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ABSTRACT
We present a new exact subdivision algorithm Ceval for
isolating the complex roots of a square-free polynomial in
any given box. It is a generalization of a previous real root
isolation algorithm called Eval. Under suitable conditions,
our approach is applicable for general analytic functions.
Ceval is based on the simple Bolzano Principle and is easy
to implement exactly. Preliminary experiments have shown
its competitiveness.
We further show that, for the “benchmark problem” of

isolating all roots of a square-free polynomial with integer
coefficients, the asymptotic complexity of both algorithms
Eval and Ceval matches (up a logarithmic term) that of
more sophisticated real root isolation methods which are
based on Descartes’ Rule of Signs, Continued Fraction or
Sturm sequences. In particular, we show that the tree size
of Eval matches that of other algorithms.
Our analysis is based on a novel technique called δ-clusters

from which we expect to see further applications.

1. INTRODUCTION
Root finding might be called the Fundamental Problem of

Algebra, after the Fundamental Theorem of Algebra [?, ?, ?].
The literature on root finding is extremely rich, with a large
classical literature. The work of Schönhage [?] marks the
beginning of complexity-theoretic approaches to the Funda-
mental Problem. Pan [?] provides a history of root-finding
from the complexity view point; see McNamee [?] for a
general bibliography. The root finding problem can be stud-
ied as two distinct problems: root isolation and root refine-
ment. In the complexity literature, the main focus is on
what we call the benchmark problem, that is, isolating
all the complex roots of a polynomial f of degree n with in-
teger coefficients of at most L bits. Let T (n, L) denote the
(worst case) bit complexity of this problem. There are three
variations on this benchmark problem:
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• We can ask for only the real roots. Special techniques
apply in this important case [?, ?]. E.g., Sturm [?,
?, ?], Descartes [?, ?, ?, ?, ?], and continued fraction
methods [?, ?].

• We can seek the arithmetic complexity of this problem,
that is, we seek to optimize the number TA(n,L) of
arithmetic operations.

• We can add another parameter p > 0, and instead of
isolation, we may seek to approximate each of the roots
to p relative or absolute bits.

Schönhage achieved a bound of T (n, L) = Õ(n3L) for the

benchmark isolation problem where Õ indicates the omis-
sion of logarithmic factors. This bound has remained in-
tact. Pan and others [?, ?] have given theoretical improve-

ments in the sense of achieving TA(n,L) = Õ(n2L) and

T (n, L) = TA(n,L) · Õ(n), thus achieving record bounds
simultaneously in both bit complexity and arithmetic com-
plexity. Theoretical algorithms designed to achieve record
bounds for the benchmark problem have so far not been
used in practice. Moreover, the benchmark problem is inap-
propriate for some applications. For instance, we may only
be interested in the first positive root (as in ray shooting in
computer graphics), or in the roots in some specified neigh-
borhood. In the numerical literature, there are many algo-
rithms that are widely used and effective in practice but lack
a guarantee on the global behavior (cf. [?] for discussion).
Some “global methods” such as the Weierstrass or Durant-
Kerner method that simultaneously approximates all roots
seem ideal for the benchmark problem and work well in prac-
tice, but their convergence and/or complexity analysis are
open. Thus, the benchmark complexity, despite its theoret-
ical usefulness, has limitation as sole criterion in evaluating
the usefulness of root isolation algorithms.

There are two sub-literature on “practical” root isolation
algorithms: (1) One is the exact computation literature, pro-
viding algorithms used in various algebraic applications and
computer algebra systems. Such exact algorithms have a
well-developed complexity analysis and there is considerable
computational experience especially in the context of cylin-
drical algebraic decomposition. The favored root isolation
algorithms here, applied to the benchmark problem, tend to
lag behind the theoretical algorithms by a factor of nL. Nev-
ertheless, current experimental data justify their use [?, ?].
(2) The other is the numerical literature mentioned above.
Although numerical algorithms traditionally lack any exact-
ness guarantees, they have many advantages that practition-
ers intuitively understand: compared to algebraic methods,



they are easier to implement and their complexity is more
adaptive. Hence, there is a growing interest in constructing
numerical algorithms that are exact and efficient.

§1. The Subdivision Approach.

Among the exact root isolation algorithms, the subdivi-
sion paradigm is widely used. It is a generalization of binary
search in which we search for roots in a given domain (say a
box B0 ⊆ C). Its principle action is a simple subdivision

phase where we keep subdividing boxes into 4 congruent
subboxes until each box B satisfies a predicate Cstop(B).
Typically, Cstop(B) ≡ Cout(B) ∨ Cin(B) where Cout(B) is
an exclusion predicate whose truth implies that B has no
roots, and Cin(B) is an inclusion predicate whose truth
implies that B contains a unique root. Unlike global root
finding methods that must find all roots simultaneously, sub-
division methods have the advantage of being “local”: they
can restrict computational effort to the given box B0, and
may terminate quickly if there few or no roots in B0.
Exact implementation of Cstop(B) can be based on al-

gebraic properties such as generalized Sturm sequences [?,
Chap. 7]. Unfortunately, algebraic predicates are expensive.
Since finding a root is metaphorically like “finding a needle
in a hay stack”, an efficient exclusion predicate Cout can be
highly advantageous. Numerical exclusion predicates have
been used in Dedieu, Yakoubsohn and Taubin [?, ?, ?] but
the inclusion predicate in these papers are inexact, based on
an arbitrary ǫ-cutoff: Cin(B) ≡ size(B) < ǫ. Our paper will
exploit numerical exclusion and inclusion predicates to yield
exact subdivision algorithms.

§2. Three Principles for Subdivision.

We compare three general principles used in subdivision
algorithms for real root isolation: theory of Sturm sequences,
Descartes’ rule of sign, and the Bolzano principle. The lat-
ter principle is simple and intuitive: if a continuous real
function f(x) satisfies f(a)f(b) < 0, then there is a point
c between a and b such that f(c) = 0. Furthermore, if f
is differentiable and f ′ does not vanish on (a, b), then this
root is unique in (a, b). Modern algorithmic treatment of
the Descartes method began with Collins and Akritas [?].
In recent years, algorithms based on the first two principles
have been called (respectively) Sturm method [?, ?, ?]
and the Descartes method [?, ?, ?, ?]. By analogy, algo-
rithms based on the third principle may be classified under
the Bolzano method [?, ?, ?]. Note that the Bolzano prin-
ciple is an analytic one, while Sturm is algebraic (Descartes
seems to have an intermediate status).
Johnson [?] has shown empirically that the Descartes

method is more efficient than Sturm. Rouillier and Zim-
mermann [?] implemented a highly efficient exact real root
isolation algorithm based on the Descartes method. Since
their theoretical bounds are indistinguishable, any practical
advantage of Descartes over Sturm must be derived from the
fact that the predicates in the Descartes method are cheaper.
We believe that Bolzano methods have a similar advantage
over Descartes. Such evidence is provided in a recent em-
pirical study of Kamath [?] where a version of Ceval is
compared with several algorithms, including the well-known
Mpsolve of Bini and Fiorentini [?, ?]. Bolzano methods
also have the advantage of greater generality: The Bolzano
method is applicable to the much larger class of complex an-

alytic functions. Our Ceval algorithm can be adapted to
such functions under mild conditions.

§3. Complexity Analysis.

All complexity analysis is for the above benchmark prob-
lem of isolating all roots of a polynomial f(z). There are two
complexity measures for subdivision algorithms: the subdi-
vision tree size S(n,L) and the bit complexity P (n,L) of the
subdivision predicates. Clearly, T (n,L) ≤ S(n,L)P (n,L).
But the analysis in this paper shows that T (n, L) may be
smaller than S(n,L)P (n,L) by a factor of n. For the Sturm
method, Davenport [?] has shown that the benchmark prob-
lem of isolating all real roots of f(x) has tree size S(n,L) =
O(n(L+ log n)). This is optimal if L ≥ log n [?]. The tree
size in the Descartes method was only recently proven to be
O(n(L+ log n)) [?], matching the Sturm bound. In this pa-
per, we will prove that the tree size in the Bolzano method is

Õ(n(L+log n)) for real roots. Furthermore, in our extension
of the Bolzano method for complex roots the corresponding

tree size is Õ(n2(L + log n)). Despite this larger tree size,

we prove that both real and complex Bolzano have Õ(n4L2)
bit complexity, matching Descartes and Sturm.

Our complexity analysis of Bolzano methods is novel, and
it opens up the exciting possibility of analysis of similar
subdivision algorithms as in meshing of algebraic surfaces
[?, ?, ?]. Perhaps it is no surprise that Bolzano methods
could outperform the more sophisticated algebraic methods
in practice. What seems surprising from our analysis is that
Bolzano methods could also match (up to a logarithmic fac-
tor) the theoretical complexity of algebraic methods as well.

§4. Contributions of this paper.

1. Our complex root isolation algorithm (Ceval) is a contri-
bution to the growing literature on exact algorithms based
on numerical techniques and subdivision. The algorithm
is simple and practical. Preliminary implementation shows
that it is competitive with the highly regarded MPSOLVE.
2. This paper provides a rather sharp complexity analysis of
Eval. Somewhat surprisingly, the worst-case bit-complexity
of this simple algorithm can match (up to logarithmic-factors)
those of sophisticated methods like Sturm or Descartes.
3. We further show that the more generalCeval also achieves
the same bit complexity as Eval (despite the fact that the
tree size of Ceval may be quadratically larger).
4. Our analysis is based on the novel technique of δ-clusters.
We expect to see other applications of cluster analysis. This
is a contribution to the general challenge of analyzing the
complexity of numerical subdivision algorithms.

§5. Overview of Paper.

Section 2 reviews related work. The algorithm is pre-
sented in Section 3. In Section 4, we sketch our approach
of δ-cluster from which we derive the complexity analysis of
Eval and Ceval. Complete proofs appear in the full paper
[?] and appendix: Appendix A develops our δ-cluster anal-
ysis technique. Appendix B gives the complexity analysis of
Eval and Ceval in terms of tree-size and bit-size.

2. PRIOR WORK
The main distinction among the various subdivision algo-

rithms is the choice1 of tests or predicates. One approach

1We use the terms “predicate” and “test” interchangeably.



is based on doing root isolation on the boundary of the
boxes. Pinkert [?] and Wilf [?] (see also [?, Chap. 7]) use
Sturm-like sequences, while Collins and Krandick [?] con-
sidered Descartes method. Such approaches are related to
topological degree methods [?], which go back to Brouwer
(1924). But root isolation on boundary of subdivision boxes
and topological degrees computations are relatively expen-
sive and unnecessary: as shown in this paper, weaker but
cheaper predicates may be more effective. This key motiva-
tion for our present work came from subdivision algorithms
for curve approximation where a similar phenomenon occurs
[?]. We next review several previous work that are most
closely related to our paper.

§6. Work of Pan, Yakoubsohn, Dedieu and Taubin.

Pan [?, ?, ?, ?] describes a subdivision algorithm with
the current record asymptotic complexity bound. Pan re-
gards his work as a refinement of Weyl’s Exclusion Algo-
rithm (1924). Weyl is also the basis for Henrici and Gar-
gantini (1969) and Renegar (1987) (see [?]). The predicates
are based on estimating the distance from the midpoint of
a box B to the nearest zero of the input polynomial f(z).
Turan (1968) provides such a bound up to a constant fac-
tor, say 5. Pan further reduce this factor to (1 + ǫ) (for
a small ǫ > 0) by applying the Graeffe iteration to f(z).
Finally, he combines the exclusion test with Newton-like ac-
celerations to achieve the bound of O(n2 lnn ln(hn)), where
h is the cut-off depth of subdivision. Pan noted that “there
remains many open problems on the numerical implementa-
tion of Weyl’s algorithm and its modification” [?, p. 216]; in
particular, “proximity tests should be modified substantially
to take into account numerical problems ... and controlling
the precision growth” [?, p. 193].
The approach of Yakoubsohn and Dedieu [?, ?] is much

simpler than Pan’s. Their algorithm keep subdividing boxes
until each box B satisfies an exclusion predicate Cout(B), or
B is smaller than an arbitrary cut-off ǫ > 0. For any analytic
function f , their predicate Cout(B) is “Mf (z, r

√
2) > 0”

where B is a square centered at z of length 2r, and

Mf (z, t) := |f(z)| −
∑

k≥1

|f (k)(z)|
k!

tk. (1)

It is easy to see that if Cout(B) holds, then B has no roots
of f . Taubin [?, ?] introduce exclusion predicates that can
be viewed as the linearized form of Mf (z, t) or a Newton
correction term. He shows their effectiveness in approxi-
mating (rasterizing) surfaces. These algorithms are useful
in practice, but the use of ǫ-cutoff does not constitute a true
inclusion predicate in the sense on §1: at termination, we
have a collection of non-excluded ǫ-boxes, none of which is
guaranteed to isolate a root.

§7. The Eval Algorithm.

The starting point for this paper is a simple algorithm for
real root isolation. Suppose we want to isolate the roots of
a real analytic function f : R → R in the interval I0 = [a, b].
Assume f has only simple roots in I0. For any interval I
with center m = m(I) and width w = w(I), we introduce
two interval predicates using the function in (??):

C0(I) ≡ Mf (m,w/2) > 0

C1(I) ≡ Mf ′

(m,w/2) > 0

}
(2)

Clearly, C0(I) is an exclusion predicate. Note that if C1(I)

holds, then f has at most one zero in I. Thus C1(I), in
combination with the following root confirmation test,

f(a)f(b) < 0, where I = [a, b], (3)

constitute an inclusion predicate. Here is the algorithm:

Eval(I0):
Q← {I0} where Q is a queue of intervals.
While Q is non-empty:

Remove I from Q.
1. If C0(I) holds, discard I.
2. Else if C1(I) holds,
3. If I passes the root confirmation test (??), output I.
4. Else, discard I.
5. Else
6. If f(m) = 0, output [m,m] where m = m(I).
7. Split I at m and put the two subintervals into Q.

Termination and correctness are easy to see (e.g., [?]).
Output intervals either have the exact form [m,m] or are
regarded as open intervals (a, b). This algorithm is easy to
implement exactly if we assume that all intervals are repre-
sented by dyadic numbers.

Mitchell [?] seems to be the first to explicitly describe
Eval, but as he assumes approximate floating point arith-
metic, he does not check if f(m) = 0 at the midpoint m.
He attributes ideas to Moore [?]. The second author of the
present paper initiated the complexity investigation of Eval
(and its extension for multiple roots) as the 1-D analogue of
the surface meshing algorithm of Plantinga-Vegter [?, ?, ?].
In [?], we succeeded in obtaining a bound of O(n3(L+log n))
when Eval is applied to the benchmark problem. The proof
involves several highly technical tools, but the approach is
based on the novel concept of continuous amortization.
The idea is to bound the tree size in terms of an inte-
gral

∫
I

dx
F (x)

where F (x) is a suitable “stopping function”.

Our complexity analysis also extends to the complex root
isolation algorithm Ceval. Our upper bound for the bit
complexity of Ceval matches those of Eval, Sturm and
Descartes method. It is unknown whether the continuous
amortization approach can achieve similar bounds.

3. THE COMPLEX ROOT ALGORITHM
In this section, we describe Ceval, the complex analogue

of Eval. In fact, we describe two versions of Ceval, and
only prove the correctness of the simpler version here. The
algorithm in described in way that allows a straight forward
exact implementation.

Notation. For the rest of this paper, we fix a square-
free polynomial f ∈ C[z]. Our goal is isolate the com-
plex zeros of f(z) in a given box B0 ⊆ C. Our algorithms
use two basic shapes: boxes and disks. Let ξ, µ ∈ C and
r > 0. Let Dr(m) denote the disk of radius r > 0 cen-
tered at m ∈ C. We write “ξ ≤ µ” if Re(ξ) ≤ Re(µ)
and Im(ξ) ≤ Im(µ). A subset B ⊆ C is called a box if
B = B(ξ, µ) := {z ∈ C : ξ ≤ z ≤ µ} for some ξ ≤ µ.
The midpoint of B(ξ, µ) is m(B) :=(ξ + µ)/2. The width

and radius of B(ξ, µ) are given by w(B) :=max{Re(µ) −
Re(ξ), Im(µ)−Im(ξ)} and r(B) :=

√
(w(B)/2)2 + (d(B)/2)2,

respectively. We can split a box B into four equally dimen-
sioned subboxes, called the children of B. The boundary



of a region R ⊆ C is denoted ∂R (R is usually a disk or a
box). A box B or disk D is said to be isolating if it contains
exactly one zero of f(z).

§8. Complex Analogues of C0 and C1 Predicates.

For m ∈ C and K, r > 0, we define the test function

tf (m, r) and the predicate T f
K(m, r) as follows:

tf (m, r) :=
∑

k≥1

∣∣∣∣
f (k)(m)

f(m)

∣∣∣∣
rk

k!
(4)

T f
K(m, r) ≡ tf (m, r) <

1

K
(5)

Since f is fixed in this paper, we simply write TK(m, r) for

T f
K(m, r). When f ′ is used in place of f , then we simply

write T ′
K(m, r) for T f ′

K (m, r). Moreover, for any disk D,
we may write TK(D) for TK(m(D), r(D)), etc. We further

remark that the success of T f
K(m, r) implies the success of

T f
K′(m, r) for any K′ ≤ K, and T f

K(m, r) is equivalent to

T
f(m+rx/λ)
K (0, λ) with λ ∈ R an arbitrary positive real value.

Lemma 1 (Exclusion-Inclusion Properties).
Consider any disk D = Dr(m):
(i) If T1(D) holds, the closure D of D has no root of f .
(ii) If T1(D) fails, the disc D2nr(m) has some root of f .
(iii) If T ′√

2
(D) holds, D has at most one root of f .

Proof. See [?, ?] for the proof of (i) and (iii). We show
the contrapositive of (ii): let z1, . . . , zn denote the roots of
f and suppose that D2nr(m) contains no root. Then,

∣∣∣∣
f (k)(m)

f(m)

∣∣∣∣ =
∣∣∣∣
∑′

i1,...,ik

1

(m− zi1) . . . (m− zik )

∣∣∣∣

≤ Σk(m) :=

(
n∑

i=1

∣∣∣∣
1

m− zi

∣∣∣∣

)k

≤
(

1

2r

)k

, (6)

where the prime means that the ij ’s (j = 1 . . . k) are chosen
to be distinct. Hence, it follows that

∑

k≥1

∣∣∣∣
f (k)(m)

f(m)

∣∣∣∣
rk

k!
<
∑

k≥1

1

k!

(
1

2

)k

< e
1
2 − 1 < 1

and, thus, T1(D) holds. Q.E.D.

Part (i) of the lemma shows that T1(D), in analogy to
C0(I), is an exclusion predicate for D = Dr(m). Part (ii)
shows that the negation of T1(D) is a root confirmation test
like (??), albeit for the enlarged disc D+ := D2nr(m). Part
(iii) shows that T ′√

2
(D) plays the role of the predicate C1(I).

From (ii) and (iii) we could derive an inclusion predicate.
The next lemma gives lower bounds on the size of discs

that pass our tests. The bounds are in terms of the sepa-

ration σ(ξ) := minj 6=i |zi − ξ| of a root ξ := zi of f , and the
separation σ(f) := mini σ(zi) of f .

Lemma 2. Consider any disk D = Dr(m) and a root
ξ := zi of f :
(i) If r ≤ σ(f)/(4n2), then either T1(D) or T ′√

2
(D) holds.

(ii) If D contains ξ and r ≤ σ(ξ)/(4n2), then T ′√
2
(D) holds.

(iii) If D contains ξ and r ≤ σ(ξ)/(8n3), then D+ is isolat-
ing.

Proof. For (i), suppose that r ≤ σ(f)/(4n2) and both T1(D)
and T ′√

2
(D) do not hold. Then, according to Lemma ?? (ii),

D2nr(m) must contain a root z of f . The same result applied
to f ′ shows that D2nr(m) also contains a root z′ of f ′. It
follows that |z−z′| < 4nr ≤ σ(f)/n ≤ σ(z)/n contradicting
the fact [?, ?] that Dσ(z)/n)(z) does not contain any root
of the derivative f ′. Part (ii) follows from (i) since ξ ∈
D implies that T1(D) does not hold. Part (iii) is a direct
consequence of (ii). Q.E.D.

§9. Simplified Complex Root Isolation.

We are ready to present a complex version of Eval. Call
a disk Dr(m) well-isolating if Dr(m) and D2r(m) are both
isolating. The property we exploit is that if D and D′ are
both well-isolating with non-empty intersection, then they
share a common root in D ∩ D′. Our algorithm produces
well-isolated disks:

Simplified Ceval(B0, f):
Input: Box B0, and polynomial f(z) with only simple roots.
Output: List L of disjoint well-isolating disks, each centered in B0.

Q← {B0}. L ← ∅.
While Q is non-empty:

Remove B from Q. Let m = m(B) and r = 3w(B)/4.
1. If T1(m, r) holds, discard B.
2. Else if T ′√

2
(m, 4nr) holds:

2.1 If D2nr(m) intersects any disk D′ in L,
2.2 replace D′ by the smaller of D2nr(m) and D′.
2.3 Else insert D2nr(m) into L.
3. Else

Split B into four children and insert them into Q.

Correctness of our algorithm is based on three claims:

Theorem 3 (Correctness).
(i) The algorithm halts: indeed, no box of width less than
σ(f)/(12n3) is subdivided.
(ii) L is a list of well-isolating disks, each centered in B0.
(iii) Every root of f(z) in B0 is isolated by some disk in L.
Proof. Claim (i) is true because Lemma ??(i) implies that
the tests in Steps 1 or 2 must pass when r ≤ σ(f)/(12n3)
and r is an upper bound on the radius r(B) of B. To
see (ii), observe that the disk D2r(m) is inserted into L in
Steps 2.2 or 2.3. The m and r in Step 2.1 have the prop-
erties that T1(m, r) fails and T ′√

2
(m, 4nr) succeeds. Then

Lemma ??(ii,iii) implies that D2nr(m) is well-isolating. To
see (iii), observe that boxes B ⊆ B0 are discarded in Steps
1 or 2.2 of the algorithm: Step 1 is justified by Lemma ??(i)
and Step 2.2 is justified because of the above-noted property
of well-isolating disks. Q.E.D.

§10. The Eight Point Test.

Instead of relying on Lemma ??(ii) for root confirma-
tion, we offer another root confirmation test that is closer
in spirit to the sign-change idea in (??). The idea is to look
at the 8 compass points (N,S,E,W, NE, SE, NW, SW) on
the disk D4r(m) as illustrated in Figure 1. These compass
points divide the boundary ∂D4r(m) of the disk into 8 arcs

A0, . . . , A7 where Aj :={m+4reiθ : jπ/4 ≤ θ < (j+1)π/4}.
We rewrite the function f(z) as f(x + iy) = u(x, y) +

iv(x, y), where z = x+ iy, i =
√
−1 and u and v are the real

and imaginary part of f . So f(x + iy) = 0 iff u(x, y) = 0



and v(x, y) = 0. Since the roots are simple, the u- and v-
curves intersect at right angles. We say that is an arcwise

u-crossing at Aj if u(m+4reijπ/4) ·u(m+4rei(j+1)π/4) < 0

or u(m+ 4reijπ/4) = 0.

E

S

N

SE

NE

W

SW

NW

D4r(m)

Dr(m)

v(x, y) = 0

u(x, y) = 0

m

Figure 1: 8 compass points

of D4r.

If r is sufficiently small,
then we want to de-
tect roots in Dr(m)
by arcwise u- and v-
crossings. More pre-
cisely: we say D4r(m)
passes the 8-Point test

if there are exactly two
arcwise u-crossings at
Aj , Ak, (j < k) and
exactly two arcwise v-
crossings atAj′ , Ak′ (j′ <
k′), and these inter-

leave in the sense that
either 0 ≤ j < j′ < k < k′ < 8 or 0 ≤ j′ < j < k′ < k < 8.
We introduce the following novel test to confirm the exis-

tence of ordinary roots.

Theorem 4 (Success of 8-Point Test). Suppose
T ′
6(m, 4r) holds and the 8-point test is applied to D4r(m).

(i) If D4r(m) fails the test, then Dr(m) is non-isolating.
(ii) If D4r(m) passes the test, then D4r(m) is isolating.

Using the 8-point test, we devise an alternative to the sim-
plified Ceval. This 8-point Ceval is described in the full
version [?] of this paper including the proof of Theorem ??

which is non-trivial. The cardinal points (N,S,E,W ) are
dyadic assuming the center and radius are dyadic; however
the ordinal points (NE,SE, SW,NW ) are irrational. Hence
for exact implementation, we show how the correctness of
the 8-Point test is preserved if we use rational points that
are slightly perturbed versions of ordinal points. The 8-point
test has independent interest: (a) For analytic functions, we
no longer have Lemma ??(ii) for root confirmation, but some
kind of 8-point test is applicable. More precisely, the tests
T f
K(m, r) can be considered for arbitrary analytic function,

and the same argumentation as in the case of polynomi-
als shows the correctness of Lemma ??(i),(iii) and Theo-
rem ??. (b) We can use it to “confirm” the output from
pure-exclusion algorithms such as Yakoubsohn-Dedieu’s in
§6. The asymptotic complexity of these two forms of Ceval
for the benchmark problem are the same. This is due to the
fact that there exists a corresponding result to Lemma ??

for the 8-point test.

4. COMPLEXITY ANALYSIS
In this section, we analyze the complexity of Eval and the

simplified Ceval. For this purpose, we use the benchmark
problem of isolating all roots of a square-free polynomial of
degree n with L-bit integer coefficients. The initial start
box for Ceval may be assumed to be B0 = B(−2L(1 +
i), 2L(1 + i)). For Eval, we can start with the interval I0 =
(−2−L, 2L). According to Cauchy’s bound [?], B0 contains
all complex roots z1, . . . , zn ∈ C of f (thus, I0 all real roots
of f). Throughout the following considerations, let T CE

and T EV denote the subdivision trees induced by Ceval
and Eval, respectively.

§11. Cluster Analysis and Tree Size.

In (??), we have already seen that Σk(m) := (
∑

i
1

|m−zi| )
k =

(Σ1(m))k constitutes an upper bound on |f(k)(m)|
|f(m)| for all

k ≥ 1. Furthermore, Σ1(m) < ν for a ν > 0 implies that
∑

k≥1

∣∣∣ f
(k)(m)
f(m)

∣∣∣ rk

k!
< eνr − 1 and, thus,

T f
K(m, r) holds if Σ1(m) <

1

r
ln

(
1 +

1

K

)
. (7)

Now let us consider an arbitrary box B of depth h in the
subdivision process, that is, B has width w(B) = wh :=
2L+1−h. Let r = 3

4
w(B) be the upper bound on the radius

of B used in the Ceval algorithm. If the midpoint m(B)
of B fulfills |m(B) − zi| > 2n · r for all i = 1, . . . , n, then
Σ1(m(B)) < 1

2r
< ln 2

r
, thus T1(m(B), r) holds according to

the above consideration and B is discarded. It follows that,
for each root zi, there exist at most O(n2) disjoint boxes B
of the same size with |m(B) − zi| ≤ 2nr. Hence, in total,
at most O(n3) boxes are retained at each subdivision level
h. From this straightforward observation we immediately
derive the upper bound O(n3) on the width of T CE . For
Eval, a similar argumentation shows that O(n2) intervals
are retained at each subdivision level. This consideration is
based on a pretty rough estimation of Σ1(m) which assumes
that, from a given point m, the distances to all roots zi are
nearly of the same minimal value. In order to improve the
latter estimate, we introduce the concept of δ-clusters of
roots, where δ is an arbitrary positive real value. We will
show that, outside some“smaller” neighborhood of the roots
of f , the sum Σ1(m) is sufficiently small to guarantee the
success of our exclusion predicate T1:

Theorem 5. For arbitrary δ > 0, there exist disjoint,
axes-parallel, open boxes B1, . . . , Bk ⊂ C (k ≤ n2) such that:
(i) B :=

⋃
i=1,...,k Bi covers all roots z1, . . . , zn.

(ii) B covers an area of less than or equal to 4n2δ2.

(iii) For each point m /∈ B, we have Σ1(m) ≤ 2(1+ln⌈n/2⌉)
δ

.

Proof. We only provide a sketch of the proof and refer the
reader to Appendix ?? for a complete argumentation. The
roots z1, . . . , zn are first projected onto the real axes. This
defines a multiset (elements may appear several times) RRe
consisting of |RRe| = n points (counted with multiplicity).
The elements of RRe are now partitioned into disjoint mul-
tisets R1, . . . , Rl such that the following two properties are
fulfilled:

(a) Each Ri is a so called δ-cluster which is defined as
follows: The corresponding δ-interval

Iδ(Ri) = (cg(Ri)− δ|Ri|, cg(Ri) + δ|Ri|),

with cg(Ri) =
∑

x∈Ri
x

|Ri| the center of gravity of Ri,

contains all elements of Ri. In addition, we can or-
der the elements of Ri in way such that their dis-
tances to the right boundary of Iδ(Ri) are at least
δ, 2δ, . . . , |Ri|δ, respectively, and the same for the left
boundary of Iδ(Ri).

(b) The δ-intervals Iδ(Ri) are pairwise disjoint.

The construction of a partition of RRe with the above prop-
erties is rather simple (Appendix, Lemma ??): We start with
the trivial partition of RRe into n δ-clusters each consisting
of one element of RRe. An easy computation (Appendix A,



Lemma ??) shows that the union of two δ-clusters for which
(b) is not fulfilled is again a δ-cluster. Thus, we iteratively
merge δ-clusters whose corresponding δ-intervals overlap un-
til (b) is eventually fulfilled. It is now easy to see (Appendix
A, Lemma ??) that, for each m /∈ ⋃i Iδ(Ri), the inequality
in (iii) holds.
In a second step, we project the roots of f onto the imag-

inary axes defining a multiset RIm for which we proceed in
exactly the same manner as for RRe. Let S1, . . . , Sl′ be the
corresponding partition of RIm, then the overlapping of the
stripes Re(z) ∈ Iδ(Ri) and Im(z) ∈ Iδ(Sj) defines k ≤ n2

boxes B1, . . . , Bk covering an area of total size ≤ 4n2δ2.
Now, for each m /∈ B =

⋃
i Bi, either Re(m) /∈ ⋃i Iδ(Ri) or

Im(m) /∈ ⋃i Iδ(Sj), thus, it follows that

Σ1(m) ≤ 2(1 + ln ⌈n/2⌉)
δ

.

Q.E.D.

We now apply the above theorem to

δ := r · (1 + ln ⌈n/2⌉)
ln 2

=
3w(B)(1 + ln ⌈n/2⌉)

4 ln 2

and use (??). It follows that, for all m outside a union
of boxes covering an area of size w(B)2 · O((n lnn)2), we
have Σ1(m) < 1

r
ln 2. Thus, at any level in the subdivision

process, only O((n lnn)2) boxes are retained. For Eval, we
can apply the real counterpart of Theorem ?? which says
that there exist k ≤ n disjoint intervals I1, . . . , Ik that cover
the projections of all zi onto the real axes, the total size of

all intervals is ≤ 2nδ, and Σ1(m) ≤ 2(1+ln⌈n/2⌉)
δ

for each m

located outside all Ij . It follows that the width of T EV can
be bounded by O(n lnn). A more refined argument even
shows that, at a subdivision level h, the width of the tree
adapts itself to the number kh of roots zi with separation
σ(zi) ≤ 16n3wh = 2L+5−hn3 related to the width wh =
2L+1−h of the boxes at that level. We refer the reader to
Appendix B, Theorem ?? and Theorem ?? for a proof.

Theorem 6. Let h be an arbitrary subdivision level and
kh be the number of roots zi with σ(zi) ≤ 2L+1−h. Then,
the width of T CE at level h is upper bounded by

16k2
h−1(17+ln ⌈kh−1/2⌉) = O(k2

h−1(ln kh−1)
2) = O(n2(lnn)2),

and the width of T EV by

4kh−1(17 + ln ⌈kh−1/2⌉) = O(kh−1 ln kh−1) = O(n lnn).

In order to translate the above result on the treewidth
into a bound on the treesize in terms of the degree n and
the bitsize L, we have to derive an estimate for kh. The main
idea is to apply the generalized Davenport-Mahler bound [?,
?] to the roots of f . In a first step, we partition the set R =
{z1, . . . , zn} of roots into disjoint sets R1, . . . , Rl such that
|Ri0 | ≥ 2 for each i0 = 1, . . . , n and |zi − zj | ≤ 2L+5−hn3 ·
|Ri0 | ≤ 2L+5−hn4 for all pairs zi, zj ∈ Ri0 : Starting with
the set R1 := {z1}, we can iteratively add roots to R1 that
have distance ≤ 2L+5−hn3 to at least one root within R1.
When there is no further root to add, we proceed with a root
zi not contained in R1 and construct a set R2 from {zi} in
the same manner, etc. (Appendix A, Lemma ??).
In a second step, we consider a directed graph Gi on each

Ri which connects consecutive points of Ri in ascending or-
der of their absolute values. We define G := (R,E) as the

union of all Gi. Then G is a directed graph on R with the
following properties:

1. each edge (α, β) ∈ E satisfies |α| ≤ |β|,

2. G is acyclic, and

3. the in-degree of any node is at most 1.

Now, the generalized Davenport-Mahler bound applies:

∏

(α,β)∈E

|α− β| ≥ 1

((n+ 1)1/22L)n−1
·
(√

3

n

)#E

·
(
1

n

)n/2

As each set Ri contains at least 2 roots, we must have #E ≥
kh/2. Furthermore, for each edge (α, β) ∈ E, we have |α −
β| ≤ 16n4wh = 2L+5−hn4, thus,

(
2L+5−hn4

) kh

2 ≥ 1

((n+ 1)1/22L)n−1
·
(√

3

n

)kh

·
(
1

n

)n/2

>
1

(n+ 1)n2nL
·
(

3

n2

)kh/2

> n−n−kh2−n(L+1).

A simple computation then shows that

kh <
16n(L+ lnn)

h− 2L
for all h > h0 := max(2L, ⌈64 lnn+ L⌉).

(8)

In particular, the bound O(n(L+lnn))) on the depth of the
subdivision tree immediately follows. Namely, if kh+1 < 1,
then kh = 0 and, thus, σ(f) < 2L+4−hn3 < 12whn

3. But
this implies that, at subdivision level h, no box is further
subdivided (Theorem ??). For h ≤ h0, we the trivial in-
equality kh ≤ n holds. Now, we can derive our bound on
the tree size by summing up the number of nodes over all
subdivision levels, where we use Theorem ?? and the bound
(??) for kh (Appendix B, Theorem ??). A similar computa-
tion also applies to the tree induced by the Eval algorithm.

Theorem 7. Let f be a square-free polynomial of degree
n with integer coefficients of bit-size ≤ L. Then,

(i) the subdivision tree T CE has size Õ(n2L).

(ii) the subdivision tree T EV has size Õ(nL).

§12. Bit Complexity.

For the analysis of the bit complexity of Ceval, we have
to consider the computational costs at a node (box B) of
depth h, that is, B has width w(B) = wh = 2L+1−h. In

order to evaluate T f
1 (m(B), r) and T f ′

√
2
(m(B), 2nr), where

r = 3
4
w(B) is an upper bound on the radius r(B) of B, we

compute

fB(z) = f(m(B) + w(B) · z)

and test whether T
fB(z)
1 (0, 3/4) or T

f ′

B
(z)√

2
(0, 3n) holds. No-

tice that the latter two tests are equivalent to T f
1 (m(B), r)

and T f ′

√
2
(m(B), 4nr), respectively. We first bound the costs

for computing fB(z): For a polynomial g(z) :=
∑n

i=0 giz
i

with binary fractions gi = mi · 2−τi , mi ∈ Z and τi ∈ N0, as
coefficients, we say that g has bitsize τ(g) if multiplication
of g by the common denominator 2maxi τi of all gi leads to an
integer polynomial with coefficients of at most τ(g) bits. For
our starting box B0, the polynomial fB0(z) = f(2L+1z) has



bitsize O(nL) because of the scaling operation z 7→ 2L+1z.
We incrementally compute fB′ from fB via the substitution
z 7→ (z± 1± i)/2, where B′ is one of the four children of B.
Hence, the bitsize of fB′ increases by at most n compared to
the bitsize of fB . It follows that, for a box B at subdivision
level h, fB has bitsize τB = O(n(L + h)). fB′ is computed
from fB by first substituting z by z/2 followed by a Taylor
shift by 1 and then by i, that is, z 7→ z±1±i. A Taylor shift
by i can be realized as a Taylor shift by 1 combined with
two scalings by i, an immediate consequence of the identity
f(z + i) = f(i(−iz + 1)). The scalings by i are easy. Using
asymptotically fast Taylor shift [?], each shift by 1 requires

Õ(n(n+ τB)) = O(n2(L+ h)) bit operations.
For the polynomial evaluations needed in the predicates

T
fB(z)
1 (0, 3/4) and T

f ′

B
(z)√

2
(0, 3n), we have to compute the

value of a polynomial of bitsize O(n(L+h)) at a point of bit

size O(1) and O(log n), respectively. Therefore, Õ(n(L+h))
bit operations suffice and, thus, the overall number of bit op-

erations for a box of depth h is bounded by Õ(n2(L+h)). We
further remark that a completely analogous argumentation
shows that, for an interval I at level h (i.e., w(I) = 2L+1−h),

Eval requires Õ(n2(L + h)) bit operations as well. Thus,

the bit complexity at each node is bounded by Õ(n3L) since
h = O(n(L+ lnn)).
Readers familiar with the bit complexity analysis of the

Descartes method will notice that the above bound matches
the bound on the bit complexity at a node of depth h there.
The latter result is due to the fact that also in the Descartes
method, the main predicates are based on local Taylor ex-
pansions f(a + (b − a)x), where I = (a, b) is the actual
interval processed.
Now, for Eval, the claimed bit complexity of Õ(n4L2)

follows immediately from multiplying the bound Õ(nL) from

Theorem ?? on the number of nodes with the bound Õ(n3L)
for the bit operations at each node. Furthermore, a simple
computation (Appendix B, §17) which combines our results
on the width of T CE and the costs at each node at any
subdivision level h, leads to the overall bit complexity of
Õ(n4L2) for Ceval. It seems to be worth mentioning that
the larger tree size of T CE (compared to T EV ) does not
effect the overall computational costs. This is due to the
fact, for T CE , most of the node are at subdivision levels
where the computational costs are considerably smaller than
the worst case bound Õ(n3L).

Theorem 8. For a square-free polynomial f of degree n
with integer coefficients with absolute value bounded by 2L,
the algorithms Ceval and Eval isolate the complex (real)

roots of f with a number of bit operations bounded by Õ(n4L2).

5. CONCLUSION
This paper introduced Ceval, a new complex root isola-

tion algorithm, continuing a line of recent work to develop
exact subdivision algorithms based on the Bolzano princi-
ple. The primitives in such algorithms are based on numeri-
cal function evaluation and hence, simple to implement and
extendible to analytic functions. Our 8-Point Ceval algo-
rithm has been implemented in Kamath’s thesis [?] using
the Core Library [?], and compares favorably to Yakoub-
sohn’s algorithm and Mpsolve [?, ?].
The complexity of Ceval is theoretically competitive (up

to logarithmic factors) with that of known exact practical

algorithms for real root isolation. It is somewhat unexpected
that algorithms based on simple primitives can match those
based on more sophisticated ones based on Descartes or
Sturm methods. Another surprise is that the complex case
has (up to logarithmic terms) the same bit complexity as
the real case.

Our complexity analysis introduces new ideas including a
technique of root clusters which has proven to have other
applications [?] as well. One open problem is to sharpen
our complexity estimates (only improvements in logarithmic
terms can be expected).

The Descartes method had been successfully extended to
the bitstream model [?, ?] in which the coefficients of the
input polynomial are given by a bitstream on-demand. It
has useful applications in situations where the coefficients
are algebraic numbers (e.g., in cylindrical algebraic decom-
position). Recent work [?] shows that the Ceval algorithm
also extends to bitstream polynomials.
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APPENDIX

A. THE CLUSTERING APPROACH
Let δ > 0, and suppose R ⊆ R is a non-empty multiset

of real numbers. Multiset means that elements of R may
appear several times, and its size is denoted |R|, with mul-
tiplicity counted. Then its center of gravity is

cg(R) :=

(
∑

x∈R

x

)
/|R|,

and δ-interval is

Iδ(R) :=(cg(R)± |R|δ).
Thus, the width of the Iδ(R) is 2|R|δ.
A ranking of R is a one-one onto function r : R →

{1, 2, . . . , |R|}. We call R a semi δ-cluster if there is a
ranking r of R such that, for all x ∈ R,

(cg(R) + |R|δ)− x ≥ r(x)δ. (9)

In simpler words, we can order the elements of a semi δ-
cluster R in a way such that their distances to the right
endpoint of Iδ(R) are at least δ, 2δ, 3δ, . . . , |R|δ.
In our context, it will turn out useful to guarantee the

same property for the left endpoint cg(R) − |R|δ of Iδ(R)
as well. Hence, we introduce the following definition: R is
a δ-cluster if both R and −R = {−x : x ∈ R} are semi
δ-clusters. We are mainly interested in clusters, but it is
easier to prove properties for semi clusters and to extend
them to clusters by symmetry.
Consider the following examples:

R0 = {x1, . . . , xn},where x1 = xi for all i;

R1 = {−3, 1, 2};
R2 = {x1, x2};
R3 = {−x, 0, x}.

R0 is a δ-cluster for any δ > 0. R1 is a semi 1-cluster with
cg(R1) = 0, but it is not a 1-cluster. R2 is a δ-cluster iff
|x0 − x1| ≤ 2δ. R3 is a δ-cluster iff |x| ≤ 2δ.

§13. Properties of Clusters.

The following property of δ-clusters is immediate:

Lemma 9. If R is a δ-cluster, then R is contained in
Iδ(R). In fact, a stronger containment is true:

R ⊆ [cg(R)± (|R| − 1)δ].

We now generalize our definition of a δ-cluster. Let us
consider a partition R =

⋃k
i=1 Ri of a multiset R. We then

call P = {R1, . . . , Rk} a δ-partition of R if each Ri is
a δ-cluster and the intervals Iδ(Ri) are pairwise disjoint.
Clearly, if R is a δ-cluster, the trivial partition P = {R} is

a δ-partition of R. We further denote Iδ(P) :=
⋃k

i=1 Iδ(Ri).
The following useful property of δ-partitions now follows

from an easy consideration:

Lemma 10. If R is a δ-cluster and m /∈ Iδ(R), then

∑

x∈R

1

|m− x| ≤
1 + ln |R|

δ
.

If P =
⋃

i=1,...,k Ri is a δ-partition of a multiset R, and

m /∈ Iδ(P) then

∑

x∈R

1

|m− x| ≤
2(1 + ln ⌈|R|/2⌉)

δ
.

Proof. Since m /∈ Iδ(R), we either have m > x for all x ∈ R
or m < x for all x ∈ R. Let us consider the first case. If r
is the ranking function that witnesses R as a semi δ-cluster,
then we have

∑

x∈R

1

|m− x| ≤
|R|∑

i=1

1

|m− r−1(i)| ≤
|R|∑

i=1

1

iδ
≤ 1 + ln |R|

δ
.

The second case, that is, m < x for all x ∈ R, is then treated
in completely analogous manner, where we use that −R is
a semi δ-cluster too.

For the proof of the second claim we assume, w.l.o.g., that
the clusters are ordered in way such that x < y for all i < j
and x ∈ Ri, y ∈ Rj . Let R0 :=

⋃k0
i=1 Ri be the union of all

points x ∈ R with x < m and R1 :=
⋃k

i=k0+1 Ri. Notice

thatm separates clusters as it is not contained in any Iδ(Ri).
For i ≤ k0 and x ∈ Ri, we define the ranking function
r : R0 → {1, . . . , |R0|} by r(x) :=

∑k0
j=i+1 |Ri|+ri(x) where

ri denotes the ranking function that witnesses Ri as a semi
δ-cluster. It follows that |m − x| ≥ r(x)δ ≥ jδ if x is the
j-th element of R0 left to m. Hence, we get

∑

x∈R0

1

|m− x| ≤
|R0|∑

j=1

1

|m− r−1(l)| ≤
|R0|∑

j=1

1

jδ
≤ 1 + ln |R0|

δ
.

In an analogous manner, we also show that
∑

x∈R1
|m −

x|−1 ≤ (1 + ln |R1|)/δ and, thus,

∑

x∈R

1

|m− x| ≤
2 + ln |R0|+ ln |R1|

δ
≤ 2(1 + ln ⌈|R|/2⌉)

δ
.

Q.E.D.

The following shows that we can merge δ-clusters to a δ-
cluster again if the corresponding δ-intervals do not overlap.

Lemma 11. Let R,R′ be semi δ-clusters of sizes n and
n′, respectively. If |cg(R)− cg(R′)| ≤ (n+ n′)δ, then
(i) max{cg(R) + nδ, cg(R′) + n′δ} ≤ cg(R ∪R′) + (n+ n′)δ
(ii) R ∪R′ is a semi δ-cluster.
The union of δ-clusters R, R′ is again a δ-cluster if

Iδ(R) ∩ Iδ(R
′) 6= ∅.

Proof. W.l.o.g., let cg(R′) ≤ cg(R ∪ R′) ≤ cg(R), as in
Figure ??.
(i) Clearly, cg(R′) + n′δ ≤ cg(R ∪R′) + (n+ n′)δ. Further-
more, we have

(n+ n′)cg(R ∪R′) = ncg(R) + n′cg(R′)

≥ ncg(R) + n′(cg(R)− (n+ n′)δ)

= (n+ n′)(cg(R)− n′δ)

and, thus, cg(R∪R′) ≥ cg(R)−n′δ which shows the second
part of (i).
(ii) Let r : R → {1, . . . , n} and r′ : R′ → {1, . . . , n′} be
the ranking functions that witness R and R′ as the semi



x

cg(R ∪R′) + (n+ n′)δ

cg(R)cg(R′)

cg(R ∪R′)

≤ n′δ≤ nδ

Figure 2: The union of two δ-clusters R,R′

δ-clusters, respectively. We choose a new ranking function
r : R ∪R′ → {1, . . . , n+ n′}, where

r(x) =

{
r(x) if x ∈ R,
n+ r′(x) if x ∈ R′.

If x ∈ R, then we have

cg(R∪R′)+ (n+n′)δ−x ≥ cg(R)+nδ−x ≥ r(x)δ = r(x)δ

as desired. If x ∈ R′, then we also have

cg(R ∪R′) + (n+ n′)δ − x ≥ (cg(R′) + n′δ − x) + nδ

≥ r′(x)δ + nδ = r(x)δ.

From the definition of Iδ(R) and Iδ(R
′) it is immediate that

|cg(R) − cg(R′)| ≤ (|R| + |R′|)δ if Iδ(R) ∩ Iδ(R
′) 6= ∅ and,

thus, R ∪ R′ is a semi δ-cluster according to (ii). A com-
pletely symmetric argument then also shows that −(R ∪
R′) is a semi δ-cluster as well. Hence, the claim follows.

Q.E.D.

Lemma 12. Let R be a multiset that contains n points
x1, . . . , xn ∈ R and δ > 0 an arbitrary real value. Then,
there exists a δ-partition P of R and for each m /∈ Iδ(P) it
holds that

n∑

i=1

1

|p− xi|
≤ 2(1 + ln ⌈n/2⌉)

δ
.

Proof. Let P = {R1, . . . , Rk} be a partition of R, where
each Ri is a δ-cluster. We will keep transforming P until it
becomes a δ-partition. We start with P = {{x1}, . . . , {xn}}.
In each step, we consider clusters R,R′ ⊂ P with Iδ(R) ∩
Iδ(R

′) 6= ∅. Their union R ∪ R′ is again a δ-cluster due
to Lemma ??. We remove R and R′ from P and insert
R∪R′. When all the intervals Iδ(R) for R ∈ P are pairwise
disjoint, we have the desired δ-partition. The statement
about the bound on the sum

∑k
i=1

1
|m−xi| follows directly

from Lemma ??. Q.E.D.

§14. Complex Clusters.

We now extend the concept of δ-clusters to a multiset
R = {z1, . . . , zn} of complex numbers. Let Re[R] and Im[R]
denote the multiset of the real and imaginary part of ele-
ments in R.
Due to Lemma ?? there exists a δ-partition {R1, . . . , RkRe

}
of Re[R]. Similarly, let {R̃1, . . . , R̃kIm

} denote a δ-partition

of Im[R]. Each interval Iδ(Ri) (Iδ(R̃j)) defines a vertical
(horizontal) stripe (see Figure ??) in the complex plane,
containing all points z ∈ C with Re(z) ∈ Iδ(Ri) (Im(z) ∈
Iδ(R̃j)). Their overlapping consists of k := kRe ·kIm disjoint
boxes which we denote by B1, . . . , Bk. For any point p /∈
⋃k

i=1 Bi, either Re(p) /∈ ⋃kRe
i=1 Iδ(Ri) or Im(p) /∈ ⋃kIm

i=1 Iδ(R̃i),

hence from Lemma ?? we get
∑n

i=1
1

|p−zi| ≤ 2(1+ln⌈n/2⌉)
δ

.

Furthermore, let ǫ ≥ 0 be an arbitrary positive value and
Bǫ

i the box that is obtained by enlarging Bi by ǫ in each
direction. If B :=

⋃
i=1,...,k Bi, then the total area covered

by the union Bǫ :=
⋃

B∈B Bǫ of all these enlarged boxes is
upper bounded by

∑

i,j

(w(Iδ(Ri)) + 2ǫ)(w(Iδ(R̃j)) + 2ǫ)

=
∑

i

(w(Iδ(Ri)) + 2ǫ) ·
∑

j

(w(Iδ(R̃j)) + 2ǫ)

≤ (2nδ + 2nǫ)2 = 4n2(δ + ǫ)2.

where the sum is taken over all i = 1, . . . , kRe ≤ n, j =
1, . . . , kIm ≤ n. We fix this result.

Theorem 13. Let R be a multiset consisting of n points
z1, . . . , zn in the complex space and ǫ ≥ 0, δ > 0 arbi-
trary real values. Then there exist disjoint axes-parallel boxes
B1, . . . , Bk ⊂ C, k ≤ n2, with the following properties:
(i) The union B :=

⋃
i=1,...,k Bi of all boxes covers R.

(ii) Bǫ =
⋃

i=1,...,k B
ǫ
i covers an area of less than or equal to

4n2(δ + ǫ)2.

(iii) For each point m /∈ B we have
∑n

i=1
1

|m−zi| ≤
2(1+ln⌈n/2⌉)

δ
.

We conclude this section with another useful lemma. Again
we consider a multiset R, consisting of n complex points
z1, . . . , zn. We are interested in a partition of R into mul-
tisets that consist of nearby points, only. Let σ(zi) :=
minj 6=i |zi − zj | denote the distance of zi to its nearest point
in R. Furthermore, for an arbitrary δ > 0, we consider the
multiset Rδ that contains exactly those zi with σ(zi) ≤ δ.

Lemma 14. There exists a partition of Rδ into disjoint
multisets R1, . . . , Rk such that |Ri0 | ≥ 2 for each i0 ∈ {1, . . . , k}
and |zi − zj | ≤ |Rδ|δ for all zi, zj ∈ Ri0 .

Proof. Wlog we can assume that Rδ consists of the points
z1, . . . , zl with an l ≤ n. We start with z1 and define R1 :=
{z1}. We further put all points zi in R1 that satisfy |zi −
z1| ≤ δ. Then we proceed with each point in R1 in the same
way. If no further point can be added to R1 we consider the
set Rδ\R1 of the remaining points and treat it in exactly the
same manner. Finally, we end up with a partitionR1, . . . , Rk

of R such that for any two points in any Ri0 , their distance
is less than or equal to (|Ri0 | − 1)δ ≤ |Rδ|δ. Furthermore,
each of the multisets Ri must contain at least two points as
σ(zi) ≤ δ for all i = 1, . . . , l. Q.E.D.

B. COMPLEXITY ANALYSIS
In addition to our previously fixed notations, we denote

by z′1, . . . , z
′
n−1 the roots of the derivative f ′ of f . We fur-

ther assume that the roots z1, . . . , zn of f are ordered with



respect to their separations, that is, σ(z1) ≤ . . . ≤ σ(zn).
Since we start subdividing an initial box B0 (interval I0) of
width w0 := w(B0) = 2L+1, all boxes (intervals) B at a cer-
tain subdivision level h have width w(B) = wh := 2L+1−h

and radius bounded by r(B) < rh := 3
4
wh. We further

denote kh the largest index k such that

σ(zk) ≤ 16n3wh = 2L+5−hn3.

§15. Width of T CE and T EV .

Theorem 15. (Width of T CE) For each subdivision level
h, the width wh of T CE is bounded by

16k2
h−1(17+16 ln ⌈kh−1/2⌉)2 = O(k2

h−1(ln kh−1)
2) = O(n2(lnn)2).

Proof. For a fixed h, consider the set R = {z1, . . . , zkh
}

of roots with σ(zi) ≤ 16n3wh, and let

δ := 16(1 + ln ⌈kh/2⌉)wh.

Theorem ?? applied to R, δ and ǫ := wh ensures the exis-
tence of disjoint open axes-parallel boxes B1, . . . , Bk, k ≤
k2
h, such that their union B̃ :=

⋃k
i=1 Bi has the following

properties:

(a) B̃ contains all roots z1, . . . , zkh
, and each Bi contains

at least one root of R.

(b) B̃wh covers an area of at most 4k2
h(wh+δ)2, where B̃wh

denotes the union of all boxes Bi ∈ B̃, each enlarged
by wh in each direction as in §14.

(c) For an arbitrary m /∈ B̃, we have
∑kh

i=1
1

|m−zi| ≤
1

8wh
.

Let ∂B :=
⋃

i=1,...,k ∂Bi be the union of the boundaries
of all boxes in B. Then, for any m ∈ ∂B, the inequality in
(c) holds as well because the boxes Bi (for all i) are disjoint

and, thus, m /∈ B̃. For the remaining roots zkh+1, . . . , zn,
we consider discs Di := D8n2wh

(zi), i = kh + 1, . . . , n, of

radius ri := 8n2wh, centered at zi. We denote the union of
these discs by D :=

⋃n
i=k(δh)+1 Di.

In the first step, we want to show that for any m /∈ B,
either T1(m, rh) = T1(m, 3wh/4) or T

′√
2
(m, 4nrh) holds. We

distinguish two cases:

• m ∈ D: Then there exists an i0 ∈ {kh + 1, . . . , n}
with m ∈ Di0 . By definition of kh, we have σ(zi0) >
16n3wh. From [?, ?] we know that the distance from
zi0 to any root z′1, . . . , z

′
n−1 of f

′ is larger than σ(zi0)/n >
16n2wh = 2ri0 . Hence, the distance from m to any z′i
is larger than 8n2wh and, thus,

n−1∑

i=1

1

|m− z′i|
<

1

8nwh
=

3

32nrh
<

1

4nrh
ln(1 +

1√
2
).

Now from (??), it follows that T ′√
2
(m, 4nrh) succeeds.

Thus, any box B with center m = m(B) and width
w(B) ≤ wh is terminal.

• m /∈ B ∪ D: On C\ (B ∪ D), each quotient f(k)

f
, k =

1, . . . , n, defines a holomorphic function, and, for each

of these functions, we have limz→∞
f(k)

f
(z) = 0. Ac-

cording to the maximum principle, their maxima are
either taken on the boundary of B or on the boundary

∂D of D. Hence, in order to bound
∣∣∣ f

(k)

f
(m)

∣∣∣, we can

restrict to these cases. If m ∈ ∂Di for one of the discs
Di (say Di0), then m is at least ri0 = 8n2wh away
from zi0 and at least σ(zi0) − ri0 ≥ 8n3wh away from
all other roots of f . It follows that

∣∣∣∣
f (k)

f
(m)

∣∣∣∣ ≤
(

n∑

i=1

1

8n2wh

)k

=

(
1

8nwh

)k

<

(
1

rh
ln 2

)k

.

It remains to discuss the case where m is on the bound-
ary of one of the boxes. Then, the inequality in (c)
holds and, in addition, |m − zi| ≥ 8n2wh for all i =
kh + 1, . . . , n. It follows that

∣∣∣∣
f (k)

f
(m)

∣∣∣∣ ≤
(∑kh

i=1

1

|zi −m| +
∑n

i=kh+1

1

|zi −m|

)k

≤
(

1

8wh
+ (n− kh) · 1

8n2wh

)k

<

(
1

rh
ln 2

)k

.

Hence, in both situations, we have
∣∣∣ f

(k)

f
(m)

∣∣∣ <
(

1
rh

ln 2
)k

,

and, thus, it follows that
∑n

k=1

∣∣∣ f
(k)(m)
f(m)

∣∣∣ rk
h

k!
< eln 2 −

1 = 1. The latter inequality implies the success of
T1(m, rh), thus, any box with center m and radius
smaller than rh is terminal.

We can now easily prove our claim about the number of
boxes B at subdivision level h. If the midpoint m(B) of B
is contained in B, then B is completely contained in Bwh .
Bwh covers an area of at most 4k2

h(δ+wh)
2. As all boxes B

at depth h are pairwise disjoint and each of them covers an
area of w2

h it follows that at most

4k2
h(δ + wh)

2

w2
h

< 4k2
h(17 + 16 ln ⌈kh/2⌉)2

boxes are retained. Since each non-terminal box has four
children, the width wh of T CE at height h is bounded by

16k2
h−1(17+16 ln ⌈kh−1/2⌉)2 = O(k2

h−1(ln kh−1)
2) = O(n2(lnn)2).

From our above considerations, it is now easy to derive a
corresponding bound on the width of the tree T EV induced
by the EVAL algorithm.

Theorem 16. (Width of T EV ) For each subdivision level
h, the width wh of T CE is bounded by

4kh−1(17 + 16 ln ⌈kh−1/2⌉) = O(kh−1 ln kh−1) = O(n lnn).

Proof. We will use the same notations as in the proof of
Theorem ??. In order reuse our argument from before, we
prove a slightly stronger result, namely, we show that the
above bound on the width even holds when we replace the
two tests T1(m(I), w(I)/2) and T ′

1(m(I), w(I)/2) in Eval by
the stronger tests T1(m(I), rh) and T ′√

2
(m(I), 4nrh), respec-

tively, where I is an interval of width w(I) = wh = 2L+1−h

and rh = 3
4
wh > w(I)/2 an upper bound on its radius.

Consider the intersection of B with the real axes. From
the construction of B it follows that the intersection con-
sists of at most kh intervals I1, . . . , Ik̃, k̃ ≤ kh, and the total

length of their union I :=
⋃k̃

l=1 Il is bounded by 2khδ =
32kh(1+ln ⌈kh/2)⌉)wh. We have already shown that, for all
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Figure 3: The roots z1, . . . , z4 define a multiset R with Re[R] = {p1, . . . , p4} and Im[R] = {q1, . . . , q4} the projections of R

onto the real and imaginary axes. The corresponding δ-partitions define horizontal (pink) and vertical (blue) strips S̃i

and Sj which intersect in disjoint boxes (yellow). The boxes which contains z1, . . . , z4 are denoted by B1, . . . , B4. Let m

be a point on the boundary of one of the boxes Bi which is not contained in D5 ∪D6. Then its distance to z5 and z6 is

larger than 8n2wh, thus
∑6

i=1
1

|zi−m| < 1
8wh

+ 1
8n2wh

= ln 2
rh

.

points m outside B, either T1(m, rh) or T ′√
2
(m, 4nrh) suc-

ceeds. Hence, for any real valued m outside I, one of the
latter tests and, thus, also T1(m,w(I)/2) or T ′

1(m,w(I)/2)
succeeds. Hence, I is terminal if its midpoint m(I) /∈ I.
If m(I) ∈ I, then I is completely contained in Iwh :=⋃

l=1,...,k̄ I
rh
l , where Iwh

l is obtained by enlarging Il by wh

at both sides. Iwh has total length less than or equal to
2kh(δ+wh) and each interval I at subdivision level h covers
less than wh. It follows that at most

2kh(δ + wh)

wh
< 2kh(17 + 16 ln ⌈kh/2⌉)

intervals are not terminal. Since each non-terminal node
in T EV has two children, the width of T EV at depth h is
bounded by 4kh−1(17+16 ln ⌈kh−1/2⌉) = O(kh−1 ln kh−1).

§16. Size of T CE and T EV .

The preceding analysis provides bounds on the width of
the trees T CE and T EV . Using the generalized Davenport-
Mahler bound, we now derive a bound on their sizes in terms
of n and L. Before proving the bound on tree size, we derive
a preparatory bound on tree height that has independent
interest:

Theorem 17. The height of T CE and T EV is at most

max{L+ 64 lnn, ⌈16n(L+ lnn) + 2L⌉} (10)

which is O(n(L+ lnn). Moreover, for h > L+ 64 lnn,

kh <
16n(L+ lnn)

h− 2L
. (11)

Proof. We may assume that h > L+ 64 lnn since otherwise
the theorem is true. We first investigate in a bound on kh.
As in the proof of Theorem ??, consider the set R consisting

of those roots z1, . . . , zkh
with separation σ(zi) ≤ 16n3wh =

2L+5−hn4. Then, according to Lemma ??, there exists a
partition of R into disjoints sets R1, . . . , Rk such that |Ri0 | ≥
2 for each i0 = 1, . . . , k and |zi − zj | ≤ 16n3whkh ≤ 16n4wh

for all pairs zi, zj ∈ Ri0 . To use the generalized Davenport-
Mahler bound [?, ?], we consider a directed graph Gi on Ri

which connects consecutive points of Ri in ascending order
of their absolute values. We define G := (R,E) as the union
of all Gi. Then G is a directed graph on R with the following
properties:

1. each edge (α, β) ∈ E satisfies |α| ≤ |β|,
2. G is acyclic, and

3. the in-degree of any node is at most 1.

The generalized Davenport-Mahler bound implies

∏

(α,β)∈E

|α− β| ≥ 1

((n+ 1)1/22L)n−1
·
(√

3

n

)#E

·
(
1

n

)n/2

As each set Ri contains at least 2 roots, we must have #E ≥
kh/2. Furthermore, for each edge (α, β) ∈ E, we have |α −
β| ≤ 16n4wh = 2L+5−hn4. Our assumption that h > L +
64 lnn implies 2L+5−hn4 < 1 and, hence,

(
2L+5−hn4

) kh

2 ≥ 1

((n+ 1)1/22L)n−1
·
(√

3

n

)kh

·
(
1

n

)n/2

>
1

(n+ 1)n2nL
·
(

3

n2

)kh/2

> n−n−kh2−n(L+1).

Squaring and taking logarithm on both sides then leads to

kh(6 lnn+ ln 2(L+ 5− h)) > −2n((L+ 1) ln 2 + lnn).

For h > 64 lnn+L > 10+ 6 lnn
ln 2

+L, the left side is negative



and thus,

kh <
2n((L+ 1) ln 2 + lnn)

(h− 5− L) ln 2− 6 lnn
<

16n(L+ lnn)

h− 2L
, (12)

where we used that h
8

> 5 ln 2 + 6 lnn. This proves the
second assertion of this theorem.
Observe that by Theorems ?? and ??, the heights of T CE

and T EV can both be bounded by the smallest h such that
kh < 1; as kh is integer, this implies kh = 0. But ?? shows
that such a bound is given by h = ⌈16n(L+ lnn) + 2L⌉.
This provides (??). Q.E.D.

Theorem 18. For a square-free polynomial f of degree n
with integer coefficients of bitsize less than L, Ceval induces
a subdivision tree T CE of size

O((n lnn)2(L+ lnn)) = Õ(n2L).

The subdivision tree T EV induced by Eval has size

O(n lnn(L+ lnn)(lnL+ lnn)) = Õ(nL).

Proof. According to Theorem ??, we can bound the height

of T CE and T EV by

hmax := max{⌈16n(L+ lnn) + 2L⌉ , L+ 64 lnn}. (13)

From Theorem ??, the size of T CE is given by

∣∣∣T CE
∣∣∣ ≤

hmax∑

h=1

16k2
h

(
17 + 16 ln

⌈
kh
2

⌉)2

. (14)

To bound kh in the summation (??), we consider two cases.
First, let

h0 := max(2L, ⌈64 lnn+ L⌉) (15)

and write each h ≥ h0 as h = h′ + h0. For h ≤ 2h0, we use
the trivial inequality kh ≤ n, and for h > 2h0, we use the
bound (??) from Theorem ??. We rewrite (??) as

kh <
16n(L+ lnn)

h′ , (16)

where we used the fact h− 2L = h′ + h0 − 2L ≥ h′.
Thus (??) becomes

∣∣∣T CE
∣∣∣ ≤ 16

2h0∑

h=1

n2(17 + 16 lnn)2

+ 163
hmax−h0∑

h′=1+h0

(n2

(
L+ lnn

h′

)2

· (17 + 16 lnn)2)

= O((n lnn)2) · h0 +O((n lnn(L+ lnn))2) ·
hmax−h0∑

h′=1+h0

(
1

h′

)2

= O((n lnn)2(L+ lnn)) +O((n lnn(L+ lnn))2) · 1

h0

= O((n lnn)2(L+ lnn))

= Õ(n2L).

For the size of T EV , we similarly obtain

∣∣∣T CE
∣∣∣ ≤

hmax∑

h=1

4kh(17 + 16 ln

⌈
kh
2

⌉
)

(by Theorem ??)

≤ 4

h0∑

h=1

n(17 + 16 lnn) + 64n(17 + 16 lnn)

hmax−h0∑

h′=1

L+ lnn

h′

= O(n lnn) · h0 +O(n lnn(L+ lnn))

hmax−h0∑

h′=1

1

h′

= O(n lnn) · (L+ lnn) +O(n lnn(L+ lnn)) · lnhmax

= O(n lnn(L+ lnn)) +O(n lnn(L+ lnn)) · (lnL+ lnn))

= O(n lnn(L+ lnn)(lnL+ lnn)) = Õ(nL).

Q.E.D.

§17. Bit Complexity.

The bit complexity for Eval follows directly from the

above bound Õ(nL) on the tree size and our bound of Õ(n3L)
on the costs at each node derived in §12. This proves that

Eval requires at most Õ(nL) · Õ(n3L) = Õ(n4L2) bit oper-
ations.

The following computation further shows that the larger
tree size of T CE does not lead to an asymptotically larger
bit complexity when compared to T EV . Again, we use result
from §12, where we bound the number of bit operations for a

box at subdivision level h by Õ(nL+n2h). In particular, for

all h ≤ 2h0 = Θ(L+ lnn), this simplifies to Õ(n2L). Thus,
the number of bit operations needed in Ceval is bounded
by

2h0∑

h=1

(n lnn)2Õ(n2L) +

hmax−h0∑

h′=1

n2

(
L+ lnn

h′

)2

Õ(n2h′)

(17)

= Õ(n4L2) + n4
hmax−h0∑

h′=1

(
L+ lnn

h′

)2

Õ(h′)

= Õ(n4L2)

(
1 +

hmax−h0∑

h′=1

1

h′

)
= Õ(n4L2).

In the above inequality (??), we used that the costs at a

node at level h = h′ + h0 > 2h0 are bounded by Õ(nL +

n2(h′ + h0)) = Õ(nL + n2h′) = Õ(n2h′) because of h′ >
h0 > L.


