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Abstract

Let F(z) be an arbitrary complex polynomial. We introduce thelocal root clustering problem,
to compute a set of naturalε-clusters of roots ofF(z) in some box regionB0 in the complex plane.
This may be viewed as an extension of the classical root isolation problem. Our contribution is
two-fold: we provide an efficient certified subdivision algorithm for this problem, andwe provide
a bit-complexity analysis based on the local geometry of theroot clusters.

Our computational model assumes that arbitrarily good approximations of the coefficients of
F are provided by means of an oracle at the cost of reading the coefficients. Our algorithmic
techniques come from a companion paper Becker et al. (2017) and are based on the Pellet test,
Graeffe and Newton iterations, and are independent of Schönhage’s splitting circle method. Our
algorithm is relatively simple and promises to be efficient in practice.

1. Introduction

The problem of computing the roots of a univariate polynomial F has a venerable history
that dates back to antiquity. With the advent of modern computing, the subject received sev-
eral newfound aspects McNamee and Pan (2013); Pan (1997); inparticular, the introduction
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of algorithmic rigor and complexity analysis has been extremely fruitful. This development
is usually traced to Schönhage’s 1982 landmark paper, “Fundamental Theorem of Algebra in
Terms of Computational Complexity” Schönhage (1982). Algorithms in this tradition are usually
described as “exact and efficient”. Schönhage considers the problem of approximate polyno-
mial factorization, that is, the computation of approximations z̃i of the rootszi of F such that
‖F − F̃‖1 < 2−b · ‖F‖1, whereF̃(z) := lcf(F) ·∏n

i=1(z− z̃i) andb is a given positive integer. The
sharpest result for this problem is given by Pan (Pan, 2002, Theorem 2.1.1), (Pan, 1997, p.196).
Hereafter, we refer to the underlying algorithm in this theorem as “Pan’s algorithm”. Under
some mild assumption onF (i.e., |zi | ≤ 1 andb ≥ n logn), Pan’s algorithm uses onlỹO(n logb)
arithmetic operations with a precision bounded byÕ(b), and thusÕ(nb) bit operations. This
result further implies that the complexity of approximating all zi ’s to any specifiedb/n bits, with
b > n logn, is alsoÕ(nb) (Pan, 2002, Corollary 2.1.2). Here,̃O means we ignore logarithmic
factors in the displayed parameters. In a model of computation, where it is assumed that the
coefficients ofF are complex numbers for which approximations are given up toa demanded
precision, the above bound is tight (up to poly-logarithmicfactors) for polynomial factorization
as well as for root approximation.

The preceding paragraph is concerned withroot approximation, i.e., computing̃zi such that
|̃zi − zi | ≤ ε for specifiedε > 0. Our main focus is the stronger problem ofroot isolations, i.e.,
computing (̃zi , r i) such thatr i ≤ ε and the discs∆(̃zi , r i) centered at̃zi of radiusr i are pairwise
disjoint and containszi . A central focus in exact and efficient root approximation research has
been to determine the complexity ofisolatingall the roots of anintegerpolynomialF(z) of degree
n with L-bit coefficients. We call this thebenchmark problem in Sagraloff and Yap (2011) since
this case is the main theoretical tool for comparing root isolation algorithms. Although this paper
addresses complex root isolation, we will also refer to the relatedreal benchmark problem
which concerns real roots for integer polynomials.

Root isolation can be reduced to root approximate. Schönhage showed that, for a square-free
polynomialF, it suffices to choose ab of sizeΩ(n(logn+ L)) to ensure that the approximations
z̃i are isolated with 2ε taken as the root separation bound ofF. Together with Pan’s result on
approximate polynomial factorization, this yields a complexity of Õ(n2L) for the benchmark
problem. Interestingly, the latter bound was not explicitly stated until recently (Emiris et al.,
2014, Theorem 3.1).

Mehlhorn et al. Mehlhorn et al. (2015) extend the latter result to (not necessarily square-
free) polynomialsF with arbitrary complex coefficients for which the number of distinct roots
is given as an additional input. That is, Pan’s algorithm is used as a blackbox with successively
increasing precisionb to isolate the roots ofF. For the benchmark problem, this yields the
boundÕ(n3 + n2L); however, the actual cost adapts to the geometry of the roots, and for most
input polynomials, the complexity is considerably lower than the worst case bound.

We further remark that it seems likely that the boundÕ(n2L) is also near-optimal for the
benchmark problem because it is generally believed that Pan’s algorithm is near-optimal for
the problem of approximately factorizing a polynomial withcomplex coefficients. However,
rigorous arguments for such claims are missing.

Until recently, it had been widely assumed that near-optimal bounds need the kind of “mus-
cular” divide and conquer techniques such as the splitting circle method of Schönhage (which
underlies most of the previous fast algorithms in the complexity literature). These algorithms
are far from practical (see below). So, also the boundÕ(n2(n+ L)) achieved by Mehlhorn et al.
Mehlhorn et al. (2015) is mainly of theoretical interest as the algorithm uses Pan’s method as a
blackbox. Instead of these near-optimal algorithms, practitioners interested in a priori root iso-
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lation invariably rely on subdivision methods. The classical example is real root isolation based
on Sturm sequences (1829). For complex roots, Weyl (1924) introduced the quadtree method for
Two types of subdivision algorithms are actively investigated currently: theDescartes Method
Collins and Akritas (1976); Lane and Riesenfeld (1981); Rouillier and Zimmermann (2004); Schönhage
(1982); Sagraloff (2012); Sagraloff and Mehlhorn (2015) and theEvaluation Method Burr et al.
(2009); Burr and Krahmer (2012); Sharma and Yap (2012); Becker (2012); Sagraloff and Yap
(2011); Kamath et al. (2011); Pan (2000). See Sagraloff and Yap (2011) for a comparison of
Descartes and Evaluation (or Bolzano) methods.

The development of certain tools, such as the Mahler-Davenport root bounds Davenport
(1985); Du et al. (2007), have been useful in deriving tight bounds on the subdivision tree size for
certain subdivision algorithms Eigenwillig et al. (2006);Burr and Krahmer (2012); Sharma and Yap
(2012). Moreover, most of these analyses can be unified underthe “continuous amortization”
framework Burr et al. (2009); Burr (2016) which can even incorporate bit-complexity. These
algorithms only use bisection in their subdivision, which seems destined to lag behind the above
“near optimal bounds” by a factor ofn. To overcome this, we need to combine Newton iteration
with bisection, an old idea that goes back to Dekker and Brentin the 1960s. In Pan (2000), Pan
showed that theoretically, the near optimal bounds can be achieved with subdivision methods.
In recent years, a formulation of Newton iteration due to Abbott Abbott (2014) and Sagraloff
Sagraloff (2012) has proven especially useful. This has been adapted to achieve the recent near-
optimal algorithms of Sagraloff and Mehlhorn Sagraloff (2012); Sagraloff and Mehlhorn (2015)
for real roots, and Becker et al. (2017) for complex roots.

The Root Clustering Problem. In this paper, we are interested in root clustering. The
requirements of root clustering represents a simultaneousstrengthening of root approximation
(i.e., the output discs must be disjoint) and weakening of root isolation (i.e., the output discs
can have more than one root). Hereafter, “root finding” refers generally to any of the tasks of
approximating, isolating or clustering roots.

For an analytic functionF : C → C and a complex disc∆ ⊆ C, let Z(∆; F) denote the
multiset of roots ofF in ∆ and #(∆; F) counts the size of this multiset. We writeZ(∆) and #(∆)
sinceF is usually supplied by the context. Any non-empty set of roots of the formZ(∆) is called
a cluster. The disc∆ is called anisolator for F if #(∆) = #(3∆) > 0. Here,k∆ = k · ∆ denotes
the centrally scaled version of∆ by a factork ≥ 0. The setZ(∆) is called anatural cluster
when∆ is an isolator. A set ofn roots could containΘ(n3) clusters, but at most 2n− 1 of these
are natural. This follows from the fact that any two natural clusters are either disjoint or have
a containment relationship. The benchmark problem is a global problem because it concerns
all roots of the polynomialF(z); we now address local problems where we are interested in
finding onlysomeroots ofF(z). For instance, Yakoubson Yakoubsohn (2000) gave a method to
test if Newton iteration from a given point will converge to acluster. In Yap et al. (2013), we
introduced the followinglocal root clustering problem: given F(z), a box B0 ⊆ C andε > 0, to
compute a set{(∆i ,mi) : i ∈ I } where the∆i ’s are pairwise disjoint isolators, each of radius≤ ε
and mi = #(∆i) ≥ 1, such that

Z(B0) ⊆
⋃

i∈I
Z(∆i) ⊆ Z(2B0).

We call the setS = {∆i : i ∈ I } (omitting themi ’s) asolution for the local root clustering instance
(F(z), B0, ε). The roots in 2B0 \ B0 are said to beadventitiousbecause we are really only inter-
ested in roots inB0. SupposeS andŜ are both solutions for an instance (F(z), B0, ε). If S ⊆ Ŝ,
then we call̂S an augmentation ofS. Thus any∆ ∈ Ŝ \ S contains only adventitious roots.
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We solved the local root clustering problem in Yap et al. (2013) for any analytic functionF,
provided an upper on #(2B0) is known, but no complexity analysis was given. Let us see why our
formulation is reasonable. It is easy to modify our algorithm so that the adventitious roots in the
output are contained in (1+ δ)B0 for any fixedδ > 0. We chooseδ = 1 for convenience. Some
δ > 0 is necessary because in our computational model where onlyapproximate coefficients of
F are available, we cannot decide the implicit “Zero Problem”Yap (2009) necessary to decide if
the input has a root on the boundary ofB0, or to decide whether∆ contains a root of multiplicity
k > 1. Thus, root clustering is the best one can hope for.

1.1. Main Result

In this paper, we describe a local root clustering algorithmand provide an analysis of its bit-
complexity. Standard complexity bounds for root isolationare based onsynthetic parameters
such as degreen and bitsizeL of the input polynomial. But our computational model forF(z)
has no notion of bit size. Moreover, to address “local” complexity of roots, we must invoke
geometric parameterssuch as root separation Sagraloff (2012); Sagraloff and Mehlhorn (2015).
We will now introduce new geometric parameters arising fromcluster considerations.

AssumeF(z) hasm distinct complex rootsz1, . . . , zm where eachzj has multiplicityn j ≥ 1,
thusn =

∑m
j=1 n j is the degree ofF(z). Let the magnitude of the leading coefficient ofF be≥ 1/4,

and the maximum coefficient magnitude‖F‖∞ be bounded by 2τF for someτF .
Letk be the number of roots counted with multiplicities in 2B0. An input instance (F(z), B0, ε)

is callednormal if k ≥ 1 andε ≤ min
{
1, w0

96n

}
with w0 the width ofB0. For any setU ⊆ C, let

log(U) := max(1, logsup(|z| : z ∈ U)).
Our algorithm outputs a set of discs, each one contains a natural cluster. We provide a bit

complexity bound of the algorithm in terms of the output.

Theorem A Let S be the solution computed by our algorithm for a normal instance(F(z), B0, ε).
Then there is an augmentation̂S = {Di : i ∈ I } of S such that the bit complexity of the algorithm
is

Õ
(
n2 log(B0) + n

∑
D∈Ŝ

LD

)
(1)

with
LD = Õ

(
τF + n · log(ξD) + kD · (k+ log(ε−1)) + log(

∏
zj<D
|ξD − zj |−nj )

)
(2)

where kD = #(D), andξD is an arbitrary root in D. Moreover, an L∗D-bit approximation of the
coefficients of F is required with L∗D := maxD∈Ŝ LD.

The solutionŜ in this theorem is called anaugmented solutionfor input (F(z), B0, ε). Each
naturalε-clusterD ∈ Ŝ is an isolator of radius≤ ε. From (1), we deduce:

Corollary to Theorem A
The bit complexity of the algorithm is bounded by

Õ
(
n2(τF + k+m) + nk log(ε−1) + n log |GenDisc(Fε)|−1

)
. (3)

In case F is an integer polynomial, this bound becomes

Õ
(
n2(τF + k+m) + nk log(ε−1)

)
. (4)
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The bound (4) is the sum of two terms: the first is essentially the near-optimal root bound, the
second is linear ink, n and log(ε−1). This suggests that Theorem A is quite sharp.

On strong ε-clusters. Actually, the naturalε-clusters in thêS have some intrinsic property
captured by the following definition. Two rootsz, z′ of F areε-equivalent, writtenz ε∼ z′, if there
exists a disk∆ = ∆(r,m) containingz andz′ such thatr ≤ ε

12 and #(∆) = #(114· ∆). Clearly
∆ is an isolator; from this, we see thatε-equivalence is an equivalence relationship. We define
a strong ε-cluster to be any suchε-equivalence class. Unlike natural clusters, any two strong
ε-clusters must be disjoint.

Theorem B
Each natural cluster D∈ Ŝ is a union of strongε-clusters.

This implies that our algorithm will never split any strongε-cluster. It might appear surprising
that our “soft” techniques can avoid accidentally splitting a strongε-cluster.

1.2. What is New
Our algorithm and analysis is noteworthy for its wide applicability: (1) We do not require

square-free polynomials. This is important because we cannot compute the square-free part of
F(z) in our computational model where the coefficients ofF(z) are only arbitrarily approximated.
Most of the recent fast subdivision algorithms for real roots Sagraloff (2012); Sagraloff and Mehlhorn
(2015) require square-free polynomials. (2) We address thelocal root problem and provide a
complexity analysis based on the local geometry of roots. Many practical applications (e.g.,
computational geometry) can exploit locality. The companion paper Becker et al. (2017) also
gives a local analysis. However, it is under the condition that the initial box is not too large or
is centered at the origin, and an additional preprocessing step is needed for the latter case. But
our result does not depend on any assumptions onB0 nor require any preprocessing. (3) Our
complexity bound is based on cluster geometry instead of individual roots. To see its benefits,
recall that the bit complexity in Becker et al. (2017) involves a term logσ(zi)−1 whereσ(zi) is
the distance to the nearest root ofF(z). If zi is a multiple root,σ(zi) = 0. If square-freeness is not
assumed, we must replaceσ(zi) by the distanceσ∗(zi) to the closest root, zi (soσ∗(zi) > 0). But
in fact, our bound in (1) involvesTD := log

∏
zj<D |ξi − zj |−nj which depends only on the inverse

distance from a root within a clusterD to the other roots outside ofD, which is smaller than
logσ∗(zi)−1. So the closeness of roots withinD has no consequence onTD.

Why can’t we just run the algorithm in Becker et al. (2017) by changing the stopping criteria
so that it terminates as soon as a componentC is verified to be a naturalε-cluster? Yes, indeed
one can. But our previous method of charging the work associated with a boxB to a rootφ(B)
may now cause a cluster of multiplicityk to be charged a total ofΩ(k) times, instead of̃O(1)
times. Cf. Lemma 11 below whereφ(B) is directly charged to a cluster.

1.3. Practical Significance
Our algorithm is not only theoretically efficient, but has many potential applications. Local

root isolation is useful in applications where the roots of interest lie in a known locality, and
this local complexity can be much smaller than that of findingall roots. From this perspective,
focusing on the benchmark problem is misleading for such applications.

We believe our algorithm is practical, and plan to implementit. Many recent subdivision
algorithms were implemented, with promising results: Rouillier and Zimmermann (2004) en-
gineered a very efficient Descartes method algorithm which is widely used in theComputer
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Algebra community, through Maple. TheCEVAL algorithm in Sagraloff and Yap (2011) was
implemented in Kamath (2010); Kamath et al. (2011). Becker Becker (2012) gave a Maple
implementation of theREVAL algorithm for isolating real roots of a square-free real polyno-
mial. Most recently, Kobel, Rouillier and Sagraloff ? implemented theANewDsc algorithm from
Sagraloff and Mehlhorn (2015), showing its all round superiority; it especially shines against
known algorithms when roots are clustered.

Although there are several fast divide-and-conquer algorithms Renegar (1987); Neff and Reif
(1996); Kirrinnis (1998), there is only one reported “proofof principle” implementation by
Xavier ... [WIKI]. Pan notes (Pan, 2002, p. 703): “Our algorithms are quite involved, and
their implementation would require a non-trivial work, incorporating numerous known imple-
mentation techniques and tricks.” Further (Pan, 2002, p. 705) “since Schönhage (1982b) already
has 72 pages and Kirrinnis (1998) has 67 pages, this ruled outa self-contained presentation of
our root-finding algorithm”. Our paper Becker et al. (2017) is self-contained with over50 pages,
and explicit precision bounds for all numerical primitives: we use asymptotic bounds only in
complexity analysis (since it has no consequence for implementations) but not in computational
primitives.

2. Preliminary

We review the basic tools from Becker et al. (2017). The coefficients ofF are viewed as an
oracle from which we can request approximations to any desired absolute precision. Approx-
imate complex numbers are represented by a pair of dyadic numbers, where the set of dyadic
numbers (or BigFloats) may be denotedZ[ 1

2] := {n2m : n,m∈ Z}. We formalize3 this as follows:
a complex numberz ∈ C is an oracular number if it is represented by anoracle function
z̃ : N → Z[ 1

2] with someτ ≥ 0 such that for allL ∈ N, |̃z(L) − z| ≤ 2−L andz̃(L) hasO(τ + L)
bits. The oracular number is said to beτ-regular in this case. In our computational model, the
algorithm is charged the cost to read theseO(τ + L) bits. This cost model is reasonable whenz
is an algebraic number because in this case,z̃(L) can be computed in timẽO(τ + L) on a Tur-
ing machine. Following Becker et al. (2017); Yap et al. (2013), we can construct a procedure
SoftCompare(zℓ, zr ) that takes two non-negative real oracular numberszℓ andzr with zℓ+zr > 0,
that returns a value in{+1, 0,−1} such that ifSoftCompare(zℓ, zr ) returns 0 then23zℓ < zr <

3
2zℓ;

otherwiseSoftCompare(zℓ, zr) returnssign(zℓ − zr ) ∈ {+1,−1}. Note thatSoftCompare is
non-deterministic since its output depends on the underlying oracular functions used.

Lemma 1 (see (Becker et al., 2017, Lemma 4) and Yap et al. (2013)).
In evaluatingSoftCompare(zℓ, zr ):
(a) The absolute precision requested from the oracular numbers zℓ and zr is at most

L = 2(log(max(zℓ, zr )
−1) + 4).

(b) The time complexity of the evaluation is̃O(τ + L) where zℓ, zr areτ-regular.

The critical predicate for our algorithm is a test from Pellet (1881) (see Marden (1949)). Let
∆ = ∆(m, r) denote a disc with radiusr > 0 centered atm ∈ C. For k = 0, 1, . . . , n andK ≥ 1,

3 This is essentially the “bit-stream model”, but the term is unfortunate because it suggests that we are getting succes-
sive bits of an infinite binary representation of a real number. We know from Computable Analysis that this representation
of real numbers is not robust.
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define thePellet testTk(∆,K) = Tk(∆,K; F) as the predicate

|Fk(m)|rk > K ·
n∑

i=0,i,k

|Fi(m)|r i

Here Fi(m) is defined as the Taylor coefficient F(i)(m)
i! . Call the testTk(∆,K) a successif the

predicate holds; else afailure . Pellet’s theorem says that forK ≥ 1, a success implies #(∆) =
k. Following Yap et al. (2013); Becker et al. (2017), we define the “soft version” of Pellet test
T̃k(∆) to mean thatSoftCompare(zℓ, zr ) > 0 wherezℓ = |Fk(m)|rk andzr =

∑n
i=0,i,k |Fi(m)|r i .

We need to derive quantitative information in case the soft Pellet test fails. Contra-positively,
what quantitative information ensures that the soft Pellettest will succeed? Roughly, it is that
#(∆) = #(r∆) = k for a suitably larger > 1, as captured by the following theorem:

Theorem 2.
Let k be an integer with0 ≤ k ≤ n = deg(F) and K ≥ 1. Let c1 = 7kK, andλ1 = 3K(n− k) ·
max{1, 4k(n− k)}.
If #(∆) = #(c1λ1∆) = k, then

Tk(c1∆,K, F) holds.

The factorc1λ1 is O(n4) in this theorem, an improvement fromO(n5) in Becker et al. (2017).
A proof is given in Appendix A. In application, we chooseK = 3

2 and thusc1 · λ1 ≤ (7Kn) ·
(12Kn3) = 189n4. The preceding theorem implies that if #(∆) = #(189n4∆) thenTk( 21

2 n∆, 3
2 , F)

holds. This translates into the main form for our application:

Corollary
If k = #( 1

11n∆) = #(18n3∆) then Tk(∆, 3
2; F) holds.

In other words, under the hypothesis of this Corollary,T̃k(∆) succeeds. We need one final
extension: instead of applying̃Tk(∆) directly on F, we applyT̃k(∆(0, 1)) to theNth Graeffe
iterations ofF∆(z) :=F(m+ rz). Here,∆ = ∆(m, r) andN =

⌈
log(1+ logn)

⌉
+ 4 = O(log logn).

The result is called theGraeffe-Pellet test, denotedT̃G
k (∆) = T̃G

k (∆; F). As in Becker et al.
(2017) we combinẽTG

k (∆) for all k = 0, 1, . . . , n to obtain

T̃G
∗ (∆)

which returns the uniquek ∈ {0, . . . , n} such that̃TG
k (∆) succeeds, or else returns−1. We say that

the test̃TG
∗ (∆) succeedsiff TG

∗ (∆,K) ≥ 0.
The key property of̃TG

i (∆) is (Becker et al., 2017, Lemma 6):

Lemma 3 (Soft Graeffe-Pellet Test).
Letρ1 =

2
√

2
3 ≃ 0.943andρ2 =

4
3.

(a) If T̃G
k (∆) succeeds then#(∆) = k.

(b) If T̃G
∗ (∆) fails then#(ρ2∆) > #(ρ1∆).

The bit complexity of the combined test̃TG
∗ (∆) is asymptotically the same as any individual

test (Becker et al., 2017, Lemma 7):
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Lemma 4. Let
L(∆, F) :=2 · (4+ log(‖F∆‖−1

∞ )).

(a) To evaluatẽTG
k (∆), it is sufficient to have an M-bit approximation of each coefficient of F

where M= Õ(n log(m, r) + τF + L(∆, F)).
(b) The total bit-complexity of computing̃TG

∗ (∆) is Õ(nM).

2.1. Box Subdivision

Let A, B ⊆ C. Their separation is Sep(A, B) := inf{|a − b| : a ∈ A, b ∈ B}, and rad(A), the
radius of A, is the smallest radius of a disc containingA. Also,∂A denotes the boundary ofA.

We use the terminology of subdivision trees (quadtrees) Becker et al. (2017). All boxes are
closed subsets ofC with square shape and axes-aligned. LetB(m,w′) denote the axes-aligned
box centered atm of width w(B) :=w′. As for discs, ifk ≥ 0 andB = B(m,w′), thenkB denotes
the boxB(m, kw′). The smallest covering disc ofB(m,w′) is ∆(m, 1√

2
w′). If B = B(m,w′) then

we define∆(B) as the disc∆(m, 3
4w′). Thus∆(m, 1√

2
w′) is properly contained in∆(B). Any

collectionS of boxes is called a (box)subdivision if the interior of any two boxes inS are
disjoint. The union

⋃S of these boxes is called thesupport of S. Two boxesB, B′ areadjacent
if B∪ B′ is a connected set, equivalently,B∩ B′ , ∅. A subdivisionS is said to beconnected
if its support is connected. AcomponentC is the support of some connected subdivisionS, i.e.,
C =

⋃S.
Thesplit operation on a boxB creates a subdivisionSplit(B) = {B1, . . . , B4} of B compris-

ing four congruent subboxes. EachBi is achild of B, denotedB→ Bi. Therefore, starting from
any boxB0, we may splitB0 and recursively split zero or more of its children. After a finite
number of such splits, we obtain asubdivision treerooted atB0, denotedTsubdiv(B0).

Theexclusion testfor a boxB(m,w′) is T̃G
0 (∆(m, 3w′

4 )) = T̃G
0 (∆(B)). We say thatB(m,w′) is

excludedif this test succeeds, andincluded if it fails. The key fact we use is a consequence of
Lemma 3 for the test̃TG

0 (∆):

Corollary 5. Consider any box B= B(m,w′).
(a) If B is excluded, then#(∆(m, 3w′

4 )) = 0, so#(B) = 0.
(b) If B is included, then#(∆(m,w′)) > 0, so#(2B) > 0.

2.2. Component Tree

In traditional subdivision algorithms, we focus on the complexity analysis on the subdivision
treeTsubdiv(B0). But for our algorithm, it is more natural to work with a treewhose nodes are
higher level entities called components above.

Typical of subdivision algorithms, our algorithm consistsof several while loops, but for now,
we only consider the main loop. This loop is controlled by theactive queueQ1. At the start
of each loop iteration, there is a set of included boxes. The maximally connected sets in the
union of these boxes constitute our (current) components. And the boxes in the subdivision of
a componentC are called theconstituent boxesof C. While Q1 is non-empty, we remove
a componentC from Q1 for processing. There are 3 dispositions forC: We try to putC to
theoutput queue Qout. Failing this, we try aNewton Step. If successful, it produces a single
new componentC′ ⊂ C which is placed inQ1. If Newton Step fails, we apply aBisection
Step. In this step, we split each constituent box ofC, and apply the exclusion test to each of its
four children. The set of included children are again organized into maximally connected sets
C1, . . . ,Ct (t ≥ 1). Each subcomponentCi is either placed inQ1 or Qdis, depending on whether
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Ci intersects the initial boxB0. The components inQdis are viewed asdiscardedbecause we do
not process them further (but our analysis need to ensure that other components are sufficiently
separated from them in the main loop). We will use the notation C → C′ or C → Ci to indicate
the parent-child relationship. Thecomponent treeis defined by this parent-child relationship,
and denotedTcomp. In Becker et al. (2017), the root of the component tree isB0; we take5

4B0 as
the root to address boundary issues. So we writeTcomp= Tcomp( 5

4B0) to indicate that54B0 is the
root. The leaves ofTcompare either discarded (adventitious) or output.

For efficiency, the set of boxes in the subdivision of a componentC must maintain links to
adjacent boxes within the subdivision; such links are easy to maintain because all the boxes in a
component have the same width.

3. Component Properties

Before providing details about the algorithm, we discuss some critical data associated with
each componentC. Such data is subscripted byC. We also describe some qualitative properties
so that the algorithm can be intuitively understood. Figure1 may be an aid in the following
description.

C2

B0

2B0

(5/4)B0

C1

C3

Figure 1: Three componentsC1,C2,C3: blue dots indicate roots ofF, pink boxes are constituent boxes, and the non-pink
parts of eachBC is colored cyan. OnlyC3 is confined.

(C1) All the constituent boxes of a component share a common width, denoted bywC.

(C2) Our algorithm never discards any boxB if B contains a root inB0; it follows that all the
roots inB0 are contained in

⋃
C C whereC ranges over components inQ0 ∪ Q1 ∪ Qout (at

any moment during our algorithm).

(C3) Recall that a zeroζ of F(z) in 2B0 \ B0 is called adventitious. A componentC is adventi-
tious if C∩ B0 is empty (placed inQdis). We say a componentC is confined if C∩ ∂( 5

4B0)
is empty; otherwise it is non-confined. Figure 2 shows these different kinds of components.
Note that after the preprocessing step, all components are confined.

(C4) If C,C′ are distinct active components, then their separation Sep(C,C′) is at least max{wC,wC′ }.
If C is an adventitious component, then Sep(C, B0) ≥ wC. If C is a confined component,
then Sep(C, ∂( 5

4B0)) ≥ wC.

9



(C5) LetC+ be theextended componentdefined as the set
⋃

B∈SC
2B. If C andC′ are distinct

components, thenC+ andC′+ are disjoint. Moreover, ifC is confined, then #(C) = #(C+)
(see Appendix B).

(C6) Define thecomponent boxBC to be any smallest square containingC subject toBC ⊆
(5/4)B0. DefineWC as the width ofBC and the disc∆C :=∆(BC). DefineRC as the radius
of ∆C; note thatRC =

3
4WC.

(C7) Each component is associated with a “Newton speed” denoted byNC with NC ≥ 4. A key
idea in the Abbot- Sagraloff technique for Newton-Bisection is to automatically updateNC:
if Newton fails, the children ofC have speed max

{
4,
√

NC

}
else they have speedN2

C.

(C8) LetkC :=#(∆C), the number of roots ofZ(∆C), counted with multiplicity. Note thatkC is
not always available, but it is needed for the Newton step. Wetry to
determinekC before the Newton Step in the main loop.

(C9) A componentC is compact if WC ≤ 3wC. Such components have many nice properties,
and we will require output components to be compact.

In recap, each componentC is associated with the data:

wC,WC,MC, BC,∆C,RC, kC,NC.

C4

C2

C1

B0

(5/4)B0

C3

Figure 2: Four types of components:C1 is not confined, the rest are confined;C1 andC2 are adventitious;C3 may
contain adventitious roots;C4 has no adventitious roots.

4. The Clustering Algorithm

As outlined above, our clustering algorithm is a process forconstructing and maintaining
components, globally controlled by queues containing components. Each componentC repre-
sents a non-empty set of roots. In addition to the queuesQ1,Qout,Qdis above, we also need apre-
processing queueQ0. Furthermore,Q1 is a priority queue such that the operationC← Q1.pop()
returns the component with the largest widthWC.

We first provide a high level description of the two main subroutines.

10



The Newton StepNewton(C) is directly taken from Becker et al. (2017). This procedure
takes several arguments,Newton(C,NC, kC,

xC). The intent is to perform an orderkC Newton step:

x′C ← xC − kC
F(xC)
F′(xC)

.

We then check whetherZ(C) is actually contained in the small disc∆′ :=∆(x′C, r
′) where

r ′ := max{ε,wC/(8NC)} . (5)

This amounts to checking whether̃TG
kC

(∆′) succeeds. If it does, Newton test succeeds, and we

return a new componentC′ that contains∆′ ∩ C with speedNC′ := (NC)2 and constituent width
wC′ :=

wC

2NC
. The new componentC′ consists of at most 4 boxes andWC′ ≤ 2wC′ . In the original

paper Becker et al. (2017),r ′ was simply set towC

8NC
; but (5) ensures thatr ′ ≥ ε. This avoids the

overshot of Newton Step and simplifies our complexity analysis. If T̃G
kC

(∆′) fails, then Newton
test fails, and it returns an empty set. In the following context, we simply denote this routine as
“Newton(C)”.

TheBisection StepBisect(C) returns a set of components. Since it is different from that in
Becker et al. (2017), we list the modified bisection algorithm in Figure 3.

We list the clustering algorithm in Figure 4.
Remarks on Root Clustering Algorithm:

1. The steps in this algorithm should appear well-motivated(after Becker et al. (2017)). The
only non-obvious step is the test “WC ≤ 3wC” (colored in red).We may sayC is compact if this
condition holds. This part is only needed for the analysis; the correctness of the algorithm is not
impacted if we simply replace this test by the Boolean constant true (i.e., allowing the output
components to haveWC > 3wC).
2. We ensure thatWC ≥ ε before we attempt to do the Newton Step. This is not essential, but
simplifies the complexity analysis.

Based on the stated properties, we prove the correctness of our algorithm.

Theorem 6 (Correctness).The Root Clustering Algorithm halts and outputs a collection {(∆C, kC) : C ∈ Qout}
of pairwise disjointε-isolators such thatZ(B0) ⊆

⋃
C∈Qout

Z(∆C) ⊆ Z(2B0).

Proof. First we prove halting. By way of contradiction, assumeTcomp has an infinite path
5
4B0 = C0 → C1 → C2 → · · · . After O(logn) steps, theCi ’s are in the main loop and satisfies
#(Ci) = #(C+i ) ≥ 1. Thus theCi converges to a pointξ which is a root ofF(z). For i large enough,
Ci satisfiesWCi ≤ 3wCi andwCi < ε. Moreover, ifCi is small enough, 4∆Ci will not intersect
other components. Under all these conditions, the algorithm would have output such aCi . This
is a contradiction.

Upon halting, we have a set of output components. We need to prove that they represent
a set of pairwise disjoint naturalε-clusters. Here, it is important to use the fact thatQ1 is a
priority queue that returns componentsC in non-increasing widthWC. Suppose inductively, each
component in theQout is represents a naturalε-cluster, and they are pairwise disjoint. Consider
the next componentC that we output: we know that 4∆C does not intersect any components in
Q1∪Qdis. But we also know thatC∩4∆C′ = ∅ for anyC′ in Qout. We claim that this implies that
3∆C∩C′ must be empty. To see this, observe thatWC ≤WC′ because of the priority queue nature
of Q1. Draw the disc 4∆C′ , and notice that the center of∆C cannot intersect 3∆C′ . Therefore,

11



Bisect(C)
OUTPUT: a set of components containing all

the non-adventitious roots in C
(but possibly some adventitious ones)

Initialize a Union-Find data structure U
for boxes.

For each constituent box B of C
For each child B′ of B

If (T̃G
0 (∆(B′)) fails)

U.add(B′)
For each box B′′ ∈ U adjacent to B′

U.union(B′, B′′)
Initialize Q to be empty.

specialFlag← true

If (U has only one connected component)

specialFlag← false

For each connected component C′ of U
If (C′ intersects B0) // C′ not adventitious

If (specialFlag)
NC′ = 4

Else

NC′ = max
{
4,
√

NC

}

Q.add(C′)
Else

Qdis.add(C′)
Return Q

Figure 3: Bisection Step

3∆C cannot intersect∆′C. This proves thatC can be added toQout and preserve the inductive
hypothesis.

It is easily verified that the roots represented by the confined components belong to15
8 B0 ⊂

2B0. But we must argue that we cover all the roots inB0. How can boxes be discarded? They
might be discarded in the Bisection Step because they succeed the exclusion test, or because they
belong to an adventitious component. Or we might replace an entire component by a subcom-
ponent in a Newton Step, but in this case, the subcomponent isverified to hold all the original
roots. Thus, no roots inB0 are lost. Q.E.D.

We now show some basic properties of the components producedin the algorithm.

Lemma 7.
Let C be a component.
(a) If C is confined with k= #(C), then C has at most9k constituent boxes. Moreover, WC ≤
3k · wC.
(b) IfZ(C) is strictly contained in a box of width wC, then C is compact: WC ≤ 3wC.

12



Root Clustering Algorithm
Input: Polynomial F(z), box B0 ⊆ C and ε > 0
Output: Components in Qout representing

natural ε-clusters of F(z) in 2B0.

⊲ Initialization

Qout← Q1← Qdis← ∅.
Q0 ← {(5/4)B0} // initial component

⊲ Preprocessing

While Q0 is non-empty

C← Q0.pop()
If (C is confined and WC ≤ w(B0)/2)

Q1.add(C)
Else

Q0.add(Bisect(C))
⊲ Main Loop

While Q1 is non-empty

C← Q1.pop() // C has the largest WC in Q1

If (4∆C ∩C′ = ∅ for all C′ ∈ Q1 ∪ Qdis)

kC ← T̃G
∗ (∆C)

If (kC > 0) // Note: kC , 0.
If (WC ≥ ε)

C′ ← Newton(C)
If (C′ , ∅)

Q1.add(C′); Continue

Else if (WC ≤ 3wC) // C is compact

Qout.add(C); Continue

Q1.add(Bisect(C))
Return Qout

Figure 4: Clustering Algorithm

(c) If there is a non-special path(C1→ · · · → C) where C1 is special, then wC ≤
4wC1
NC

.

Proof. Parts (a) and (b) are easy to verify. Part (c) is essentially from (Becker et al., 2017,
Theorem 4) with a slight difference: we do not need toC1 to be equal to the root54B0. That is
because our algorithm resets the Newton speed of the specialcomponentC1 to 4. Q.E.D.

The next lemma addresses the question of lower bounds on the width wC of boxes in compo-
nents. IfC is a leaf, thenwC < ε, but how much smaller thanε can it be? Moreover, we want to
lower boundwC as a function ofε.

Lemma 8. Denote k= #(2B0).
(a) If C is a component in the pre-processing stage, then wC ≥ w(B0)

48k .
(b) Suppose C1 → · · · → C2 is a non-special path with WC1 < ε. Then it holds

wC1

wC2

< 57k.
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(c) Let C be a confined leaf in̂Tcomp then

wC >
ε

2

( 1
114k

)k
.

A proof of Lemma 8 is given in Appendix B.
We will need what we call thesmall ε assumption, namely,ε ≤ min {1,w(B0)/(96n)}. If this

assumption fails, we can simply replaceε by ε = min {1,w(B0)/(96n)} to get a valid bound from
our analysis. This assumption is to ensure that noε-cluster is split in the preprocessing stage.

5. Bound on Number of Boxes

In this section, we bound the number of boxes produced by our algorithm. All the proofs for
this section are found in Appendix B.

The goal is to bound the number of all the constituent boxes ofthe components inTcomp.
But, in anticipation of the following complexity analysis,we want to consider anaugmented
component treeT̂comp instead ofTcomp.

Let T̂comp be the extension ofTcomp in which, for each confined adventitious components in
Tcomp, we (conceptually) continue to run our algorithm until theyfinally produce output compo-
nents, i.e., leaves of̂Tcomp. As before, these leaves have at most 9 constituent boxes.

SinceC′ → C denote the parent-child relation, a path inTcompmay be written

P = (C1→ C2 → · · · → Cs). (6)

We writewi ,Ri,Ni , etc, instead ofwCi ,RCi ,NCi , etc.
A componentC is specialif C is the root or a leaf of̂Tcomp, or if #(C) < #(C′) with C′ the

parent ofC in T̂comp; otherwise it isnon-special. This is a slight variant of Becker et al. (2017).
We callP a non-special path led byC1, if eachCi (i = 2, . . . , s) is non-special, i.e., #(Ci) =

#(Ci−1). The special component treeT ∗comp is obtained fromT̂comp by eliminating any non-
special components while preserving the descendent/ancestor relationship among special nodes.

We now consider the length of an arbitrary non-special path as in (6). In (Becker et al., 2017,
Lemma 10), it was shown thats = O

(
logn+ log(log(w(B0)) · log(σF (2B)−1))

)
. We provide an

improved bound which is based on local data, namely, the ratio w1/ws only.
We definesmax to be the maximum length of a non-special path inT̂comp.

Theorem 9. The length of the non-special path (6) satisfies

s= O(log log
w1

ws
+ logn).

Particularly,

smax = O
(
logn+ log log

w(B0)
ε

)
.

The proof of Theorem 9 is found in Appendix B.
Charging function φ0(B). For each componentC, define theroot radius of C to berC := rad(Z(C)),

that is the radius of the smallest disc enclosing all the roots inC. We are ready to define a charg-
ing functionφ0 for each boxB in the components of̂Tcomp: Let CB ∈ T̂comp be the component

14



of which B is a constituent box. LetξB be any root in 2B. There are two cases: (i) IfCB is a
confined component, there is a unique maximum path inT̂comp from CB to a confined leafEB in
T̂compcontainingξB. Defineφ0(B) to be the first special componentC along this path such that

rC < 3wB. (7)

wherewB is the width ofB. (ii) If CB is not confined, it means thatC is a component in the
preprocessing stage. In this case, defineφ0(B) to be the largest naturalε-cluster containingξB.
Notice thatφ0(B) is a special component in (i) but a cluster in (ii).

Lemma 10. The mapφ0 is well-defined.

Proof. Consider the componentCB of which B is a constituent box. There are two cases in
our definition ofφ0:

(i) If CB is a confined component, it is easy to see that we can find a rootξB ∈ 2B, and fix a
unique maximum path in̂Tcomp from CB to a confined leafEB in T̂compcontainingξB. It suffices
to prove that we can always find a special componentC in this path such thatrC < 3wB. This is
true becauserEB < 3wEB ; to see this, note thatEB is a confined leaf of̂Tcomp. ThusWEB ≤ 3wEB

(this is the condition for output in the main loop of the Root Clustering Algorithm). It follows

rEB ≤
√

2
2 ·3wEB < 3wEB . HencerEB < 3wEB < 3wB. we can always find a first special component

along the path fromCB to EB such that (7) is satisfied.
(ii) If CB is a non confined component, we can also find a rootξB in 2B, and we can always

chargeB to the largest naturalε-cluster containingξB. Q.E.D.

Using this map, we can now bound the number of boxes.

Lemma 11. The total number of boxes in all the components inT̂comp is

O(t · smax) = O(#(2B0) · smax)

with t = |{φ0(B) : B is any box in̂Tcomp}|.

This improves the bound in Becker et al. (2017) by a factor of logn. A proof for Lemma 11
is found in Appendix B.

6. Bit Complexity

Our goal is to prove the bit-complexity theorem stated in theIntroduction. From the discus-
sion in (Becker et al., 2017, Theorem 7), the total cost of allthe T̃G tests is the main cost of the
whole algorithm. Thus we need to account for the cost ofT̃G tests on all the concerned boxes
and components.

The road map is as follows: we will charge the work of each boxB (resp., componentC) to
some naturalε-cluster denotedφ(X) (resp.,φ(C)). We show that each clusterφ(X) (X is a box or
a component) is charged̃O(1) times. Summing up over these clusters, we obtain our bound.

We may assume log(B0) = O(τF ) since Cauchy’s root bound implies that any rootzi satisfies
|zi | ≤ 1+ 4 · 2τ, thus we can replaceB0 by B0 ∩ B(0, 2+ 8 · 2τ).

Cost of T̃G-tests and Charging functionφ(X): Our algorithm performs 3 kinds of̃TG-tests:

T̃G
∗ (∆C), T̃G

kC
(∆′), T̃G

0 (∆(B)) (8)
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respectively appearing in the main loop, the Newton Step andthe Bisection Step. We define the
costof processing componentC to be the costs in doing the first 2 tests in (8), and thecostof
processing a boxB to be the cost of doing the last test. Note that the first 2 testsdo not apply
to the non-confined components (which appear in the preprocessing stage only), so there is no
corresponding cost.

We next “charge” the above costs to naturalε-clusters. More precisely, ifX is a confined
component or any box produced in the algorithm, we will charge its cost to a naturalε-cluster
denotedφ(X): (a) For a special componentC, letφ(C) be the naturalε-clusterZ(C′) whereC′ is
the confined leaf ofT ∗compbelowC which minimizes the length of path fromC to C′ in T ∗comp. (b)
For a non-special componentC, we defineφ(C) to be equal toφ(C′) whereC′ is the first special
component belowC. (c) For a boxB, we had previously definedφ0(B) (see Section 5). There are
two possibilities: Ifφ0(B) is defined as a special component, thenφ(φ0(B)) was already defined
in (a) above, so we letφ(B) :=φ(φ0(B)). Otherwise,φ0(B) is defined as a naturalε-cluster, and
we letφ(B) = φ0(B).

Lemma 12. The mapφ is well-defined.

Proof.For a special componentC, to defineφ(C) we first considerC′, defined as the confined
leaf such that path (C → · · · → C′) is the shortest inT ∗comp. This path has length at most logn
since there exists a path of length at most logn in which we choose the special node with the
least #(Ci) at each branching (this was the path chosen in Becker et al. (2017)). Hence,φ(C) is
well-defined. The mapφ for a non-special component and a box are defined based on thatfor a
special component, it is easy to check that they are well-defined.

It remains to prove that in the case whereφ0(B) is a naturalε-cluster, the mapφ is well-
defined. This follows from Lemma 10. Q.E.D.

DefineŜ to be the range ofφ, so it is a set of naturalε- clusters. The clusters in̂S are of
two types: those defined by the confined leaves ofT̂comp, and those largestε-clusters of the form
φ(B) with B in non-confined components.

We use the notatioñO(1) to refer to a quantity that isO((log(nτ log(ε−1)))i) for some constant
i. To indicate the complexity parameters explicitly, we could have written “̃On,τ,log(ε−1)(1)”.

Lemma 13. Each naturalε-cluster inŜ is charged O(smax logn) times, i.e.,̃O(1) times.

Proof. First consider the number of components mapped to a same natural ε-cluster. From
the definition ofφ(C) for a special component, it is easy to see that the number of special com-
ponents mapped to a same naturalε-cluster is at most logn. Thus the number of non-special
components mapped to a same naturalε-cluster is bounded byO(smax logn). Hence the number
of components mapped to a same naturalε-cluster is bounded byO(smax logn).

Then we consider the number of boxes mapped to a same naturalε-cluster. By Lemma 11,
the number of boxes charged to a same special component byφ0 is bounded byO(smax), and the
number of special components mapped to a same naturalε-cluster is bounded byO(logn), thus
the number of boxes mapped to a same naturalε-cluster is bounded byO(smax logn) = Õ(1).
Also by Lemma 11, the number of boxes charged to a same naturalε-cluster byφ0 is bounded
by O(logn)Õ(1).

In summary, each naturalε-cluster is mappedO(smax logn) = Õ(1) times. Q.E.D.

Based on the charging mapφ, we can derive a bound for the cost of processing each compo-
nent and box.
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Lemma 14. Denote k= #(2B0).
(a) Let B be a box produced in the algorithm. The cost of processing B is bounded by

Õ
(
n · [τF + n log(B) + kD · (log(ε−1) + k) + TD]

)
(9)

with D = φ(B), kD = #(D) and

TD := log
∏

zj<D

|ξD − zj |−nj . (10)

whereξD is an arbitrary root contained in D.
(b) Let C be a component produced in the main-loop, and let C0 be the last special component
above C, then the cost of processing a component C is bounded by

Õ
(
n · [τF + n log(C) + n log(wC0) + kD · (log(ε−1) + k) + TD]

)
(11)

where D is an arbitrary cluster contained in C, kD = #(D) and TD is as defined in (C.2).

A proof of Lemma 14 is found in Appendix C.
We are almost ready to prove the theorems announced in Section 1.1. Theorem A is easier to

prove if we assume that the initial boxB0 is nice in the following sense:

maxz∈2B0 log(z) = O(minz∈2B0 log(z)). (12)

Here we only prove the case where the initial box is nice, and acomplete proof of Theorem A is
provided in the end of Appendix C.

In the nice case, the following lemma bounds the cost of processingX whereX is a box or a
component.

Lemma 15. If the initial box is nice, the cost of processing X (where X isa box or a component)
is bounded by

Õ (n · LD)

bit operations with D= φ(X) and with LD defined in (2). Moreover, an LD-bit approximation of
F is required.

Proof. Note that if the initial box satisfies (12), then it holds thatlog(B) = O(log(ξ)) and
log(C) = O(log(ξ)) for any boxB and componentC and any rootξ ∈ 2B0. And we know that
φ(C) ⊂ C. Q.E.D.

Thus this Lemma is a direct result form Lemma 14. Using this lemma, we could prove
Theorem A of Section 1.1 under the assumption thatB0 is nice.

Before we prove the Theorem A in Section 1.1, we want to address a trivial case excluded
by the statement in that theorem. In Theorem A, we assumed that the number of rootsk in 2B0

is at least 1. Ifk = 0, then the algorithm makes only one test,T̃G
0 ( 5

4 B0). We want to bound the
complexity of this test. Denoting the center ofB0 as M0, the distance fromM0 to any root is
at leastw(B0)

2 . Thus|F(M0)| > | lcf(F)| · ( w(B0)
2 )n. Thus by (Becker et al., 2017, Lemma 7), the

cost of thisT̃G
k test is bounded bỹO

(
nτF + n2 log(B0) + n log(w(B0)−1)

)
. Now we return to the

Theorem A in the introduction.

Theorem A Let S be the solution computed by our algorithm for a normal instance(F(z), B0, ε).
Then there is an augmentation̂S = {Di : i ∈ I } of S such that the bit complexity of the algorithm
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is
Õ
(
n
∑

D∈Ŝ
LD

)

with
LD = Õ

(
τF + n · log(ξD) + kD · (log(k+ ε−1)) + log(

∏
zj<D
|ξD − zj |−nj )

)

where kD = #(D), andξD is an arbitrary root in D. Moreover, an L∗D-bit approximation of the
coefficients of F is required with L∗D := maxD∈Ŝ LD.

The set̂S in this theorem is precisely the range of our charge functionφ, as defined in the
text.

Lemma 16. If B0 satisfies (12), then the Theorem A holds.

Proof. Recall that the number of components and that of boxes mappedto any naturalε-
cluster is bounded by logn·smax. Thus from Lemma 15, the cost of processing all the components
and boxes mapped to a natural clusterD ∈ Ŝ is bounded bỹO(logn · smax · nLD). But logn · smax

is negligible in the sense of being̃O(1). Thus the total cost of all thẽTG tests in the algorithm
can be bounded by

Õ
(
n
∑

D∈Ŝ
LD

)

with LD defined in (2) and̂S is the range ofφ. And it is easy to see that̃O
(
n
∑

D∈Ŝ LD

)
is bounded

by (1).
There is another issue concerning total cost (as in (Becker et al., 2017, Theorem 7)): There

is a non-constant complexity operation in the main loop: in each iteration, we check if 4∆C ∩C′

is empty. This cost isO(n) sinceC′ has at most 9n boxes. ThisO(n) is already bounded by the
cost of the iteration, and so may be ignored. Q.E.D.

The appendix will prove Theorem A holds even ifB0 is not nice.
In Becker et al. (2017), the complexity bound for global rootisolation is reduced to the case

whereB0 is centered at the origin. This requires a global pre-processing step. It is unclear that
we can adapt that pre-processing to our local complexity analysis.

The bit complexity in Theorem A is based on geometric parameters, we can also write it in
terms of synthetic parameters, although the the latter bound is not as sharper as the former one.

Corollary to Theorem A
The bit complexity of the algorithm is bounded by

Õ
(
n2(τF + k+m) + nk log(ε−1) + n log |GenDisc(Fε)|−1

)
.

In case F is an integer polynomial, this bound becomes

Õ
(
n2(τF + k+m) + nk log(ε−1)

)
.

The proof is found in Appendix C.
Theorem A gives a bit complexity bound in terms ofŜ. We now investigate the natural

ε-clusters in̂S. From the definition of̂S, we could write

Ŝ = S ∪ S′ (13)
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whereS is the set of naturalε-clusters defined by the confined leaves ofT̂comp, andS′ is the set
of all the naturalε-clusterφ(B) with B being any constituent box of any non-confined component
in the preprocessing stage. Now we want to show an intrinsic property of the output components
and also of the set̂S, using the concept of strongε-clusters as is defined in the introduction.

Theorem B Each naturalε-cluster inŜ is a union of strongε-clusters.

The proof of Theorem B is found in Appendix C.

7. Conclusion

This paper initiates the investigation of the local complexity of root clustering. It modifies
the basic analysis and techniques of Becker et al. (2017) to achieve this. Moreover, it solves a
problem left open in Becker et al. (2017), which is to show that our complexity bounds can be
achieved without adding a preprocessing step to search for “nice boxes” containing roots.

We mention some open problems. Our Theorem A expresses the complexity in terms of local
geometric parameters; how tight is this? Another challengeis to extend our complexity analysis
to analytic root clustering Yap et al. (2013).
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We have omitted the three appendices which may be found in ourfull paper: Appendix A
contain proofs for Section 2. Similarly, Appendix B and C arefor Sections 5 and 6.

Appendix A. Root Bounds

To prove Theorem 2, we follow Becker et al. (2017) by proving three lemmas. We then
use these bounds to convert the bound in our Theorem A into a bound in terms of algebraic
parameters as in (3) in Section 1.1.

Appendix A.1. LEMMA A1

In the following, we will defineG(z) andH(z) relative to any∆ as follows:

F(z) = G(z)H(z) (A.1)

whereG(z) =
∏

i=1(z−zi) such thatZF (∆) = Zero(G) = {z1, . . . , zk} andZero(H) = {zk+1, . . . , zn}.
Note that the leading coefficients ofF(z) andH(z) are the same. By induction oni, we may verify
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that

F(i)(z) =
i∑

j=0

(
i
j

)
G(i− j)(z)H( j)(z)

and
F(i)(z)

i!
=

∑

J∈( [n]
n−i)

∏

j∈J
(z− zj).

Lemma A1 Let∆ = ∆(m, r) andλ = λ0 := 4k(n− k).
If #(∆) = #(λ · ∆) = k ≥ 0 then for all z∈ ∆

∣∣∣∣
F(k)(z)
k!H(z)

∣∣∣∣ > 0.

For z= m, the lower bound can be improved to half.
Proof.Using the notation (A.1), we see that

F(k)(z)
k!H(z)

=
∑

J∈( [n]
n−k)

∏
j∈J(z− zj)∏n

i=k+1(z− zi)

First supposeλ0 = 0, i.e.,k = 0 ork = n. If k = n, thenH(z) is the constant polynomiala0 where
a0 is the leading coefficient ofF(z), and clearly,F

(k) (z)
k!H(z) = 1. If k = 0, thenF(z) = H(z) and again

F(k)(z)
k!H(z) = 1. In either case the lemma is verified.

Hence we next assumeλ0 > 0. We partition anyJ ∈
(

[n]
n−k

)
into J′ := J ∩ [k] andJ′′ := J \ [k].

Then j′ := |J′| ranges from 0 to min(k, n− k). Also, j′ = 0 iff J = {k+ 1, . . . , n}.

F(k)(z)
k!H(z)

=
∑

J∈( [n]
n−k)

∏
j∈J(z− zj)∏n

i=k+1(z− zi)

=

min(k,n−k)∑

j′=0

∑

J′∈([k]
j′ )

∑

J′′∈( [n]\[k]
n−k− j′)

∏
i′∈J′ (z− zi′ )

∏
i′′∈J′′ (z− zi′′ )∏n

i=k+1(z− zi)

= 1+
min(k,n−k)∑

j=1

∑

J′∈([k]
j )

∑

J′′∈([n]\[k]
n−k− j)

∏
i′∈J′ (z− zi′ )

∏
i′′∈J′′ (z− zi′′ )∏n

i=k+1(z− zi)

We next show that the absolute value of the summation on the RHS is at most20
21 which completes

the proof. Sincez, zi′ ∈ ∆, andzi′′ < 4k(n−k)∆ it follows that|z−zi′ | ≤ 2r and|z−zi′′ | ≥ 3k(n−k)r.
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From these inequalities, we get

min(k,n−k)∑

j=1

∑

J′∈([k]
j )

∑

J′′∈([n]\[k]
n−k− j)

∏
i′∈J′ |z− zi′ |

∏
i′′∈J′′ |z− zi′′ |∏n

i=k+1 |z− zi |

≤
min(k,n−k)∑

j=1

(
k
j

)(
n− k

n− k− j

)( 2r
3k(n− k)r

) j

≤
min(k,n−k)∑

j=1

k j

j!

(
n− k

j

)( 2
3k(n− k)

) j

<

k∑

j=1

1
j!

(2
3

) j

= e2/3 − 1 <
20
21
.

For z= m, the term is upper bounded bye1/4 − 1 < 1
2 .

Q.E.D.

Since for allz ∈ ∆, F(k)(z) , 0, we get the following:

Corollary A1 Letλ = λ0 := 4k(n− k). If #(∆) = #(λ∆) = k ≥ 0 then F(k) has no zeros in∆.

Appendix A.2. Lemma A2

Lemma A2 Let∆ = ∆(m, r), λ = 4k(n− k) and c1 = 7kK.
If #(∆) = #(λ∆) = k then

∑

i<k

|F(i)(m)|
|F(k)(m)|

k!
i!

(c1r)i−k <
1

2K
.

Proof. The result is trivial ifk = 0. We may assume thatk ≥ 1. With the notation of (A.1), we
may write

|G(i)(m)|
i!

≤
∑

J∈( [k]
k−i)

∏

j∈J
|m− zj | ≤

(
k
i

)
rk−i ,

sincezj ∈ ∆. Similarly, we obtain
∣∣∣∣∣∣
H(i)(m)
i!H(m)

∣∣∣∣∣∣ ≤
∑

J∈([n]\[k]
i )

∏

j∈J

1
|m− zj |

≤
(
n− k

i

)
1

(λr)i
.

From these two results, we derive that
∣∣∣∣
G(i− j)(m)H( j)(m)
(i − j)! j!H(m)

∣∣∣∣ ≤
(

k
i − j

)
rk−(i− j) ·

(
n− k

j

)
1

(λr) j

=

(
k

i − j

)(
n− k

j

)
· rk−i

λ j
.

(
i
j

)∣∣∣∣
G(i− j)(m)H( j)(m)

i!H(m)

∣∣∣∣ ≤
(

k
i − j

)(
n− k

j

)
rk−i

λ j
.

22



Thus we get

k−1∑

i=0

|F(i)(m)|
|F(k)(m)|

k!
i!

(c1r)
i−k

≤
k−1∑

i=0

i∑

j=0

(
i
j

)
|G(i− j)(m)H( j)(m)|
|F(k)(m)|

k!
i!

(c1r)
i−k

≤
k−1∑

i=0

i∑

j=0

|H(m)|
|F(k)(m)|

(
k

i − j

)(
n− k

j

)
k!ci−k

1

λ j

≤ 2
k−1∑

i=0

i∑

j=0

(
k

k− i + j

)
·
(
n− k

j

)
ci−k

1

λ j
(by Lemma A1 forz= m)

≤ 2
k−1∑

i=0

i∑

j=0

(k j )(kk−i)
(k− i + j)!

· (n− k) j

j!

ci−k
1

(4k(n− k)) j

= 2
k−1∑

i=0

kk−ici−k
1

(k− i)!

i∑

j=0

1
j!4 j

< 2
k−1∑

i=0

kk−ici−k
1

(k− i)!
e1/4

< 2e1/4
k∑

j=1

(k/c1) j

j!

< 2e1/4(e1/7K − 1)

< 2e1/4 1
7K − 1

≤ 2e1/4 1
6K
<

1
2K
.

Q.E.D.

Appendix A.3. Lemma A3

Lemma A3 Letλ1 = 3K(n− k) ·max{1, 4k(n− k)} = 3K(n− 1) ·max{1, λ0}.
If #(∆) = #(λ1 · ∆) = k ≥ 0 then

n∑

i=k+1

∣∣∣∣∣∣
F(i)(m)r i−kk!

F(k)(m)i!

∣∣∣∣∣∣ <
1

2K
.

where∆ = ∆(m, r).

Proof.First, assumeλ0 = 4k(n− k) > 0 (i.e., 0< k < n). Let Zero(F(k)) =
{
z(k)
1 , . . . , z

(k)
n−k

}
be

the roots ofF(k). Since
#(3K(n− k)∆) = #(3K(n− k) · λ0∆),
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Corollary A1 implies thatF(k) has no roots in 3K(n− k) · ∆. Thus,|m− z(k)
j | ≥ 3K(n− k)r and

∣∣∣∣∣∣
F(k+i)(m)
F(k)(m)

∣∣∣∣∣∣ ≤ i!
∑

J∈([n−k]
i )

∏

j∈J

1

|m− z(k)
j |

≤
i!
(
n−k

i

)

(3K(n− k)r)i

≤ (n− k)i

(3K(n− k)r)i

≤ 1
(3Kr)i

.

It follows that
n∑

j=k+1

∣∣∣∣∣∣
F( j)(m)r j−kk!

F(k)(m) j!

∣∣∣∣∣∣

≤
n−k∑

i=1

∣∣∣∣∣∣
F(k+i)(m)
F(k)(m)

∣∣∣∣∣∣
r i

i!

(
since

k!
(k+ i)!

≤ 1
i!

)

≤
n−k∑

i=1

1
(3Kr)i

r i

i!

≤
n−k∑

i=1

( 1
3K

)i 1
i!

< e1/3K − 1 <
1

3K − 1
<

1
2K
.

It remains to consider the casek = 0 or k = n. The lemma is trivial fork = n. Whenk = 0,
we haveλ1 = 3Kn and the rootsz(k)

j are the roots ofF. Then|m− z(k)
j | ≥ 3Knr follows from our

assumption that #(λ1∆) = #(∆) = 0. The preceding derivation remains valid. Q.E.D.

Corollary A3 Let c1 ≥ 1. If #(∆) = #(c1λ1 · ∆) = k ≥ 0 then

n∑

i=k+1

∣∣∣∣∣∣
F(i)(m)(c1r)i−kk!

F(k)(m)i!

∣∣∣∣∣∣ <
1

2K
.

where∆ = ∆(m, r).

Proof.Let ∆1 = c1∆. Then #(∆1) = #(λ1∆1) = k, and the previous lemma yields our conclu-
sion (replacingr by c1r). Q.E.D.

Appendix A.4. Theorem 2

Theorem 2 Let k be an integer with0 ≤ k ≤ n = deg(F) and K≥ 1.
Let c1 = 7kK, andλ1 = 3K(n− k) ·max1 {4k(n− k)}.
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If
#(∆) = #(c1λ1∆) = k,

then
Tk(c1∆,K, F) holds.

Proof.
By definition,Tk(c1∆,K, F) holds iff

∑

i,k

|F(i)(m)(c1r)i−kk!
|F(k)(m)| <

1
K

But the LHS is equal toA+ B where

A :
∑

i>k

|F(i)(m)(c1r)i−kk!
|F(k)(m)|

B :
∑

i<k

|F(i)(m)(c1r)i−kk!
|F(k)(m)|

By Corollary A3,A is at most 1
2K and by Lemma A2,B is at most 1

2K . This proves our theorem.
Q.E.D.

Appendix A.5. Bound on TD in the Theorem A

We will need the following result to derive the bound.

Lemma A4 Let g(x) be a complex polynomial of degree n with distinct rootsα1, . . . , αm where
αi has multiplicity ni. Thus n=

∑m
i=1 ni . Let I ⊆ [m] andν = min {ni : i ∈ I }. Then

∏

i∈I
|gni (αi)| ≥ |GenDisc(g)|

(
‖g‖m∞nn+1Mea(g)n+1−ν

)−1
,

where
GenDisc(g) := lcf(g)m

∏

1≤i< j≤m

(
αi − α j

)ni+nj

and gni (αi) :=g(ni )(αi)/ni!.

Proof.From the observation that

gni (αi) = lcf(g)
∏

1≤ j≤m, j,i

(αi − α j)
nj ,

we obtain the following relation:

m∏

i=1

gni (αi) = lcf(g)m
∏

1≤i< j≤m

(
αi − α j

)ni+nj
= GenDisc(g).
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From this it follows that

∏

i∈I
|gni (αi)| = |GenDisc(g)|


∏

i∈[m]\I
|gni (αi)|


−1

. (A.2)

We next derive an upper bound on|gni (αi)|. Let g(x) =
∑n

j=0 b j x j . By standard arguments we
know that

gni (αi) =
n∑

j=ni

(
j

ni

)
b jα

j−ni

i .

Taking the absolute value and applying triangular inequality, we get

|gni (αi)| ≤ ‖g‖∞
n∑

j=ni

(
j

ni

)
max{1, |αi |} j−ni .

Applying Cauchy-Schwarz inequality to the RHS we obtain

|gni (αi)| ≤ ‖g‖∞


n∑

j=ni

(
j

ni

)2


1
2


n∑

j=ni

max{1, |αi |}2( j−ni )



1
2

.

The second term in brackets on the RHS is smaller than max{1, |αi |}n−ni+1, and the first is bounded
by

∑n
j=ni

(
j

ni

)
=

(
n+ni+1

n

)
≤ nni+1. Thus we obtain

|gni (αi)| ≤ ‖g‖∞nni+1 max{1, |αi |}n−ni+1 .

Taking the product over alli ∈ [m] \ I , we get that
∏

i∈[k]\I
|gni (αi)| ≤ ‖g‖m∞nn+1Mea(g)n+1−mini∈I ni .

Substituting this upper bound in (A.2) yields us the desiredbound. Q.E.D.

Let I ⊆ [m]. We next derive an upper bound on
∑

D∈Ŝ TD, where

TD = log
∏

zj<D

|ξi − zj |−nj ,

hereξi is a representative root in the naturalε-clusterD. In this section, we use the convenient
shorthandξD to denote the representative for clusterD, andkD the number of roots inD. More-
over, we choose the representativeξD as a root that has the smallest absolute value among all
roots inD. LetD denote a set of disjointnatural ε-clusters ofF such that the union of these
clusters contains all the roots ofF. DefineFε as the polynomial obtained by replacing each
naturalε-clusterD of F by its representativeξD with multiplicity kD, i.e.,

Fε(z) := lcf(F)
∏

D∈D
(z− ξD)kD

More importantly, the choice of the representative ensuresthat the Mahler measure does not
increase, i.e., Mea(Fε) ≤ Mea(F). SinceξD is a root of multiplicitykD, it can be verified that

F(kD)
ε (ξD)
kD!

= lcf(F)
∏

D′∈D,D′,D

(ξD − ξD′ )kD′ .
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We first relate the product
∏

z<D |ξD − zj |nj appearing inTi with the term on the RHS above. The
two are not the same, since we have replaced all naturalε-clusters with their representative, and
hence for another clusterD′ the distance|ξD − zj |, for zj ∈ D′, is not the same as|ξD − ξD′ |.
Nevertheless, for an isolator∆′ of D′, we have

2 min
w∈∆′
|ξD − w| ≥ max

w∈∆′
|ξD − w|

and hence

|ξD − zj | ≥
|ξD − ξD′ |

2
.

From this inequality, we obtain that

∏

zj<D

|ξD − zj |nj ≥ 2−n

∣∣∣F(kD)
ε (ξD)

∣∣∣
kD!

.

So to derive an upper bound on
∑

D∈Ŝ TD, it suffices to derive a lower bound on
∏

D∈Ŝ |F
(k)
ε (ξD)|/k!.

Applying the bound in Lemma A4 above toFε, along with the observations that‖Fε‖∞ ≤
2nMea(Fε), and Mea(Fε) ≤ Mea(F), we get the following result:

Theorem A5 ∑

D∈Ŝ

TD = Õ(log |GenDisc(Fε)|−1 + nm+ n logMea(F)).

Note, however, that

|GenDisc(Fε)| >
|GenDisc(F)|
ε
∑

D∈Ŝ k2
D

.

If we assume thatε < 1, i.e.,|GenDisc(Fε)| is larger than|GenDisc(F)|, then the term (
∑

D∈Ŝ k2
D) logε <

0 and so we can replace|GenDisc(Fε)|−1 by |GenDisc(F)|−1 in Theorem A5 to obtain a larger
bound. Moreover, ifF is an integer polynomial, not necessarily square-free, from (Mehlhorn et al.,
2015, p. 52) we know that log|GenDisc(F)|−1 = O(nτF +n logn) Hence we obtain the following
bound (using Landau’s inequality Mea(F) ≤ ‖F‖2 ≤ n2τF ):

Corollary A6 Let {Di ; i ∈ I ⊆ [m]} be any set of disjoint natureε-clusters of an integer
polynomial F with m distinct roots. Then

∑

i∈I
TDi = Õ(nτF + nm).

Appendix B. Bound on Number of Boxes

Appendix B.1. Lemma 8

Lemma 8 Denote k= #(2B0).
(a) If C is a component in the pre-processing stage, then wC ≥ w(B0)

48k .
(b) Suppose C1 → · · · → C2 is a non-special path with WC1 < ε. Then it holds

wC1

wC2

< 57k.
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(c) Let C be a confined leaf in̂Tcomp then

wC >
ε

2

( 1
114k

)k
.

Proof. (a) By way of contradiction, assumewC <
w(B0)
48k . Then the parent componentC′

satisfieswC′ <
w(B0)
24k sinceC is obtained fromC′ in a Bisection Step. ThenWC′ ≤ 3kwC′ <

w(B0)
8 .

ThusC′ ∩ B0 is empty orC′ is confined. In either case, we would not bisectC′ in the pre-
processing stage, contradicting the existence ofC.

(b) In this proof and in the proof of part (c) of this Lemma, we write wi ,Ri ,Ni , etc, instead
of wCi ,RCi ,NCi , etc. By way of contradiction, assume thatw1

w2
≥ 57k. SinceW1 ≤ ε, from the

algorithm, we know that each step in the pathC1 → · · · → C2 is a Bisection step. Thus there
exists a componentC′ such that 3k · w2 < wC′ ≤ 6k · w2. The following argument shows that
C′ is a leaf ofT̂comp. By Lemma 7(a), we haveW2 ≤ 3kw2, thusW2 < wC′ . Thus the roots
in C′ are contained in a square of width less thanwC′ . By Lemma 7(b), we conclude thatC′ is
compact. To show thatC′ is a leaf, it remains to show that 4∆C′ has no intersection with other
components. We have 4RC′ = 4 · 3

4WC′ ≤ 9wC′ . Meanwhile, sinceC′ is compact, it is easy to see
that the distance from the center of∆C′ to C′ is at most12wC′ . Thus the separation betweenC′

and any point in 4∆C′ is less than 9wC′ +
1
2wC′ =

19
2 wC′ ≤ 19

2 · 6k · w2 ≤ 19
2 · 6k · w1

57k = w1. By
Property (C3) in Section 3, we know thatC′ is separated from other components by at leastw1,
thus 4∆C′ has no intersection with other components. We can conclude thatC′ is a leaf ofT̂comp.
Contradiction.

(c) Let C0 be the first component aboveC such thatw0 < ε. From the algorithm, we have
w0 ≥ ε

2. Consider the pathP = C0 → · · · → C. There exists a consecutive sequence of
special components belowC0, denoted as{C1, . . . ,Ct} with Ct = C. Split P into a concatenation
P = P0; P1; · · · ; Pt−1 of t subpaths where subpathPi = (Ci → · · ·Ci+1) for i ∈ {0, . . . , t − 1}. Let
C′i be the parent ofCi in T̂comp for i ∈ {1, . . . , t}. Consider the subpath ofPi where we drop the
last special configuration: (Ci → · · · → C′i+1). By part (b) of this lemma, we have

wCi

wC′i+1

< 57k

for i ∈ {0, . . . , t − 1}. The stepC′i+1 → Ci+1 is evidently a Bisection step and so

wi

wi+1
< 114k.

Hencew0

wt
< (114k)k. It follows wC >

ε
2( 1

114k)k. Q.E.D.

Appendix B.2. Lemma 9

Before proving Theorem 9, we state the following lemma, which is an adaptation of (Becker et al.,
2017, Lemma 8), giving a sufficient condition for the success of the Newton step.

Lemma B1. Let C be a confined component with WC ≥ ε. Then Newton(C) succeeds provided
that
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(i) #(∆C) = #((220 · n2 · NC) · ∆C).

(ii) rad(Z(C)) ≤ (220 · n)−1 · RC

NC
.

Theorem 9 The length of the non-special path (6) satisfies

s= O(log log
w1

ws
+ logn).

Particularly,

smax = O
(
logn+ log log

w(B0)
ε

)
.

Proof.From Lemma 8(a), we can see that the length of path in the preprocessing stage is bounded
by O(logn). From Lemma 8(b), the length of non-special path is boundedby O(logn) if the width
of components is smaller thanε. Hence it remains to bound the length of non-special path in the
main loop such that any componentC in the path satisfiesWC ≥ ε. Lemma B2 gives us the
sufficient conditions to perform Newton step in this path.

As in Becker et al. (2017), the basic idea is to divide the pathP = (C1 → · · · → Cs) (using
the notation of (6)) into 2 subpathsP1 = (C1 → · · · → Ci1) andP2 = (Ci1 → · · · → Cs) such
that the performance of the Newton steps inP2 can be controlled by Lemma B1. This lemma
has two requirements ((i) and (ii)): we show that the components in P2 automatically satisfies
requirement (i). Thus if componentCi in P2 satisfies requirement (ii), we know thatCi → Ci+1

is a Newton step. This allows us to bound the length ofP2 using the Abbot-Sagraloff Lemma
(Becker et al., 2017, Lemma 9).

We writewi ,Ri ,Ni , etc, instead ofwCi ,RCi ,NCi , etc.
Definei1 as to be the first index satisfyingNi1 · wi1 < 2−24 · n−3 · w1. If no such index exists,

takei1 ass.
First we show that the length ofP1 is O(logn). Note thatNi · wi decreases by a factor of at

least 2 in each step Becker et al. (2017). There are two cases:if stepCi → Ci+1 is a Bisection
step,wi+2 = wi/2 andNi does not increase; if it is a Newton step, thenwi+1 =

wi
2Ni

andNi+1 = N2
i ,

soNi+1 · wi+1 = N2
i ·

wi
2Ni
= 1

2 · Ni · wi . It follows that at most log(224 · n3) steps are performed to
reach ani′ such thatNi′ · wi′ ≤ 2−24 · n−3 · N1 · w1. This provesi′ ≤ 1+ log(224 · n3). SinceC1

is a special component, our algorithm resetN1 = 4 (cf. proof of Lemma 7). So it takes 2 further
steps fromi′ to satisfy the condition ofi1. Thusi1 ≤ 3+ log(224 · n3) = O(logn). Note that this
bound holds automatically ifi1 = s.

We now show that requirement (i) of Lemma B2 is satisfied inP2: from the definition ofi1,
for any i ≥ i1, 220 · n2 · Ni · r i ≤ 220 · n2 · Ni · 3

4 · 9n · wi < w1, and the separation ofC1 from any
other component is at leastw1, so (220 · n2 · Ni) · ∆i contains only the roots inZ(C1), fulfilling
requirement (i).

Next consider the pathP2. Each step either takes a bisection step or a Newton step. However,
it is guaranteed to take the Newton step if requirement (ii) holds (note that it may take a Newton
step even if requirement (ii) fails). Let #(∆s) = k. If componentCi satisfies

Ri

Ni
≥ 220 · n · Rs, (B.1)

29



the requirement (ii) is satisfied. ButRs <
3
4 · 9n · ws < 24 · n · ws andRi ≥ wi so if

wi

Ni
≥ (220 · n) · (24 · n) · ws = 224 · n2 · ws (B.2)

holds, it would imply (B.1). On the other hand, (B.2) is precisely the requirement that allows us
to invoke (Becker et al., 2017, Lemma 9). Applying that lemmabounds the length ofP2 by
A := (log logNi1+2 log log(wi1 ·(224·n2)−1 · 1

wCs
)+2)+(2 logn+24). SinceNi1 ≤

wi1
ws

, we conclude

thatA = O(log log
wi1
ws
+ logn). This concludes our proof.

The second part of this theorem is a direct result from the first part. Q.E.D.

Appendix B.3. Lemma 11

We first prove two lemmas that is useful for later proof.

Lemma B2. Let C1 be the parent of C2 in T ∗comp, then

rC1 ≤ 3
√

2n · wC2

Proof.SupposeC′2 is the parent ofC2 in the component treêTcomp. Then all the roots inC1

remain inC′2, meaning thatrC′2
= rC1. It is easy to see that the stepC′2 → C2 is a Bisection

Step, thuswC′2
= 2wC2. By Lemma 7(a), we haveWC′2

≤ 3n · wC′2
= 6n · wC2 . It follows

rC′2
≤ 1

2 ·
√

2WC′2
≤ 3
√

2n · wC2. HencerC1 = rC′2
≤ 3
√

2n · wC2. Q.E.D.

Lemma B3.
(a) For any box B produced in the preprocessing stage, ifφ0(B) is a naturalε-cluster, then we
have wB ≥ 2 · rad(φ0(B)). (b) For any B, 5

4B0 produced in the algorithm,φ0(B) ⊆ 2B0.

Proof.(a)
wB ≥ w(B0)

48n (by Lemma 8(a))
≥ 2 · ε (by smallε assumption)
≥ 2 · rad(φ0(B)) (by definition ofε-cluster)

(b) If φ0(B) is a special component, it is easy to see thatφ0(B) ⊆ 2B0.
We now discuss the case whereφ0(B) is a naturalε-cluster. To show thatφ0(B) ⊆ 2B0, note

that sinceB is a proper subbox of54B0, it follows that 2B ⊆ 15
8 B0. Thus there is a gap ofw(B0)

16

between the boundaries of 2B0 and 15
8 B0. Sinceφ0(B) is aε-cluster, thus rad(φ0(B)) < ε ≤ w(B0)

96n ,
andφ0(B) ∩ 2B is non-empty, we conclude thatφ0(B) is properly contained in 2B0. Q.E.D.

Lemma 11 The total number of boxes in all the components inT̂comp is

O(t · smax) = O(#(2B0) · smax)

with t = |{φ0(B) : B is any box in̂Tcomp}|.

Proof.By the discussion above, we charge each boxB to φ0(B) which can be a special com-
ponent or a cluster.

First consider the case whereφ0(B) is special component. Note that1
3rφ0(B) < wB. We claim

that the number of boxes congruent withB that are charged toφ0(B) is at most 64: to see this,
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note that 2B∩Z(φ0(B)). If ∆ is the minimum disc containingZ(φ0(B)), then 2B must intersect
∆. By some simple calculations, we see that at most 64 aligned boxes congruent toB can be
charged toφ0(B).

We now analyze the number of different sizes of the boxes that are charged to the same
special componentC.

Denote the parent ofC in the special component treeT ∗comp asC′. Let B be a box such that
φ0(B) = C and supposeB is the constituent boxes of the componentCB, evidently,wB = wCB .
From the definition ofφ0, B satisfies one of the two following conditions: (i)CB is an component
in the pathC′ → · · · → C andwB >

1
3rC; (ii) CB is a component aboveC′ and 1

3rC′ ≥ wB >
1
3rC.

It is easy to see that there number of componentsCB satisfying condition (i) is bounded bysmax

from Theorem 9. It remains to count the number of componentsCB that satisfy condition(ii).
By Lemma B2, we haverC′ ≤ 3

√
2n · wC. SinceB is charged toC but notC′, we havewB ≤

1
3 · rC′ ≤

√
2n · wC. The boxB is constitute an ancestor ofC, thuswC ≤ wB. Therefore, we have

wC ≤ wB ≤
√

2n ·wC, and note thatwB decreases by a factor of at least 2 at each step, sowB may
take log(

√
2n) different values. Hence, the number of boxes charged to each special component

is bounded by 64smax.
Now consider the case where a box is charged to a naturalε-cluster, this case only happens

in preprocessing step where the number of steps is bounded byO(logn). On the other hand, by
Lemma B3(a), we have 2rad(φ0(B)) ≤ wB if φ0(B) is aε-cluster. Thus the number of boxes of
the same size charged to a naturalε-cluster byφ0 is at most 9. Therefore, the number of boxes
charged to a naturalε-cluster byφ0 is bounded byO(logn).

Thus we can conclude that the total number of boxes is boundedby O(t · smax) with t =
|{φ0(B) : B is any box inT̂comp}|. Q.E.D.

Appendix C. Bit Complexity

Appendix C.1. Lemma 14

We first prove two lemmas for later use.

Lemma C1. Let ∆ = ∆(m,R) and ∆̂ :=K∆ for some K≥ 1. Let D be any subset ofZ(∆̂) and
ζ ∈ D. If µ̂ = #(̂∆) and kD = #(D) then

max
z∈∆
|F(z)| > RkD · n−µ̂ · K−µ̂+kD · 2−3n+1 ·

∏

zj<D

|ζ − zj |n j .

where zj ranges over all the roots of F outside D and#(zj) = n j.

Proof. Let {z1, z2, . . . , zr } be the set of all the distinct roots ofF. Wlog, assume thatζ ap-
pearing in the lemma isz1. There exists a pointp ∈ ∆(m, R

2 ) such that the distance fromp
to any root ofF is at least R

2n, this is because the union of all discs∆(zi ,
R
2n) covers an area

of at mostn · π( R
2n)2 = πR2

4n < π(
R
2 )2. Then for a rootzi ∈ ∆̂, it holds |p−zi |

|z1−zi | ≥
R/(2n)
2KR = 1

4nK ,

and for a rootzj < ∆̂, it holds |p−zj |
|z1−zj | ≥

|p−zj |
|p−zj |+|p−z1| =

1
1+
|p−z1|
|p−zj |

≥ 1
1+ 2KR

KR−R/2
= 1

5. Note that
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|F(p)| = lcf(F) ·∏r
i=1 |p− zi |ni , it follows

|F(p)|∏
zj<D |z1 − zj |n j

= lcf(F)
∏

zi∈D
|p− zi |ni

∏

zj∈∆̂,zj<D

∣∣∣∣∣∣
p− zj

z1 − zj

∣∣∣∣∣∣
n j ∏

zk<∆̂

∣∣∣∣∣
p− zk

z1 − zk

∣∣∣∣∣
nk

≥ 1
4
·
( R
2n

)kD

·
(

1
4nK

)µ̂−kD

·
(
1
5

)n−µ̂

> RkD · n−µ̂ · K−µ̂+kD · 2−3n−1,

which proves the Lemma. Q.E.D.

Lemma C2. For any box B,φ(B) is contained in14B.

Proof.Considerφ0(B). If φ0(B) is a cluster, then 2B intersectsφ0(B), and 2rad(φ0(B)) ≤ wB

(Lemma B3(a)). Thusφ0(B) ⊆ 4B.
Next supposeφ0(B) is a special component. ThenwB >

1
3rC whererC = rad(Z(C)). Since

2B∩Z(C) is non-empty, we conclude thatZ(C) ⊆ 14B. Q.E.D.

Now we derive a bound for the cost of processing each component and box.

Lemma 14 Denote k= #(2B0).
(a) Let B be a box produced in the algorithm. The cost of processing B is bounded by

Õ
(
n · [τF + n log(B) + kD · (log(ε−1) + k) + TD]

)
(C.1)

with D = φ(B), kD = #(D) and

TD := log
∏

zj<D

|ξD − zj |−nj . (C.2)

whereξD is an arbitrary root contained in D.
(b) Let C be a component produced in the main-loop, and let C0 be the last special component
above C, then the cost of processing a component C is bounded by

Õ
(
n·[τF + n log(C) + n log(wC0)

+ kD · (log(ε−1) + k) + TD]
) (C.3)

where D is an arbitrary cluster contained in C, kD = #(D) and TD is as defined in (C.2).

Proof. (a) According to (Becker et al., 2017, Lemma 7): the cost for carrying out aT̃G(∆)
test (associated with a boxB or componentC) is bounded by

Õ
(
n · [τF + n · log(m, r) + L(∆, F)]

)
. (C.4)

Thus for each call of̃TG(∆) test, we need to bound log(m, r) andL(∆, F).
For T̃G

0 (∆(B)), we need to perform̃TG
0 test for each subboxBi into which B is divided. We

have∆Bi = ∆(m, r), it is easy to see that log(m, r) ≤ log(B). So it remains to bound the term
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L(∆, F) in (C.4). By definition,L(∆, F) = 2 · (4 + log(||F∆||−1
∞ )) And for anyz ∈ ∆, it holds

|F(z)| ≤ n · ||F∆||∞. Hence, we need to prove that log((maxz∈∆Bi
|F(z)|)−1) can be bounded by

(C.1).
We apply Lemma C1 to obtain the bound of log((maxz∈∆Bi

|F(z)|)−1). Sinceφ(B) ⊆ Z(14B∩ 2B0) (Lemma C2), it suffices to takê∆ = 42 · ∆Bi since 42∆Bi

contains 14· ∆B which (by Lemma C2) containsφ(B). Hence withK′ = 42, Lemma C1 yields
that maxz∈∆B |F(z)| > ( 3

4 ·
wB
2 )kD · n−#(̂∆) · (K′)−#(̂∆)+kD · 2−3n−1 ∏

zj<D |ξD − zj |nj whereD = φ(B),
kD = #(D), andξD is an arbitrary root contained inD. From Lemma 8(c), we havewB >

ε
2( 1

114k)k.

It is easy to check that log((maxz∈∆B |F(z)|)−1) is bounded by (C.1).
(b) To bound the cost of processing a componentC, we need to bound the cost of performing

T̃G(∆C) andT̃G(∆′). It is easy to see that in both cases where∆(m, r) = ∆C and∆(m, r) = ∆′, we
have log(m, r) = O(log(C)). With the same arguments in the proof of (a), it remains to prove that
both log maxz∈∆C|F(z)|−1 and log maxz∈∆′ |F(z)|−1 are bounded by (C.3).

First consider thẽTG
∗ (∆C) test, by applying Lemma C1 withK = 1, we have maxz∈∆ |F(z)| >

RkD
C ·n−kC ·2−3n−1 ·∏zj<D |ξD −zj |nj with D an arbitrary cluster inC, kD = #(D) andξD an arbitrary

root in D. We know thatRC ≥ 4
3wC. With the same arguments as in part (a), we can conclude

that the cost of̃TG
∗ (∆C) test is bounded by (C.3).

Now consider̃TG
kC

(∆′) test with∆′ = ∆(m′, wC

8NC
) andm′ as defined in the algorithm of Newton

test. Here we takê∆ = 2 · 3n · 8NC · ∆′ = 48nNC · ∆′ since 48nNC∆
′ will contain C and thus

contain all the roots inC. By applying Lemma C1 withK = 48nNC, we have max∆′ |F(z)| >
( wC

8NC
)kD · n−#(̂∆) · K−#(̂∆)+kD · 2−3n−1 ·∏zj<D |ξD − zj |nj with D an arbitrary cluster inC, kD = #(D)

andξD an arbitrary root inD. First consider the lower bound for (wC

8NC
)kD . By lemma B0(b), we

haveNC ≤
4wC0
wC

, thus wC
8NC
≥ w2

C

32wC0
. It follows log((( wC

8NC
)kD)−1) = kD(2 log(w−1

C ) + log(wC0) + 5).

As is proved,kD(2 log(wC) + log(wC0) + 5) is bounded by (C.3).

The bound for the other terms exceptK#(̂∆)−kD are similar to the case discussed above. Hence
it remains to boundK#(̂∆)−kD . Denote the radius of̂∆ asR̂, thenR̂ = 18nwC from the definition
of ∆̂. Note thatK = 48nNC ≤ 48n · wC0

wC
= 48n · 18n · wC0

R̂
and log

(
(48n · 18n · wC0)

#(̂∆)−kD
)
=

O(n logn+ n log(wC0)), thus it suffices to bound̂R−#(̂∆)+kD . For any rootξD of F in anyε-cluster
D ⊆ C which containskD roots counted with multiplicities, we have

∏
zi<D
|ξD − zi |ni =

∏

zj∈∆̂,zj<D

|ξD − zj |nj

∏

zk<∆̂

|ξD − zk|nk

≤ (2R̂)#(̂∆)−kD · Mea(F(ξD + z))
| lcf(F)|

≤ (2(R̂)#(̂∆)−kD · 2τF 2n+3 max1(ξD)n

≤ 2τF+2n+3 ·max1(ξD)n · R̂#(̂∆)−kD

So log(̂R−#(̂∆)+ξD ) is bounded by (C.3). Hence the cost for processing component C, that is the
two kind of T̃G tests discussed above can be bounded by (C.3). Q.E.D.
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Appendix C.2. Corollary to Theorem A

Corollary to Theorem A
The bit complexity of the algorithm is bounded by

Õ
(
n2(τF + k+m) + nk log(ε−1) + n log |GenDisc(Fε)|−1

)
.

In case F is an integer polynomial, this bound becomes

Õ
(
n2(τF + k+m) + nk log(ε−1)

)
.

Proof. From our assumption in Section 6, log(B0) = O(τF ). We can also see that
∑

D∈Ŝ LD ≤
nτF + k(k+ log(ε−1)) +

∑
D∈Ŝ TD +

∑k
i=1 log(zi).

By Theorem A5,
∑

D∈Ŝ TD = Õ(log |GenDisc(Fε)|−1+nm+n logMea(F)).And
∑

D∈Ŝ log(ξD) ≤∑k
i=1 log(zi) ≤ logMea(F)+ k = O(τ+ k+ logn) (using Landau’s inequality). From the equations

above, we can deduce the first part of this lemma.
The second part comes from Corollary A6. Q.E.D.

Appendix C.3. Theorem B

We first show two useful lemmas: Lemma C3 is about root separation in components, and
Lemma C4 says that strongε-clusters are actually natural clusters.

Lemma C3. If C is any confined component, and its multiset of rootsZ(C) is partitioned into two
subsets G,H. Then there exists zg ∈ G and zh ∈ H such that|zg − zh| ≤ (2+

√
2)wC.

Proof. We can define theSG := {B ∈ SC : 2B∩G , ∅} andSH := {B ∈ SC : 2B∩ H , ∅}.
Note thatSG ∪ SH = SC. Since the union of the supports ofSG andSH is connected, there
must a boxBg ∈ SG andBh ∈ SH such thatBg∩ Bh is non-empty. This means that the centers of
Bg andBh are at most

√
2wC apart. From Corollary 5, there is rootzg (resp.,zh) at distance≤ wC

from the centers ofBg (resp.,Bh). Hence|zg − zh| ≤ (2+
√

2)wC. Q.E.D.

Lemma C4. Each strongε-cluster is a naturalε-cluster.

Proof.In the definition ofε-equivalence, ifz ε∼ z′ then there is a witness isolator∆ containing
z andz′. If z′ ε∼ z′′ we have another witness∆′ containingz′ andz′′. It follows from basic
properties of isolators that if∆ and∆′ intersect, then there is inclusion relation betweenZ(∆)
andZ(∆′). Thus∆ or ∆′ is a witness forz ε∼ z′′. Proceeding in this way, we eventually get a
witness isolator for the entire equivalence class. Q.E.D.

Theorem B
Each naturalε-cluster inŜ is a union of strongε-clusters.

Proof.First we make an observation: For any strongε-clusterD′ and confined componentC′,
if D′ ∩Z(C′) , ∅ andwC′ > 2 · rad(D′), thenD′ ⊂ Z(C′). To see this: suppose,z1 ∈ D′ ∩Z(C′)
andz2 ∈ Z(D) belong to a component other thanC′. By Property (C3),|z1 − z2| ≥ wC′ > 2r,
contradicting the fact that any 2 roots inD′ are separated by distance at most 2r.
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Let D ∈ Ŝ. There are two cases:D is either inS or in S′ whereŜ = S∪S′ as defined in (13).
First, assume thatD ∈ S′. This case is relatively easy. SupposeE is a strongε-cluster and

D ∩ E , ∅. From Lemma C4,E is also a natural cluster; thus eitherD ⊂ E or E ⊂ D. By
the definition ofφ0(B), D is a largest naturalε-cluster, meaning that there is no naturalε-cluster
strictly containingD. Hence it followsE ⊂ D, which is what we wanted to prove.

In the remainder of this proof, we show that each naturalε-cluster inD is S is a union of
strongε-cluster. The observation above and Lemma B3(a) imply that for each componentC′ in
the preprocessing stage,C′ is a union of strongε-clusters. Thus, when the mains loop starts, for
each componentC in Q1,Z(C) is a union of strongε-clusters.

SupposeD is a strongε-cluster andC is a confined leaf of̂Tcomp. It is sufficient to prove that
if D ∩Z(C) , ∅, thenD ⊆ Z(C). Let r = rad(D). Supposez1 ∈ D ∩Z(C). There is an unique
maximal path in̂Tcompsuch that all the components in this path containz1.

Consider the first componentC1 in the path above such thatC1 contains the rootz1 and
wC1 ≤ 4r. If C1 does not exist, it means that the leafCt in this path satisfieswCt ≥ 4r, and by the
observation above, it follows thatD ⊆ Z(Ct). Henceforth assumeC1 exists; we will prove that it
is actually a leaf of̂Tcomp.

ConsiderC′1, the parent ofC1 in T̂comp. Note thatwC′1
≥ 4r, and by the observation above,

D ⊆ Z(C′1). We show thatwC1 > 2r. To show this, we discuss two cases. If the stepC′1 → C1

is a Newton Step, then all the roots inC1 are contained in a disc of radiusr ′ =
wC′1
8NC′1

. Note that

r ′ ≥ r since the Newton disc contains all the roots inC′1 and hence containsD. Newton step

gives uswC1 =
wC′1
2NC′1

= 4r ′ ≥ 4r. If C′1 → C1 is a Bisection Step, thenwC1 = wC′1
/2 > 2r. To

summarize, we now know that 2r < wC1 ≤ 4r. Again, from our above observation, we conclude
thatD ⊆ Z(C1).

First a notation: let∆D be the smallest disc containingD. We now prove thatZ(C1) ⊆ D.
By way of contradiction, suppose there is a rootz ∈ Z(C1) \ D. SinceD is a strongε-cluster,
#(∆D) = #(114∆D). It follows that for anyz′ ∈ D, we must have have|z−z′| > 113r. On the other
hand, by Lemma C3, there existszandz′ fulfilling the above assumptions with the property that
|z− z′| ≤ (2+

√
2)wC1 ≤ (2+

√
2)4r < 113r. Thus we arrived at a contradiction.

From the above discussion, we conclude thatZ(C1) = D and 2r < wC1 ≤ 4r, it is easy to see
thatWC1 ≤ 3wC1. Hence we can conclude thatWC1 ≤ 12r < 12 · ε12 ≤ ε. Therefore, to show that
C1 is a leaf, it remains to prove that 4∆C1 ∩C2 = ∅ for all C2 in Q1 ∪ Qdis.

Since 2r < wC1 ≤ 4r, by some simple calculations, we can obtain thatC1 ⊂ 8∆D thus∆C1 is
contained in 9∆D, it follows 4∆C1 ⊂ 36∆D. It suffices to prove that 36∆D∩C2 = ∅ for all C2. Note
that for any rootz1 ∈ C1 and any componentC2, we have Sep(z1,C2) ≥ wC2 by property (C3).
Assume that Sep(z1,C2) = |z1 − p| for somep ∈ C2. We claim that there exists a rootz2 ∈ C2

such that|z2 − p| ≤ 3
√

2
2 wC2 . [To see this, suppose thatp is contained in a constituent boxB2 of

C2, note that 2B2 must contain a root, assume thatz2 ∈ 2B2, it follows |z2− p| ≤ 3
√

2
2 wC2 .] Hence

|z1−p|+|z2−p| ≤ Sep(z1,C2)+ 3
√

2
2 ·Sep(z1,C2). Note that #(∆D) = #(114∆D), thus|z1−z2| ≤ 113r

. By triangular inequality, we have|z1 − z2| ≤ |z1 − p| + |z2 − p| < (1+ 3
√

2
2 ) · Sep(z1,C2). Hence

Sep(z1,C2) ≥ 1
1+3
√

2/2
|z1 − z2| > 36r, implying 36∆D ∩C2 = ∅.

This proves that our algorithm will outputC1, i.e.,C1 is a confined leaf of̂Tcomp.
In summary, each naturalε-cluster inŜ is a union of strongε-cluster. Q.E.D.
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Appendix C.4. A complete proof of Theorem A

Based on Lemma 14, we can now derive the total cost of carryingout all theT̃G tests in the
algorithm.

A direct result from Lemma 14 is that the cost of processing all the boxes can be bounded by

Õ
(∑

B∈B

(
n · [τF + n log(B) + kφ(B) · (log(ε−1) + k) + Tφ(B)]

) )

whereB is the set of all the boxes produced in the algorithm.
Taking into account the fact that the number of boxes chargedto a naturalǫ-cluster by the

mapφ is bounded byO(smax logn) = Õ(1), we can write the above bound as

Õ
(∑

B∈B
n2 log(B) +

∑

D∈Ŝ

(
n · [τF + kD · (log(ε−1) + k) + TD]

) )
. (C.5)

Analogously, we can obtain that the cost of processing all the components can be bounded by

Õ
(∑

C∈C
n2 (

log(C) + log(wC0)
)
+

∑

D∈Ŝ

(
n · [τF + kD · (log(ε−1) + k) + TD]

) )
(C.6)

whereC is the set of all the components produced in the algorithm andC0 is the last special
component aboveC.

The bounds (C.5) and (C.6) add up to the cost of processing allthe boxes and components
produced in the algorithm. To prove Theorem A, we want to showthat both

Õ
(∑

B∈B
n2 log(B)

)
(C.7)

and
Õ
(∑

C∈C
n2 (

log(C) + log(wC0)
) )

(C.8)

can be bounded by
Õ
(
n2 log(B0) + n2

∑

D∈Ŝ

log(ξD)
)

(C.9)

whereξD is an arbitrary root contained inD.
First we show that the bound (C.8) can be bounded by (C.9). Notice that for each component

C, we have
log(C) + log(wC0) ≤ log(C0) + log(C0)

whereC0 is the last special component aboveC. Since the length of each non-special path is at
mostsmax, we can bound (C.8) by

Õ
(
smax ·

∑

C0∈SC
n2 log(C0)

)
= Õ

( ∑

C0∈SC
n2 log(C0)

)
(C.10)

whereSC is the set of all the special component produced in the algorithm. Thus it suffices to
prove the following lemma.

Lemma 17. The bound (C.10) can be bounded by (C.9).
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Before proving this lemma, we first consider a simple case where each special componentC
satisfies the following condition:

maxz∈C log(z) = O(minz∈C log(z)). (C.11)

Sinceφ(C) ∈ C and (C.11) holds, it follows that

Õ(
∑

C∈SC
n2 log(C)) = Õ(

∑

C∈SC
n2 log(ξφ(C)))

whereξφ(C) is an arbitrary root contained inφ(C). Thus, it is easy to see that Lemma 17 holds.
In general case, condition (C.11) may not hold for all the special components. And we call a

special componentnice if it satisfies (C.11), otherwise it isnon-nice.
Now we define a set of square annuli for later use. Denote byw0 the width of the smallest

box centered at the origin containing5
4w(B0) and denotet0 := ⌊log(w0)⌋ for short. Note that ifB0

is centered at the origin, we havew0 =
5
4w(B0). We now defineI t0+1 := ∅ and

I i := [− 1
2i
,

1
2i

]w0,

Ai := (I i × I i) \ (I i+1, I i+1),

for i ∈ {1, . . . , t0}. Denotew(Ai) := 1
2 ·

w0

2i as the width of the square annulusAi .

A3

A2

A1

(5/4)B0

w0

Figure C.5: AnnulusA1, A2, A3 and box5
4 B0.

An observation is that: for a componentC, if there exists an integeri ∈ {1, . . . , t0 − 1} such
thatC ⊆ Ai ∪ Ai+1, thenC satisfies (C.11).

Now we are prepared to prove Lemma 17.
Proof. Denote bySC1 the set of all the nice special components andSC2 the set of all the

non-nice special components. From the discussions above, we can see that̃O(
∑

C∈SC1
n2 log(C))

is bounded by (C.9). Thus it remains to prove thatÕ(
∑

C∈SC2
n2 log(C)) can be bounded by (C.9).

We define the unique setI such thati ∈ I if and only if Ai contains at least one root inZ(Q).
SupposeI = i1, . . . , im with i1 < · · · < im.

37



We consider the components inSC2 that contain at least one root inAi1. Denote bySC2(Ai1)
the set of all such components andZ(Ai1) the union of the roots contained inSC2(Ai1). We
classify these components into 2 categories: the special component that contains all the roots
in Z(Ai1) and the special components part of the roots inZ(Ai1). The first category consists
of at most one components since any two special components contain different roots. If the
first category is not empty, supposeC is the component in it. We can bound̃O(n2 log(C)) with
Õ(n2 log(B0)).

Now we consider the second category.
We claim that for any componentC in the second category, it holds that log(C) = O(log(w(Ai1))).

The proof is as follows. We can easily see thatZ(Ai1) ⊂ B(0, 4w(Ai1)) with B(0, 4w(Ai1)) the
square centered at the origin and of width 4w(Ai1). Thus rad(Z(Ai1)) ≤ 2

√
2w(Ai1). Since the

second category consists of at least 2 components, thus for any componentC ∈ SC2(Ai1), we
havewC ≤ 2 · rad(Z(Ai1)) ≤ 4

√
2w(Ai1) (See the observation in the proof of Theorem B). Now

for anyC ∈ Pi1, we haveZ(C) ⊂ B(0, 4w(Ai1)) andwC ≤ 4
√

2w(Ai1). By Corollary 5(b), the
distance from any point inC to a closest root inC is at most 2

√
2wC. Hence it is easy to see that

C ⊂ B(0, 4w(Ai1) + 2
√

2 · 4
√

2w(Ai1)) = B(0, 20w(Ai1)). It follows log(C) = O(log(w(Ai1))).
By the definition ofSC2(Ai1), for each componentC in the second category, there exists a root

contained inAi1. And since each naturalε-cluster has width less than 1, there exists a naturalε-
clusterDC in C such thatDC ∈ Ai1 ∪ Ai1+1. With the claim above, we have log(C) = O(log(ξDC))
whereξDC is an arbitrary root contained inDC. And in this case, we charge the component
C to the naturalε-clusterDC that is contained inC. Now we prove that eachDC is charged
at mostO(logn) times. SupposeC′ is a component inSC2(Ai1) that is charged toDC. Since
C′ is not a nice component,C′ must contain a root insideAi1+2. Otherwise,C′ would have
satisfied the condition (C.11) since we have log(C′) = O(log(w(Ai1))). From the fact thatC′

contains both a root inAi1 and a root insideAi1+2, we conclude thatWC′ ≥
w(Ai1 )

2 . Hence we

havewC′ ≥ 1
3n ·

w(Ai1 )
2 . Meanwhile, sinceC′ ⊂ B(0, 20w(Ai1)), thuswC′ ≤ 40w(Ai1). It is

easy to see that the number of different sizes ofC′ is bounded byO(logn). Thus we come to
the conclusion that̃O(

∑
C∈SC2

n2 log(C)) is bounded byO(logn) · Õ(
∑

D∈Ai1∪Ai1+1
n2 log(ξD)) =

Õ(
∑

D∈Ai1∪Ai1+1
n2 log(ξD)).

Hence we havẽO(
∑

C∈SC2(Ai1 ) n2 log(C)) = Õ(n2 log(B0) +
∑

D∈Ai1∪Ai1+1
n2 log(ξD)).

Analogously, if we consider the components inSC2 \ SC2(Ai1) that contain at least one root
in Ai2, we will obtain thatÕ(

∑
C∈SC2(Ai2 ) n2 log(C)) = Õ(n2 · w(Ai+1) +

∑
D∈Ai2∪Ai2+1

n2 log(ξD)).
By recursive analysis, we can eventually obtain that the bound (C.8) is bounded by (C.9).

Q.E.D.

It remains to prove the following lemma.

Lemma 18. The bound (C.7) can be bounded by (C.9).

Likewise, we first consider a simple case where each boxB satisfies the following condition:

maxz∈14B log(z) = O(minz∈14B log(z)). (C.12)

Sinceφ(B) ∈ 14B and (C.12) holds, it follows that

Õ(
∑

B∈B
n2 log(B)) = Õ(

∑

B∈B
n2 log(ξφ(B)))
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whereξφ(B) is an arbitrary root contained inφ(B). Thus, it is easy to see that Lemma 17 holds.
In general case, condition (C.12) may not hold for all the boxes. And we call a boxnice if it

satisfies (C.12), otherwise it isnon-nice.
Before we proving Lemma 18, we need to give a useful result.

Lemma 19. There exists at most400aligned non-nice boxes of the same size.

Proof.DenoteMB as the middle of a boxB. We will shows that ifMB < B(O, 20wB)(the box
centered at the origin and of width 20wB), thenB is a nice box.

If MB < B(O, 20wB), then |MB| > 10wB. We have minz∈14B log(z) ≥ log(MB − 7
√

2wB) ≥
log( MB

100) and maxz∈14B log(z) ≤ log(MB + 7
√

2wB) ≤ log(20MB). It follows maxz∈14B log(z) =
O(minz∈14B log(z)).

We can count that the number of aligned boxes satisfyingMB ∈ B(0, 20wB) is at most 202 =
400. Thus the number of non-nice boxes of widthwB is at most 400. Q.E.D.

Now we prove Lemma 18.
Proof. Denote byB1 the set of all the nice boxes produced in the algorithm andB2 the set

of all the non-nice boxes. From the discussions above, it follows thatÕ(
∑

B∈B1
n2 log(B)) can be

bounded by (C.9).
It remains to prove that̃O(

∑
B∈B2

n2 log(B)) can be bounded by (C.9). By Lemma 19, the
number of non-nice boxes of the same size is at most 400. And for a box B, if B is a con-
stituent box of a componentC, it is evident that log(B) ≤ log(C). HenceÕ(

∑
B∈B2

n2 log(B)) =
400Õ(

∑
C∈C n2 log(C)) = Õ(

∑
C∈C n2 log(C)). By Lemma 17, the latter is bounded by (C.9).

Q.E.D.
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