
Non-local Isotopic Approximation of Nonsingular Surfaces 1

Long Lin and Chee Yap and Jihun Yu 2,3

Courant Institute of Mathematical Sciences
New York University

New York, NY 10012 USA
{llin,yap,jihun}@cs.nyu.edu

Abstract

We consider the problem of approximating nonsingular surfaces which are implicitly represented by equations of the form f(x, y, z) =
0. Our correctness criterion is isotopy of the approximate surface to the exact surface. We focus on methods based on domain
subdivision using numerical primitives. Such methods are practical and have adaptive and local complexity. Previously, Snyder
(1992) and Plantinga-Vegter (2004) have introduced techniques based on parametrizability and non-local isotopy, respectively. In
our previous work (SoCG 2009), we synthesized these two techniques into an efficient and practical algorithm for curves. This
paper extends our approach to surfaces. The extension is by no means routine: the correctness argument is much more intricate.
Unlike the 2-D case, a new phenomenon arises in which local rules for constructing surfaces are no longer sufficient.

We treat an important extension to exploit anisotropic subdivision. Anisotropy means that we allow boxes to be split into 2, 4
or 8 subboxes with arbitrary but bounded aspect ratio. This could greatly improve the adaptivity of the algorithm.

Our algorithms are relatively easy to implement, as the underlying primitives are based on interval arithmetic and exact BigFloat
numbers. We report on encouraging preliminary experimental results.

Key words: Mesh Generation, Surface Approximation, Isotopy, Parametrizability, Subdivision Algorithms, Interval Methods, Topological
Correctness, Exact Numerical Algorithms.

1. Introduction

A basic problem in areas such as physics simulation, com-
puter graphics and geometric modeling is that of computing
approximations of curves and surfaces from implicit defini-
tions. Typically, the surface is represented by an equation,
f(x, y, z) = 0 as illustrated in Figure 1. We assume the
approximation is a triangulated surface, also known as a
mesh. The recent book edited by Boissonnat and Teillaud
[3] provides an algorithmic perspective for this general area;
chapter 6 in particular is a survey of meshing algorithms.
The approximate surface or mesh must satisfy two basic

requirements: topological correctness and geometric accu-
racy. For instance, Figure 1(c) is produced by our algorithm
with only topological correctness as stopping criterion. For
some applications, this is sufficient. But if one desires ge-
ometric accuracy as well, this can be further refined as in
Figure 1(a), where the error bound is ε = 0.25.

1 This work is supported by NSF Grant CCF-0917093.
2 Long is currently at eBay, San Jose, CA.
3 Jihun is currently with ILM, San Francisco, CA.

We formulate the mesh generation problem (“mesh-
ing problem” for short) thus: given a region-of-interest
(ROI) B0 ⊆ R

3, an error bound ε > 0, and a surface S

implicitly represented by an equation f(x, y, z) = 0, to find
a piecewise linear ε-approximation G of S ∩B0.
Here, G is an ε-approximation of S ∩B0 if the Hausdorff

distance between G and S ∩ B0 is at most ε. Topological
correctness means the surface G should be isotopic to S in
the interior ofB0, and also on the boundary ∂B0; we denote
this by writing “G ≃ S (modB0)”. Typically, an algorithm
would first compute a topologically correct approximation
G, and subsequently refine G until it has the desired ε-
accuracy.
In order to guarantee topology, researchers traditionally

resort to algebraic methods. See [3, Sections 3.6, 3.7] for
the typical algebraic approach via projection (resultants).
But this paper will emphasize numerical methods because
such algorithms have adaptive complexity, making them
quite efficient in practice, and they are easier to imple-
ment. Also, numerical methods are more general than al-
gebraic ones since they are also applicable to non-algebraic
functions such as frequently arise in mathematical anal-

Preprint submitted to Elsevier 14 August 2012

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Fig. 1. Approximation of tangled cube f(x, y, z) = x4 − 5x2 + y4 − 5y2 + z4 − 5z2 = −10.

ysis. For instance, although our implementation assumes
that f(x, y, z) is a polynomial, it is straightforward to al-
low functions that are composed using the elementary func-
tions (sinx, tanx, expx, etc) with the usual arithmetic op-
erations. On the negative side, our correctness require non-
singularity of f in the region of interest. Traditionally, nu-
merical algorithms cannot provide topological guarantees:
this will be our main challenge.
Throughout this paper, we fix an analytic function f :

R
3 → R, the surface S := f−1(0) (the zero set of f) and a

region-of-interestB0 ⊆ R
3. The regionB0 is a “nice region”

(see below) represented by an octree, and f is nonsingular
in B0, and S intersects the boundary ∂B0 in a generic way
(non-tangentially). Unless otherwise noted, we assume ǫ =
∞ (i.e., we focus on isotopy, with no concern for geometric
accuracy). For the algorithms of this paper, it is easy refine
to any desired ǫ > 0 once we have the correct isotopy.

1.1. Subdivision Algorithms.

Our main algorithmic paradigm is (domain) subdivi-
sion where an initial axes-parallel box B0 ⊆ R

3 is repeat-
edly subdivided into smaller boxes, forming an octree T

rooted at B0. Each non-leaf of T can have 2, 4 or 8 chil-
dren, corresponding to half-, quarter- or full-splits of boxes
into congruent subboxes. The leaves of T form a partition
of B0 into boxes. To “expand” T means to split its leaves.
All algorithms in this paper are viewed as instances of the
following:

Generic Subdivision Algorithm:
INPUT: an octree T representing a region B0

I. Subdivision Phase:

Keep subdividing T until some stopping criterion holds.
II. Refinement Phase:

Further subdivide T until some refinement criterion holds.
III. Construction Phase:

Construct the approximation G from the refined tree T .

The conceptual question is: what kind of stopping and re-
finement criteria do we need in order to ensure that the Con-
struction Phase has sufficient information to construct an
isotopic approximation G? This question is ill-formed un-
less we constrain the Construction Phase. The well-known
Marching Cubes [17] gives us a clue: for each leaf boxB, the
Marching Cubes algorithm computes a small surface patch

GB ⊆ B based only on the signs of f at the corners of B.
This is O(1) work per leaf, and G is defined to be union of
all these patches GB . Such a Construction Phase is said to
beMC-like (“Marching Cubes like”). But it is well-known
that the Marching Cubes could not ensure correct isotopy.
We turn to two key papers that address this shortcoming of
Marching Cubes: Snyder [26] and [20]. The achievement of
Plantinga & Vegter (PV) [20] is that, by using the “small
normal variation predicate”, they could ensure correct iso-
topy with a MC-like construction. Theirs is the first topo-
logically correct algorithm for meshing of nonsingular sur-
faces based on numerical primitives. In contrast, the con-
struction phase in Snyder’s algorithm [26] is not MC-like,
but requires highly nontrivial processing (e.g., root isola-
tion). In [16,15], we characterize the PV approach as ex-
ploiting non-local isotopy. We show that the stopping
criterion of PV can be weakened to the parametrizability
predicate of Snyder, leading to greatly improved efficiency.
Our previous result was only for curves; in this paper, we
will extend it to surfaces. As we shall see, the extension to
surfaces is far from routine, requiring new ideas in the al-
gorithm as well as in its correctness proofs. For instance, a
new phenomenon arises in the Construction Phase in which
local rules are no longer sufficient.
Our work, though MC-like, is not directly comparable to

the standard Marching Cube literature because we assume
our input scalar function f(x, y, z) is an analytic function.
Many Marching Cube algorithms assume f(x, y, x) is often
trilinear or other forms of interpolated data on a given grid.
Nevertheless, our approach is also be applied to such kinds
of input functions (see remarks after Lemma 1 below).
Our subdivision algorithms are practical for two reasons:

first, it is based on the easily implementable subdivision
paradigm. Second, all our primitives are explicitly numeri-
cal. Note that some subdivision algorithm use powerful al-
gebraic primitives (e.g., [25]) with concomitant loss in adap-
tive complexity and flexibility. To evaluate our primitives,
we use: (a) interval methods [19,21], and (b) BigFloats,
some software implementation of dyadic numbers. In prac-
tice, machine arithmetic can be exploited in two ways: first,
it can replace BigFloats when machine precision suffices
(taking care to detect overflows which indicate the need for
higher precision). In fact all the examples in this paper are
run at machine precision. Second, they can be used as fil-
ters to speed up BigFloats. See [16] for further discussion.

2

1.2. Our Contribution and Overview of Paper.

Our general contribution is the development of non-local
isotopy techniques. Intuitively, one can construct a glob-
ally isotopy I for a surface S (mod B0) by piecing together
a collection of local isotopies IB for S (mod B) where B

ranges over a subdivision of B0. In the non-local isotopy
approach, we compute ĨB that are not necessarily isotopies
(mod B), but when they are pieced together, the global

map Ĩ is a global isotopy (mod B0). By not insisting on
local isotopies, we can use cheaper predicates and avoid ex-
cessive subdivision. Overall, we expect to gain in efficiency.
Although such algorithms are harder to prove correct, the
actual algorithms remain relatively simple and easy to im-
plement. Our implementation and experiments will bear
out the expected speed up.
Our technical contribution comprises three new exact

numerical algorithms for isotopic surface approximation.
These algorithms, in order of increasing sophistication, are
called the Regular/Balanced/Rectangular Cxyz Al-
gorithms. Abbreviate them as Reg/Cxyz/Rect, respec-
tively. Note that Cxyz is the name of the parametrizabil-
ity predicate used by all three algorithms, but the Bal-
anced Cxyz Algorithm inherits the “Cxyz” abbreviation.
Our main goal is Cxyz and Rect. But Reg has merit of sim-
plicity (easy to implement and useful for simple applica-
tions). Moreover, its correctness proof is an important step
towards understanding the correctness of the other two.
Cxyz is much more efficient than Reg, and Rect has the po-
tential to exploit anisotropic subdivision and achieve great
speedups over Cxyz.
Section 2 is a review of the literature, and Section 3 intro-

duces the concepts of subdivision and box predicates. We
then describe our three algorithms: Reg (Section 4), Cxyz
(Section 5), and Rect (Section 6).
In Section 7, we outline the correctness proof, first for

Reg, and then its extension to Cxyz. The further extension
to Rect is routine. Section 8 contains our experimental re-
sults, and we conclude in Section 9. An Appendix contains
additional visualization of our experiments. All proofs and
additional experimental data are found in the thesis of Lin
[15]. The thesis and the code sources are downloadable from
[9].
2. Related Work

We broadly classify approaches to mesh generation into
three categories: algebraic, geometric, and numerical. Alge-
braic approaches [1,24,8,25], exploit tools such as cylindri-
cal algebraic decomposition (CAD), resultants, and manip-
ulation of algebraic numbers ([3, Chapter 3] reviews these
technique). These tools are exact, but the algorithms may
be slow with non-adaptive complexity. A promising direc-
tion to remedy this is to combine symbolic with numeric
methods [11]. The geometric approaches [27,4,6,2] postu-
late some abstract computational model in which geomet-
ric primitives such as ray shooting are available, and al-

gorithms based on these primitives are constructed. Im-
plementing these abstract models exactly can be an issue.
E.g., ray shooting returns points with algebraic coordi-
nates, which may be unsuitable for implementation. The
numerical approaches [12,17,20,18,22,28,29] are based on
numerical approximations, evaluation and derivatives of
function, and interval methods. It is the most pragmatic of
the three approaches. Its advantages include having adap-
tive and local complexity, and relative ease of implementa-
tion. Guaranteeing topological correctness is the traditional
weakness of this approach. The non-local isotopy idea of
this paper can be exploited in other applications: recently
we constructed a new subdivision method for complex root
isolation [23] that has proved very efficient [13,14]. To mo-
tivate the approach of our paper, we review four particu-
lar subdivision algorithms: Marching Cubes [17], Snyder’s
Algorithm [26], Plantinga & Vegter’s (PV) Algorithm [20],
and our Cxy Algorithm (in 2-D) [16]. We use the framework
of the Generic Subdivision Algorithm in the introduction.

2.1. Marching Cubes.

Marching Cubes is one of the most popular subdivision
algorithms for surface reconstruction. The stopping crite-
rion for its Subdivision Phase is “box has width < ǫ” for
some arbitrary ǫ > 0. In the Construction Phase, we deter-
mine the sign of the function f at the corners of each leaf
box B of T . Up to rotational symmetry, reflection and in-
terchange of signs, the possible sign types are given in Fig-
ure 2. Note that Marching Cube has 15 cases ([7, Fig. 1]),
but cases 11 and 14 are mirror reflections, corresponding
to our Type 4c.

Type*2c

Type4c Type+ 4d Type*4e Type*4f

Type*3c Type4a Type4bType3a Type3b

Type0 Type1 Type2a Type2b

Fig. 2. The 14 Sign Types of f at box corners: only 10 may arise
under Cxyz Predicate

If an edge of B has different signs at its two corners, we
introduce a vertex in the middle of the edge. We then con-
nect pairs of vertices on faces of B by arcs. Some possibili-
ties for these arc types are illustrated in Figure 3 (our fig-
ure shows only those types that can arise in our algorithm).
Note that Sign Types 2b, 3b and 4d each gives rise to two
arc types, and they are topologically distinct. This “ambi-
guity” will be one of our main correctness concerns. Once
the arcs are fixed, we can introduce a triangulated surface

3

patch GB in B such that GB intersects boundary of B with
the given arc type. The union G =

⋃
B GB of these patches

constitutes an approximation of S. We say S intersects box
B cleanly if (i) it does not pass through a corner of B, (ii)
intersects any edge of B at most at one point and this inter-
section (if any) must be transversal, and (iii) intersects any
face of B is an open curve and not in a loop (this includes
the case of a degenerate loop with just one tangent point).

Type2b(ii)

Type3b(ii) Type4a Type4bType3a

Type0 Type1 Type2a Type2b(i)

Type4c Type4d(ii)Type4d(i)

Type3b(i)

Fig. 3. The 13 Arc Types under Cxyz Predicate.

Lemma 1 Let the surface S intersect a box B cleanly. Then
the intersection of S with the boundary ∂B corresponds to
one of the 13 arc types in Figure 3. Moreover, each arc type
uniquely determines the isotopy of the surface patch S ∩B.
This lemma follows by case analysis. These 13 cases

should be contrasted with Chernyaev’s famous 33 cases in
his analysis of Marching Cube [7]. It highlights the differ-
ence in our approaches: the assumption of clean intersec-
tion in this lemma is exploiting isotopy. In general, S does
not intersect B cleanly, but there is a “vertex avoiding”
isotopy of S which does cleanly intersect B. Eventually,
our main result shows that by subdivision, our algorithm
only need to form surface patches corresponding to these
13 cases, rather than Chernyaev’s 33. We stress that
“cleanliness” is a concept used in the correctness analysis.

2.2. Parametrizability of Snyder.

A key paper towards ensuring correct topology in sub-
division algorithms is Snyder [26]. He introduced interval
methods to determine the correct topology within each sub-
division box B. Snyder’s stopping criterion is “S ∩ B is
parametrizable”. This means that surface patch S ∩ B is
the graph of some function g(i, j) in two coordinate direc-
tions i, j ∈ {x, y, z}. This condition can be detected using
interval arithmetic: we call this the Cxyz(B) predicate be-
low. Snyder is then able to construct a triangulated surface
patch GB ⊆ B with the property GB ≃ S (modB). His
algorithm is recursive in dimension: to constructGB , recur-
sively solve the 2-D problem of computing the topology of
S∩F on each face F of B. In turn, this requires solving the
1-D problem of root isolation along the edges of F . There

are two issues. First, the algorithm may not terminate if S
intersects the boundary of B tangentially at isolated points
[3, p. 195]. Second, GB can have arbitrary combinatorial
complexity, and thus is not MC-like. This becomes harder
to implement beyond 2D.
2.3. Non-local Isotopy of Plantinga & Vegter

The second key paper is from Plantinga & Vegter [20]:
instead of parametrizability, they introduce two simple cri-
teria for termination of subdivision: the exclusion predi-
cate C0(B) and the small normal variation predicate
C1(B) (see definitions below). The predicate C1(B) im-
plies that the angle between two gradient vectors of f in
B is less than 90 degrees, and in particular it implies that
S ∩ B is parametrizable. Snyder constructs the local iso-
topy of the surface in each box B. In a radical departure
from Snyder, they no longer require that GB be isotopic to
S ∩ B. Remarkably, this approach also solves the two is-
sues of Snyder. We view non-local isotopy very favorably
because enforcing local isotopy is considered wasteful (af-
ter all, subdivision boxes are artifacts of the algorithm, not
inherent in topology of S).
2.4. Our Synthesis.

Our paper [16] is a synthesis of the parametrizability
approach of Snyder with the non-local isotopy of PV. We
only treated curves. Basically, we want to run the PV algo-
rithm but replacing the C1 predicate with parametrizabil-
ity. It turns out that this is justifiable provided we take care
to disambiguate certain configurations by subdivisions. Al-
though we regard C1 as an overkill for isotopy, it has other
uses for refinement and in controlling normal deviation. Ex-
periments confirm our expectation: our synthesis is more
efficient than either approach separately.
3. Preliminaries

For any set S ⊆ R, let S denote the set of all closed inter-
vals with endpoints in S. We mainly use S = R and S = F

where F :={m2n : m,n ∈ Z} denote the set of dyadic num-
bers (BigFloats). A box (or d-box) is any element of R

d

(= (R)d). Usually, d = 1, 2, 3. If f : Rd → R is any func-
tion, then a function of the form f : F

d → F is called a
box function for f if for allB,Bi ∈ F, we have (1) (inclu-
sion) f(B) ⊆ f(B), and (2) (convergence) if limi→∞ Bi =
p ∈ R

d, then limi→∞ f(Bi) = f(p). Note that using in-

y

back

front

bottom

right

z

x

top

left

Fig. 4. Box face conventions.

terval arithmetic, it is very easy to construct box functions
when f is a polynomial. For a box B =

∏d

i=1
Ii, let w(B) =

mindi=1 w(Ii) denote the width of B, where w(I) denotes

4

the width of an interval. The 0-, 1- and 2-dimensional fea-
tures of a box are called its corners, edges, and faces.
For i ∈ {x, y, z}, an i-face is a face that is normal to the i-
direction We also name each face of a box as ‘front’, ‘back’,
‘top’, ‘bottom’, etc, using the convention in Figure 4. Note
that the z-direction is the vertical direction.
We may assume that f has positive or negative signs at

box corners (never the zero sign); if f is zero, we simply
assume it is positive (this trick of [20] amounts to an in-
finitesimal perturbation of the surface). Viewing signs (+
or −) as colors, we can talk about edges and boxes being
monochromatic or bichromatic. As in Section 2, we in-
troduce vertices in the middle of bichromatic edges. In our
implemented code, we use linear interpolation to improve
the quality of the meshes. On a face, we will introduce arcs
connecting pairs of vertices (this need not be uniquely de-
termined, as we saw). Finally, for each box B, we intro-
duce a collection of triangles to form a triangulated patch
GB such that GB ∩ ∂B is precisely these vertices and arcs.
Thus, we use the corner/edge/face terminology for boxes,
but reserve the vertex/arc/triangle terminology for the tri-
angulated mesh.

3.1. Octrees.

We assume that each leaf of our octrees is labeled as “in”
or “out”. A leaf box B is called an in-box if it is labeled
”in”; similarly for an out-box. The set of all the in-boxes
of T is called the box-complex defined by T . The union
of all in-boxes is denoted R(T), the region represented
by T . Following [5], a set of the form R(T) is called a nice
region. This extension is very useful: we may know that
a subregion contains a singularity, and we want to exclude
this subregion from our algorithm (see [5] for such an ap-
plication). Such regions are closed subsets of R3, but could
be disconnected with holes (like a donut) and voids (like a
football). Two boxes of an octree are neighbors of each
other if they have disjoint interiors but they share an open
face (i.e., the relative interior of the face of one of the two
boxes). We say they are edge-neighbors if they share an
open line segment. Note that neighbors are automatically
edge-neighbors, but the converse may not hold.
3.2. Box Predicates for Subdivision.

The stopping criterion of the Subdivision Phase (see
Introduction) is based on two box predicates: an exclu-
sion predicate Cout(B) and an inclusion predicate
Cin(B). Subdivision Phase ends when each in-box B sat-
isfies Cout(B) or Cin(B). The in-boxes of T fall into three
mutually exclusive types:
1. Discarded Boxes: these satisfy Cout

2. Candidate Boxes: these do not satisfy Cout, but an an-
cestor satisfies Cin.
3. Inconclusive boxes: neither Discarded nor Candidate.
If B satisfies Cin but not Cout, then the above definition

implies B is a candidate box (since B is an ancestor of it-

self). Discarded boxes will no longer be considered. When-
ever we split a candidate box, we always check if each sub-
boxes satisfyCout: if so, it is discarded; otherwise it remains
a candidate box. After the Subdivision Phase, no incon-
clusive boxes remain. For the Refinement Phase, we only
split candidate boxes. The following list contains various
instantiations for Cout and Cin used in this paper:

C0(B) : 0 /∈ f(B) (Exclusion)

Cx(B) : 0 /∈ fx(B) (x-Monotonicity)

Cxyz(B) : Cx(B) ∨ Cy(B) ∨ Cz(B) (Parametrizability)

C1(B) : 0 /∈ (fx(B))2 + (fy(B))2 + (fz(B))2

(Small Normal Variation)

(1)

Note that fx, fy, fz refers to partial derivatives of f .
Clearly, if C0(B) holds, then S ∩B is empty. So we use C0

as the exclusion predicate Cout in all our algorithms. For
Snyder’s and Cxyz Algorithms, Cin = Cxyz, and for PV
Algorithm, Cin = C1.
4. Regularized Cxyz Algorithm

An octree is “regular” if every leaf is at the same level,
as in Marching Cubes. So the “Regularized Algorithm”
amounts to enforcing this regularity during the Refinement
Phase. In our Regularized Cxyz Algorithm, we can relax
this requirement: we only require that two candidate boxes
who are edge-neighbors must have the same width. The
correctness of the Regularized Cxyz Algorithm is far from
trivial; it also serves as an important intermediate devel-
opment towards the Balanced Cxyz Algorithm whose cor-
rectness proof will be even more intricate. Thus we follow
[20,16] in this two-step approach.
The algorithm only perform full-splits, and recall that

its inclusion predicate Cin is Cxyz. This completely defines
its Subdivision Phase. The Refinement Phase is defined
by the rule that we split a candidate box B if it has an
edge-neighbor that is a candidate box of smaller width.
At the end of this process, any two edge-neighbors that
are both candidates would have the same width. The rest
of this section will focus on the Construction Phase, and
correctness proof.
At this juncture, we insert a concept that will be useful in

subsequent analysis. At the end of the Subdivision Phase,
each candidate boxB in the octree is known to satisfyCi(B)
for some i ∈ {x, y, z}. We arbitrarily pick one of these i’s
and call it the known monotone direction (“monotone
direction” for short) for B. In subsequent computation,
when we splitB, the candidate descendants ofB will inherit
this monotone direction. This direction is stored with B by
our algorithm since some decisions will depend on it.

4.1. Sign Types, Arc Types and Surface Types
under the Cxyz Predicate

Of the 14 possible sign types of f at box corners shown

5

in Figure 2, only 10 can arise under the Cxyz predicate.
The 4 excluded cases are indicated by asterisks: Types
∗2c, ∗3c, ∗4e, ∗4f . As usual, we introduce vertices in the
middle of bichromatic edges, and connect pairs of vertices
on each face by arcs. The 10 sign types give rise to 13 arc
types in Figure 3. Lemma 1 asserts that these arc types
give rise to unique surface type within each box, shown
in yellow in Figure 3.
4.2. Counter Example to the Neighborly
Connection Rule.

In 2-D, we can apply the above method to construct a
surface in each box, without consideration of other boxes
[16]. But now, there are two choices of arc connections when
a face has 4 vertices: we call these alternating faces. In
Figure 2, these faces are colored pink, as in Types (2b), (3b)
and (4d). This implies that constructing surface patches
in each box must (at least) be neighborly, meaning that
two boxes sharing an alternating face must agree on which
choice of arcs to make. Alternating faces arise even under
the C1 predicate of PV Algorithm. They showed any neigh-
borly choice will lead to a correct surface, which is rather
non-intuitive. For our Cxyz predicate, neighborly choices
alone is insufficient: Figure 5 gives a counter example.

(c)(a) (b)

Fig. 5. Neighborly choice of arc patterns is insufficient for correctness.

In Figure 5(a), the arc connections are neighborly. The
two boxes satisfy Cx, but the triangulated surface deter-
mined by the indicated arc connections violate the Cx con-
dition. Using a different arc connection, we obtain the tri-
angulated surface in Figure 5(b) (this one is consistent with
the Cx condition). Extending this example (using the phe-
nomenon of “blocks” below) we see that a choice in one
box can force the choice of boxes arbitrarily far away. E.g.,
Figure 5(c).

4.3. Alternating Faces (AF) Rule.

For alternating faces, we provide the following globally
consistent rule for connecting arcs: RULE: the arcs will
be line segments that are parallel to one of the three vec-
tors: (1, 1, 0), (1, 0, 1), (0, 1, 1), depending whether the alter-
nating face is an z-, y- or x-face (respectively). E.g., for
an alternating x-face we will connect its four vertices with
line segments that are parallel to the vector (0, 1, 1), as in
Type 2b(ii), and not as in Type 2b(i) of Figure 3. Call this
the Alternating Faces Rule (AF Rule for short). With
this rule, we have now completely specified the Regularized
Cxyz Algorithm.

5. Balanced Cxyz Algorithm

We now extend the Regularized Cxyz Algorithm to the
Balanced Cxyz Algorithm. This extension aims at reducing
the number of unnecessary splits. The idea is to allow the
widths of edge neighbors to differ by a factor of ≤ 2; this is
called “balancing”. The tradeoff is that we are faced with
more involved connection rules and correctness analysis.
The Subdivision Phase is the same as in the regularized
case. For the Refinement Phase, we need some notation.
Let i ∈ {x, y, z}. An edge of a box is an i-edge if it is
parallel to the i-axis. The i-width of a box is the length
of its i-edges. An octree is i-balanced if for all pairs of
candidate boxesB,B′ which are edge-neighbors, then the i-
widths of B and B′ is within a factor of 2 of each other. The
octree is balanced if it is i-balanced for all i = x, y, z. This
general definition will be used later for the Rectangular
Cxyz Algorithm. For now, we only do full splits and we can
use w(B) as the definition of width.
In the rest of the Balanced Cxyz Algorithm, all our

queues will be minimum priority queues. The comparison
criterion for these queues is w(B) for each box B. The Re-
finement Phase has three sub-phases:

Refinement Phase:

1. T ′

1 ← Balance(T1)
2. For each candidate box in T ′

1, introduce vertices in the
middle of bichromatic edges.

3. T2 ← Disambiguate(T ′

1)

The first sub-phase Balance(T1) amounts to splitting
any candidate box B that has an edge-neighbor of width
> 2w(B). At the end of this sub-phase, we say the octree
is “balanced”. The third sub-phase is based on the concept
of ambiguity which we next introduce.

5.1. Disambiguation Sub-phase

We want to call certain boxes “ambiguous” if there is not
enough information to do a MC-like construction, and this
is resolved by splitting the ambiguous box. This may in turn
cause new boxes to become ambiguous. In the following we
will identify three kinds of ambiguity.
Let us indicate the issues that arise if we simply replace

C1 in the Balanced PV Algorithm by Cxyz. Consider an
horizontally-stretched hyperboloid as in Figure 6 (a1). We
run the Balanced Algorithm on this hyperboloid, and the
Subdivision Phase terminates with the 10 boxes shown in
Figure 6 (a2). Clearly, both of the two larger boxes (B1

and B3) satisfy Cx. The output graph obtained by our con-
nection rules (in the Regularized Algorithm) is the yellow
polytopeG seen in Figure 6(a2). SinceG forms a closed sur-
face, it is clearly wrong. An error occurred in box B1 (and
also B3) where S ∩ B1 is a tube while G ∩ B1 is a planar
surface. If we had split B1, we would have discovered this
error. We say B1 (resp., B3) has “3D ambiguity”. A simi-
lar problem is seen in Figure 6(b1), corresponding to “2D

6

ambiguity” in each of the boxes B1, B3, B4, B6. Suppose B
satisfies Cy. Then we say B has 3D ambiguity if the inte-
rior of its top or bottom faces has four vertices. We say B

has 2D ambiguity if one or more of its vertical faces has
exactly two vertices on the same edge. Note that this edge
is not a vertical edge because Cy(B) is satisfied.

(B1)

(a2)

(a1) (b1)

(b2)

(B1) (B2) (B3)

(B1) (B2) (B3)

(B4) (B5) (B6)

(B3)(B2)(B1)

(B4) (B5) (B6)

(B3)(B2)

Fig. 6. Examples of 2D and 3D ambiguity.

This definition is modified accordingly if B satisfies Cx

or Cz. In Figure 6(a1), the ambiguous boxes satisfies Cx. In
Figure 6(b1), the ambiguous boxes might satisfy Cx or Cz.
We now describe the third kind of ambiguity. Its moti-

vation will be become clearer in the Construction Phase
below. Let i ∈ {x, y, z} be the monotone direction of a box
B. We say B has an alternating ambiguity if it properly
contains the i-face F of its neighbor, and this F is alter-
nating.
Finally, a box B is said to be ambiguous if it is 2D, 3D

or alternating ambiguous.
Lemma 2 If we split an ambiguous box B into 8 subboxes,
none of these subboxes will be ambiguous.
Nevertheless, splitting of ambiguous boxes might induce

its edge-neighbors to become ambiguous and also cause the
octree to be unbalanced. The re-balance procedure is very
local, we only need to propagate the “modified” boxes. We
will next describe the Construction Phase for the Balanced
Cxyz Algorithm.

5.2. Construction Phase

Let F be a face of some box B. Our first goal is to con-
nect the vertices on F by arcs. Let B′ be a neighbor of B
that shares part of F as a common face. There are two pos-
sibilities: If B′ ∩ B = F , then B′ has width at least that
of B. This is the case we are interested in: call F active
in this case. Otherwise, F is inactive; this means B′ must
have width that is half that of B. We are not interested
in inactive F because we would have processed the faces
of B′ before B, and in particular, any vertex in F would
have been processed. Henceforth, we will only focus on arc
connections for active faces.
Recall that at the end of the Refinement Phase, we have

an octree T2 in which all the bichromatic edges have a ver-
tex in its middle. Our goal is to connect pairs of these ver-
tices into arcs. Define an arc loop to be a closed curve

comprising of such arcs on the boundary of a box B. The
Construction Phase has three steps:

Construction Phase:
Let Q be a priority queue of the candidate boxes in T2.
While (Q is non-empty)

Remove a box B from Q
1. Arc connect the vertices on the active faces of B
2. Group the arcs on B’s boundary into arc loops
3. Triangulate the arc loops on the boundary of B

Steps 2 and 3 are straightforward. In the following, we
will describe how to implement Step 1.

5.3. Sign Types of Active Faces

Note that each edge of an active face can have at most
two vertices. There might be a neighborB′ ofB that shares
an edge with an active F . If B′ has smaller width than B,
then a corner of B′ would be the midpoint of an edge of
F . Therefore, in considering sign types of F , we need to
consider signs of such midpoints. There can be up to 8 signs
on the boundary of F . The possible Sign Types of such
faces are enumerated in Figure 7 – there are 13 in number.
The sign type of F will uniquely determine the vertices that
are introduced into F (as illustrated in Figure 7).

(4d) (4e)∗(4a)∗ (4b) (4c)

(6a)∗ (6b)∗ (6c)∗ (8)∗

(2c)(2b)(0) (2a)

Fig. 7. Sign Types of active faces.

5.4. Arc Types of Active Faces

Let F be an active face, and suppose F bounds two boxes
B and B′, i.e., F = B ∩ B′. The rule for arc connection
in F depends on whether F is (known to be) “parametriz-
able” or not. Let us define this concept. We say F is known
parametrizable if F is parallel to the monotone direc-
tion of B or B′. Otherwise, F is said to be not known
parametrizable.
AssumeB is a Cy box. Then the four faces ofB which are

parallel to the y-direction are clearly known parametrizable
faces. It follows from our analysis for curves [16] that each
of these faces can have at most 4 vertices. So B can have at
most 16 vertices on its edges. Indeed, it is easy to see that
16 vertices can arise. Our connection rule for the known
parametrizable faces can follow the rules given in [16]. For

7

reference, call this the parametrizable face rule which
is reproduced in Figure 8.

It remains to

+ +

(e)

+

−

+

+

+

+

(f)(a)

+

− +

+

−

−

+

+

(b)

+ −

−

−+

+

−

+

−

+

+

−

(d)

+−

(c)

Fig. 8. Parametrizable Face Rules.

give the connec-
tion rule for the
case where F is not
known parametriz-
able. In the Regu-
larized Algorithm,
the arc connec-
tions on F may be
arbitrary, as long

as we ensure block-wise consistency. But the Balanced
Cxyz Algorithm needs a new approach.
We define the term i-block (i ∈ {x, y, z}) for the bal-

anced octree T2. For definiteness, let i = y. A y-block B
is a sequence B1, . . . , Bt of candidate boxes of T2 such that
(1) the bottom face of Bj is the top face of Bj+1 for j =
1, . . . , t−1; (2) the monotone direction for each Bi is y; and
(3) the block is maximal. Note that this implies that all the
boxes in a block have the same width. The width of the
block is defined as the width of any Bi. Also the end faces
of B refers to the top face of B1 and bottom face of Bt.
Recall that every candidate box in our octree T2 has been

assigned or inherited a monotone direction from the Subdi-
vision Phase. This partitions the set of candidate boxes of
T2 into blocks as defined above. All the boundary faces of
a block can be connected using the above Parametrizable
Face Rule, except for the end faces which is addressed in
the next lemma.
Lemma 3 Let F be an active end face of a block.
(a) If F is not known parametrizable, then it has at most 2
vertices.
(b) If F is known parametrizable, then F has at most 4
vertices. When there are 4 vertices, the sign types are one of
Figure 7(4b), (4c) and (4d). These can be connected using
the Parametrizable Face Rule.
The correctness of above lemma depends on the fact that

we have resolved alternating ambiguities in the Refinement
Phase. The only faces whose connection rule remains unde-
cided after the above discussion are those in the interior of
blocks.We know from previous counter examples that there
is a need for global consistency, but it cannot be solved us-
ing a simple fixed rule like the AF Rule. Our solution is as
follows:
(1) if all but one face remains unconnected, we can con-
nect this face in a safe way (i.e., one which will not lead to
contradiction). This connection rule will be known as the
“Matching Rule”, to be given shortly.
(2) in any candidate box, at most two opposite faces cannot
be connected by the Parametrizable Face Rule.
To “process” a box B in the present context means to

connect all the vertices on the faces of B. We can now pro-
cess B as follows: if (1) holds, we can process B by using
the Matching Rule to connect its remaining unconnected
face. Otherwise (2) holds, and we search in any one of the
two directions of the block containing B, looking at neigh-

boring boxes B1, B2, . . . until we find a box Bk that satis-
fies (1). Then we apply the Matching Rule to Bi for i =
k, k − 1, . . . , 1. Thus each Bi is processed, and B can now
be processed using the Matching Rule.
Let us now define the Matching Rule for a candi-

date box B with parametrization direction y. Assume
that B’s top face, as well as the other four faces parallel
to y-direction, have been connected. Then the Match-
ing Rule tells us how to connect the bottom face F . Let
v1, v2, . . . , v2m be the vertices on the boundary of F . Note
that m ≤ 4. The Matching Rule tells us to introduce the
arc (vi, vj) if there exists a path of arcs on the boundary
of B from vi to vj . Note that this rule yields a unique
way to connect all the vertices on F . Figure 9 illustrates
this Matching Rule. The correctness proof of the Balanced
Cxyz Algorithm follows the same structure as that of the
Regularized Cxyz Algorithm:

(i)

(v) (v’) (v”)

(iii)(ii) (iv)

Fig. 9. Examples of matching rules ((i), (ii), (iii) and (iv)) and
propagation rules ((v)→(v’)→(v”)) to connect vertices.

6. Rectangular Cxyz Algorithm – Exploiting
Anisotropy

The ability to have partial splits (i.e., half-splits or
quarter-splits) can be highly advantageous. We design such
an algorithm, known as the Rectangular Cxyz Algo-
rithm. A technique from the Rectangular Cxy Algorithm
[16] can be applied. The implementation details are more
complicated, involving four changes:
1. To ensure termination, we must fix some arbitrary up-
per bound ρ > 1 on the aspect ratio of any inconclusive
box. The aspect ratio of a box is the ratio of the lengths
of the longest edge to shortest edge.
2. For the Subdivision Phase, we test each box B as fol-
lows. We go through the following list (2),(3) of predicates
(in this order):

8

L0 :

Cout : C0(B)

Cin : Cxyz(B)

L1 :

Cout : C0(B1234), C0(B5678), C0(B1278), C0(B3456),

C0(B1458), C0(B2367)

Cin : Cxyz(B1234), Cxyz(B5678), Cxyz(B1278),

Cxyz(B3456), Cxyz(B1458), Cxyz(B2367)

(2)

L2 :

Cout : C0(B12), C0(B34), C0(B56), C0(B78), C0(B14), C0(B23),

C0(B67), C0(B58), C0(B18), C0(B27), C0(B36), C0(B45)

Cin : Cxyz(B12), Cxyz(B34), Cxyz(B56), Cxyz(B78),

Cxyz(B14), Cxyz(B23), Cxyz(B67), Cxyz(B58),

Cxyz(B18), Cxyz(B27), Cxyz(B36), Cxyz(B45)

(3)

This list amounts to checking C0 or Cxyz on the whole,
on half-, or quarter-parts of B. The subboxes of B are
denoted Bij or Bijk or Bijkℓ (i, j, k, ℓ ∈ {1, . . . , 8}) us-
ing some 4 fixed convention. We use the gray code to label
successive orthants, starting from 1 = 000, 2 = 001, 3 =
011, 4 = 010, 5 = 110, 6 = 111, 7 = 101, 8 = 100. for label-
ing the 8 orthants of the coordinate system. This list has
three sublists (L0, L1, L2). If a condition in L0 is verified
we tag B as an in- or out-box, accordingly. If a condition
in L1 (L2) is verified, we half- (quarter-) split to produce
a child that satisfies that condition, and tag that child ac-
cordingly. If no condition is verified, we do a full-split.
3. For balancing, we balance in the x-, y- and z-directions
independently. This could create pairs (B,B′) of neighbor-
ing boxes where B ∩ B′ = F but F is a proper subface of
B and of B′. We half-split either B or B′ to make F a face
of a subbox. Now, F would be active, and this allows our
former analysis to work.
4. The Disambiguation Sub-phase and Construction Phase
are unchanged.

7. Correctness Proof

The complete proof of the correctness of our algorithms
is found in the thesis of Lin [15]. Here, we give a brief
overview. Recall that correctness means that the output
graph G is isotopic to S in the input region R(T0), denoted
“G ≃ S (modR(T0))”. We must assume that S intersects
the boundary of R(T0) non-tangentially (in a collection of
topological ovals).
Let T be the final octree produced by the algorithm. The

face of a leaf box of T is called a boundary face if it is con-
tained in the boundary ∂R(T0) of R(T0). We assume that

4 Unlike the 2-D case, there seems to be no uni-
versally accepted convention for this. See, e.g.,
http://godplaysdice.blogspot.com/2007/09/convention-for-
quadrantoctantorthant.html.

these boundary faces have been connected by arcs as in the
planar Cxy algorithm: this leads to an isotopic approxima-
tion of S ∩ ∂R(T0). The remaining faces are connected as
described in our algorithm above, and finally we introduce
surface patches inside each box.
Why is this construction correct? The argument consists

of two major steps. First we show the existence of a surface
S̃ that is isotopic to S via an isotopy that respects the
vertices of T (i.e., the isotopy does notmove the surface past

any vertex). We denote this relation by “S ≃ S̃ (modT)”.

Moreover, this surface S̃ has some nice properties relative
to T , namely, S̃ should intersect all the segments and faces
of T “cleanly”. Here, “segment” means any edge of a box
that does not have a corner in its interior. The intersection
is clean if for any face F , S̃ ∩ F has no loops, and for any
segment s, |S̃ ∩ s| ≤ 1. The existence of S̃ is shown using a
(conceptual) process to remove loops and to remove pairs of
intersections on segments. To ensure termination, we define
a partial order on loops and on pairs, and show that we can
remove minimal elements of this partial order repeatedly.
When this partial order is empty, the surface is clean.
To define this partial order, we need to maintain some

monotonicity property of the surface (not the underlying
function that defines the surface). Here we see a new com-
plication: in the Regularized case, we could remove all the
loops before the pairs, and so we can define two separate
partial orders, on loops and on pairs. In the Balanced case,
we are forced to define a single partial order on their union.
The second major step involves the notion of alternat-

ing block: this is a maximal set of adjacent boxes that
share alternating faces. We show that G ≃ S̃ within each
alternating block of T . Finally, we can conclude that G ≃
S̃ ≃ S (modR(T)). This completes are proof for the Bal-
anced Cxyz. But it is clear that the proof applies mutatis
mutandis to the Rectangular Cxyz.

8. Experimental Results

Our algorithms are implemented in Java on the Eclipse
Platform. All examples are run on an Intel Core2 Duo Mo-
bile Processor T2500 (2.0Ghz, 667FSB, 2MB shared L2
Cache) and 2.0Gb of RAM. We use the default Java heap
memory 256MB (some runs result in OutOfMemoryError
(OME)). We plan to convert the Java codes to C++ for
distribution with our open source Core Library. We im-
plemented four algorithms: PV, Balanced Cxyz, Balanced
Cxyz with epsilon precision, and Rectangular Cxyz. These
are abbreviated as PV, Cxyz, Cxyze, and Rect-n (where n
is the maximum aspect ratio). We did not compare to Sny-
der as his 3D algorithm is non-trivial to implement, and
it is expected to be less efficient, based on experience with
the planar case [16]. Table 1 lists 11 examples of our tests.
Figure 10 visualizes the surfaces of Eg2, Eg3, Eg6 and Eg7.
Table 2 compares the number of boxes and timings (in ms)
among Cxyz, PV, and Rect-n (n = 2, 4, 8, 16, 32). The per-
centages represent the relative number of boxes and the

9

relative timing, with Cxyz as 100%.
We emphasize that our speed gains over PV is, in general,

at the expense of losing geometric accuracy. This is not a
bad trade-off because we believe that the optimal way to
achieve geometric accuracy is not by subdivision (although
it is possible). Rather, it should be achieved as a post-
construction phase using Newton-type iteration.
(1) Cxyz is at least as good as PV, and is significantly

faster than PV in most examples. In Eg8b(4), Cxyz is 7.5
times faster than PV. In Eg8b(6), Cxyz spends 1.3 seconds
to construct the mesh, compared to PV which spends more
than 70 seconds and runs out of memory. Rect is the fastest
in both Eg8b(4) and Eg8b(6): Rect-2 spends 141 ms for
Eg8b(4), and 172 ms for Eg8b(6). The only exception is
Eg8a where Cxyz and PV produce the same number of
boxes, and spend the same amount of time. In Eg8b(2),
we use the same function as Eg8a, but with an asymmetric
original box. Cxyz is twice as fast as PV. Also note that
in the Eg3, Cxyz and PV also produce the same number
of boxes, but Cxyz is faster than PV because the predicate
C1 is more expensive than Cxyz.

(2) Rect can be significantly faster than Cxyz, but the
performance of Rect is inconsistent. In Eg3, Rect-32 takes
11.8% of Cxyz’s time; and in Eg8b(6), Rect-2 takes 12.8% of
Cxyz’s time. The input surface for these examples are very
long and thin, allowing Rect to take advantage of larger as-
pect ratios. The results show that although Rect produces
fewer boxes than Cxyz in all examples but Eg8b(2), never-
theless, the running time of Rect is not always faster than
Cxyz (as in Eg2 with a “squarish” input surface). This is
because Rect must spend more time checking splitting cri-
teria, and processing boxes in 3 directions.
(3) Increasing the maximum aspect ratio n in Rect does

not necessarily improve the performance of the algorithm.
In Eg3, increasing the maximum aspect ratio directly im-
proves the performance of Rect; but in Eg8b(6), it has an
opposite effect. This is because increasing the maximum
aspect ratio might cause the boxes to “over split” in one
direction, which is also the reason for the inconsistency of
Rect. Another example for over-splitting in Rect is Eg2,
where Rect-n spends more time than Cxyz.

(4) We also ran our algorithm on the high order polyno-
mial f(x, y, z) = x300 + y300 + z300 − 1 = 0. To construct
a correct mesh, Cxyz uses 188 ms; PV uses 219 ms; Rect-2
uses 296 ms and Rect-4 uses 375 ms. On the other hand,
starting from Rect-8, there are overflow/underflow errors.
This problem can be resolved if we use a library like our
Core Library.

9. Conclusion

This paper introduces new algorithms for the isotopic
approximation of implicit surfaces. Our algorithms are rel-
ative simple, efficient and easy to implement. A main idea
is to exploit parametrizability (as in Snyder) and nonlocal

isotopy (as in Plantinga & Vegter), and we further extend
this idea to anisotropic subdivision. Our comparison us-
ing three algorithms (PV, Balanced Cxyz, and Rectangular
Cxyz) show that our Cxyz Algorithm is consistently more
efficient than PV and the Rectangular Cxyz Algorithm can
exhibit significant speedup. But the precise way to exploit
anisotropy remains a research problem.
Three interesting areas of research are (i) to extend this

work to higher dimensions (cf. [10]); (ii) effective treatment
of singularity using numerical methods (cf. [5]); and (iii)
complexity analysis of such algorithms for 2 or higher di-
mensions (cf. [23]).

References

[1] Saugata Basu, Richard Pollack, and Marie-Françoise Roy.

Algorithms in Real Algebraic Geometry. Algorithms and
Computation in Mathematics. Springer, 2003.

[2] J-D. Boissonnat and S. Oudot. Provably good sampling and
meshing of surfaces. Graphical Models, 67(5):405–451, 2005.

[3] J.-D. Boissonnat and M. Teillaud, editors. Effective
Computational Geometry for Curves and Surfaces. Springer,

2006.
[4] Jean-Daniel Boissonnat, David Cohen-Steiner, and Gert Vegter.

Isotopic implicit surfaces meshing. In ACM Symp. Theory of
Comput., pages 301–309, 2004.

[5] M. Burr, S.W. Choi, B. Galehouse, and C. Yap. Complete
subdivision algorithms, II: Isotopic meshing of singular algebraic

curves. In 33th Int’l Symp. Symbolic and Alge. Comp. (ISSAC)
(ISSAC’08), pages 87–94, 2008. Hagenberg, Austria. Jul 20-23,
2008. In Special Issue of JSC, vol 47, No.2, pp.131-152, 2012.

Also, in arXiv:1102.5463.
[6] S.-W. Cheng, T.K. Dey, E.A. Ramos, and T. Ray. Sampling and

meshing a surface with guaranteed topology and geometry. In

Proc. 20th ACM Symp. on Comp. Geom., pages 280–289, 2004.
[7] Evgeni V. Chernyaev. Marching cubes 33: Construction of

topologically correct isosurfaces. Technical report, Institute for

High Energy Physics, 142284, Protvino, Moscow Region, Russia,

1995.
[8] Arno Eigenwillig, Lutz Kettner, Elmar Schömer, and Nicola

Wolpert. Complete, exact, and efficient computations with cubic

curves. In 20th ACM Symp. on Comp. Geom., pages 409 – 418,

2004. Brooklyn, New York, USA, Jun 08 – 11.
[9] Exact Geometric Computation homepage, Since 1996.

FAQs, downloads, documentation and links from URL

http://cs.nyu.edu/exact/.
[10] Benjamin Galehouse. Topologically Accurate Meshing Using

Spatial Subdivision Techniques. Ph.D. thesis, New York

University, Department of Mathematics, Courant Institute, May

2009. From http://cs.nyu.edu/exact/doc/.
[11] H. Hong. An efficient method for analyzing the topology of

plane real algebraic curves. Mathematics and Computers in

Simulation, 42:571–582, 1996.
[12] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring

of hermite data. ACM Trans. on Graph., 21(3):339–346, 2002.
[13] Narayan Kamath. Subdivision algorithms for complex root

isolation: Empirical comparisons. Msc thesis, Oxford University,

Oxford Computing Laboratory, August 2010.
[14] Narayan Kamath, Irina Voiculescu, and Chee Yap. Empirical

study of an evaluation-based subdivision algorithm for complex

root isolation. In 4th Intl. Workshop on Symbolic-Numeric
Computation (SNC), pages 155–164, 2011.

[15] Long Lin. Adaptive Isotopic Approximation of Nonsingular
Curves and Surfaces. Ph.D. thesis, New York University,

September 2011.

10

Surface Name Equation f(x, y, z) = 0 Bounding Box (ROI)

Eg1 tangle cube x4
− 5x2 + y4

− 5y2 + z4 − 5z2 + 10 [(−8,−8,−8), (8, 8, 8)]

Eg2 chair (x2 + y2 + z2 − 23.75)2 − 0.8((z − 5)2 − 2x2)((z + 5)2 − 2y2) [(−8,−8,−8), (8, 8, 8)]

Eg3 quartic cylinder y2x2 + y2z2 + 0.01x2 + 0.01z2 − 0.01 [(−8,−8,−8), (8, 8, 8)]

Eg4 quartic cylinder y2(x − 1)2 + y2(z − 1)2 + 0.01(x − 1)2 + 0.01(z − 1)2 − 0.2002 [(−5,−5,−5), (7, 7, 7)]

Eg5 quartic cylinder y2(x − 1)2 + y2(z − 1)2 + 0.01(x − 1)2 + 0.01(z − 1)2 − 1.0002 [(−12,−12,−12), (14, 14, 14)]

Eg6 shrek −x4
− y4

− z4 + 4(x2 + y2z2 + y2 + z2x2 + z2 + x2y2) − 20.7846xyz − 10 [(−8,−8,−8), (8, 8, 8)]

Eg7 tritrumpet 8z2 + 6xy2
− 2x3 + 3x2 + 3y2

− 0.9 [(−8,−8,−8), (8, 8, 8)]

Eg8a eclipse x2 + 102y2 + 102z2 − 1 [(−8,−8,−8), (8, 8, 8)]

Eg8b(n) (n = 2, 4, 6) eclipse x2 + 10ny2 + 10nz2 − 1 [(−7,−7,−7), (8, 8, 8)]

Table 1
Equations and bounding boxes of examples

(a) Eg2:chair (b) Eg3:quartic cylinder (c) Eg6:shrek (d) Eg7:tritrumpet

Fig. 10. Approximation of various examples in Table 1.

Equation Cxyz PV Rect-2 Rect-4 Rect-8 Rect-16 Rect-32

Eg1 2584 / 391 198% / 184% 42% / 148% 50% / 168% 66% / 200% 81% / 236% 103% / 288%

Eg2 26104 / 4516 406% / 349% 51% / 163% 76% / 236% 98% / 302% 118% / 372% 141% / 451%

Eg3 35792 / 3437 100% / 112% 33% / 82% 18% / 47% 9% / 28% 6% / 17% 3% / 12%

Eg4 80662 / 10282 OME>90sec. 54% / 174% 41% / 129% 34% / 105% 36% / 115% 33% / 103%

Eg5 134163 / 17187 OME>90sec. 48% / 205% 28% / 86% 23% / 71% 21% / 65% 20% / 61%

Eg6 31144 / 4046 319% / 296% 44% / 134% 52% / 171% 62% / 208% 70% / 255% 77% / 283%

Eg7 1688 / 328 172% / 128% 47% / 109% 50% / 119% 61% / 129% 74% / 138% 98% / 176%

Eg8a 400 / 94 100% / 100% 44% / 133% 50% / 149% 58% / 166% 68% / 166% 80% / 183%

Eg8b(2) 274 / 125 789% / 200% 54% / 87% 56% / 87% 72% / 100% 82% / 112% 102% / 112%

Eg8b(4) 1247 / 203 1774% / 754% 28% / 69% 34% / 69% 39% / 77% 44% / 85% 53% / 100%

Eg8b(6) 15226 / 1343 OME>70sec. 5% / 13% 5% / 14% 6% / 15% 6% / 15% 7% / 16%

Table 2

Cxyz vs. PV vs. Rect-n

[16] Long Lin and Chee Yap. Adaptive isotopic approximation
of nonsingular curves: the parameterizability and nonlocal

isotopy approach. Discrete and Comp. Geom., 45(4):760–795,
2011. Special Conference Issue based on 25th ACM Symp. on

Comp.Geom, 2009.
[17] W. E. Lorensen and H. E. Cline. Marching cubes: A

high resolution 3D surface construction algorithm. In

Maureen C. Stone, editor, Computer Graphics (SIGGRAPH ’87
Proceedings), volume 21, pages 163–169, July 1987.

[18] Ralph Martin, Huahao Shou, Irina Voiculescu, Adrian Bowyer,

and Guojin Wang. Comparison of interval methods for plotting

algebraic curves. Computer Aided Geometric Design, 19(7):553–
587, 2002.

[19] Ramon E. Moore. Interval Analysis. Prentice Hall, Englewood

Cliffs, NJ, 1966.
[20] Simon Plantinga and Gert Vegter. Isotopic approximation of

implicit curves and surfaces. In Proc. Eurographics Symposium

on Geometry Processing, pages 245–254, New York, 2004. ACM
Press.

[21] Helmut Ratschek and Jon Rokne. Computer Methods for the
Range of Functions. Horwood Publishing Limited, Chichester,

West Sussex, UK, 1984.
[22] Helmut Ratschek and Jon G. Rokne. SCCI-hybrid methods for

2d curve tracing. Int’l J. Image Graphics, 5(3):447–480, 2005.
[23] Michael Sagraloff and Chee K. Yap. A simple but exact and

efficient algorithm for complex root isolation. In Ioannis Z.

Emiris, editor, 36th Int’l Symp. Symbolic and Alge. Comp.
(ISSAC), pages 353–360, 2011. June 8-11, San Jose, California.

[24] Elmar Schoemer and Nicola Wolpert. An exact and efficient
approach for computing a cell in an arrangement of quadrics.

Comput. Geometry: Theory and Appl., 33:65–97, 2006.
[25] Raimund Seidel and Nicola Wolpert. On the exact computation

of the topology of real algebraic curves. In Proc. 21st ACM
Symp. on Comp. Geom., pages 107–116, 2005. Pisa, Italy.

[26] J. M. Snyder. Interval analysis for computer graphics.

SIGGRAPH Comput.Graphics, 26(2):121–130, 1992.
[27] Barton T. Stander and John C. Hart. Guaranteeing the topology

of an implicit surface polygonalization for interactive meshing.

In Proc. 24th Computer Graphics and Interactive Techniques,

pages 279–286, 1997.
[28] Gabriel Taubin. Distance approximations for rasterizing implicit

curves. ACM Transactions on Graphics, 13(1):3–42, 1994.
[29] Gabriel Taubin. Rasterizing algebraic curves and surfaces. IEEE

Computer Graphics and Applications, 14(2):14–23, 1994.

APPENDIX

This appendix illustrates some of the surfaces from Table
1 using Cxyze, PV, Cxyz and Rect-n. Here, n is selected so
that Rect-n is the fastest among various Rect algorithms.

11

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

Fig. 11. (a)-(e): Quartic cylinder1 y2(x − 1)2 + y2(z − 1)2 + 0.01(x − 1)2 + 0.01(z − 1)2 − 0.2002 using Rect-n (n = 2, 4, 8, 16, 32). (f)-(j):
Despite the visual discontinuity, topology is preserved in the highlighted (red) area of the approximations.

(a) Cxyze (b) PV

(c) Cxyz (d) Rect-2

Fig. 12. Eg6:−x4−y4−z4+4(x2+y2z2+y2+z2x2+z2+x2y2)−20.7846xyz−10.

(a) Cxyze (b) PV

(c) Cxyz (d) Rect-2

Fig. 13. Eg2: (x2+y2+z2−23.75)2−0.8((z−5)2−2x2)((z+5)2−2y2).

(a) Cxyze (b) PV

(c) Cxyz (d) Rect-2

Fig. 14. Eg7: 8z2 + 6xy2 − 2x3 + 3x2 + 3y2 − 0.9.

12

