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Abstract.

Let f be a univariate polynomial with real coefficients, f ∈ R[X]. Subdivision algorithms based
on algebraic techniques (e.g., Sturm or Descartes methods) are widely used for isolating the roots of
f in a given interval. In this paper, we consider subdivision algorithms based on purely numerical
primitives such as function evaluation. Such methods have adaptive complexity, are local, and are
also applicable when f is transcendental. The complexity analysis of adaptive algorithms is a new
challenge for computer science. In this paper, we introduce a form of continuous amortization for
adaptive complexity.

Our analysis is applied to an evaluation-based root isolation algorithm called EVAL. EVAL is
based on an algorithm of Mitchell and can also be seen as a 1-dimensional analogue of algorithms
by Plantinga and Vegter for meshing curves and surfaces. The algorithm itself is simple, but its
complexity analysis is not. Our main result is an O(d3(log d+L)) bound on the subdivision-tree size
of EVAL for the benchmark problem of isolating all real roots of a square-free integer polynomial f

of degree d and logarithmic height L.
Our proof introduces several novel techniques: First, we provide an adaptive upper bound on

the complexity of EVAL using an integral, analogous to integral bounds provided by Ruppert in a
different context. Such integrals can be viewed as a form of continuous amortization. In addition,
we use two algebraic amortization techniques: one is based on the standard Mahler-Davenport root
bounds, but the other, based on evaluation bounds, is new.
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1. Introduction. The analysis of algorithms is a highly developed area of the-
oretical computer science. Current analysis techniques are mostly aimed at com-
binatorial and discrete algorithms. But in Computational Science & Engineering
(CS&E) applications, numerical and continuous algorithms predominate. An impor-
tant paradigm for these continuous and numerical algorithms is iteration (e.g., New-
ton’s method). Iteration can be combined with decomposition of the computational
domain; this technique is known as the subdivision method in the computational
literature1 for curves and surfaces. A famous example is the Marching Cube algorithm
[22]. Subdivision methods typically use termination criteria based on local, a poste-
riori ε-parameters; in this sense, these algorithms are described as adaptive. The
standard worst-case analysis techniques are inappropriate for adaptive algorithms. A
serious challenge to theoretical computer science is to provide new complexity analy-
ses that can account for the adaptive behavior of numerical algorithms. This would
open up the vast territory of algorithms in CS&E for theoretical algorithms develop-
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1The subdivision terminology has several related but distinct uses. For instance, there are sub-
division surfaces from mesh refinement. One could perform subdivision in parameter space (e.g.,
Bezier subdivision), but we focus on “domain subdivision”, a multidimensional generalization of
binary search. The multidimensional search literature often focuses on the data structures (e.g.,
quadtree, k-d tree), but we focus on the algorithmic paradigm of subdivision.
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ment. Such a challenge arose in the 1980s, after Klee and Minty showed that it is
impossible to account for the generally good performance of the simplex algorithm
by using a worst-case analysis. Starting from the work of Borgwardt, Smale and
others [4], a variety of probabilistic analyses were able to provide polynomial-time
bounds. Nevertheless, the probabilistic assumptions in such results are considered
unsatisfactory and arbitrary. The acclaimed smoothed analysis of Spielman and Teng
[40] tries to overcome such objections by “localizing” the probabilistic assumptions to
the input instance. As far as the authors are aware, there has been no previous non-
probabilistic methods for analyzing adaptive algorithms. The present paper proposes
such a non-probabilistic method.

The main contribution of this paper is the development of a complexity analysis
technique that can be applied to a large class of subdivision algorithms. We illustrate
its application on a practical real root isolation algorithm. The algorithm is chosen
for its simplicity and its structural similarities to other subdivision algorithms. Our
analysis of this algorithm, however, is nontrivial and exhibits most of the necessary
elements needed to extend it to other subdivision algorithms of this type. Similar
subdivision algorithms are prevalent in graphics, geometric modeling applications,
and scientific computation (e.g., [10]). They are easy to implement because they
typically use numerical primitives and simple data structures, such as quadtrees.
Unfortunately, this power makes such algorithms difficult to analyze.

In this paper, the complexity of a subdivision algorithm refers to the number
of subdivisions performed by the algorithm, also called the recursion tree size.
Kearfott [18] has a general complexity analysis of subdivision methods for finding
zeros of multidimensional systems. His recursion tree size bound is based only on
the maximum depth of subdivision. Such bounds, however, may be exponential in
the true recursion tree size because they cannot account for adaptivity: subdivision
algorithms will spend more time subdividing near more difficult features, generating a
few deep paths in the tree, while the overall tree size remains modest in size. Indeed,
in this paper, we show that the overall tree size is always polynomial in the depth.

The recursion tree size should be bounded in terms of intrinsic parameters of
the input. A central question is: How should we quantify such parameters? The
most common approach is based on the condition number of the problem, and is used
extensively in the Smale school [3]. A second approach is based on precision sensitivity
[36, 2]: the bit-version of output sensitivity, which is well-known in computational
geometry [14]. The third approach, which is expanded in this paper, is based on
defining an adaptivity measure on the input instance via an integral. In computational
geometry, such an integral was introduced by Ruppert [34] via a local feature size
function.

1.1. Continuous Amortization. Amortization is a well-known computational
paradigm and analysis technique in discrete algorithms [11]. We can view the integral
approach as a continuous form of amortization: in fact, if the number of subdivisions
in a region R is bounded above by an integral I =

∫
x∈R

φ(x)dx, then the value I
can be interpreted as an amortized complexity, where the complexity charge φ(x)
is distributed over the region R. Intuitively, integral approaches represent a kind of
averaging, while condition number approaches are a worst-case measure. For instance,
the condition number is infinite for singular inputs, while it is possible to have a finite
bound on an improper integral. Although Ruppert’s integral approach is well-known
in Computational Geometry, its application has been restricted to proving that the
work done by certain algorithms achieves the bound of this integral. An explicit
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bound on his integral is not computed in such results. In this paper, our challenge is
to convert an integral bound into an explicit a priori complexity bound.

1.2. Algebraic Amortization. In order to ultimately bound the above integral
for our problem, we must use amortization in yet another form: algebraically rather
than continuously. Algebraic amortization originated with Davenport [13]: the idea
is to replace individual root separation bounds by a bound for a product of such
root separations. In our previous work, we had extended such arguments to other
Sturm methods [15] and to the Descartes method [16]. These arguments are based on
the Mahler-Davenport bound [13, 42]. In this paper, we need the Mahler-Davenport
bound in a form that was stronger than was previously used. Moreover, we develop
another algebraic amortized bound based on evaluation bounds. Recently, Cheng et
al. [7] also used evaluation bounds, but in a non-amortized, multivariate setting.

1.3. The EVAL algorithm. We illustrate our technique by providing an anal-
ysis for EVAL, a simple but practical evaluation-based subdivision algorithm for
real root isolation of a polynomial f ∈ R[X]. Our version is exact and based on
bigfloat computations; the fixed-precision form of this algorithm was first formulated
by Mitchell [24] who, in turn, based it on an algorithm of Moore [25, p. 62]. We
first came to the EVAL algorithm by way of specializing the 2- and 3-D meshing
algorithm of Plantinga-Vegter [29] to 1-D, in our effort to extend their work to treat
singularities. We achieved such extensions in [6] (for 1-D) and in [5] (for 2-D). There
are many well-known subdivision algorithms for real root isolation, e.g., the Sturm
method [31, 21, 15] or the Descartes method [8, 16, 20, 9]. These methods use so-
phisticated algebraic primitives, thereby restricting f to polynomials. On the other
hand, the numerical primitives in EVAL allow us in [6] to extend its reach beyond
polynomials (e.g., to hypergeometric functions).

The underlying principle of EVAL is the Bolzano theorem (a special case of the
Intermediate Value Theorem): if f is continuous, f(a)f(b) < 0 and a < b then there
is some c ∈ (a, b) such that f(c) = 0. So we may regard EVAL as an instance of the
Bolzano method (in analogy to the Sturm or Descartes methods). The computational
model for the Bolzano method is purely numerical: the primitives are the evaluation of
a function and interval evaluations of the function and its derivatives. In terms of the
complexity of the primitives, we see the progression STURM > DESCARTES >
BOLZANO. This suggests that the Bolzano method would be more adaptive than
Descartes, just as Descartes is more adaptive than Sturm [17].

It is standard to judge the complexity of root isolation algorithms using the
benchmark problem of isolating all the real roots of an integer polynomial of degree
d and logarithmic height L. Over 20 years ago, Davenport [13] proved that the tree
size is O(d(log d + L)) for the Sturm method. Only recently has it been shown that
the Descartes method achieves the same bound [16]. Both methods are optimal for
L ≥ log d [16]. In this paper, we prove that EVAL has a complexity of O(d3(log d+L)).
While this bound is far from optimal, the achievement is that we provide a polynomial
bound in d, L whereas the only previously known bound for the complexity of this
algorithm is a trivial exponential bound.

1.4. Related Work. There is a vast literature on the complexity of root isola-
tion (e.g., Pan [27]). For the benchmark problem, the bit-complexity of O(d3(log d
+ L)) for complex roots was first achieved by Schönhage [35]. There are improved
bounds when we count arithmetic operations, but they do not surpass Schönhage’s
bound when converted to bit-complexity. These algorithms aim at finding all roots of
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a polynomial (so they are optimized for the benchmark problem). In contrast, subdi-
vision methods have the important local property (i.e., they can isolate roots in any
given region). In the algebraic computing community, the Descartes method appears
to be most practical [9, 17, 33, 26, 33].

The importance of our result is that it points the way to the amortized analysis
of subdivision algorithms for curves and surfaces. This is an area for which there are
many practical adaptive algorithms but virtually no suitable analysis. We hope that
the analysis in this paper will serve as an example and provide a framework of the
analysis for these practical adaptive algorithms. We draw an analogy in this situation
with the field of linear programming: the simplex algorithm is highly successful in
practice but traditional complexity analysis is unable to account for this. This led
to the fruitful work of Smale, Borgwardt and others, including the smoothed analysis
of Spielman and Teng [40]. Our work follows this tradition except that, for the first
time, we break out of the probabilistic framework.

1.5. Overview of Paper. In §2, we describe our computational model and the
EVAL algorithm. In §3, we introduce the main result and the integral bound on
the number of subdivisions of the EVAL algorithm. In §4, we prove an amortized
evaluation bound that is used in the rest of the paper. In §5 and §6, we provide the
two bounds needed to complete the proof of our main result. We conclude in §7. An
appendix provides all missing proofs.

2. An Evaluation-based Algorithm. Fix f to be a square-free polynomial in
R[X] of degree d. In the Plantinga-Vegter computational model, we use the box (i.e.,
interval) version of f and its derivatives.

2.1. Box Functions. For any set S ⊆ R, define S to be the set of closed
intervals whose endpoints lie in S. For interval I = [a, b], let m(I) := (a + b)/2 and
w(I) := b − a be (resp.) the midpoint and width of I. A partition of I is a finite
subset P ⊆ I of non-overlapping intervals whose union is I. The size #(P ) of P is
the number of intervals in P . Our partitions mostly come from repeated bisections:
Let P be a partition and X ∈ P , then to bisect X in P means to form a new
partition in which X = [c, d] is replaced by its two children, i.e., the two intervals
[c,m(X)], [m(X), d]. As a result, #(P ) increases by 1. A partition of I resulting only
from repeated bisections of {I} is called a subdivision of I.

It is important to clarify the underlying computational model for our algorithms:
We assume all computation is reduced to interval arithmetic over bigfloats, i.e., the
set F := {m2n : m,n ∈ Z} = Z

[
1
2

]
. Thus, the operations (±,×) and bisection are all

exact.

A box function for f on I is a function f : (I ∩ F) → F such that for all
X ∈ (I ∩ F), f(X) ⊆ f(X). Here, f(X) := {f(a) : a ∈ X} is the set extension of
f , and f is a function applied to intervals and not applied to the set f(X). To
ensure the termination of the EVAL algorithm, it is assumed that f is continuous,
i.e., if X1,X2, · · · is a strictly decreasing sequence of intervals whose limit is a point
p, then the limit of the images f(Xi) is f(p).

2.2. The Evaluation Algorithm. We now present the Evaluation Algorithm,
EVAL, also discussed in [6]. Given an interval I = [a, b], EVAL isolates all the real
roots of f(x) in the interval (a, b). Specifically, it outputs a sequence of pairwise-
disjoint isolating intervals, one for each real root of f in the interval. The isolating
intervals are either of the form [c, c], implying that f(c) = 0, or [c, d], implying that
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there is a root in (c, d). The idea is to maintain a subdivision P of I. Initially,
P = {I}. The algorithm operates in two phases.

PHASE 1: Repeatedly bisect each X in P until each interval in P is EVAL-
terminal. An interval is EVAL-terminal if one of the following two conditions hold
for X:

C0(X) : 0 6∈ f(X)

C1(X) : 0 6∈ f ′(X)

If, when subdividing, f(m(X)) = 0, then output [m(X),m(X)].
PHASE 2: Let PEV AL be the subdivision of I at the end of Phase 1. For each

X ∈ PEV AL, take one of two actions: If C0(X) holds, discard X. If C1(X) holds,
evaluate the sign of f at the two end points of X = [c, d]. If f(c)f(d) < 0 output
[c, d], else discard X.

This algorithm terminates because f has simple roots in I (as f is square-free):
For if the algorithm did not terminate, then there would be a path of infinite length in
the subdivision tree. The intervals along this path would form a decreasing sequence of
intervals converging to a point p; therefore, f and f ′ applied to these intervals would
converge to f(p) and f ′(p) (resp.) at least one of which is nonzero. Its correctness
then follows from the definition of f and the Bolzano theorem (cf. §1.3).

2.3. Centered Form Interval Functions. For our complexity results, we need
stronger convergence properties for f ; we use the centered form box function [30],
defined as follows:

f(X) := f(m(X)) +

d∑

i=1

|f (i)(m(X))|
i!

(
w(X)

2
[−1, 1]

)i

. (2.1)

where d = deg f and
(

w(X)
2 [−1, 1]

)i

is an interval arithmetic expression. By consis-

tently multiplying through by d!, we have the same results and can keep all calculations
in F. For experimental comparison of centered forms with other box functions, see
[23, 41]. The centered form box function satisfies the following conditions:

Proposition 2.1 ([30]). Let Y ⊆ X be intervals, then there exists a positive
number KX , the Lipschitz constant such that:
(Inclusion isotone) f(Y ) ⊆ f(X).
(Lipschitz continuous) w( f(Y )) ≤ KX · w(Y ).
(Quadratic convergent) w( f(Y )) − w(f(Y )) ≤ KX · w(Y )2.

A Lipschitz constant for the centered form can be computed in the following way:

KX = KX(f) := max
a∈X

d∑

i=1

|f (i)(a)|
i!

(w(X))
i−1

. (2.2)

The definitions of f ′ and K ′
X = KX(f ′) are obtained by replacing f by f ′ in (2.1)

and (2.2).
Our goal is to find an upper bound for the size #(PEV AL), which is one more

than the number of bisection steps. We begin our analysis with a simple observation:
Lemma 2.2. Let Y ⊆ X be intervals. If a ∈ Y and 0 ∈ f(Y ) then w(Y ) ≥

|f(a)|/KX .
Proof. Since {0, f(a)} ⊆ f(Y ), we have w( f(Y )) ≥ |f(a)|. By the Lipschitz

property, w(Y ) ≥ w( f(Y ))/KX and hence w(Y ) ≥ |f(a)|/KX .
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3. An Integral Bound. In the remainder of this paper, we will analyze the
complexity of the EVAL algorithm for the benchmark problem where f ∈ Z[X] is
square-free, of height ‖f‖ < 2L, and the endpoints of I = [a, b] are integers. The
height ‖f‖ is the maximum absolute value of the coefficients of f and the logarithmic
height is L = log2 ‖f‖. We assume that a, b ≤ 2L since all real zeros of f lie in
this range [42]. We assume for simplicity that f ′ is square free; the removal of this
assumption does not affect the final result, but requires a delicate construction, a
sketch of which appears in §6.1

Theorem 3.1 (Main Result). The number of bisections performed by EVAL on
input f and interval I is O(d3(log d + L)).

Under the mild assumption of L ≥ log d, this bound becomes O(d3L). This should
be compared to the optimal bound of O(dL) known for the Sturm and Descartes
methods [16]. Our proof exploits the gamma function that is central in Smale’s theory
of point estimates [3, 37], defined as:

γ(x) = γf (x) := max
i≥2

( |f (i)(x)|
i!|f ′(x)|

)1/(i−1)

.

Intuitively, γ(x)−1 is the radius of Newton convergence of f at x. We write γ′(x) for
γf ′(x); in the literature, γ′(x) is also written as γ2(x). γ′(x) should not be confused
with the derivative of γ(x), which is not used in this paper.

Lemma 3.2. Suppose that there exists a b ∈ J such that w(J) ≤ 1
2γ(b) . Then

KJ ≤ 2d|f ′(b)|.
This is proved in the Appendix by replacing each f (i)(a) in the definition (2.2) of

KJ by its Taylor expansion at b and then applying the triangle inequality. We now
introduce the function that we use in our analysis:

G(a) := min

{
1

2γ(a)
,

|f(a)|
2d|f ′(a)|

}
. (3.1)

Lemma 3.3. Let J be an interval. If ∃b ∈ J such that w(J) < G(b), then J is
EVAL-terminal. In fact, C0(J) holds.

Proof. Since w(J) < 1
2γ(b) , Lemma 3.2 implies that KJ ≤ 2d|f ′(b)|. This inequal-

ity combined with w(J) < |f(b)|
2d|f ′(b)| implies that w(J) < |f(b)|

KJ
. By Lemma 2.2, C0(J)

holds.
Consider a conceptual algorithm, GEN. This algorithm is conceptual because it is

not meant to be implemented. It is introduced as a tool for analysis, for comparison
to the EVAL algorithm. The GEN algorithm is similar to PHASE 1 of the EVAL al-
gorithm, and we describe it analogously. Given an interval I = [a, b], GEN subdivides
I until the condition of Lemma 3.3 holds for all intervals. We maintain a subdivision
P of I. Initially P = {I}.

PHASE: Repeatedly bisect each X in P until each interval X in P is GEN-

terminal. By this we mean that the following condition holds:

G0(X) : ∃b ∈ X such that w(X) ≤ G(b)

This algorithm is called GEN for generic as it is a member of a class of generic
subdivision algorithms that include PHASE 1 of the EVAL algorithm. In the next
section, we explore this class of algorithms in more depth and show how they can
be used to bound other subdivision based algorithms. Technically, GEN is not an
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algorithm because it does not terminate near roots of f since G(a) cannot be used to
ensure that C1(J) holds. We address the termination problem §3.2. If the algorithm
terminates, then let PGEN be the partition at the end of the GEN algorithm.

Theorem 3.4. If the GEN algorithm terminates on I, then the following in-
equalities hold:

#PEV AL

(i)

≤ #PGEN

(ii)

≤ max

{
1,

∫

I

2da

G(a)

}

If GEN does not terminate, then the integral on the right is infinite.
Proof. (i) If X ∈ PGEN , then from Lemma 3.3, X is EVAL-terminal. Therefore

EVAL must terminate at some node X ′ along the path from I to X. Thus the
subdivision tree from EVAL is a subtree of the subdivision tree from GEN, implying
the first inequality. (ii) The proof of this inequality follows from Theorem 3.5 (in the
next section) and Lemma 3.3.

3.1. Framework of Stopping Functions. In this section, we provide a gener-
alization of the above technique that promises to be an important tool for bounding
the complexity of a large class of subdivision algorithms. Algorithms in this class
include EVAL, Plantinga-Vegter’s Algorithm and Snyder’s Algorithm for isotopic ap-
proximation [29, 28, 39]. We now formulate an abstract algorithm called GENERIC
which is intended to be a prototype of this class of algorithms in the one dimensional
case. It can be generalized easily to higher dimensions.

Let B0 be a fixed predicate (i.e., Boolean function) on F. GENERIC, which
depends on B0, is the following algorithm: Given an interval I = [a, b], GENERIC
maintains a partition P of I. Initially, P = {I}. Then, repeatedly bisect any interval
X in P for which B0(X) is false. The algorithm terminates when all intervals X in P
satisfy B0. If the algorithm terminates, let PGENERIC(I) denotes the final partition.

By a stopping function for GENERIC we mean a function F : F → R such
that, for any interval X, if there exists b ∈ X such that w(X) < F (b), then B0(X)
holds. For example, suppose B0(X) is the predicate that holds when C0(X) or C1(X)
holds, i.e., X is EVAL-terminal. Then Lemma 3.3 shows that the function G(a) in
(3.1) is a stopping function.

We have the following bound on #PGENERIC(I) in terms of any stopping func-
tion:

Theorem 3.5. If F is a stopping function for GENERIC then

#PGENERIC(I) ≤ max

{
1,

∫

I

2da

F (a)

}
.

If GENERIC does not terminate, the integral is infinite.
Proof. If #PGENERIC = 1, then the bound is immediate. If #PGENERIC > 1, then
an examination of the GENERIC algorithm shows that for X ∈ PGENERIC , since
GENERIC did not terminate at the parent of X, the following must hold:

∀c ∈ X,w(X) ≥ 1

2
F (c).

In addition,
∫

I
2da
F (a) =

∑
X∈PGENERIC

∫
X

2da
F (a) and so it suffices to show that for every

X ∈ PGENERIC ,
∫

X
2da
F (a) ≥ 1. Let d ∈ X be such that F (d) is maximal. Then

∫

X

2da

F (a)
≥

∫

X

2da

F (d)
=

2

F (d)
w(X) ≥ 2

F (d)
· F (d)

2
= 1.
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In the case when GENERIC does not terminate, we can still look at the partition
P at any moment in time. The above argument shows that #P is still bounded by
the integral

∫
I
2da/F (a). Since #P can be chosen arbitrarily large, this shows the

integral to be unbounded.
The setup of GENERIC and the existence of F is a very common situation among

subdivision algorithms, and this type of continuous amortization argument has sig-
nificant promise to provide bounds for other subdivision algorithms. We now return
to the analysis of our example algorithm, EVAL.

3.2. Avoiding Zeros of ff ′. The GEN algorithm has the useful property of
bounding the number of subdivisions of EVAL, Theorem 3.4. On most inputs, how-
ever, GEN does not terminate. In this section, we first isolate the regions where GEN
fails to terminate and perform GEN on the regions where it does terminate. This
will make the bound on the time complexity finite, while also using the inequality of
Theorem 3.4.

By definition, G(a) ≥ 0 for all a and G(a) = 0 iff f(a) = 0 or f ′(a) = 0. Thus, if
the integral

∫
2da
G(a) of Theorem 3.4 is taken over a union of intervals I ′ ⊆ I that avoid

the zeros of f and f ′, then the integral will be finite. We now construct such an I ′.
For each zero α ∈ Zero(f), let ρ(α) be the distance from α to the nearest zero of

f different from α. Similarly, if β ∈ Zero(f ′), let ρ′(β) be the corresponding function
for f ′. Since f and f ′ have no roots in common, we can merge these two ρ functions
into one, ρ : Zero(ff ′) → R>0 where ρ(α) = ρ(α) when f(α) = 0 and ρ(α) = ρ′(α)
when f ′(α) = 0.

We now provide another conceptual algorithm GEN′, viewed as a two-staged
refinement of the GEN algorithm. GEN′ will subdivide I until the roots of ff ′ are
sufficiently isolated and then perform the GEN algorithm on the intervals without
roots (on these intervals, GEN terminates). Once again, we maintain a subdivision
P of I. Initially, P = {I}. The algorithm operates in two phases:

PHASE 1: Repeatedly bisect each X in P , until each interval in P is GEN′-
terminal. An interval X is GEN′-terminal if one of the following two conditions hold
for X:

#(X ∩ Zero(ff ′)) = 0

#(X ∩ Zero(ff ′)) = 1 and w(X) < min

{
B(α),

ρ(α)

8d(d − 1)

}

where α is the unique element in (X ∩ Zero(ff ′)) and B(α) is a technical bound
presented below.

PHASE 2: For each X ∈ P with #(X ∩ Zero(ff ′)) = 0, partition X using the
GEN algorithm.

We consider two partitions of I: let P1 be the partition at the end of Phase 1,
and P2 the partition at the end of Phase 2. An interval X ∈ P1 is defined to be
special if #(X ∩Zero(ff ′)) = 1 and non-special otherwise. Let P ′

1 ⊆ P1 be the set of
non-special intervals of P1 and I ′ = ∪X∈P ′

1
X be the union of all non-special intervals.

This algorithm terminates because the technical bound is always positive and when
there are no zeros of ff ′ in X, the contrapositive of Theorem 3.4 implies that the
GEN algorithm terminates on these intervals.

Lemma 3.6. If X ∈ P1 is special, then it is EVAL-terminal.
Proof. For each special interval, there is a unique α ∈ X ∩ Zero(ff ′). The

two bounds in the GEN′ algorithm, ρ(α)
8d(d−1) and B(α), are used to ensure that either
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C0(X) or C1(X) holds in each special interval. We now present the technical bound
B(α) in the GEN′ algorithm. Define

B(α) =

{
∞ if α is zero of f√

|f(α)|
3|f ′′(α)| if α is zero of f ′ .

The bound ρ(α)
8d(d−1) is designed to bound w(X) by 1

8γ(α) or 1
8γ′(α) . We next appeal to

the following result from [38] which is reproduced in Proposition A.2 in the appendix:

Proposition 3.7. If f is square free, then 1
γ(α) > ρ(α)

d(d−1) .

First, assume that α is a root of f . In this case, we show the bound K ′
X < 7

9
|f ′(α)|
w(X)

by replacing each f (i)(a) in the definition of K ′
X (2.2) by its Taylor expansion at α

and then applying the triangle inequality (see Lemma A.4 in the Appendix). Then

C1(X) holds from Lemma 2.2 which implies that w(X) < |f ′(α)|
K′

X

.

Now, assume that α is a root of f ′. In this case, we show that KX < 3|f ′′(α)|w(X)
using the same technique as above (see Lemma A.5 in the Appendix). Then C0(X)
holds from Lemma 2.2, because the relationship that B(α) gives between f(α) and

f ′′(α) and the bound of KX imply that w(X) < |f(α)|
KX

.

Corollary 3.8. #(PEV AL)
(i)

≤ #(P2)
(ii)

≤ #(P1) +

∫

I′

2da

G(a)
Proof. (i) By Theorem 3.4 and Lemma 3.6, we know that for all X ∈ P2, X is

EVAL-terminal. By applying the same argument as in part (i) of Theorem 3.4, we
achieve the desired result. (ii) Let the number of special intervals be sI . Then, we
can bound #(P2) by:

#(P2) ≤ sI +
∑

X∈P ′

1

max

{
1,

∫

X

2da

G(a)

}

≤ sI +
∑

X∈P ′

1

1 +
∑

X∈P ′

1

∫

X

2da

G(a)
≤ #(P1) + 2

∫

I′

da

G(a)
. (3.2)

Note that since I ′ does not include any zeros of ff ′, this integral is finite.
The remainder of the paper will bound #(P1) and

∫
I′

da
G(a) . We show the former

is O(d(log d + L)) (§5) and the latter is O(d3(log d + L)) (§6). This will complete the
proof of our main theorem. First, however, we present an evaluation bound (§4) that
is critical to these results.

4. An Amortized Evaluation Bound. Our main complexity result is based
on two distinct kinds of bounds. The first are the usual Mahler-Davenport bounds
that involve root separation bounds (cf. [16]). As in [7], we also need another kind
of bound that we call evaluation bounds: They refer to upper and lower bounds
on |f(α)| where f ∈ C[X] and α ∈ C. Lower bounds are only possible with the
additional assumption that α and the coefficients of f are algebraic numbers. Our
bounds are described as amortized bounds because they bound a product of |f(α)|’s.
The evaluation bound here is distinct from the multivariate version used in [7]. The
evaluation bound below is also of independent interest.

Let f =
∑d

i=0 ciX
i ∈ C[X] and lc(f) := |cd| be the magnitude of the leading

coefficient of f . Define tc(f) to be the magnitude of the tail coefficient of f , i.e., let t be
the smallest index where ci 6= 0, then tc(f) = |ct|. Let res(f, g) denote the resultant
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of two polynomials f, g. In addition to heights, we use the Mahler measure M(f) of

f : If α1, . . . , αd are the complex roots of f , then M(f) := lc(f)
∏d

i=1 max {1, |αi|}.
Theorem 4.1. Let φ(X), η(X) ∈ C[X] be complex polynomials of degrees m and

n respectively. Let β1, . . . , βn be all the zeros of η(X).
(a)

n∏

i=1

|φ(βi)| ≤ ((m + 1)‖φ‖)n

(
M(η)

lc(η)

)m

. (4.1a)

(b) Let F,H ∈ Z[X] be relatively prime such that F = φφ̃, H = ηη̃ for some φ̃, η̃ ∈
C[X]. If the degrees of φ̃ and η̃ are m̃ and ñ, respectively, then

n∏

i=1

|φ(βi)| ≥
1

lc(η)m ((m + 1)‖φ‖)en
M(η̃)m

(
(m̃ + 1)‖φ̃‖

)n+en

M(H) em

. (4.1b)

(c) As an alternative to (b), it is also true that:

n∏

i=1

|φ(βi)| ≥
1

lc(η)m ((m + m̃ + 1)‖F‖)en
M(η̃)m+ em

(
(m̃ + 1)‖φ̃‖

)n

M(η) em
. (4.1c)

Proof. (a) Index the βi’s such that for some n′ ∈ N, |βi| ≥ 1 iff i > n′. For
i = 1, . . . , n′, |φ(βi)| < ‖φ‖(m + 1) and hence

n′∏

i=1

|φ(βi)| ≤ (‖φ‖(m + 1))
n′

. (4.2)

For i = (n′ + 1), . . . , n, |φ(βi)| ≤ ‖φ‖(m + 1)|βi|m, and hence

n∏

i=n′+1

|φ(βi)| ≤ (‖φ‖(m + 1))
n−n′

(
n∏

i=n′+1

|βi|
)m

= (‖φ‖(m + 1))
n−n′

(
M(η)

lc(η)

)m

(4.3)
The product of (4.2) and (4.3) finishes the proof of (a).

(b) Let β1, . . . , βn, βn+1, . . . , βn+en be the roots of H, then from ([42, p. 167]),

res(F,H) = lc(H)m+ em
∏n+en

i=1 F (βi). Since F and H are integer and relatively prime,
the magnitude of their resultant is at least one. Thus,

1 ≤ |res(F, H)| = lc(H)m+ em ·
n

Y

i=1

|φ(βi)|

 

n+en
Y

i=n+1

|φ(βi)|

n+en
Y

i=1

|eφ(βi)|

!

(4.4)

n
Y

i=1

|φ(βi)| ≥
1

lc(H)m+ em
Qn+en

i=n+1 |φ(βi)|
Qn+en

i=1 |eφ(βi)|

≥
1

lc(H)m+ em ((m + 1)‖φ‖)en
“

M(eη)
lc(eη)

”m “

( em + 1)‖eφ‖
”n+en “

M(H)
lc(H)

” em
,

where the last inequality follows from part (a). Since lc(H) = lc(η) lc(η̃), the last
expression simplifies to the bound in (4.1b).
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(c) From the estimate in (4.4), we alternately proceed as follows:

n∏

i=1

|φ(βi)| ≥
1

lc(H)m+ em
∏n+en

i=n+1 |F (βi)|
∏n

i=1 |φ̃(βi)|

≥ 1

lc(H)m+ em ((m + m̃ + 1)‖F‖)en
(

M(eη)
lc(eη)

)m+ em (
(m̃ + 1)‖φ̃‖

)n (
M(η)
lc(η)

) em
,

which simplifies to (4.1c).
In addition to our evaluation bound, we will need the following lower bound on

the product of the roots of a polynomial.
Lemma 4.2. If S ⊆ {αt+1, . . . , αd} is a subset of the non-zero roots of f then

∏

α∈S

|α| ≥ tc(f)

M(f)
.

In particular, if f is an integer polynomial,
∏

α∈S |α| ≥ 1
M(f) .

Proof.

∏

α∈S

|α| ≥
d∏

i=t+1

min {1, |αi|} =

d∏

i=t+1

|αi|
max {1, |αi|}

=
lc(f)

∏d
i=t+1 |αi|

M(f)
=

tc(f)

M(f)
.

5. Bounding the Size of P1. This section bounds the size of P1 appearing in
(3.2). We focus on the at most 2(2d − 1) special intervals in P1 (there are ≤ 2d − 1
roots of ff ′, but each root may lie on the boundary of two special intervals).

Consider the subdivision tree T1 whose leaves are labeled by P1. Clearly, #(T1) =
2#(P1) − 1. Call a leaf special if it represents a special interval. Let T2 be the result
of pruning all non-special leaves from T1 (if the tree is only the root, T2 = T1). Since
each non-special leaf of T1 has a sibling which is either special or an interior node and

the root has no sibling, #(T2) ≥ #(T1)+1
2 = #(P1). The external path length of a

tree T , written as EPL(T ), is the sum of lengths of paths from the root to each leaf
of T ([19, p. 399]). Then, #(T2) ≤ EPL(T2) + 1. We bound #(P1) via the following
much stronger result, a bound on EPL(T2), which is proved in this section:

Lemma 5.1. #(P1) ≤ EPL(T2) + 1 = O(d(log d + L)).
This bound on EPL(T2) is also needed for the results in §7.

5.1. Bounding the External Path Length of T2. This section will prove
Lemma 5.1. Each leaf s of T2 is associated with a unique αs ∈ Zero(ff ′) ∩ I and
an inverval Is in P1. Let S = {s|αs ∈ Zero(f)} and S′ = {s|αs ∈ Zero(f ′)}. Let
T3 (resp. T ′

3) be the subtree of T2 comprising all paths from the root of T2 to a leaf s
where s ∈ S (resp. s ∈ S′). Clearly EPL(T2) = EPL(T3) + EPL(T ′

3). Moreover,

EPL(T3) =
∑

s∈S

lg(w(I)/w(Is)), EPL(T ′
3) =

∑

s∈S′

lg(w(I)/w(Is)),

where lg = log2. Recall our assumption that w(I) ≤ 2L+1. Hence

EPL(T3) ≤ 2d(L + 1) −
∑

s∈S

lg w(Is) EPL(T ′
3) ≤ 2(d − 1)(L + 1) −

∑

s∈S′

lg w(Is)

(5.1)
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In Phase I of the GEN′ algorithm, there are three conditions that need to hold
for interval Is to be GEN′-terminal. Two of these are the numerical conditions that
appear above and the third is the restriction that there is only one root of ff ′ in Is.
In the case that all three conditions hold on w(I), both GEN′ and EVAL perform
no subdivisions and the necessary results are trivial. Thus, we assume that w(I) is
sufficiently large; in this case, for each αs the most restrictive of these three conditions
will provide a lower bound on w(Is). In fact,

w(Is) ≥
1

2
min

{
ρff ′(αs),

ρ(αs)

8d(d − 1)
, B(αs)

}
. (5.2)

Here ρff ′ is the corresponding ρ for ff ′ (cf. §3.2).
First, consider the case when s ∈ S. In this case, B(αs) = ∞ and Renegar [32]

shows that ρff ′(αs) ≥ ρ(αs)/d. Therefore, the minimum in (5.2) is ρ(αs)
8d(d−1) . Then,

by a direct application of a result in [15], the following bound holds:

− lg
∏

s∈S

w(Is) ≤ − lg
∏

s∈S

ρ(αs)

16d(d − 1)
= O(d log d + dL). (5.3)

Combining (5.1,5.3), the result EPL(T3) = O(d log d + dL) follows.
Next, consider the case where s ∈ S′. Now, we split S′ into S′

0, S′
1 and S′

2

depending on which of the above bounds is minimal in (5.2). S′
0 corresponds to

ρff ′(αs), S′
1 corresponds to ρ(αs)

8d(d−1) = ρ′(αs)
8d(d−1) , and S′

2 corresponds to B(αs). The

desired expression is split into three portions:

∏

s∈S′

w(Is) ≥
∏

s∈S′

0

1

2
ρff ′(αs)

∏

s∈S′

1

ρ′(αs)

16d(d − 1)

∏

s∈S′

2

1

2
B(αs).

Applying the same result from [15] as above, we may bound the S′
0- and S′

1-portions
as

− lg
∏

s∈S′

0

1

2
ρff ′(αs) = O(d log d + dL) − lg

∏

s∈S′

1

ρ′(αs)

16d(d − 1)
= O(d log d + dL).

(5.4)
Finally, we bound the S′

2-portion:

− lg
∏

s∈S′

2

√
|f(αs)|

3|f ′′(αs)|
= O(d log d + dL). (5.5)

It suffices to show − lg
∏

s∈S′

2

|f(αs)|
|f ′′(αs)| = O(d(log d + L)) because the difference from

(5.5) is a lower order term (involving |S′
2| log 3 combined with the bound |S′

2| ≤
2(d−1)). This in turn reduces to individually bounding the product of the numerators
and the product of the denominators.

For both bounds, we let η(X) =
∏

s∈S′

2
(X −αs) and η̃(X) = f ′(X)/η(X). Then,

it easily follows that M(η̃),M(η) ≤ M(f ′) ≤
√

d‖f ′‖ ≤ d3/22L (e.g., [42, p. 117]).
To prove the bound on

∏
s∈S′

2
|f(αs)|, we substitute into Theorem 4.1(b) η and η̃ as

above, so that H(X) = f ′(X), and φ(X) = F (X) = f(X) with φ̃(X) = 1. Then the
evaluation bound (4.1b) gives:

− lg
∏

s∈S′

2

|f(αs)| ≤ lg

(
lc(η)m · ((m + 1)‖φ‖)en

M(η̃)m ·
(
(m̃ + 1)‖φ̃‖

)n+en

M(H) em

)
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≤ lg
(
((d + 1)‖f‖)en(d3/22L)d

)
= O(d(log d + L)).

Similarly, we obtain the bound on
∏

α∈S′

2
|f ′′(α)| from the upper bound in (4.1a) by

setting η(X) as above and φ(X) = f ′′(X). The bound (4.1a) gives:

lg
∏

s∈S′

2

|f ′′(αs)| ≤ lg

(
((m + 1)‖φ‖)n

(
M(η)

lc(η)

)m)

≤ lg
(
(d‖φ‖)d

M(η)d−1
)

= O(d(log d + L)).

Combining (5.1,5.4,5.5), the result EPL(T ′
3) = O(d log d + dL) follows.

6. Bounding the Integral
∫

I′

da

G(a)
. This section bounds the integral from

(3.2), needed for the main result (Theorem 3.1):
Theorem 6.1.

∫
I′

dx
G(x) = O(d3(log d + L)).

We bound this integral by a sum of two integrals:

1

2

∫

I′

dx

G(x)
=

∫

I′

max

{
γ(x),

d|f ′(x)|
|f(x)|

}
dx ≤

∫

I′

γ(x)dx + d

∫

I′

∣∣∣∣
f ′(x)

f(x)

∣∣∣∣ dx

We first show that these two integrals are closely related and the same proof and

bound can be applied to both integrals. First,
∣∣∣ f ′(x)

f(x)

∣∣∣ =
∣∣∣
∑

α∈Zero(f)
1

x−α

∣∣∣ ≤
∑

α∈Zero(f)

∣∣∣ 1
x−α

∣∣∣. The following Lemma gives a similar result for the other in-

tegral.
Lemma 6.2. γ(x) ≤ ∑

β∈Zero(f ′)
1

2|x−β|

The proof uses the fact f (i)(x)/f ′(x) =
∑

(j1,...,ji−1)

∏i−1
ℓ=1

1
x−βjℓ

, where jℓ’s are

i−1 distinct elements from the set {1, . . . , d − 1}. The complete proof of this Lemma
is given in the Appendix (Lemma A.1).

Thus, both integrands reduce to the same form
∑

α
1

|x−α| . We may restrict atten-

tion to the case α ∈ Zero(f). The case of α ∈ Zero(f ′) can be obtained from the first
case by replacing L by L + log d in our bounds (since ‖f ′‖ ≤ d‖f‖ ≤ d2L = 2L+log d).
The result we will prove is in the following Lemma:

Lemma 6.3.
∑

α∈Zero(f)

∫
I′

∣∣∣ 1
x−α

∣∣∣ dx = O(d2(log d + L)).

Let α1, . . . , αd be the roots of f and write αi = ri + isi where ri = ℜ(αi) and
si = ℑ(αi) are the real and imaginary parts of αi. We re-index the αi’s so that si = 0
iff i ≤ k; thus the real roots of f are r1, . . . , rk. We split the sum in Lemma 6.3 into
the cases where α is real or complex.

Lemma 6.4 (Real Part).

k∑

i=1

∫

I′

dx

|x − ri|
= O(d2(log d + L)).

Proof. Let 1 ≤ i ≤ k and assume first that ri does not lie on the boundary of
two special intervals. Then let Xi = [ai, bi] be the special interval that contains ri,
ni = lg (w(I)/w(Xi)) be the depth of Xi in the subdivision tree and Ii be I \Xi. If ri

is on the boundary of two special intervals, then let Xi be the union of these intervals,
ni be the sum of the depths of the two intervals, and Ii be I \ Xi. This choice of
ni accounts for both special intervals containing ri and ensures that N =

∑
ni is

EPL(T3). For each i,

∫

I′

1

|x − ri|
dx ≤

∫

Ii

1

|x − ri|
dx = −

∫ ai

a

1

x − ri
dx +

∫ b

bi

1

x − ri
dx
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This evaluates to log |a − ri| + log |b − ri| − log |bi − ri| − log |ai − ri|. The terms
log |a − ri|+log |b − ri| are bounded by O(L) since w(I) ≤ 2L+1. The terms − log |bi−
ri| − log |ai − ri| are bounded using the evaluation bound, as follows:

Let φi(X) = X − ri, φ̃i(X) = f(X)/φi(X), ηi(X) = (X − ai)(X − bi), and
η̃i(X) = 4ni . It is fairly easy to see that ηiη̃i ∈ Z[X] since at every subdivision,
we perform at most one division by 2 to get the new endpoints. Thus, ‖φi‖ ≤
2L since ri ∈ I, ‖φ̃i‖ ≤ 2d−1(d + 1)‖f‖ ≤ 2d−1(d + 1)2L by [42], and M(ηiη̃i) =
max{4ni , 4niai, 4

nibi, 4
niaibi} ≤ 4ni4L. The evaluation bound of Theorem 4.1(b)

now gives that

− log |ai − ri| − log |bi − ri| = O(ni + dni + d + log d + L + dL).

By summing over all k terms of the summation, noting that each nj occurs only once
and using that N = EPL(T3) = O(d(log d + L)), the sum becomes O(N + dN + dk +
k log d + kL + kdL) = O(d2(log d + L))

For the complex part, we obtain a better bound:

Lemma 6.5 (Complex Part).

d∑

i=k+1

∫

I′

dx

2|x − βi|
= O(d(d + L)).

Proof. In the Appendix, we construct two integer polynomials r(X) (Lemma B.1)
and s(X) (Lemma B.2) whose zero sets include ri and si, respectively. After this
construction, the proof of the Lemma becomes very similar to the one for the real
part.

First, consider the case where a + |si| ≤ ri ≤ b − |si| with I = [a, b]. Then

∫

I′

dx

|x − αi|
≤

∫ b

a

dx

|x − αi|
≤

∫ b

a

dx

max {|x − ri|, |si|}

=

∫ ri−|si|

a

dx

ri − x
+

∫ ri+|si|

ri−|si|

dx

|si|
+

∫ b

ri+|si|

dx

x − ri
(∗)

= ln

(
ri − a

|si|

)
+ 2 + ln

(
b − ri

|si|

)
.

where (∗) is valid since max {|x − ri|, |si|} = |si| iff x ∈ [ri − |si|, ri + |si|]. Next,
suppose that ri − |si| ≤ a. Then a similar bound leads to the above expression

with the term ln
(

ri−a
|si|

)
dropped. Finally, if ri + |si| ≥ b then the term ln

(
b−ri

|si|

)
is

dropped. Combining all these cases, we obtain:
Lemma 6.6.

∫

I′

dx

|x − αi|
≤ ln max

{
1,

(
ri − a

|si|

)}
+ 2 + lnmax

{
1,

(
b − ri

|si|

)}
.

Lemma 6.6 implies

∫

I′

d∑

i=k+1

dx

|x − βi|

≤ ln

d∏

i=k+1

max

{
1,

(
ri − a

|si|

)}
+ 2(d − k) + ln

d∏

i=k+1

max

{
1,

(
b − ri

|si|

)}
.
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Next, we bound ln
∏d

i=k+1 max
{

1,
(

ri−a
|si|

)}
. Let R0 be the set of αi such that

r − |si| ≥ a, with this notation, the above expression becomes ln
∏

αi∈R0

(
ri−a
|si|

)
. As

usual, we bound the numerator and denominator separately.

First, we bound − ln
∏

αi∈R0
|si|. Since the si’s are roots of s(Y ), it follows from

Lemma 4.2 that

∏

αi∈R0

|si| ≥
1

M(s)
,

Thus by Lemma B.2,

− ln
∏

αi∈R0

|si| ≤ lnM(s) ≤ ln
(
((d + 1)2d+L)2d−1

)
= O(d(d + L))

Now, we bound ln
∏

αi∈R0
(ri − a) using the evaluation bound. Let φ(X) = X−a

and η(X) =
∏

αi∈R0
(X − ri) be the polynomials in Theorem 4.1(a). It follows that

‖φ‖ ≤ 2L, and M(η) ≤ M(r) ≤ ((d+1)2d+L)2d−1 since the ri’s are the roots of r(X).
Then since |R0| ≤ d, the evaluation bound gives,

ln
∏

αi∈R0

(ri − a) ≤ ln
(
(2 · 2L)|R0|((d + 1)2d+L)2d−1

)
= O(d(d + L))

Adding these two bounds together gives the desired bound of O(d(d + L)) on this
integral.

The bound for the other integral is completely analogous. In this case, instead of
R0, we use R1, the set of all αi such that ri + |si| ≤ b. This gives the same bound for
the other integral. Adding these two bounds together completes the proof.

6.1. Removing the Assumption on f ′. In this section, we sketch a proof of
our result that does not require f ′ to be square-free. There are three steps that must
be taken to get this result: The first is to adapt the termination conditions in the

GEN′ algorithm. When α is a root of order m, we must replace the bound ρ(α)
8d(d−1) by

ρ
f(m) (α)

8d(d−1) , the corresponding bounds for the mth derivative of f , and when m ≥ 1 the

bound B(α) should be m+1

√
|f(α)|

3·23m−3|f(m+1)(α)|
. By substituting these bounds into the

lemmas in the Appendix, we derive analogous results to the results appearing there.

The next change appears in the bound EPL(T ′
3). To bound the size of this tree,

we break it up into pieces according to the multiplicity of the roots. In other words,
EPL(T ′

3) =
∑

m EPL(T ′
3,m) where T ′

3,m corresponds to the tree whose leaves are the
special intervals for roots of order m. Then the same proofs as in the text, using the
appropriate derivative of f , give that EPL(T ′

3,m) = O(d log d + dL).

The third change occurs in the calculation of the real part of the integral of∫
γ(x)dx. This is the only integral affected because the computation of the other

integral focuses on the roots of f . In particular, we apply Lemma 6.4 to each of
the trees T ′

3,m to get that the sum of the integrals for the real roots of order m is
O(Nm + dNm + dkm + km log d + kmL + kmdL) where Nm = EPL(T ′

3,m) and km is
the number of roots of order m. Summing over all possible m gives a bound on the
real roots as O(d3(log d + L)).
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7. Conclusion. The analysis of adaptive subdivision algorithms is virgin ter-
ritory for complexity theory. We have introduced some novel techniques for such
analysis: a form of continuous amortization (integral bounds) and algebraic amorti-
zation techniques. In this paper we illustrated the use of these techniques by analyzing
the EVAL algorithm. We pose the problem to extend this continuous amortization
technique to other similar subdivision algorithms for which no suitable complexity
bounds are known.

Appendix A. Bounds Using Gamma.

In this of this appendix, we provide several omitted proofs. If a theorem or lemma
is restated from the text, it will reference the original numbering (but may appear in
a different order below).

A.1. Bounding Gamma. Lemma A.1 (Lemma 6.2). Let β1, . . . , βd−1 be all
the zeros of f ′, then

γ(x) ≤
d−1∑

j=1

1

2|x − βj |

Proof. We have

f (i)(x)

f ′(x)
=

∑′

(j1,...,ji−1)

i−1∏

ℓ=1

1

x − βjℓ

where the summation ranges over all ordered (i− 1)-tuples of distinct elements taken
from {1, . . . , d − 1}, The prime in the summation symbol,

∑′
, indicates the that the

jk’s are distinct. When we omit the prime in the summation, it means that the tuples
could have duplicated components. Thus

∣∣∣∣
f (i)(x)

f ′(x)

∣∣∣∣
1/(i−1)

=

∣∣∣∣∣∣

∑′

(j1,...,ji−1)

i−1∏

ℓ=1

1

x − βjℓ

∣∣∣∣∣∣

1/(i−1)

≤




∑′

(j1,...,ji−1)

i−1∏

ℓ=1

1

|x − βjℓ
|




1/(i−1)

≤




∑

(j1,...,ji−1)

i−1∏

ℓ=1

1

|x − βjℓ
|




1/(i−1)

(unprimed summation)

=







d−1∑

j=1

1

|x − βj |




i−1



1/(i−1)

=

d−1∑

j=1

1

|x − βj |
.

For i ≥ 2, we have i! ≥ 2i−1, and hence

∣∣∣∣
f (i)(x)

i!f ′(x)

∣∣∣∣
1/(i−1)

≤ 1

2

∣∣∣∣
f (i)(x)

f ′(x)

∣∣∣∣
1/(i−1)

≤ 1

2

d−1∑

j=1

1

|x − βj |
.

Proposition A.2 (Proposition 3.7,[38]). If f is square free, then 1
γ(α) > ρ(α)

d(d−1) .

Proof. We begin just as above. Let β1, . . . , βd−1 be all the zeros of f ′, then we have

f (i)(x)

f ′(x)
=

∑′

(j1,...,ji−1)

i−1∏

ℓ=1

1

x − βjℓ

(A.1)
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where the summation ranges over all ordered (i− 1)-tuples of distinct elements taken
from {1, . . . , d − 1}, The prime in the summation symbol,

∑′
, indicates the that the

jk’s are distinct. Now, let α be a root of f , therefore |βj−α| ≥ ρff ′(α) for all j, where
ρff ′(α) is the distance from α to the nearest distinct root of ff ′. In fact, ρff ′(α) is
the distance from α to the nearest root of f ′. By taking the absolute value of both
sides of (A.1), we find that

∣∣∣∣
f (i)(α)

f ′(α)

∣∣∣∣ ≤
(d − 1)!

(d − i)!

1

ρff ′(α)i−1

Then, introducing a 1/i! to both sides, we get the inequality

∣∣∣∣
f (i)(α)

i!f ′(α)

∣∣∣∣ =
1

i

(
d − 1

i − 1

)
1

ρff ′(α)i−1
<

(
d − 1

ρff ′(α)

)i−1

Therefore,

γf (α) := max
i≥2

( |f (i)(x)|
i!|f ′(x)|

)1/(i−1)

<
d − 1

ρff ′(α)

Finally, Renegar [32] has shown that ρff ′(α) ≥ ρ(α)/d. Substituting this result into
the above expression gives

γf (α) <
d(d − 1)

ρ(α)

A.2. Bounding KX Using Gamma. When using the GEN algorithm, inter-
vals are subdivided until there is some point a ∈ J such that w(J) < G(a). Often,
however, it is necessary to use the information based at a to conclude facts about
another point of J . The following three lemmas provide this type of result.

Lemma A.3 (Lemma 3.2). Let b ∈ J such that w(J) ≤ 1
2γ(b) . Then KJ ≤

2d|f ′(b)|.
Proof.

KJ = max
a∈J

d∑

i=1

|f (i)(a)|
i!

w(J)i−1 = max
a∈J

d∑

i=1

∣∣∣∣∣∣

d∑

j=i

f (j)(b)(b − a)j−i

i!(j − i)!

∣∣∣∣∣∣
w(J)i−1

≤
d∑

i=1

d∑

j=i

|f (j)(b)|
i!(j − i)!

w(J)j−1 (|a − b| ≤ w(J))

=
d∑

j=1

|f (j)(b)|
j!

w(J)j−1

j∑

i=1

(
j
i

)
≤

d∑

j=1

|f (j)(b)|
j!

w(J)j−12j

≤
d∑

j=1

|f (j)(b)|
j!

2j

2j−1γ(b)j−1
w(J) ≤ 1

2γ(b)

≤ 2|f ′(b)| + 2
d∑

j=2

|f (j)(b)|
j!

j!|f ′(b)|
|f (j)(b)| γ(b) ≥

( |f (j)(b)|
j!|f ′(b)|

) 1
j−1

= 2d|f ′(b)|
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The conclusion of the next two lemmas were used in the proof of Lemma 3.6:

Lemma A.4. Let J be a special interval containing α with α ∈ Zero(f) and

w(J) < ρ(α)
8d(d−1) . Then w(J) < |f ′(α)|

K′

J

.

Proof. From Proposition 3.7, we know that the condition on w(J) implies that
w(J) < 1

8γ(α) . Now, by computing an upper bound on K ′
J , we show the desired result.

K ′
J = max

a∈J

d−1∑

i=1

|(f ′)(i)(a)|
i!

w(J)i−1 = max
a∈J

d∑

i=2

|f (i)(a)|
(i − 1)!

w(J)i−2

= max
a∈J

d∑

i=2

∣∣∣∣∣∣

d∑

j=i

f (j)(α)(a − α)j−i

(j − i)!(i − 1)!

∣∣∣∣∣∣
w(J)i−2

≤
d∑

i=2

d∑

j=i

|f (j)(α)|
(j − i)!(i − 1)!

w(J)j−2 |a − α| ≤ w(J)

≤
d∑

i=2

d∑

j=i

|f (j)(α)|
(j − 1)!

(
j − 1
i − 1

)
w(J)j−2 =

d∑

j=2

|f (j)(α)|
(j − 1)!

w(J)j−2

j∑

i=2

(
j − 1
i − 1

)

≤
d∑

j=2

|f (j)(α)|
(j − 1)!

w(J)j−22j−1

≤ 1

w(J)

d∑

j=2

|f (j)(α)|
(j − 1)!

2j−1

8j−1γ(α)j−1
w(J) ≤ 1

8γ(α)

≤ 1

w(J)

d∑

j=2

|f (j)(α)|
(j − 1)!

j!|f ′(α)|
|f (j)(α)|2

−2j+2 γ(α) ≥
( |f (j)(α)|

j!|f ′(α)|

) 1
j−1

=
|f ′(α)|
w(J)

d∑

j=2

j2−2j+2 <
7

9

|f ′(α)|
w(J)

Then, by rearranging w(J) and K ′
J , we find that w(J) < 7

9
|f ′(α)|

K′

J

< |f ′(α)|
K′

J

, as desired.

Lemma A.5. Let J be a special interval containing α with α ∈ Zero(f ′) and

w(J) < min
{

ρ′(α)
8d(d−1) ,

√
|f(α)|

3|f ′′(α)|

}
. Then w(J) < |f(α)|

KJ
.

Proof. From Proposition 3.7 we know that the condition on w(J) implies that
w(J) < 1

8γ′(α) . By computing an upper bound on KJ , we can show the desired result.

KJ = max
a∈J

d∑

i=1

|f (i)(a)|
i!

w(J)i−1 = max
a∈J

d∑

i=1

∣∣∣∣∣∣

d∑

j=i

f (j)(α)(a − α)j−i

(j − i)!i!

∣∣∣∣∣∣
w(J)i−1

≤
d∑

i=1

d∑

j=i

|f (j)(α)|
(j − i)!i!

w(J)i−1 |a − α| ≤ w(J)

=

d∑

j=1

|f (j)(α)|
j!

w(J)j−1

j∑

i=1

(
j
i

)
≤

d∑

j=1

|f (j)(α)|
j!

w(J)j−12j
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=
d∑

j=2

|f (j)(α)|
j!

w(J)j−12j α ∈ Zero(f ′)

= w(J)

d∑

j=2

|f (j)(α)|
j!

w(J)j−22j ≤ w(J)

d∑

j=2

|f (j)(α)|
j!

2j

8j−2γ′(α)j−2

≤ 2w(J)|f ′′(α)| + w(J)

d∑

j=3

|f (j)(α)|
j!

(j − 1)!|f ′′(α)|
|f (j)(α)| 2−2j+6 (∗)

= |f ′′(α)|w(J)

d∑

j=2

2−2j+6

j
< 64|f ′′(α)|w(J)

(
ln

(
4

3

)
− 1

4

)
< 3|f ′′(α)|w(J)

Where ∗ is valid because γ(α) ≥
( |(f ′)(j−1)(α)|

(j − 1)!|(f ′)′(α)|

) 1
j−2

. Therefore, it follows that

|f(α)|
KJ

> |f(α)|
3|f ′′(α)|w(J)

(
= B(α)2

w(J)

)
≥ (w(J))2

w(J) = w(J), completing the result.

Appendix B. On the Real and Imaginary Part of Zeros.

Let f ∈ Z[X] be a real polynomial of degree d ≥ 1. Suppose its complex zeros are
α1, . . . , αd and let ri = ℜ(αi) and si = ℑ(αi) for each i. We re-index the αi’s so that
si = 0 iff i ≤ k and so the nonreal roots of f are given by αk+1, . . . , αd. Our goal is
to construct two integer polynomials r(X), s(X) whose roots contain the ri’s and the
si’s, respectively. We also want to bound the Mahler measures of r(X) and s(X).

To analyze the real and complex parts of the roots independently, we consider
f(X + iY ), regarded as a polynomial in Z[X, iY ]. We also rewrite f(X + iY ) as
p(X,Y )+iq(X,Y ), with p(X,Y ), q(X,Y ) ∈ Z[X,Y ]. Clearly, p(X,Y ) (resp., iq(X,Y ))
is the sum of the monomials of f(X + iY ) ∈ Z[X, iY ] whose degree in Y is even (resp.,
odd).

B.1. Real Part. We first construct a polynomial r(X) whose roots include all
the ri’s (cf. [42, p. 202]). If d is even, then degY (p(X,Y )) = d and degY (q(X,Y )) =
d−1, and if d is odd, then degY (p(X,Y )) = d−1 and degY (q(X,Y )) = d. It easily fol-
lows that the ri’s, for all i, are real roots of the resultant r(X) := resY (p(X,Y ), q(X,Y )).
In the following we use lead(f) which is signed version of lc(f), i.e., lead(f) is defined
in the same was as lc(f) (see §4), but the absolute value is dropped.

Lemma B.1. r(X) = resY (p(X,Y ), q(X,Y )) is not the zero polynomial and has
Mahler measure M(r) ≤ ((d + 1)2d+L)2d−1.

Proof. We first show that r(X) is not the zero polynomial. Let D(X,Y ) :=
gcdY (p(X,Y ), q(X,Y )) where p, q are viewed as polynomials in Y with coefficients in
Z[X]. By [12], resY (p(X,Y ), q(X,Y )) = 0 if and only if D(X,Y ) has positive degree
in Y . In addition, D(X,Y ) ∈ Q[X,Y ] since both p(X,Y ) and q(X,Y ) ∈ Q[X,Y ].
On the other hand, since D(X,Y ) divides both p(X,Y ) and q(X,Y ), we conclude
that D(X,Y ) divides f(X + iY ). Since f(Z) = lead(f)

∏
(Z −αi) = lead(f)

∏
(X +

iY − αi) and all these factors are irreducible polynomials in C[Z] or C[X,Y ], it
follows that D(X,Y ) =

∏
j(X + iY − αij

) =
∏

j(Z − αij
) = D(Z), for some subset{

αij
: j ∈ J

}
of the roots of f . D(Z) is entire because it is a polynomial in Z. For any

Z0 = X0 + iY0 ∈ C, D(Z0) = D(X0, Y0); since X0, Y0 ∈ R and D(X,Y ) ∈ Q[X,Y ],
it follows that D(X0, Y0) ∈ R. Therefore, D(Z) is a real valued entire fucntion. By
a standard result (e.g., [1]) we conclude that D is a constant function. This implies
D(X,Y ) does not have positive degree in Y . It follows r(X) is not the zero polynomial.
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To bound the measure, we first compute the coefficient of Y k in f(X + iY ).
All monomials of f(X + iY ) come from products of the form an(X + iY )n, where
|an| < 2L. The coefficient of Y k here is 0 if n < k and an

(
n
k

)
(i)kXn−k otherwise. The

X-degree is maximized when n = d and therefore, the X-degree of the coefficient of
Y k is exactly d − k since ad 6= 0.

Next, we bound the Mahler measure of r(X) by ‖r(X)‖2 ([42]), and then use
the Goldstein-Graham bound ([42, p. 173]) to complete the result. Recall that the
1- or 2-norm is the norm applied to the coefficients of the polynomial. To use this
bound, we first need to compute a bound on the 1-norm of the coefficients of Y k.
The coefficient of Y k is a sum of terms of the form an

(
n
k

)
(i)kXn−k. The absolute

value of an

(
n
k

)
(i)k is bounded by

(
d
k

)
2L since ‖f‖ < 2L. The number of terms in the

coefficient of Y k is d − k + 1, which is bounded by d + 1. Therefore, the 1-norm of
the coefficient of Y k is bounded by (d + 1)

(
d
k

)
2L. Let p be the 2-norm of the vector

of the 1-norms of the coefficients of Y k corresponding to k even. p is bounded by∑⌊d/2⌋
j=0 (d + 1)

(
d
j

)
2L ≤ (d + 1)2d+L. Similarly, let q be the 2-norm of the vector of the

1-norms of the coefficients of Y k corresponding to k odd. Then the same bound holds
for q, i.e., q ≤ (d+1)2d+L. Now, by examining the Goldstein-Graham bound, we find
that ‖r(X)‖2 ≤ pd−1qd if d is even, and ‖r(X)‖2 ≤ pdqd−1 if d is odd. Both of these
simplify to the desired result.

In fact, the degree of r(X) is exactly d2, which is found by comparing the leading
coefficient of r(X) to the leading coefficient of f(Z) = Zd. As this result is not
essential for our main result, we omit its longer and tedious proof.

B.2. Imaginary Part. A similar procedure can be used to construct a poly-
nomial s(Y ) whose roots include all the si’s. Some details are slightly different, and
we derive them here. Note that degX(p(X,Y )) = d and degX(q(X,Y )) = d − 1,
independent of the parity of d. It easily follows that the si’s for all i are real roots of
the resultant s(Y ) = resX(p(X,Y ), q(X,Y )).

Lemma B.2. s(Y ) = resX(p(X,Y ), q(X,Y )) is not the zero polynomial and has
Mahler measure M(s) ≤ ((d + 1)2d+L)2d−1.

Proof. The proof is very similar to the proof in the real case. We first show that
s(X) is not the zero polynomial. The same proof as in the real case applies since the
roles of X and Y are symmeteric, and hence s(X) is not the zero polynomial.

To bound the measure, we compute the coefficient of Xk in f(X + iY ). Using
similar arguments to the real case, we get that the coefficient of Xk in an(X + iY )n

is 0 if n < k and an

(
n
k

)
(i)n−kY n−k. The Y -degree of this is maximized when n = d.

However, if we look for monomials with real coefficients, then if d − k is even, the
Y -degree is maximized when n = d, and if d − k is odd, the Y -degree is maximized
with the largest n ≤ d − 1 such that an 6= 0 and n − k is even. On the other hand, if
we look for monomials with imaginary coefficients, then if d− k is even, the Y -degree
is maximized with the largest n ≤ d − 1 such that an 6= 0 and n − k is odd, and if
d − k is odd, the Y -degree is maximized when n = d.

The bound on the Mahler measure of s is very similar to the real case. We bound
the Mahler measure of s(X) by ‖s(X)‖2 ([42]), and then use the Goldstein-Graham
bound ([42, p. 173]) to complete the result. The proof proceeds analogously with the
real case and provides the bound ‖s(X)‖2 ≤ pd−1qd, which simplifies to the desired
result. p and q are defined similarly to the real case and the same upper bound applies.

As in the real case, one can actually show that s(Y ) has degree d2.
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