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ABSTRACT
We give a unified (“basis free”) framework for the Descartes

method for real root isolation of square-free real polynomi-
als. This framework encompasses the usual Descartes’ rule
of sign method for polynomials in the power basis as well as
its analog in the Bernstein basis. We then give a new bound
on the size of the recursion tree in the Descartes method for
polynomials with real coefficients. Applied to polynomials
A(X) =

Pn
i=0 aiX

i with integer coefficients |ai| < 2L, this
yields a bound of O(n(L + log n)) on the size of recursion
trees. We show that this bound is tight for L = Ω(log n),
and we use it to derive the best known bit complexity bound
for the integer case.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computations
on polynomials; G.1.5 [Numerical Analysis]: Roots of
Nonlinear Equations—Methods for polynomials

General Terms
Algorithms, Theory.

Keywords
Polynomial real root isolation, Descartes method, Descartes
rule of signs, Bernstein basis, Davenport-Mahler bound.

1. INTRODUCTION
Let A(X) be a polynomial of degree n > 1 with real co-

efficients. A fundamental task in computer algebra is real
root isolation, that is, to assign an enclosing interval to
each real root of A(X) such that distinct roots are assigned
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disjoint intervals. We assume that A(X) is square free in
this paper.

The classic approach to real root isolation starts from an
open interval I0 containing all real roots of A(X) and bisects
it recursively as follows: Given an interval J , test for the
number #(J) of real roots in it. If #(J) = 0 is known,
stop. If #(J) = 1 is known, report J as an isolating interval
and stop. Otherwise, subdivide J = (c, d) at its midpoint
m = (c + d)/2; report [m, m] if f(m) = 0; recur on (c, m)
and (m, d).

To carry out this approach, we need a method for estimat-
ing the number of roots in an interval. The two choices here
are Sturm sequences (e.g., [27, chap. 7]) that give an exact
count of distinct real roots in an interval, and Descartes’
rule of signs (e.g., Proposition 2.1 below) that counts real
roots with multiplicity and may overestimate this number
by an even positive integer. Despite the apparent inferiority
of Descartes’ rule as compared to Sturm sequences, there is
considerable recent interest in the Descartes approach be-
cause of its excellent performance in practice [9, 24, 19, 25].

This paper shows that the asymptotic worst case bound on
recursion tree size for the Descartes method (Theorem 3.4)
is no worse than the best known bound for Sturm’s method
(Theorem 6 of [6]). For the particular case of polynomials
with integer coefficients of magnitude less than L, the recur-
sion tree is O(n(L + log n)) both for Sturm’s method [5, 6]
and the Descartes method (Corollary 3.5); and the work at

each node of this tree can be done with eO(n3L) bit opera-

tions (using asymptotically fast basic operations), where eO
indicates that we are omitting logarithmic factors (see [23,
14, 6] or Theorem 4.2, respectively).

The connection between root isolation in the power basis
using the Descartes method, and in the Bernstein basis us-
ing de Casteljau’s algorithm and the variation-diminishing
property of Bézier curves was already pointed out by Lane
and Riesenfeld [13], but this connection is often unclear in
the literature. In Section 2, we provide a general framework
for viewing both as a form of the Descartes method. In
Section 3, we present the main result, which is a new up-
per bound on the size of the recursion tree in the Descartes
method. Up to that point, our analysis holds for all square-
free polynomials with real coefficients. We then restrict to
the case of integer polynomials with L-bit coefficients to
show that this new bound on tree size is optimal under the
assumption L = Ω(log n) (Section 3.3) and allows a straight-
forward derivation of the best known bit complexity bound
(Section 4).



1.1 Previous work
Root isolation using Descartes’ rule of signs was cast into

its modern form by Collins and Akritas [3], using a repre-
sentation of polynomials in the usual power basis. Rouillier
and Zimmermann [25] summarize various improvements of
this method until 2004.

The algorithm’s equivalent formulation using the Bern-
stein basis was first described by Lane and Riesenfeld [13]
and more recently by Mourrain, Rouillier and Roy [19] and
Mourrain, Vrahatis and Yakoubsohn [20]; see also [1, §10.2].

The crucial tool for our bound on the size of the recur-
sion tree is Davenport’s generalization [5] of Mahler’s bound
[15] on root separation. Davenport used his bound for an
analysis of Sturm’s method (see [6]). He mentioned a re-
lation to the Descartes method but did not work it out.
This has been done later by Johnson [9] and, filling a gap
in Johnson’s argument, by Krandick [11]. However, they
bound the number of internal nodes at each level of the re-
cursion tree separately. This leads to bounds that imply1

a tree size of O(n log n (log n + L)) and a bit complexity of
O(n5(log n + L)2) for a polynomial of degree n with L-bit
integer coefficients. Their argument uses a termination cri-
terion for the Descartes method due to Collins and Johnson
[4].

Krandick and Mehlhorn [12] employ a theorem by Os-
trowski [21] that yields a sharper termination criterion. How-
ever, they just use it to improve on the constants of the
bounds in [11]2. We will show that Ostrowski’s result allows
an immediate bound on the number of all internal nodes of
the recursion tree. This bound is better by a factor of log n
and leads to the same bit complexity bound in a simpler
fashion.

2. THE DESCARTES METHOD

2.1 A Basis-free Framework
The Descartes method is based on the following theo-

rem about sign variations. A sign variation in a sequence
(a0, . . . , an) of real numbers is a pair i < j of indices such
that aiaj < 0 and ai+1 = · · · = aj−1 = 0. The num-
ber of sign variations in a sequence (a0, . . . , an) is denoted
Var(a0, . . . , an).

Proposition 2.1. [Descartes’ rule of signs]
Let A(X) =

Pn
i=0 aiX

i be a polynomial with real coefficients
that has exactly p positive real roots, counted with multiplic-
ities. Let v = Var(a0, . . . , an) be the number of sign varia-
tions in its coefficient sequence. Then v ≥ p, and v − p is
even.

See [12] for a proof with careful historic references. Al-
ready Jacobi [8, IV] made the “little observation” that this
extends to estimating the number of real roots of a real
polynomial A(X) of degree n over an arbitrary open inter-
val (c, d) by applying Descartes’ rule to (X + 1)nA((cX +
d)/(X + 1)) =

Pn
i=0 a∗

i Xi, because the Möbius transforma-
tion X 7→ (cX + d)/(X +1) puts (0,∞) in one-to-one corre-
spondence to (c, d). So we define DescartesTest (A, (c, d)) :=
Var(a∗

0, . . . , a
∗
n). Since v − p is non-negative and even, the

1Personal communication, Krandick and Mehlhorn.
2This potential use of Ostrowski’s result is mentioned but
not carried out in the 1999 Ph.D. thesis of P. Batra [2].

Descartes test yields the exact number of roots whenever its
result is 0 or 1.

The Descartes method for isolating the real roots of an
input polynomial Ain(X) in an open interval J consists of
a recursive procedure Descartes(A, J) operating on a poly-
nomial A(X) and an interval J where the roots of A(X) in
(0, 1) correspond to the roots of Ain(X) in J as follows:

(*)
There is a constant λ 6= 0 and an affine
transformation φ : R → R such that
J = φ((0, 1)) and λA = Ain ◦ φ.

To isolate all the roots of Ain(X), we choose an interval
I0 = (−B1, +B2) enclosing all real roots of Ain (see, e.g., [27,
§6.2]). The recursion begins with Descartes(A, I0), where
A(X) := Ain((B1 + B2)X − B1); thus initially the roots of
A(X) in (0, 1) correspond to the real roots of Ain(X) in I0

via the affine transformation φ(X) = (B1 +B2)X−B1. The
procedure goes as follows:

procedure Descartes(A, (c, d))
{Assert: Invariant (*) holds with J = (c, d).}
v := DescartesTest (A, (0, 1));
if v = 0 then return; fi;
if v = 1 then report (c, d); return; fi;
m := (c + d)/2;
(AL, AR) := (H(A), TH(A));
if AR(0) = 0 then report [m, m]; fi;
Descartes(AL, (c, m)); Descartes(AR, (m,d));
return;

The polynomials AL and AR are defined using the homo-
thetic transformation H(A)(X) := 2nA(X/2) and the trans-
lation transformation T (A)(X) := A(X + 1). For later use,
we also introduce the reversal transformation R(A)(X) :=
XnA(1/X).

Note that in the initial invocation of Descartes(A, (c, d)),
one has DescartesTest (A, (0, 1)) = DescartesTest (Ain, (c, d)).
In its recursive calls, one has DescartesTest (AL, (0, 1)) =
DescartesTest (Ain, (c, m)) and DescartesTest (AR, (0, 1)) =
DescartesTest (Ain, (m,d)), and so on.

The above description of Descartes() does not refer to any
basis in the vector space of polynomials of degree at most n.
However, an implementation needs to represent polynomials
by coefficients with respect to some specific basis.

The classical choice of basis for Descartes() is the usual
power basis (1, X, X2, . . . , Xn). The transformations H , T
and R are carried out literally. DescartesTest (A, (0, 1)) con-
sists in counting the number of sign changes in the coefficient
sequence of TR(A). The test whether AR(0) = 0 amounts
to inspection of the constant term. We call the resulting
algorithm the power basis variant of the Descartes method.

An alternative choice of basis is the [0, 1]-Bernstein basis

(Bn
0 (X), Bn

1 (X), . . . , Bn
n(X)),

with Bn
i (X) := Bn

i [0, 1](X) where

Bn
i [c, d](X) :=

 
n

i

!
(X − c)i(d − X)n−i

(d − c)n
, 0 ≤ i ≤ n.

Its usefulness for the Descartes method lies in the following:
Since

TR(Bn
i )(X) =

 
n

i

!
Xn−i, (1)



for A(X) =
Pn

i=0 biB
n
i (X) one has that

DescartesTest (A, (0, 1)) = Var(b0, . . . , bn),

without any additional transformation.
To obtain AL and AR from A(X) =

Pn
i=0 biB

n
i (X), we

use a fraction-free variant of de Casteljau’s algorithm [22]:
For 0 ≤ i ≤ n set b0,i := bi. For 1 ≤ j ≤ n and 0 ≤ i ≤ n− j
set bj,i := bj−1,i + bj−1,i+1. From this, one obtains coeffi-
cients of 2nA(X) =

Pn
i=0 b′iB

n
i [0, 1

2
](X) =

Pn
i=0 b′′i Bn

i [ 1
2
, 1](X)

by setting b′i := 2n−ibi,0 and b′′i := 2ibn−i,i. Since

H(2−nBn
i [0, 1

2
])(X) = Bn

i [0, 1]

TH(2−nBn
i [ 1

2
, 1])(X) = Bn

i [0, 1],

one has AL(X) = H(A)(X) =
Pn

i=0 b′iB
n
i (X) and AR(X) =

TH(A)(X) =
Pn

i=0 b′′i Bn
i (X). Finally, the test whether

AR(0) = 0 amounts to inspection of b′′0 , since Bn
i (0) = 0

for i > 0. We call the resulting algorithm the Bernstein
basis variant of the Descartes method.

For consistency with the power basis variant, we have de-
scribed the Bernstein basis variant as passing transformed
polynomials AL and AR expressed in a globally fixed basis
(Bi

n[0, 1])i in recursive calls. Equivalently, one can think of
it as passing (a constant multiple of) the same polynomial
all the time, but converting it to the Bernstein basis w.r.t.
the interval under consideration.

Both variants of the Descartes method as presented above
work for polynomials with arbitrary real coefficients. How-
ever, if the initial coefficients are integers, then integrality
is preserved. If this is not needed, one can leave out the
factor 2n in the definition of H(A) and, for the Bernstein
basis variant, apply the ordinary instead of the fraction-free
de Casteljau algorithm.

2.2 Termination
Since the Descartes test only gives an upper bound on the

number of real roots in an interval, an extra argument is
needed that each path in the recursion tree of the Descartes
method eventually reaches an interval for which it counts 0
or 1 and thus terminates. We use a result from Krandick
and Mehlhorn [12] based on a theorem by Ostrowski [21].

CJ

CJ

c

CJ

d

Figure 1: Three circles associated with the interval
J = (c, d).

Consider a real polynomial A(X) and its roots in the com-
plex plane. Let J = (c, d) be an open interval with midpoint

m = (c + d)/2 and width w(J) = d − c, and let v =
DescartesTest (A,J).

Proposition 2.2. [One-Circle Theorem] If the open
disc bounded by the circle CJ centered at m passing through
the endpoints of J does not contain any root of A(X), then
v = 0.

Proposition 2.3. [Two-Circle Theorem] If the union
of the open discs bounded by the circles CJ and CJ centered

at m ± i(
√

3/6)w(J) and passing through the endpoints of
J contains precisely one simple root of A(X) (which is then
necessarily a real root), then v = 1.

See [12] for proofs. The circles CJ and CJ are characterized
by being the circumcircles of the two equilateral triangles
that have J as one of their edges. In the sequel, we call the
union of discs bounded by CJ and CJ (as defined above in
Proposition 2.3) the two-circles figure around interval J .
Notice that the two-circles figure contains the disc bounded
by CJ .

3. THE SIZE OF THE RECURSION TREE

3.1 The Davenport-Mahler Bound
The Davenport-Mahler theorem gives a lower bound on

the product of differences of certain pairs of roots of a poly-
nomial A(X) = an

Qn
i=1(X − αi) in terms of its discrim-

inant discr(A) = a2n−2
n

Q
1≤i<j≤n(αi − αj)

2 and Mahler

measure M(A) = |an|
Qn

i=1 max{1, |αi|}, see [27, §6.6, §4.5]
[18, §1.5, §2.1]. This theorem appears in the literature in
several variants that all use the same proof but formulate
different conditions on how roots may be paired so that
the proof works. We give the most general condition sup-
ported by the proof. It is equivalent to Johnson’s formula-
tion [9] and generalizes Davenport’s original formulation [5,
Prop. I.5.8].

Theorem 3.1. Let A(X) = an

Qn
i=1(X−αi) be a square-

free complex polynomial of degree n. Let G = (V, E) be a
directed graph whose nodes {v1, . . . , vk} are a subset of the
roots of A(X) such that

(i) If (vi, vj) ∈ E then |vi| ≤ |vj |.
(ii) G is acyclic.
(iii) The in-degree of any node is at most 1.
If exactly m of the nodes have in-degree 1, then
Y

(vi,vj)∈E

|vi−vj | ≥
p

|discr(A)|·M(A)−(n−1)·(n/
√

3)−m·n−n/2.

Proof. This proof is not self-contained, but refers to the
standard argument from Davenport [5, 27]. Let (v1, . . . , vk)
be the topologically sorted list of the vertices of G, where
(vi, vj) ∈ E implies j < i. Given such an ordering we modify
the n × n Vandermonde matrix WA = (αj−1

i )j,i as follows:
For j = 1 to k in turn, we process vj . If there exists an i > j
such that (vi, vj) ∈ E then in WA we subtract the column of
vi from the column of vj ; if no such i exists then the column
of vj remains unchanged. This finally yields a transformed
matrix M such that det WA = det M . Note that exactly m
columns of M are modified from WA. Moreover, det M =Q

(vi,vj)∈E(vj − vi) ·detM ′, where M ′ is a matrix similar to

the one in [27, Theorem 6.28, Eqn. (19)]. As in the proof in



[27], we conclude:

|det(WA)| ≤

0
@

Y

(vi,vj)∈E

|vi − vj |

1
A · M(A)(n−1)

„
n√
3

«m

nn/2.

But
p

|discr(A)| = |det WA|, thus giving us the desired re-
sult.

Remark. The bound in Theorem 3.1 is invariant under
replacing A(X) by a non-zero scalar multiple λA(X).

Remark. A bound similar to Theorem 3.1 appears in
[17]. Instead of M(A)n−1, it uses a product of root mag-
nitudes with varying exponents of n − 1 or less.

3.2 The Recursion Tree
Our application of the Davenport-Mahler theorem rests

on the following lemma. It reflects an important structural
advantage of Proposition 2.3 over the weaker two-circle the-
orem by Collins and Johnson [4]: An intersection of the
two-circles figures of two non-overlapping intervals can only
occur if the intervals are adjacent, even if they reside on very
different levels of the recursion tree.

R′

R

J0 J1 J′

1

Figure 2: The two-circles figure around J0 can over-
lap with that of J1 but not with any two-circles figure
further right.

Lemma 3.2. Let J0 and J1 be any two open intervals ap-
pearing in the recursive subdivision of some initial interval
I0. If the two-circles figures of Proposition 2.3 around J0

and J1 intersect, then J0 and J1 overlap or have a common
endpoint.

Proof. We show that non-overlapping intervals with in-
tersecting two-circles figures have a common endpoint. Let
us choose indices such that w(J0) ≥ w(J1). Assume J0 lies
to the left of J1 (the opposite case is symmetric). All in-
tervals right of J0 that have width w(J1) and appear in the
recursive subdivision of I0 have distance k · w(J1) from J0

for a non-negative integer k. They are depicted in Figure 2.
The interval with k = 0 has a two-circles figure intersecting
the two-circles figure of J0. For k > 0, we claim that the
two-circles figure of J0 is disjoint from the two-circles figure
of J1. To see this, consider the convex cone delimited by
the two tangent rays (R, R′) of the two-circles figure of J0

at its right endpoint. The two-circles figure of J0 lies out-
side that cone, but if k > 0, then the two-circles figure of

J1 lies inside the cone. Figure 2 illustrates this for the case
k = 1: the corresponding interval is J ′

1, and the two-circles
figure of J ′

1 is covered by six equilateral triangles. Since the
rays R, R′ meet the x-axis at 60◦, this shows that the six
equilateral triangles lie within the cone. Hence there is no
intersection.

The recursion tree T of the Descartes method in Section
2 is a binary tree. With each node u ∈ T we can associate
an interval Iu; the root is associated with I0. A leaf u of T
is said to be of type-i if the open interval Iu contains ex-
actly i real roots; the termination condition of the algorithm
implies i is either 0 or 1.

Our aim is to bound the number of nodes in T , denoted
by #(T ). We next introduce a subtree T ′ of T by pruning
certain leaves from T :

• If a leaf u has a sibling that is a non-leaf, we prune u.
• If u, v are both leaves and siblings of each other, then

we prune exactly one of them; the choice to prune can
be arbitrary except that we prefer to prune a type-0
leaf over a type-1.

Clearly, #(T ) < 2#(T ′); hence it is enough to bound
#(T ′). Let U be the set of leaves in T ′. Then the number
of nodes along the path from any u ∈ U to the root of T ′ is

exactly log w(I0)
w(Iu)

. Thus

#(T ′) ≤
X

u∈U

log
w(I0)

w(Iu)
. (2)

Our next goal is to reduce this bound to the Davenport-
Mahler type bound shown in Theorem 3.1.

Two cases.
Let u be a leaf of T ′, and v be its parent. We will define two
roots αu, βu such that the number of nodes along the path
from u to the root is

O

„
log

w(I0)

|αu − βu|

«
.

Furthermore, we will show that if u, u′ are two leaves of the
same type (both type-0 or both type-1), then {αu, βu} and
{αu′ , βu′} are disjoint.

In the following arguments, we will overload the notation
CI , CI and CI to represent the three open discs that have
one of the circles as their boundary.

1. If u is type-1 then its interval Iu contains a real root α.
Consider its parent v. By Proposition 2.3, CIv ∪ CIv

must contain a root apart from αu; let βu be any root
in this region. Then it follows that

|αu − βu| <
2√
3
w(Iv) =

4√
3
w(Iu). (3)

Thus the number of nodes in the path from u to the
root of T ′ is

log
w(I0)

w(Iu)
< log

4w(I0)√
3|αu − βu|

. (4)

Let u′ be another type-1 leaf different from u. Clearly,
αu 6= αu′ . We claim that βu and βu′ can be chosen
such that βu 6= βu′ . From Lemma 3.2 it is clear that
we only need to consider the case when Iv and Iv′ are
adjacent to each other. Moreover, assume βu and βu

are the only non-real roots in CIv∪CIv
and CI

v′
∪CIv′

.

Then it must be that either βu ∈ CIv ∩ CIv′
or βu ∈



CIv
∩ CIv′

. In either case we can choose βu′ = βu

distinct from βu.
2. If u is type-0, it had a type-0 sibling that was pruned.

Consider their parent node v and let Iv be the interval
associated with it. There are two cases to consider:

• Iv does not contain a real root. Thus Proposi-
tion 2.2 implies that CIv must contain some non-
real root αu and its conjugate βu := αu. More-
over,

|αu − βu| ≤ w(Iv) = 2w(Iu). (5)

• The midpoint of Iv is a real root, say α. Since the
sign variations for Iv is greater than one, there is
a pair of non-real roots (β, β) in CIv ∪ CIv

. If

β ∈ CIv then let αu := β and βu := β; otherwise,
let αu = α and βu = β. It can be verified that
(5) still holds.

Hence the number of nodes on the path from u to root
of T ′ is

log
w(I0)

w(Iu)
≤ log

2w(I0)

|αu − βu|
. (6)

Again, if u′ is another type-0 leaf different from u, then
αu 6= αu′ , since αu ∈ CIu , αu′ ∈ CI′

u
and CIu ∩CIu′

=
∅. Furthermore, we can choose βu and βu′ such that
βu 6= βu′ . This is clear if both αu and αu′ are not real,
since then βw = αw , w = u, u′; if both are real then
βu and βu′ can be chosen as in the argument of type-1
leaves; otherwise, say αu is real and αu′ is not, we can
choose βu = αu′ and βu′ = αu′ without affecting (6).

Let U0 ⊆ U and U1 ⊆ U denote the set of type-0 and
type-1 leaves respectively. Then substituting (4) and (6) in
(2) we get

#(T ′) ≤
X

u∈U0

log
2w(I0)

|αu − βu|
+
X

u∈U1

log
4w(I0)√

3|αu − βu|
. (7)

We obtain a bound on the number of type-0 and type-1
leaves:

Lemma 3.3. For U0 and U1 defined as above we have:
(i) |U0| is at most the number of non-real roots of A(X).
(ii) |U1| is at most the number of real roots of A(X).

Proof. As shown above, with each u ∈ U0 we can as-
sociate a unique pair of roots (αu, βu), where at least one
of them is complex and uniquely chosen thus implying the
upper bound on |U0|.

Again by the arguments given earlier, for each u ∈ U1 we
can associate a unique real root αu, and hence the upper
bound on |U1|.

Now we can show our main result:

Theorem 3.4. Let A(X) ∈ R[X] be a square-free polyno-
mial of degree n. Let T be the recursion tree of the Descartes
method run on (A, I0). Then the number of nodes in T is
O(log( 1

|discr(A)|
) + n(log M(A) + log n + log w(I0))).

Proof. From (7), we know that the number of nodes in
T ′ is bounded by

#(T ′) ≤ |U | log 4w(I0) −
X

u∈U

log(|αu − βu|). (8)

Consider the graph G whose edge set is E1 ∪ E0, where
E0 :={(αu, βu)|u ∈ U0} and E1 :={(αu, βu)|u ∈ U1}. We

want to show that G satisfies the conditions of Theorem 3.1.
First of all, for any u ∈ U we can reorder the pair (αu, βu)
to ensure that |αu| ≤ |βu| without affecting (7).

y

CIu

CIu

y

x

CIu

x

CIu

CI
v′

βu = βu′

βu

Iu′

αu αu′

CIv′

CIv′

CIv

CIv

αu

CIv′
CI

u′

CIv

CIv

αu′

(b)

(a)

βu′ = βu

Figure 3: A type-0 and type-1 leaf sharing the same
root.

Now we show that the in-degree of G may be assumed to
be at most one. Clearly, the edge sets E0 and E1 have in-
degree one. However, in E0 ∪ E1 cases like that illustrated
in Figure 3 may occur. But we can reduce the in-degree of
βu to one in both cases: in (a), we can always re-order the
edge (αu′ , βu′) to (βu′ , αu′), since βu′ = αu′ ; in (b), we can
choose βu′ = βu.

Applying Theorem 3.1 to G we get:

Y

u∈U

|αu−βu| ≥
p

|discr(A)|·M(A)−(n−1) ·
„

n√
3

«−|U|

n−n/2.

(9)
Taking logarithm on both sides yields:

X

u∈U

log |αu − βu| ≥1

2
log(|discr(A)|) − (n − 1) log M(A)

− n log
n√
3
− n

2
log n;

(10)

since |U | ≤ n (by Lemma 3.3). Plugging this into (8) gives



us:

#(T ′) ≤ |U | log w(I0) + 2|U | + n log M(A)

+
1

2
log

1

|discr(A)| + 2n log n

Using |U | ≤ n again, the claim follows.

Remarks. (i) There exist intervals I0 enclosing all real
roots of A(X) such that w(I0) ≤ 2M(A)/|an|, because M(A)/|an|
is an upper bound on the magnitude of all roots.
(ii) Landau’s inequality M(A) ≤ ‖A‖2 (e.g., [27, Lem. 4.14(i)])
and the obvious estimate ‖A‖2 ≤

√
n + 1‖A‖∞ immediately

yield bounds on the number of nodes in T in terms of these
norms of A(X).

Corollary 3.5. Let A(X) be a square-free polynomial of
degree n with integer coefficients of magnitude less than 2L.
Let I0 be an open interval enclosing all real roots of A(X)
such that log w(I0) = O(L). Let T be the recursion tree of
the Descartes method run on (A, I0). Then the number of
nodes in T is O(n(L + log n)).

Proof. Since A(X) is a square-free integer polynomial,
|discr(A)| is at least one. From the remark above, we have
M(A) < 2L

√
n + 1. Finally, log w(I0) ≤ L + 1.

The condition log w(I0) = O(L) is no restriction, as 2L is
an upper bound on the absolute value of all roots of A(X)
(e.g., [27, Cor. 6.8]).

3.3 Almost Tight Lower Bound
We show that our tree size bound O(n(L + log n)) for

integer polynomials is optimal under the assumption L =
Ω(log n). To do so, we construct a family of inputs of un-
bounded degree n and coefficient length L for which the
height of the recursion tree is Ω(nL).

Mignotte [16] gave a family of polynomials P (X) = Xn −
2(aX − 1)2 parameterized by integers n ≥ 3 and a ≥ 3. By
Eisenstein’s criterion, P (X) is irreducible (use the prime

number 2). Let h = a−n/2−1. Since P (a−1) > 0 and
P (a−1 ± h) = (a−1 ± h)n − 2a−n < 0, there exist two dis-
tinct roots α and β of P (X) in (a−1 − h, a−1 + h). Clearly,
|α − β| < 2h. In the sequel, we shall restrict to the case
that the degree n is even. This allows us to conclude that
any interval I0 enclosing all roots of P (X) is a superset of
(0, 1), because the sign of P (X) is positive for X → ±∞ but
negative for X = 0 and X = 1.

If one is willing to accept certain assumptions on the
choice of the initial interval I0 = (−B1, +B2), such as inte-
grality of B1 and B2, the input P (X) can be used to demon-
strate the necessity of Ω(nL) bisections before α and β are
separated. However, less customary choices of I0 could cause
some bisection to separate α and β much earlier.

We shall avoid this problem. Let us consider the closely
related polynomial P2(X) = Xn − (aX − 1)2 which appears
in a later work of Mignotte [17] on complex roots. Again,
we see that P2(a

−1) > 0, and furthermore P2(a
−1 − h) =

(a−1 − h)n − a−n < 0. Hence there is a root γ of P2(X)
in (a−1 − h, a−1). By irreducibility of P (X), the product
Q(X) = P (X) · P2(X) is square free and has three distinct
roots α, β, and γ in (a−1 − h, a−1 + h).

Theorem 3.6. Let a ≥ 3 be an L-bit integer. and let
n ≥ 4 be an even integer. Consider the square-free polyno-
mial Q(X) = P (X) · P2(X) of degree 2n. Its coefficients

are integers of at most O(L) bits. The Descartes method
executed for Q(X) and any initial interval I0 enclosing all
roots of Q(X) has a recursion tree of height Ω(nL).

Proof. As discussed above, I0 is a superset of (0, 1) and
thus has width w(I0) > 1. Let I1 be the isolating interval
reported by the Descartes method for the median of α, β, γ ∈
(a−1 − h, a−1 + h). Clearly, w(I1) < 2h. The number of
bisections needed to obtain I1 from I0 is log w(I0)/w(I1) >
log(1/2h) ≥ (n/2 + 1)(L − 1) − 1 = Ω(nL).

Clearly, the same argument applies to any form of root
isolation by repeated bisection, including Sturm’s method.

4. THE BIT COMPLEXITY
We derive the bit complexity of the Descartes method for

a square-free polynomial Ain(X) with integer coefficients of
magnitude less than 2L in the power basis. We can enclose
all its real roots in an interval (−B1, +B2) such that B1 and
B2 are positive integers of magnitude less than 2L+1 (e.g.,
[27, Cor. 6.8]).

We discuss the bit complexity of the power basis and
Bernstein basis variants of the Descartes method applied
to the scaled polynomial A(X) :=

Pn
i=0 aiX

i := Ain((B1 +
B2)X −B1). We can bound the bit length of its coefficients
as follows. The power basis coefficients ai of A(X) have bit
lengths O(nL). For conversion from power basis to Bern-
stein basis, one has [22, §2.8]

n!A(X) =
nX

i=0

Bn
i (X)

iX

k=0

i(i − 1) · · · (i − k + 1)(n − k)!ak.

(11)
To avoid fractions, we use n!A(X) for the Bernstein basis
variant. Observe that l(l−1) · · · (l−k+1)(n−k)! ≤ n! ≤ nn,
so that the Bernstein coefficients of n!A(X) have bit length
O(nL + n log n).

From Corollary 3.5 we know that the size of the recursion
tree is O(n(L + log n)). Note that the transformation from
Ain(X) to A(X) does not affect the size of the recursion tree,
i.e., the size does not increase to O(n(L′ + log n)) where L′

bounds the bit size of the coefficients of A(X) or n!A(X).
Let us now bound coefficient length at depth h > 0. For

the power basis variant, we start with coefficients of length
O(nL). Both the H and TH transformations increase the
length of the coefficients by O(n) bits on each level. It is
known that we can perform the T -transformation in O(n2)
additions [11, 10, 26]; the H-transformation needs O(n) shift
operations. Hence a node at recursion depth h has bit cost
O(n2(nL+nh)) for the power basis. In the Bernstein basis,
we need O(n2) additions and O(n) shifts for the fraction-free
de Casteljau algorithm, which also increases the length of
the coefficients by O(n) bits on each level. This gives us a bit
cost of O(n2(nL+n log n+nh)). Since h = O(n(L+log n)),
the worst-case cost in any node is O(n4(L+ log n)) for both
variants. Multiplied with the tree size, this yields an overall
bit complexity of O(n5(L + log n)2), cf. [9, Thm. 13] [11,
Thm. 50]. To summarize:

Theorem 4.1. Let A(X) be a square-free polynomial of
degree n with integer coefficients of magnitude less than 2L.
Then the bit complexity of isolating all real roots of A(X)
using the Descartes method (in either power basis or Bern-
stein basis variant) is O(n5(L + log n)2) using only classical



arithmetic. Except for the initial transformation, only addi-
tions and shifts are used.

For the Bernstein basis variant, this result is an improve-
ment by a factor of n on the result in [19]. For the power
basis variant, this bound was already achieved by Krandick
[11]. Theorem 4.1 can be improved using a fast Taylor shift
algorithm [26, Method F]:

Theorem 4.2. Let A(X) be a square-free polynomial of
degree n with integer coefficients of magnitude less than 2L.
Then the bit complexity of isolating the real roots of A(X)
using the Descartes method in the power basis with a fast
Taylor shift is O(nM(n3(L+log n))(L+log n)). Here, M(n)
is the bit complexity of multiplying two n-bit integers.

Proof. The work at a node at depth h of the recursion
tree has bit cost O(M(n2 log n + n2L + n2h) [26]. Substi-
tuting h = O(n(L + log n)), we get the bound O(M(n3(L +
log n)). Multiplied by tree size O(n(L + log n)), we obtain
the theorem.

Remark.
3 Emiris, Mourrain, and Tsigaridas [7] describe

the following approach to obtain a similar speedup for the
Bernstein basis variant: Suppose the vector (bi)i of Bern-
stein coefficients of A(X) =

Pn
i=0 biB

n
i (X) is given and

the Bernstein coefficients (b′i)i of AL(X) = H(A)(X) =Pn
i=0 b′iB

n
i (X) are wanted. Define the auxiliary polyno-

mial Q(X) =
Pn

i=0 bn−i

`
n
i

´
Xi (= TR(A(X))) and trans-

form it by substituting 2X + 1 for X. It is straightforward
to verify that QL(X) := Q(2X+1) =

Pn
i=0 b′n−i

`
n
i

´
Xi; thus

one can compute the Bernstein coefficients of AL(X) from
the Bernstein coefficients of A(X) using one asymptotically
fast Taylor shift and scalings of coefficients. By symme-
try, the same holds for the Bernstein coefficients of AR(X).
More precisely, define4 QR(X) := (2+ X)nQ(X/(2 + X)) =Pn

i=0 b′′n−i

`
n
i

´
Xi. Then the b′′i ’s are Bernstein coefficients of

AR(X). Together with bounds on the size of the recursion
tree (Cor. 3.5) and the lengths of coefficients, this leads [7]

to a bit complexity of eO(n4L2) for the Bernstein basis vari-
ant of the Descartes method.
However, repeatedly putting in and taking out the extra
factor

`
n
i

´
in the i-th coefficient is an unnecessary artifact

of insisting on the Bernstein basis. A more natural for-
mulation of this approach avoids this extra scaling and the
reversal of the coefficient sequence by representing polyno-

mials in the scaled and reversed Bernstein basis eBn
i (X) =`

n
i

´−1
Bn

n−i(X) = (1 − X)iXn−i. Now the steps from A(X)
to Q(X) and back from Q(2X+1) to AL(X) are purely con-

ceptual: reinterpret the coefficients of eBn
i (X) as coefficients

of Xi and vice versa. The resulting algorithm is the scaled
Bernstein basis variant of the Descartes method.
An alternative view on this variant is to regard it as an opti-
mization of the power basis variant: By Eq. (1), the reinter-
pretation of coefficients is equivalent to the transformation
TR. Recall that each recursive invocation of the power ba-
sis variant handles four polynomials: A(X) is received from
the parent, the Descartes test constructs TR(A)(X), and
subdivision computes AL(X) and AR(X). In these terms,

3We thank an anonymous referee for pointing out the ne-
cessity of a remark on this aspect.
4Let QL(X) be expressed as H2(T (Q(X))) where
H2(Q(X)) := Q(2X). Then QR(X) is R(H2(T (R(Q(X))))).

the scaled Bernstein basis variant receives TR(A)(X) in-
stead of A(X), eliminating the need for a separate transfor-
mation in the Descartes test, and it subdivides TR(A)(X)
into TR(AL)(X) and TR(AR)(X) directly, without explic-
itly constructing AL(X) and AR(X). Over the entire recur-
sion tree, this saves one third of the T transformations in
the power basis formulation.

5. CONCLUSION
Our work aims to achieve the best possible complexity

bounds for the Descartes method (either power basis or
Bernstein basis), and to match similar bounds for Sturm’s
method. We achieve matching bounds for two measures:
(1) the size of the recursion tree, and (2) the bit complexity
of the overall algorithm. Moreover, we show that the tree
size bound is the best possible under the assumption that
L = Ω(log n). It would be of some interest to completely
resolve this optimality question.

Another direction of interest is to extend these algorithms
and results to the non-squarefree case. The standard way
to achieve such extensions is to apply the above results to
the square-free part A/ gcd(A, A′) of a given polynomial A
(see, e.g., [1, Algo. 10.41] [7]) – but the real challenge is to
provide an algorithm based on the Descartes method that
works directly on non-squarefree polynomials.
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