, this is not only wasteful, but actually fails to converge if we do not zero out the error
(by calling makeExact). Although users can manually call makeExact, this process is error-prone.

• Our BigFloat assumes that for exact bigfloats, the ring operations (+,−,×) are computed exactly.
There are situations where exact ring operations are not needed, and this can be a source of inefficiency.
E.g., in Newton-type iterations.

• The current BigFloat class only implements {+,−, ∗, /, 2
√ }. Lacking implementations for the elemen-

tary functions such as exp, log, sin, cos etc, limits the applications of current Core Library. Of course,
this calls for implementation of these functions, not necessarily redesign.

To illustrate these performance penalty, we compare our current implementation of sqrt which uses a
standard Newton iteration with BigFloats with MPFR [17, 21]. Our implementation is about 25 times slower
as shown in Figure 5. In fact, the MPFR package satisfies all three criteria above, and so it is natural that
we consider adopting it. Nevertheless, our current BigFloat has important functionality (error bounds and
exact ring operations) that are missing in MPFR. Our solution is to build on top of MPFR.
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3 Redesign of Expr Package

The goal of this redesign is to increase modularity, introduce extensibility of expression nodes, and also
improve efficiency. A major design requirement is to ensure that these changes do not change the user-level
interface. In particular, the simple and natural original Core Number API must be kept intact. For instance,
any current CGAL code using Core Library as its number kernel should be able to run after recompilation
for Core Library 2.

3.1 Incorporation of Transcendental Nodes

We now consider expressions (DAG’s) with transcendental operators. We classify a node (and the corre-
sponding subexpression) as transcendental if any of its descendant nodes has a transcendental operator.
For example, a transcendental node may be a leaf node such as π, or a unary node such as sin(·). In current
Core Library, we classify nodes into rational or irrational (this information is used for certain operations).
We now refine this classification into integer, dyadic, rational, algebraic, transcendental. Since
transcendental numbers do not have constructive root bounds, we need to introduce a user-definable global
value called escape bound. This bound is used as the root bound at transcendental nodes. Note that there
is also another bound called cutoff bound which is used for a different purpose, as explained below.

Operator op A op B

+/ − /× max{A. numType, B. numType}
÷ max{NODE NT RATIONAL, A. numType, B. numType}
k
√· max{NODE NT ALGEBRAIC, A. numType}

Transcendental max{NODE NT TRANSCENDENTAL, A. numType}

Table 1: Rules for computing number type

3.2 New Template-based Design of ExprRep

Our redesigned Expr is still a thin wrapper around ExprRep, which is what we focus on.

§1. ExprRep and ExprRepT As noted in the review section, the filter facility and root bound facility are
embedded in the old ExprRep class. Now we factor them out from ExprRep into two functional modules:
Filter and Rootbd. The Real class, which was already an independent module, is now viewed as an instance
of an abstract number module called Kernel. The role of Kernel is to provide approximations to the exact
value. Typically we use bigfloats. Thus, we want to parametrize an expression class with these three modules.
So our ExprRep class is redesigned as a template class with new name ExprRepT (see Figure 1(a)). This
applies the “delegation pattern” from [25]: delegate certain behaviors of main class to other objects. The
benefit of this new design is, now we can replace Filter, Rootbd or Kernel without any changes in ExprRepT.
The C++ prototype of ExprRepT is shown as follows:

template <typename Filter, typename Rootbd, typename Kernel>

class ExprRepT;

§2. Memory layout of ExprRep Three type parameters are used to define 3 data fields filter, rootbd

and kernel inside ExprRepT. However, the nature of their definitions are different: filter is defined as
a variable while rootbd and kernel are defined as pointers. We design it in this way because the filter
computation will always be done first, but root bound information and high precision computation (based
on kernel) may not be needed. No memory will be allocated for them when they are not needed. The
memory layout of ExprRepT is shown in Figure 1(b). For a binary node, it uses a total of 48 bytes on a 32-bit
architecture system. Note that for efficiency, a data field named cache is added to cache some important
and costly information such as sign, uMSB, lMSB once they become available. The field numType is used
for node classification.
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ExprRep

d_e,...

Filter

Real

ExprRepT

_filter

_rootbd

_kernel

Filter

Rootbd

Kernel

(a)

Field name Size in bytes

Dynamic type information 4

Reference counter 4

Operands : Node * [arity] 4×arity

Filter filter 16

Kernel * kernel 4

Rootbd * rootbd 4

Cache * cache 4

int numType 4
(b)

Figure 1: (a) Comparing ExprRep and ExprRepT. (b) Memory Layout in 32-bit architecture

§3. ExprRepT class hierarchy ExprRepT only defines the abstract structures and operations, the actual
implementations are delegated to the derived classes. The new design still keep the same class hierarchy of
ExprRepT and its derived classes as in Core Library 1.x except that a “T” is appended at each class names.
A full hierarchy diagram is shown in Figure 2.

ExprRepT

BinaryOpRepT ConstRepT UnaryOpRepT

AddRepT

DivRepT

MulRepT

SubRepT

ConstDoubleRepT

ConstFloatRepT

ConstIntegerRepT

ConstLongRepT

ConstPolyRepT

ConstRationalRepT

ConstULongRepT

CbrtRepT

NegRepT

RootRepT

SqrtRepT

Figure 2: ExprRepT Class Hierarchy

§4. Expr with plug-gable Filter, Root Bound and Kernel A new template class ExprT is defined as:

template <typename Filter, typename Rootbd, typename Kernel>

class ExprT;

Expr is now a typedef:

typedef ExprT<BfsFilter, BfmssRootbd, BigFloat2> Expr;

Thus, the default Expr class uses BFS filter, BFMSS root bound and our BigFloat2 kernel. However, now
the users are free to plug in their own filter, root bound or kernel classes. For example, we can use a better
filter and root bound class for division-free expressions.

3.3 Improved Evaluation Algorithm

There are two key evaluation subroutines computeExactSign() and computeApprox() in Core Library 1.
computeExactSign() is used for computing the sign, upper and lower bound on the most significant bits
of the current node (actually it even computes the root bound information). computeApprox() is used to
propagate the composite precision and compute the approximation. These two subroutines recursively call
each other. Now we divided them into five subroutines to be more efficient.
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§5. Algorithms for sgn(), uMSB() and lMSB() The sign of an expression node is critical in many places
in Core Library. For example, division operator must check the sign of the child nodes to avoid “divided
by zero” error. The upper and lower bound on the most significant bits of an expression node E, denoted
by E+ and E− respectively, are also important. They are used to convert the precision from an absolute
bound to a relative one or vice-versa. These three parameters are maintained in ExprRepT. The subroutine
computeExactSign() computes them simultaneous using the rules shown in Table 2.

E Case E.sgn() E+ E−

Constant x sign(x) ⌈log2 x⌉ ⌊log2 x⌋

E1 ± E2

if E1.sgn() = 0 ±E2.sgn() E+

2
E−

2

if E2.sgn() = 0 E1.sgn() E+

1
E−

1

if E1.sgn() = ±E2.sgn() E1.sgn() max{E+

1
, E+

2
} + 1 max{E−

1
, E−

2
} + 1

if E1.sgn() 6= ±E2.sgn() and E−

1
> E+

2
E1.sgn() max{E+

1
, E+

2
} E−

1
− 1

if E1.sgn() 6= ±E2.sgn() and E+

1
< E−

2
±E2.sgn() max{E+

1
, E+

2
} E−

2
− 1

otherwise unknown unknown unknown

E1 × E2 E1.sgn() ∗ E2.sgn() E+

1
+ E+

2
E−

1
+ E−

2

E1 ÷ E2 E1.sgn() ∗ E2.sgn() E+

1
− E−

2
E−

1
− E+

2
k
√

E1 E1.sgn()
⌈

E+

1
/k

⌉ ⌊

E−

1
/k

⌋

Table 2: Recursive Rules for computing sign, umsb, lmsb

We can see those rules are recursive. In order to compute those information of the current node,
computeExactSign() has to compute its children’s computeExactSign() first, which consequently com-
pute those information for all its below nodes in the DAG even we do not need them all.

In contrast to this, in the new design three separated subroutines: sgn(), uMSB() and lMSB() are
introduced and they are only called when it is necessary. The algorithms for them are very similar. Basically,
each algorithm consists the following steps (using sgn() as an example):

Sign Evaluation Algorithm

1. Ask the filter if it knows the sign;
2. Else if the cache exists, ask if it cached the sign;
3. Else if the approximation ( kernel) exists, ask if it can give the sign;
4. Else if the virtual function compute sgn() return true, return sgn() (the sign in the cache);
5. Else call refine() (will present next) to get the sign.

For efficiency, we use five levels of computation here: filter, cache, kernel, recursive rules, refine(). Note
that we do not put the cache at the first level. We do not even cache the sign, uMSB and lMSB information
when the filter succeed because a Cache structure is large and we try to avoid costly memory allocation.

In above algorithm, we adapt another design pattern which is called “template method pattern” [13]:
define the skeleton of an algorithm in terms of abstract operations which subclasses will override to provide
concrete behavior. In the derived classes of ExprRepT, it is sufficient to just override the virtual function
compute sgn() when appropriate. For example, MulRepT may override the default compute sgn() function
as follows:

1 virtual bool compute sgn ( ) {
2 sgn ( ) = f i r s t . sgn ( ) ∗ second . sgn ( ) ;
3 return true ; }

§6. Algorithms for r approx() and a approx() For approximation algorithms, we made two improve-
ments: First, unlike the original algorithm, the new approximation algorithm does not always compute the
sign before approximating. Second, while the Core Library 1 uses one subroutine computeApprox() to do
approximation which requires a composite precision, the new design use two subroutines, r approx() for
relative approximation and a approx() for absolute approximation. This can avoid unnecessary conversion.

§7. Algorithm for refine() The override-able compute sgn(), compute uMSB() and compute lMSB()

return false when they cannot determine the sign, upper and lower bound on most significant bits of the
current node. Then a refinement of the current approximation is required. The abstract algorithm for such
refinement is as follows:
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Refinement Algorithm

1. If an approximation exists, use its precision as the start precision, otherwise use 52 bits
instead of since this is the relative precision of the floating-point filter can provide.

2. Check if the Rootbd is non-constructive or the current node is non-algebraic. If so,
use the global escape bound. Otherwise, compute the degree bound if the Rootbd is degree based.
Then compute the root bound.

3. Compare the bound that we get in step 2 with the global cutoff bound. Take the minimum of them.
4. Run a loop which doubles the precision each time until hits the precision that we obtained

in step 3. In the loop, compute a better approximation (absolute) on the current node.
Once the refined approximation can give the correct sign, return immediately.

5. Upon the loop termination, if we use either escape bound or cutoff bound, print out a warning
message in a diagnostic file, otherwise we set the current node to be zero.

§8. Conditional Guarantees The cutoff bound in the above algorithm is a global variable that is set
to CORE INFTY by default. Unlike the escape bound, the cutoff bound simply restricts the precision in root
approximation. For instance, to speedup programs during testing, users can set a small cutoff bound using
set cut off bound(). If either bounds are used to terminate an approximation, the sign computations is
not guaranteed any more. However, Core Library will issue a “conditional certificate” in a standard Core
Diagnostic file, saying that a certain value is assumed to be zero. Our computation is correct, conditioned
on the truth of these certificates.

3.4 Improved Propagation of Precision

Core Library uses a precision-driven algorithm with composite precisions [31]. The precision propagation
for various bigfloat operations were worked by Ouchi [22]. Using this analysis to propagate composite
precision, various small constants appear in the code which made the current code hard to understand and
maintain. Here we offer a simpler and more intuitive solution, where we propagate either absolute or relative
precision, but not both. It basically follows the ideas in [28] but with some simplification.

It may be noticed from the above error analysis that exact ring operations are not necessary although
this is assumed in [28]. To see the the difference, we did the following experiment:

Experiment 1 Precision Propagation for Multiplication

We use two methods to compute z =
√

2 ·
√

3 to relative precision p.
Method 1: Approximate

√
2 and

√
3 to (p + 2) relative bits, then perform

exact multiplication on multiplying the approximated values.
Method 2: Do the same as the Method 1 except performing multiplication

in (p + 1) relative precision.

The timing (in microseconds) is shown in the Figure 3. We use loops to repeat the experiment since the
time for a single run is short. Method 2 is generally more efficient.

Precision Loops Method 1 Method 2 Speedup
10 1000000 345 191 45%
100 100000 60 46 23%
1000 10000 72 71 1%
10000 1000 267 219 18%
100000 100 859 760 12%

Figure 3: Timing for computing
√

2 ·
√

3 w/ and w/o exact multiplication

4 Redesign of BigFloat system

In Core Library, the BigFloat system is the “engine” of Expr that performs actual numerical approxima-
tions. Currently, we implement our own BigFloat using BigInt from GMP. As we want to bring transcendental
functions into Core Library, this would require us to provide the corresponding functions in BigFloat. Our
decision to adopt MPFR automatically solves this issue. Next, the interface of BigFloat in Core Library
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has certain requirements that are not directly available in MPFR. Another issue is that our original BigFloat
has two roles: to support interval arithmetic, and to implement an exact number ring. Both properties
are important in EGC: (a) Interval arithmetic are necessary to provide guaranteed bounds. (b) Exact ring
operations are needed in some applications. E.g., to locate implicit curve intersections reliably, we may
need to evaluate polynomials with exact BigFloat coefficients, at exact BigFloat values, using exact ring
operations.

For efficiency, we create two new BigFloat classes with the respective roles: (1) The exact ring class is
(still) called BigFloat, obtained by a C++ wrapper around MPFR. (2) The interval arithmetic class is called
BigFloat2, with each interval represented by two MPFR bigFloats. This explains the “2” in its name.

4.1 Design of Class BigFloat

The new class BigFloat is an enhanced version of the type mpfr t provided by MPFR.

§9. Precision in MPFRversus Relative Precision MPFR follows the IEEE standard for arithmetic. Thus
the result of arithmetic operations are rounded according to user-specified output precision and rounding
mode. If the result can be exactly represented, then it guarantees to output this result. E.g., a call of
mpfr mul(c, a, b, GMP RNDN) in MPFR will compute the product of a and b with rounding to nearest and
put the result into c. The user must explicitly set the number of bits in the mantissa of c before calling
mpfr mul(). The following lemma shows how to set this precision:

Lemma 1 To guarantee relative p-bit precision in an arithmetic operation in MPFR, it is sufficient that the
mantissa of result variable has at least p + 1 bits (using any of the four rounding modes).

§10. Precision for exact ring operations The need for users to specify the precision for each variable
is inconvenient and error-prone. Exact ring operations is convenient but sometimes also necessary. To
implement exact ring operations using MPFR, our BigFloat must automatically estimate the output precision
for each of the ring operations:

Lemma 2 Let f1 = (−1)s1 · m1 · 2e1 and f2 = (−1)s2 · m2 · 2e2 be two variables in MPFR. If f1 has precision
p1, f2 has precision p2 and δ = (e1 − p1) − (e2 − p2), then in order to guarantee all bits in the mantissa of
f correct, it is enough to set precision of f to be

{

1 + max{p1 + δ, p2} if δ ≥ 0
1 + max{p1, p2 − δ} if δ < 0

for computing f = f1±f2. Similarly, it suffices to set the precision of f to be p1+p2 for computing f = f1 ·f2.

Note that over-estimation could grow very fast (see column 2 of Figure 4). To avoid this, we provide
a function named mpfr remove trailing zeros() is remove the unnecessary tailing zeros (for efficiency, it
only removes zeros by chunks). It is called after each corresponding arithmetic operations. Experiment 2
shows the timing difference between having this call, and without.

Experiment 2 Optimization of Precision Estimation

We compute
∏n

n=1 i using two methods:

Method1: initialize s = 1, then for i = 1, 2, · · · , n, increase the precision of s by the precision of i,
and then call MPFR to multiply s and i and put the result in s.

Method2: same as Method 1, but call mpfr remove trailing zeros() for s after multiplication in the loop.

A time comparison between them is given in Figure 4 (timings are measured in microseconds and preci-
sions are in bits). From this experiment, we can see that it may be quite useful to trailing zeros.
§11. Benchmark of new BigFloat By adapting MPFR, our BigFloat gain many new functions such as
cbrt() and the elementary functions (sin(), cos(), etc). The performance of the BigFloat has also been
greatly improved. We compared the performance of Core Library 1.7x and Core Library 2 on sqrt()

using the following experiment:
The timing comparison is shown in Figure 5. We have about 25 times speedup with new implementations.
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n = Estimated Precision Timing Optimized Precision New Timing
100 469 1 32 0
1000 7599 4 32 4
10000 108458 90 32 32
100000 1414677 16305 32 308
1000000 — — 64 3118

Figure 4: Timing for computing
∑n

i=1 i w/ and w/o removing trailing zeros.

Experiment 3 Comparison of the Performance of sqrt()

Computing sqrt(i) for i = 2, . . . , 100 with precision p using BigFloat class in Core Library 1.x and Core

Library 2.0:

4.2 Design of Class BigFloat2

BigFloat2 is the new number type split off from BigFloat. It is used by Expr to perform the underlying
approximation. However, the users can use it directly for efficiency (to avoid building expression DAG).
In the new design, we gave up the original use representation of bigfloat intervals as a triple (m, err, e),
and to use a pair (ℓ, r) of MPFR bigfloats as in standard interval arithmetic. When r − ℓ is very small,
this representation is wasteful compared to our original design. But we gain in ease of implementation
and maintainence, and more precise bounds on error. We can also exploit MPFR’s rounding modes in our
implementation.

5 Extending Expr Class

We provide the facilities for adding new operations to Expr. We will add the standard elementary functions
(sin x, exp x, lnx, etc) to Core Library using these facilities. But users can also use the same facilities
for their own purpose, e.g., to introduce orientation or other predicates. Below we will give two examples:
adding a summation node and adding transcendental constants.

5.1 How to Add Your Own Operation for Expr

Since Expr is a wrapper around ExprRep, to add a new operation for Expr mostly amounts to designing a new
type of ExprRep node, i.e., derive a subclass of ExprRep. In Core Library 1.x, this procedure is complicated
and error-prone. With the new design, adding a new type of Expr node becomes easier. Basically, it includes
the following steps:

1. Derive a class from ExprRepT or a subclass of ExprRepT as given in Figure 2.

2. Implement a constructor for this new class and call the following two functions, which compute the
filter value and set the number type:

compute filter(), compute numtype()

3. Implement the following functions:

compute filter(), compute numtype(),

compute sign(), compute uMSB(), compute lMSB(),

compute r approx(), compute a approx(), compute rootbd()

4. Define a function (can be global function/operator or constructor/member functions/operator in Expr)
which can construct this new type of node.

We refer to Zilin’s Thesis [7] for a worked out example for doing this.
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Precision Core Library 1.7 Core Library 2.0 Speedup
1000 25 1 25
10000 716 32 22
100000 33270 1299 25

Figure 5: Timing Comparisons for sqrt().

5.2 Summation Operation for Expr

When the DAG constructed by Expr is very large, we not only lose efficiency but will often segment fault.
For example, we can compute the harmonic series

∑n
i=1

1
i using the following function:

1 Expr harmonic ( int n) {
2 Expr r ( 0 ) ;
3 for ( int i =1; i<=n ; ++i )
4 r = r + Expr (1)/ Expr ( i ) ;
5 return r ; }

This function will build a deep unbalanced DAG tree for large number n. As seen in column 2 in Figure 6,
this can easily cause segmentation faults through stack overflow in most systems. We propose a new type of
node: instead of building up many binary operation (+) nodes, we can design an1 “anary” node to do the
summation in one level. See [7] for details of implementing anary node. With this anary sum, we can rewrite
the following functions for computing harmonic series:

1 Expr term( int i ) {
2 return Expr (1)/ Expr ( i ) ; }
3 Expr harmonic ( int n) {
4 return sum( term , 1 , n ) ; }

The timing for this new implementation is shown in column 3 in Figure 6 (see t sum.cpp under progs/benchmark/sum).
With this new implementation, we can compute the summation for much larger n, and achieve a speedup of
3-58 times.

n Timing w/o sum() Timing w/ sum() Speedup
1000 24 7 3.4
10000 3931 67 58.6
100000 (segmentation fault) 752 N/A
1000000 (segmentation fault) 12260 N/A

Figure 6: Timing for computing harmonic series
∑n

i=1
1
i (in microseconds).

5.3 Transcendental Constants π, e, ln 2 and all that

We present our first transcendental node π, but it could equally be applied to e or ln 2. It is a leaf node,
derived it from ConstRepT:

1 template <typename T>
2 class PiRepT : public ConstRepT<T> {
3 public :
4 PiRepT( ) : ConstRepT<T>() {
5 comput e f i l t e r ( ) ;
6 compute numtype ( ) ;
7 }
8 // funct ions for computing f i l t e r and number type
9 void c omput e f i l t e r ( ) const {

10 f i l t e r ( ) . s e t ( 3 . 14 , true ) ; // true means the va lue i s inexac t
11 }
12 void compute numtype ( ) const

13 { numType = NODE NT TRANSCENDENTAL; }
14
15 // v i r t u a l funct ions for computing sign , uMSB, lMSB
16 virtual bool compute sign ( ) const

17 { s i gn ( ) = 1 ; return true ; }
18 virtual bool compute uMSB () const

19 { uMSB() = 2 ; return true ; }
20 virtual bool compute lMSB ( ) const

21 { lMSB( ) = 1 ; return true ; }

1
anary means “without (fixed) arity”.
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22
23 // v i r t u a l funct ions for r approx , a approx
24 virtual void compute r approx ( p r e c t prec ) const

25 { ke rne l ( ) . p i ( prec ) ; }
26 virtual bool compute a approx ( p r e c t prec ) const

27 { ke rne l ( ) . p i ( ab s2 r e l ( prec ) ) ; }
28 } ;

Now the new π function is given by:

1 template <typename T>
2 ExprT<T> p i ( )
3 { return new PiRepT<T>() ; }

6 Benchmarks

We give timing comparisons for two standard test programs in the Core Library distribution.

§12. compare.cpp. Figure 7 shows the timing for the comparison
√

x +
√

y :
√

x + y + 2
√

xy where x
and y are L-bit rational numbers.

bit length L Core Library 1.7 Core Library 2.0 Speedup
1000 0.82 0.59 1.4
2000 6.94 1.67 4.2
8000 91.9 11.63 7.9
10000 91.91 30.75 3.0

Figure 7: Timing Comparisons for compare.cpp

§13. testFilter.cpp Figure 8 compares the timing of computing the determinants of matrices, with filter
facility is on and off (see testFilter.cpp under benchmark/testFilter). The numbers in first column in
each table has the following format: N × d × b where N is the number of matrices, d is the dimension of
each matrix and b is the bit length of each entry in the matrix (entries are rationals).

MATRIX 1.7 w/ (w/o) filter 2.0 w/ (w/o) filter Speedup
1000x3x10 9 (621) 19 (232) 0.5 (2.7)
1000x4x10 26 (1666) 43 (530) 0.6 (3.1)
500x5x10 449 (1728) 204 (488) 2.2 (3.5)
500x6x10 1889 (3493) 597 (894) 3.2 (3.9)
500x7x10 4443 (6597) 1426 (1580) 3.1 (4.2)
500x8x10 8100 (11367) 2658 (2820) 3.0 (4.0)

Figure 8: Timing testFilter.cpp w/ (w/o) filter (in microseconds)

7 Conclusion

In 2003, we introduced arbitrary real algebraic numbers into Core Library 1.6. With Core Library 2,
we offer transcendental numbers and functions as well. Our completely redesigned Core Library is more
modular, extensible and flexible. We gained efficiency from the improved design, better algorithms, as well
as the restructuring Core Library to exploit the highly efficient Mpfr library. Despite this upheaval, the
simple and natural Core Numerical API is preserved so that most application programs need not change.

The major open problem is better understanding of the expression evaluation algorithms. Besides empir-
ical evidence, there is currently no satisfactory theoretical basis for the evaluation of such algorithms. The
standard input size measure is unsuitable, as we want some form of precision-sensitivity [24].

The Core Library represents a new breed of real number library that guarantees a priori precision
bounds. This is made possible and practical by sophisticated built-in functionalities such as filters and root
bounds. The engineering of such systems is only beginning. There is ample opportunities for exploring
the design space in the construction of such libraries. Our Core Library offers one data point. The CGAL

design, with its menu of specialized EGC number types, represents another data point. Such libraries have
many applications that have barely been explored. Besides robust geometric algorithms, they are useful in
theorem proving, certifying programs and in mathematical explorations.
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