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Abstract

The approximation of the general hypergeometric function H(a;b; x) = pFq(a;b; x) to any specified
absolute error bound is shown to be solvable. In other words, we provide an algorithm that is uniform in
the hypergeometric parameters a = (a1, . . . , ap),b = (b1, . . . , bq). An explicit bound for the complexity of
our algorithm is given when the input numbers are rational. We further address the problem of evaluating
H when x is a “blackbox number”, i.e., x is represented by a procedure that returns an approximation
of x to any specified absolute precision. This generalization allows us to extend our approximability
results to most of the familiar transcendental functions of classical analysis that are derived from H. In
particular, this solves the so-called Table Maker’s Dilemma for such functions. Our algorithm has been
implemented in our open-source Core Library.

1 Introduction

Let a = (a1, . . . , ap) and b = (b1, . . . , bq) be sequences of rational numbers where p, q ∈ N and p ≤ q + 1.
The hypergeometric function determined by these numerical parameters is

F (x) = pFq(a;b;x) =
∞∑

k=0

tk (1)

where tk = (a1)k(a2)k···(ap)k

(b1)k(b2)k···(bq)k

xk

k! and (a)k = (a)(a + 1) · · · (a + k − 1) is the Pochhammer symbol or rising
factorial. Here a,b are known as the upper and lower parameters and x the argument of pFq. Although
x is unrestricted for p < q + 1, it is standard to assume |x| < 1 when p = q + 1. Many well-known functions
in analysis are obtained by simple transformations of hypergeometric functions. Typically, we transform
F (x) to E(x) := A(x)F (B(x)) where A(x) and B(x) are polynomials. This is illustrated in Table 1 (see [23,
p. 42ff] for more examples).

We regard the parameters a,b as fixed in the function F (x) = pFq(a;b;x). Let H(a;b;x) = pFq(a;b;x)
denote the general hypergeometric function where the parameters as well as p, q can now vary. We want
to approximate such functions, on rational input arguments and rational outputs, to prescribed absolute error
bounds: this is what we call “absolute approximation”. There is a similar concept of “relative approximation”
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E(x) = A(x)F (B(x)) F (x) A(x) B(x)
exp(x) 0F0(; ; x) 1 1
cos(x) 0F1(; 1

2 ;x) 1 −x2/4
sin(x) 0F1(; 3

2 ;x) x −x2/4
cosh(x) 0F1(; 1

2 ;x) 1 x2/4
sinh(x) 0F1(; 3

2 ;x) x x2/4
erf(x) 1F1( 1

2 ; 3
2 ;x) x −x2

(1 + x)−v
1F0(v;x) 1 −x

ln(1 + x) 2F1(1, 1; 2; x) x −x
arcsin(x) 2F1( 1

2 , 1
2 ; 3

2 ;x) x x2

arctan(x) 2F1( 1
2 , 1; 3

2 ;x) x −x2

where relative error is used in place of absolute error. It is conceivable that each hypergeometric function
pFq(a;b;x) is absolutely approximable, but the function H is not absolutely approximable. In other words,
the absolute approximation of H requires a uniform algorithmic method that is applicable to arbitrary values
of the parameters; to our knowledge, this has never been demonstrated before. There are related results
such as a uniform procedure to approximate any complex analytic function given by Weihrauch [34, p. 116].
But this result additional input parameters related to the radius of convergence must be explicitly given. We
discuss this connection at the end of Section 3. In this paper, we not only provide an algorithm for absolute
approximation of H, but also provide a complexity bound. It is interesting to note that the corresponding
result for the relative approximability of H is an open problem (we briefly discuss this in the final remarks).

The problem of evaluating hypergeometric functions is a highly classical problem (e.g., [12, 22]). The
usual modus operandi here is one that is widely used in numerical analysis: the algorithms are based on
fixed-precision arithmetic (e.g., IEEE Standard), and the goal is to design algorithms that try to minimize
the round-off errors in the final result. However, it is difficult to give a priori guarantees on the final accuracy.
It is possible to give a posteriori guarantees using interval arithmetic; but such bounds may not be tight.
The computational mode of a posteriori accuracy guarantees is called validated or certified computation
[30]; following [35], we use the term guaranteed precision computation for the stronger notion of a
priori guarantees, which is used in this paper. In general, one cannot transform a posteriori methods into
a priori ones (the obvious method of increasing precision iteratively may fail [35]). This has given rise
to the “Table Maker’s Dilemma” [21], described as the problem of computing correctly rounded values of
(transcendental) functions. This problem was solved in [21] for some elementary functions in the context of
double-precision format. Another example is Nardin et al [26, 25], who described an evaluation method for
confluent hypergeometric series (on large complex arguments) which they verify to be accurate to at least
9 digits. Their “verification” consists of a battery of 12 tests. The results of our paper will automatically
produce guaranteed accuracy in such evaluations. We have implemented the current algorithm for real
hypergeometric functions in the Core Library [18]. Some experimental results are reported here.

There are many other applications of guaranteed accuracy computation. Our work were motivated by
applications to exact geometric computation [15] and also geometric theorem proving [29]. More generally,
see [20] for computer-assisted theorem proving as well as automatic theorem proving. McCullough [10, 11]
describes the problem of evaluating commercial statistical packages on standard test data. In McCullough,
the answers for test data were computed using 500-digit arithmetic, and the result rounded to 16-digits is
empirically deemed to be correctly rounded. Dhiflaoui et al [13] describes an application for certifying large
LP solvers.

Closely related to this paper, van der Hoeven [31, 32] presented fast algorithms for evaluating holonomic
functions f(x). Such an f(x) satisfies a linear differential equation

∑k
i=0 Pi(x)f (i)(x) = 0 where Pi(x) ∈ Z[x].

For instance, if f(x) = 2F1(a, b; c;x) then it satisfies the equation

x(1− x)f
′′
(x) + (c− x(1 + a + b))f ′(x)− abf(x) = 0.

Van der Hoeven’s setting is more general than ours in two ways: first, hypergeometric functions are holonomic
and second, he treats complex functions which live on Riemann surfaces. But the complexity results in his
general setting are weaker than ours. He shows that f(x) can be approximated to absolute n-bits in time
O(M(n log2 n)) where M(n) is the complexity of multiplying n-bit integers. But this is a “local complexity
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bound” in the sense that f is fixed and x restricted to a local neighborhood. In contrast, our complexity
bounds are global, and even uniform, results: x is unbounded and our functions f are specified by input
parameters a,b. Below, we clarify this local/global/uniform terminology. Uniform bounds can present
nontrivial and subtle difficulties (cf. Section 5). In any case, it remains a challenge to give a uniform
complexity bound in van der Hoeven’s setting. The connection between [31, 32] and the closely related work
of Chudnovsky [9] is described in [33]. Another emphasis of our paper is “guaranteed precision computation”
[35]. It is important to note that we never use asymptotic (big-Oh) error bounds; all error bounds are given
by inequalities with explicit constants. Thus one can directly implement the algorithms of this paper to
achieve guaranteed precision, by exploiting our explicit constants.

The direct predecessor of the present paper is [15], which not only aimed at a uniform approximation
algorithm for hypergeometric functions, but also introduced several other issues arising in the efficient im-
plementation of such functions: argument reduction [24], preprocessing of hypergeometric parameters, and
use of precomputed constants. For instance, a basic technique to automatically detect the “contiguity rela-
tionships” [17, 6] of hypergeometric parameters in order to greatly speed-up evaluation of hypergeometric
series. The approximation algorithm of this paper follows the basic strategy in [15], but has three major
improvements: (a) The present algorithm is completely general while the original algorithm is only complete
when the series (1) satisfies |tk| > |tk+1| for all k ≥ 0. (b) In our original algorithm, we truncate the series
(1) when k is sufficiently large, based on an implicit criterion on the term tk. The current algorithm gives an
explicit upper bound of k ≤ n3 where n3 is easily computed from the hypergeometric parameters. Because
of this, we are able to give explicit complexity (Section 5). For an application of such bounds, see [7]. (c)
In order to achieve guaranteed precision under argument reduction, we must bound the sensitivity of the
function to variations in its argument. While [15] solves this for the standard elementary functions, the
present paper gives a uniform solution for all hypergeometric functions (Section 4).

Computational Model. We assume that our functions such as F (x) or H(a;b;x) are real. We also
assume that the parameters a,b are rational numbers, and x is a bigfloat (defined below). It is important
to clarify our computational model for real numbers because this area is currently under debate. This is
unlike the situation for computation over a countable domain such as finite strings Σ∗ or natural numbers
N. In the countable case, the Turing model or equivalent is widely accepted. In the uncountable domain of
reals, there are two main competing approaches which we will call the algebraic approach (popularized
by Smale [2, 28], but it is also the de facto model for theoretical algorithms in computer science) and the
analytic approach (represented by Weihrauh [34] or Ko [19]). Motivated by current software and research
in Exact Geometric Computation (EGC) we propose in [35] a weaker form of computing real function than
in the analytic approach. We call this the approximation approach. If ã, a are real numbers such that
|ã− a| ≤ 2−i, we say ã is an i-bit absolute approximation of a; if |ã− a| ≤ |a|2−i, we say ã is an i-bit relative
approximation of a.

Let us compare these three approaches in terms of computing a real function f : R → R. How can we
input a real number to an algorithm for f? The analytic approach says that a real number x is represented
by a blackbox number (or oracle) x : N→ Q where |x(i)−x| ≤ 2−i for all i. Then x is a computable real
if it has a blackbox representation x that is recursive. Turing machines must be suitably modified to accept
inputs and outputs such as x: Weihrauch [34] introduces TTE machines to this end, but Ko [19] uses oracle
Turing machines. Oracle Turing machine are better suited for complexity purposes. The algebraic approach
say that a real number may be directly represented as an atomic object in the computational model, and
basic operations (+,−,×, etc) can directly operate on such objects. Both approaches lead to well-known
difficulties. To these, we may add the criticism of EGC [35, 36]. Central to EGC is the zero problem. In
terms of computing the real function f : R→ R, the zero problem amounts to deciding membership in the
set Zero(f) := {x ∈ R : f(x) = 0}. Unfortunately, the zero problem is undecidable in the analytic approach,
and trivial in the algebraic approach [35, 36]. So neither approaches are appropriate models for the EGC
mode of computing.

Instead of presuming to represent all real numbers from the outset, the approximation approach begins
from a suitable set F ⊆ R of base reals. By definition, base reals is any set satisfying three groups of
properties: (1) F is a ring extension of Z, so Z ⊆ F ⊆ R. (2) F is countable and dense in R. (3) F has
a representation in which the ring operations and comparisons are effective. Two standard models for F
are F = Q and F = D. Here, D is the set Z[ 12 ] = {m2n : m,n ∈ Z} of bigfloats (or dyadic numbers).

3



Finally, we say f is absolutely approximable if there is a recursive function f̃ : F2 → F such that f̃(x, p)
is a p-bit absolute approximation of f(x). To indicate that p is a special argument, we may write f̃(x; p) or
f̃(x)[p]. All numerical input and output for algorithms are restricted to F. We now define the set ZeroF(f) as
{x ∈ F : f(x) = 0}; the zero problem amounts to recognizing this set, and it has a well-defined complexity
in standard sense.

Our focus on computing approximations f̃(x, p) for f conforms to computing practice, and has many
advantages: we can build a theory of real approximation and its complexity using standard Turing machines,
and directly relate them to standard complexity classes. In contrast, if x remains an arbitrary real number,
then the complexity function “T (x, p)” (=the number of steps to compute f̃(x, p)) does not give give rise to a
natural complexity theory. If we further assume F = Z[ 12 ], then many important results about the complexity
of approximability were obtained three decades ago by Brent (e.g., [3, 4]). In particular, he showed that
all the common elementary functions can be approximated efficiently using Newton-like schemes, perhaps
combined with AGM-based iterations. Such results form the basis of practical algorithms in this area. We
emphasize that Brent’s complexity bounds are all of the “local variety”, with complexity bounds of the form
M(n) logc n where M(n) is the complexity of integer multimplication and c ≥ 0 is some small constant.
Warious authors including extended such bounds to more general settings.

Contributions of this Paper. There are three main results:
(I) In Section 3, we show that H is absolutely approximable.
(II) In Section 4, we show that H is absolutely approximable when x is a blackbox number. This generaliza-
tion is necessary for various applications: (a) argument reduction [24, 15], (b) evaluation of hypergeometric
functions at irrational values such as x = π or x =

√
2. (c) absolute approximation of standard functions

E(x) that require non-trivial transformation of the x parameter.
(III) In Section 5, we bound the complexity of absolute approximation of H. This requires a refinement of
the algorithm in Section 3.

For further details, and for any omitted proofs, we refer to Zilin’s thesis [14]. In particular, description
of our implementation in the Core Library [18] may be found there. A preliminary version of this paper
appeared in [16]. Although we follow the basic approach in [14, 16], several detail have been simplified in
the present paper.

2 Preliminaries: Representation and Complexity Model

We use a useful notation for error from [36]: a numerical expression of the form “x ± h” where x, h ∈ R,
represents the number x+ θh for some θ where |θ| ≤ 1. Thus θ is an implicit variable, much like the implicit
constant1 in big-Oh notations.

Thus, all appearences of “±” in this paper should be replaced by a sequence of the form “+θ” for some
|θ| ≤ 1. For x, x̃, ` ∈ R, we say x̃ is an absolute `-bit approximation of x if x̃ = x± 2−`. Similarly, x̃ is
a relative `-bit approximation of x if x̃ = x(1± 2−`).

For our complexity results, we need to be more explicit about F, its representation and the complexity
of basic arithmetic in F. Apropos to the function H, we will assume the set of base reals is F0 := Q.
However, for internal computation, we will extensively use approximations based on bigfloats F1 := D. The
most efficient approximate arithmetic over D goes back to Brent [3]. Brent’s results are stated for functions
evaluated in some bounded range. We call this “local complexity”. However, we will need “global” and
“uniform” complexity bounds. Let us clarify these distinction.

Let f : S → R be a function where S ⊆ R, and f̃ : (S ∩ F)× F→ F be an absolute approximation of f .
Local complexity: Tf,x(n) denotes the complexity of computing an n-bit absolute approximation of f(x).
Here, f and x ∈ S are fixed. We could slightly generalize this to allow x to range over a bounded range:
Brent’s results [3] are of this sort.

1The analogy with big-Oh notations extends to their usefulness in a long sequence of derivations. See, e.g., the proof of
Theorem 12 below. As for big-Oh notations, the equality symbol between two ±-expressions must be treated as “one-way
equalities”. E.g., we might write π = 3.1 ± 0.05 = 3 ± 0.2 But it would be incorrect to write π = 3 ± 0.2 = 3.1 ± 0.05.
To explain this, we view the expression “3.1 ± 0.2” as the set {3.1 + θ0.2 : |θ| ≤ 1}. The one-way equality between two such
expressions amounts to asserting a set inclusion relation (⊆) between the corresponding sets. Thus “3.1±0.05 = 3±0.2” means
“{3.1 + θ0.05 : |θ| ≤ 1} ⊆ {3 + θ0.2 : |θ| ≤ 1}”.
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Global complexity: Tf (m,n) denotes the worst-case complexity of computing an n-bit absolute approxi-
mation of f(x) where x has an m-bit representation. Here, x can vary over all of S.
Uniform complexity: If G is a set of parametrized real functions, let TG(`,m, n) denote the worst-case
complexity of computing an n-bit absolute approximation of f(x), where x has an m-bit representation and
f ∈ G is specified by an `-bit parameter. Thus f and x are both varying.

We discuss representation of bigfloats and rationals. A rational number a = p/q is represented straight-
forwardly by a pair (p, q) where p, q are integers in binary notation and q 6= 0. A bigfloat x ∈ D is also
represented by a pair e, f of integers in binary notation. The pair e, f represents the value x = f2e−msb(f) ∈ D
where msb(f) = blg fc (lg = log2). We write “x ∼ 〈e, f〉” to indicate that x is represented by the pair (e, f),
where e and f are the exponent and fraction of the representation. Note that 〈e, f〉 and 〈e, 2f〉 represents
the same bigfloat; but a representation 〈e, f〉 is normal if f is odd, or if e = f = 0. Let 〈f〉 be a shorthand
for f2−msb(f) ∼ 〈0, f〉. Thus for f 6= 0, we have 〈f〉 ∈ [ 12 , 1).

The size of a rational representation (p, q) is defined as max{lg1 p, lg1 q} where we define lg1 x :=
max {1, log2 |x|} (this takes care of the case x = 0). Note that we do not take ceiling or floor in the
definition of size, so that sizes are not2 necessarily integer. Similarly, the size of a bigfloat representa-
tion 〈e, f〉 is defined as max{lg1 e, lg1 f}. Observe that size definition is relative to representation. So if a
bigfloat a = 2ef could be represented as a rational number by the pair (f, 2e−msb(f)) assuming e ≥ msb(f).
Then its rational size is max{e − msb(f), lg1 f}. This could be exponentially larger than its bigfloat size,
size(〈e, f〉) = max{lg1 e, lg1 f}. Hence, even though bigfloats are special cases of rationals, its representation
may be exponentially more “compact” than rational.

In the uniform evaluation of general hypergeometric function H(a,b;x), we assume a,b have rational
representations and x has a bigfloat reprsentation. Complexity bounds are relative to the sizes of these
representations.

Our complexity bounds will contain terms involving M(n), defined as the complexity of multiplying
two n-bit numbers. On a Turing machine, the Schönhage-Strassen bound is M(n) = O(n log n log log n),
although it may also be useful to substitute M(n) = n2 in practice. However, the Turing machine model is
rather sensitive for some of the tight bounds we aspire to (see next lemma). Hence we prefer to assume that
all our complexity results uses the pointer machine model of Schönhage [27, 35]. Such pointer machines can
simulate a multitape Turing machine in linear time, and Schönhage has shown M(n) = O(n) in this model.

Brent [3] noted that we can compute 1/x,
√

x, xy to relative s bits in O(M(s)) time, provided x 6= 0, y
are bounded bigfloats. See [1] for similar results in the integer setting. The following results from [8, Sect. 4
and Appendix] apply to unbounded bigfloats (i.e., are global complexity bounds):

Lemma 1. Let x, y be bigfloats with `-bit exponent and m-bit fraction. Then there exist pointer machine
algorithms to
(i) evaluate x + y to relative s bits in O(s + `) time.
(ii) evaluate x · y, 1/x,

√
x to relative s bits in O(M(s) + `) time.

Note that the complexity does not depend on m, only on s. Such a result would not be generally possible
on the Turing machine model. Also, these results depend on the big-float representation, not the rational
representation of numbers.

3 The Uniform Evaluation Algorithm

In this section, we present an algorithm for computing an `-bit absolute approximation of H(a;b;x), given
a,b, x, `. For any n ∈ N, write H(a;b;x) = Sn + Rn where Sn =

∑n−1
k=0 tk and Rn =

∑∞
k=n tk (see (1)). As

in [15], our algorithm proceeds in two stages: in Stage A, we compute an n3 such that |Rn| ≤ 2−`−1 for all
n > n3. In Stage B, we compute an approximation S̃n such that |S̃n − Sn| ≤ 2−`−1. Note that Stage B is
clearly computable – in fact, computing this approximation is trivial to implement in Core Library. Note
that [15] gives a more efficient treatment of alternating series; we forgo this refinement in the present paper.
The rest of this section focuses on Stage A.

2The key property for “size” in complexity theory is not that they must be integers, but that there are reasonable bounds
on the number of inputs up to any given size. One difficulty in developing a complexity theory for real numbers is to provide a
suitable notion of size. The absolute value |x| is unsuitable for measuring the size of x.
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STAGE A. We introduce some notations: if a = (a1, . . . , ap), then sk(a) :=
∑p

i=1 ak
i . But we will further

split this sum into its positive and negative parts: sk(a) = s+
k (a) − s−k (a) where s+

k (a) :=
∑

i:ak
i >0 ak

i , and
s−k (a) := s+

k (a) − sk(a). Note that s−k (a) ≥ 0, and if k is even, then s−k (a) = 0. Relative to a, we define
the constants a+

max, a
−
max, amax, a as follows: a+

max is the maximum value of the positive ai’s; a−max is the
maximum of |ai|’s where ai < 0. If there are no negative ai’s, set a−max to 0; similarly, there are no positive
ai’s, set a+

max to 0. Finally, set amax := max{a+
max, a

−
max} and a := (

∑p
i ai) /p (average).

Define the polynomial

Pa(n) =
p∏

i=1

(ai + n). (2)

Each term tn+1 in our hypergeometric series H(a;b;x) (see (1)) can be written as tn+1 = tnf(n)x where

f(n) = Pa(n)/Pb′(n), (3)

b′ = (b0,b) = (b0, b1, . . . , bq) and b0 = 1 is the implicit lower parameter.
Stage A amounts to computing three numbers:

(0) n0 = n0(x,a,b) such that for n > n0, |tn| is monotone decreasing.
(1) n1 = n1(a,b) such that for n > n1, f(n) is monotone increasing or decreasing.
(2) n2 is defined to be 1 + maxn0, n1.
(3) n3 = n3(x,a,b, `) such that for all n > n3, |Rn| ≤ 2−`−1.

We begin with n0 = n0(x,a,b):

Lemma 2. Let

n0 :=

{
max{ā + 2 b−max, (2q+2|x|)

1
q+1−p } if p < q + 1,

ā+b−max

|x|−(1/p)−1
+ b−max if p = q + 1.

(4)

Then for n > n0, we have

|xf(n)|
{
≤ 1/2 if p < q + 1
< 1 if p = q + 1 .

Proof. We have

P (n) =
p∏

i=1

(ai + n)

≤
[
(a1 + n) + (a2 + n) + · · ·+ (ap + n)

p

]p

= (ā + n)p,

Q(n) =
q∏

j=0

(bj + n) ≥ (n− b−max)q+1.

Hence

|f(n)| =
∣∣∣∣P (n)
Q(n)

∣∣∣∣ ≤ (ā + n)p

(n− b−max)q+1
.

We consider two cases:

1. p < q + 1. Thus

|xf(n)| ≤
(

1 +
ā + b−max

n− b−max

)p |x|
(n− b−max)q+1−p

≤ 2q+1|x|
nq+1−p

≤ 1/2

provided n ≥ max{ā + 2 b−max, (2q+2|x|)
1

q+1−p }.

2. p = q + 1. Thus

|xf(n)| ≤
(

1 +
ā + b−max

n− b−max

)p

|x| < 1

provided n ≥ ā+b−max

|x|−(1/p)−1
+ b−max.

6



Q.E.D.

This lemma implies that |tn| is monotone decreasing for n > n0. For p = q + 1, we are unable to bound
|xf(n)| away from 1, and this causes additional complications for our uniform algorithm. So solve this, we
next analyze the eventual behavior of f(n). But we first need a lemma characterizing the polynomials Pa(n).

Let σk(a) be the kth elementary symmetric function on a:

σ1(a) = s1(a), σ2(a) =
∑

1≤i<j≤p

aiaj ,

σ3(a) =
∑

1≤i<j<k≤p

aiajak, . . . , σp(a) =
p∏

i=1

ai.

The following result is well-known:

Lemma 3. Let a = (a1, . . . , ap) and b = (b1, . . . , bp) where a1 ≤ · · · ≤ ap and b1 ≤ · · · ≤ bp. The following
four statements are equivalent:
(1) a = b.
(2) (∀k = 1, . . . , p)[sk(a) = sk(b)].
(3) (∀k = 1, . . . , p)[σk(a) = σk(b)].
(4) The polynomials Pa(n) and Pb(n) are identical.

The following notations will be useful for describing the eventual monotonic behavior of f(n): write
“f(n) ↗ n1” to mean that for all n > n1, f(n) < f(n + 1). Similarly, “f(n) ↘ n1” means that for all
n > n1, f(n) > f(n + 1). In either case, we can write “f(n) l n1”. We may also write “f(n) ↗” if
f(n)↗ n1 for some n1. The notation “f(n)↘” is similar.

We now seek a value n1 = n1(a,b) such that f(n) l n1. The next two lemmas defines n1 for the two
cases of p < q + 1 and p = q + 1.

Lemma 4. Let p < q + 1 and {a1, . . . , ap} 6= {b0, b1, . . . , bq} viewed as multi-sets. Then f(n)↘ n1 where

n1 := max{a+
max, 2a−max, b

−
max, r} (5)

and

r :=
s1(b′) + 2s−1 (a)− 1

2s+
1 (a)

q + 1− p
,

Proof. We have

f(n) =
∏p

i=1(ai + n)∏q
j=0(bj + n)

=
∏p

i=1(
ai

n + 1)∏q
j=0(

bj

n + 1)

(
1
n

)q+1−p

log f(n) =
p∑

i=1

log(
ai

n
+ 1)−

q∑
j=0

log(
bj

n
+ 1) + (q + 1− p) log(

1
n

).

Let ν = 1/n and define h(ν) via

h(ν) := log f(1/ν) (6)

=
p∑

i=1

log(aiν + 1)−
q∑

j=0

log(bjν + 1) + (q + 1− p) log ν (7)

h′(ν) =
p∑

i=1

ai

aiν + 1
−

q∑
j=0

bj

bjν + 1
+

q + 1− p

ν
. (8)
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From the bounds,

ai

aiν + 1
>

ai

2
for ai > 0, n > a+

max,

ai

aiν + 1
> 2ai for ai < 0, n > 2 a−max,

bj

bjν + 1
< bj for bi > 0, n > 0,

bj

bjν + 1
< bj for bi < 0, n > b−max,

we infer
h′(ν) ≥ 1

2
s+
1 (a)− 2s−1 (a)− s1(b′) +

q + 1− p

ν
,

provided n > max{a+
max, 2a−max, b

−
max}. Hence, if we choose

n1 = max{a+
max, 2a−max, b

−
max, r},

we conclude that h′(ν) > 0. This means as h(ν) increases with ν. But as n→∞, ν decreases towards 0 and
so h(ν) is decreasing, i.e., f(n)↘ as claimed. Q.E.D.

Lemma 5. Let p = q+1 and {a1, . . . , ap} 6= {b0, b1, . . . , bq} viewed as multi-sets. Then there exists a smallest
index k = 1, . . . , p such that sk(a) 6= sk(b′).
(a) We have f(n)↘ if (−1)k(sk(b′)− sk(a)) > 0, and otherwise f(n)↗.
(b) We have f(n) l n1 where

n1 :=

 max
{

amax, bmax,
b+max + b−max r0

r0−1

}
if sk(b′) > sk(a),

max
{

amax, bmax,
a−max + a+

max r0
1−r0

}
if sk(b′) < sk(a).

(9)

where

r0 := k

√
s+

k (b′) + s−k (a)
s+

k (a) + s−k (b′)
. (10)

Proof. The existence of k comes from lemma 3.
(a) Let h(ν) := log f(1/ν) where ν = 1/n, as in the previous proof. Then

h′(ν) =
p∑

i=1

ai

aiν + 1
−

q∑
j=1

bj

bjν + 1
.

In general, for r ≥ 1, the rth derivative is

h(r)(ν) = (r − 1)!(−1)r

 q∑
j=0

(
bj

bjν + 1

)r

−
p∑

i=1

(
ai

aiν + 1

)r
 .

Also, h(0)(ν) is simply h(ν). Evaluating at ν = 0, we get

h(r)(ν)
∣∣∣
ν=0

= (r − 1)!(−1)r

 q∑
j=0

br
j −

p∑
i=1

ar
i


= (r − 1)!(−1)r (sr(b′)− sr(a)) .

By our choice of index k, we have h(r)(ν)
∣∣
ν=0

= 0 for r = 1, . . . , k − 1 and h(k)(ν)
∣∣
ν=0
6= 0. So for ε > 0

small enough, h(ε) and h′(ε) has the sign of h(k)(ν)
∣∣
ν=0

. As in the proof of Lemma 4, h′(ε) > 0 means that
f(n)↘. This proves f(n)↘ iff (−1)k (sk(b′)− sk(a)) > 0.
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(b) Write

Sk(ν) :=
q∑

j=0

(
bj

bjν + 1

)k

−
p∑

i=1

(
ai

aiν + 1

)k

=
q∑

j=0

(
b+
j

1 + b+
j ν

)k

+
q∑

j=0

(
−b−j

1− b−j ν

)k

−
p∑

i=1

(
a+

i

1 + a+
i ν

)k

−
p∑

i=1

(
−a−i

1− a−i ν

)k

(11)

where

b+
j =

{
bj if bj > 0
0 else. , b−j =

{
−bj if bj < 0
0 else.

The definitions of a+
i , a−i is similar. We see that f(n) l n1 if Sk(ν) = Sk(1/n) holds a constant sign for all

n > n1. This constant sign is, of course, equal to sign(h(k)(0)) = (−1)k(sk(b′)− sk(a)).
We next assume n > max{amax, bmax}. This implies

0 <
1

1 + b+
max ν

≤ 1
1 + b+

j ν
≤ 1

1− a−i ν
≤ 1

1− a−max ν
, (12)

0 <
1

1 + a+
max

≤ 1
1 + a+

i ν
≤ 1

1− b−i ν
≤ 1

1− b−max ν
. (13)

We will now consider two cases.
CASE (A): sk(b′) > sk(a). In this case,

s+
k (b′)− s−k (b′) > s+

k (a)− s−k (a)
s+

k (b′) + s−k (a) > s+
k (a) + s−k (b′)

r0 > 1.

Plugging (12) and (13) into (11), we obtain:

Sk(ν) ≥
(

1
1 + b+

max ν

)k
∑

j

(b+
j )k −

∑
i

(−a−i )k

− ( 1
1− b−max ν

)k
∑

i

(a+
i )k −

∑
j

(−b−j )k


=

(
1

1 + b+
max ν

)k (
s+

k (b′) + s−k (a)
)
−
(

1
1− b−max ν

)k (
s+

k (a) + s−k (b′)
)
. (14)

Observe that the above derivation holds for all k; when k is even, the negative terms vanish. It is easy to
verify from (14) that Sk(ν) > 0 provided

s+
k (b′) + s−k (a)

s+
k (a) + s−k (b′)

>

(
1− b−max ν

1 + b+
max ν

)k

=
(

n− b−max

n + b+
max

)k

i.e.,

n >
b+
max + b−max r0

r0 − 1
.

CASE (B): sk(b′) < sk(a). As in CASE (A), we see that r0 < 1. Plugging (12) and (13) into (11), we
obtain:

Sk(ν) ≤
(

1
1− a−max ν

)k
∑

j

(b+
j )k −

∑
i

(−a−i )k

− ( 1
1 + a+

max ν

)k
∑

i

(a+
i )k −

∑
j

(−b−j )k


=

(
1

1− a−max ν

)k (
s+

k (b′) + s−k (a)
)
−
(

1
1 + a+

max ν

)k (
s+

k (a) + s−k (b′)
)
. (15)
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Again, we verify from (15) that Sk(ν) < 0 provided

n >
a−max + a+

max r0

1− r0
.

Q.E.D.

In the remainder of this section, define

n2 := 1 + max{n0, n1}. (16)

This definition of n2 must be refined in Section 5.
Our next goal is to define n3 = n3(x,a,b, `) such that |Rn| ≤ 2−`−1 for n > n3. This will be given in

the next two lemmas, depending on whether p < q + 1 or p = q + 1.

Lemma 6. If p < q + 1 then |Rn| ≤ 2−`−1 for all n > n3, where

n3 := max {n2, ` + 2 + n2 + lg |tn2 |} .

Proof. For n > n2, we have

|tn| = |tn2 |
∏n−n2−1

j=0 |xf(n2 + j)|
≤ |tn2 |2−n+n2 (Lemma 2)

So if we choose
n > n3 := {n2, ` + 2 + n2 + lg |tn2 |}

this would ensure |tn| ≤ 2−`−2. Furthermore,

|Rn| ≤ |tn|
∑∞

i=0

∏i−1
j=0 |xf(n + j)|

≤ |tn|
∑∞

i=0 2−i (Lemma 2)
≤ 2−`−2

∑∞
i=0 2−i = 2−`−1.

Q.E.D.

Write tn = unxn where

un :=
(a1)n(a2)n · · · (ap)n

(b0)(b1)n(b2)n · · · (bq)n
=

n−1∏
i=0

f(i).

Lemma 7. Let p = q + 1 and
r = −`− 1− lg |un2 |, s = n2 lg f(n2).

Then we have the bound |Rn| < 2−`−1 for all n > n3 where

n3 =

{
max{n2,

r+lg(1−x)
lg |x| } if f(n)↗,

max{n2,
r+s+lg(1−xf(n2))

lg (|x|f(n2))
} if f(n)↘ .

(17)

Proof. Since p = q + 1, we have |x| < 1 and so lg |x| < 0.
We have

|Rn| ≤
∞∑

i=0

|tn+i|

≤ |tn|
∞∑

i=0

|x|i
i−1∏
j=0

f(n + j)|.

If f(n)↗ n2, then 0 < f(n) < 1 for n > n2. This is because lim f(n) = 1 as n→∞. Thus,

|Rn| ≤ |tn|
∞∑

i=0

|x|i = |tn|
1

1− |x|
< |un2 ||x|n

1
1− |x|

< 2−`−1
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where the last inequality requires

n > n3 :=
−`− 1− lg |un2 |+ lg(1− x)

lg |x|
.

If f(n)↘ n2, then f(n) > f(n + 1) > 1 for n > n2. Thus,

|Rn| ≤ |tn|
∞∑

i=0

|x|if(n)i = |tn|
1

1− |x|f(n)

< |un2 ||x|nf(n2)n−n2
1

1− |x|f(n2)
< 2−`−1,

where the last inequality requires

n > n3 :=
−`− 1− lg |un2 |+ n2 lg f(n2) + lg(1− |x|f(n2))

lg (|x|f(n2))
.

Q.E.D.

This give us:

Theorem 8. The general hypergeometric function H is absolutely approximable.

Proof. Given rational a,b, x, `, we successively delete pairs (ai, bj) where ai = bj (j > 0). Note that
b0 (the implicit lower parameter) is not available for deletion. Eventually, we may reduce p or q to 0; if
p = q = 0, we are just computing exp(x). Otherwise, assume a,b are distinct as multisets. We then
compute an upper bound Ni for the quantity ni (for i = 0, 1, 2, 3) in a straightforward way using standard
algorithms. Finally, compute an (` + 1)-bit approximation to SN3 (e.g., using the techniques in [35]). This
value approximates H(a;b;x) to ` absolute bits. Q.E.D.

It is clear that Theorem 8 holds under much more general conditions than proved here. For instance, we
can view the function H as a complex function, and the parameters a,b can be arbitrary algebraic numbers.
We may also extend this result to simple functions that are derived from H, such as in Table 1:

Corollary 9. If A(x), B(x) ∈ Q[x] then the function of the form F (x) = A(x)pFq(a;b;B(x)) is absolutely
approximable.

REMARK. The proof of theorem 8 yields much quantitative data relating a,b, x to convergence; this will
be exploited in our complexity analysis in Section 4. Martin Ziegler pointed out to us that Theorem 4.3.11 in
Weihrauch [34, p. 116] provided a uniform algorithm for absolute approximations of the more general class
of complex analytic functions, f(z) =

∑
i≥0 aiz

i, ai ∈ C with some radius of convergence R. The input to
Weihrauch’s algorithm is (f, z, r,M, `), where (z, r,M, `) ∈ C×Q×Q and f is given by a uniform procedure
to generate the coefficients ai ∈ C (i ≥ 0) as blackbox numbers, and z is given as a blackbox number. The
output is an `-bit approximation of f(z). The auxillary inputs r, M satisfy R > r > |z| and |ai| ≤ M · r−i

(for i ≥ 0). To deduce Theorem 8 from Weihrauch’s theorem we can (a) show how to uniformly generate
the ai’s from the hypergeometric parameters a,b, and (b) show how to compute (r, M) from z,a,b. While
step (a) is straightforward, step (b) does not seem any easier than our current approach.

4 Evaluation at a Blackbox Number

This section generalizes the approximability result of Section 3 to the case where x is now an arbitrary real
number represented by black-box x : N → D such that x[p] is a p-bit absolute approximation to x. In [15],
such a generalization was given for common elementary functions, exploiting well-known properties of such
functions. We now solve this in complete generality.

We assume the usual rational parameters a,b, the precision ` ∈ Z, but x ∈ R is represented by x. Our
main result says that H(a;b;x) is absolutely approximable. We make this precise with the help of oracle
Turing machines [19]. In general, let f(x1, . . . , xp; y1, . . . , yq) be a real function with its arguments separated
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into two groups: intuitively, the xi’s represent base reals and yj ’s represent black box inputs. We say that f
is absolutely approximable if there is an oracle Turing machine M taking p base reals inputs x1, . . . , xp

and `, and q oracle inputs y
1
, . . . , y

q
, such that in finite time, it halts with an absolute `-bit approximation to

f(x1, . . . , xp, y1, . . . , yq). M invokes oracle y
i
by writing a pair (i, `′) on a special “query tape” and entering

a special query state q?; in the next instant, M enters a special “answer state” q! and, instantly, some `′-bit
approximation y

i
[`′] appears on an answer tape for use in subsequent computation.

When a,b are understood, we will simply write F (x) and F̃ (x)[`] for H(a;b;x) and H̃(a;b;x; `) re-
spectively. For any n ≥ 0, we use the notation F (x) = Sn(x) + Rn(x) where Sn(x) :=

∑n−1
k=0 tk and

Rn(x) :=
∑

k≥n tk. Thus the notation Rn(x) will now explicitly indicate its dependence on x.
We now need bounds that depends on x, but where x is only known to lie within an interval. Let [u, u]

be an interval, also written as [u]. It is useful to use the following definitions, defined for any set S ⊆ R, not
necessarily an interval. If c ∈ R, we write S > c if for all x ∈ S, x > c. Similarly for c ≤ S, etc. Also let |S|
denote the set {|x| : x ∈ S}. If f : R→ R, then f(S) is the set {f(x) : x ∈ S}. E.g., |[u]| = max {|x| : x ∈ [u]}
and Rn([u]) = {Rn(x) : x ∈ [u]}.

We shall need a special condition on [u]:

If p = q + 1 then |[u]| < 1. (18)

Note that we do not require |[u]| > 0 (cf. [14, 16]), a condition that is more difficult to ensure.

Lemma 10. Let ` ∈ Z and [u] = [u, u] where u, u are bigfloats. If [u] satisfies (18), we can compute an
integer N3 such that |RN3([u])| < 2−`−1.

Proof. The idea is that the inequalities in Stage A that involve x will now be strengthened so that they
remain true for any choice of x ∈ [u]. This defines the quantities n0, n1, n2, n3, in analogy to n0, n1, n2, n3.
Then we must show how to compute upper bounds Ni on ni (i = 0, . . . , 3). The general strategy is to proceed
as in (the proof of) Theorem 8, using max |[u]| in place of x. In the following, we note some additional detail:

(a) The general strategy works for computing N1. But in fact, n1 (see (5) and (9)) does not depend on
x, and so n1 = n1.

(b) To compute N0, there are two cases (see (4)). For p < q+1, the general strategy works. For p = q+1,
we only need to further ensure max |[u]| < 1; this is guaranteed by our assumption (18).

(c) To compute N3, when p < q + 1, Lemma 6 shows that the general strategy works. Here, we need an
upper on |tn| = |xnun| (with n = n2). This can be obtained as (max |[u]|)n|un|. When p = q + 1, (17) shows
that we need (i) an upper bound on | lg(1 − [u]f(n2))| and (ii) a non-zero lower bound on | lg([u]f(n2))|.
Both (i) and (ii) only require |[u]| < 1, which is guaranteed by (18). Q.E.D.

Lemma 11. Given [u] as in (18), we can compute an M ∈ F1 such that |F ′([u])| ≤M where F ′(x) denotes
differentiation with respect to x.

Proof. Note that F ′(x) is just another hypergeometric function multiplied by a rational number since

F ′(x) =
Pa(0)
Pb(0)

H(a + 1;b + 1;x)

where Pa(n) is given by (2) and a+1 = (a1 +1, a2 +1, . . . , ap +1) (similarly for b+1). Thus by Lemma 10,
we can determine an N3 such that truncating the series for F ′(x) after the first N3 terms incurs an error of
at most 1/2. Then compute an approximation S̃ of the sum of the first N3 terms, with absolute error at
most 1/2. We may choose M = S̃ + 1. Q.E.D.

The following algorithm will absolutely approximate H relative to a blackbox number x:
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Blackbox Evaluation Algorithm
Input: Rational a,b, ` and x ∈ R represented by a blackbox x.
Output: A bigfloat ỹ such that ỹ = H(a;b;x)± 2−`.

0. Initialize s← ` + 1.
1. Compute x′ such that x′ = x± 2−s.

This is just one call to the black box x.
Let [u] = [u, u] where u = x′ − 2−s and u = x′ + 2−s.

2. [Loop] While [u] does not satisfy (18),
keep doubling the precision s in x′ until it does.

3. Compute M such that |F ′([u])| ≤M (cf. Lemma 11).
If M < 1, set M = 1.
4. [Repeat Step 1]

Once more, recmpute x′ = x± (2−s/M)
5. Using Theorem 8, compute and return the value y′ = H(a;b;x′)± 2−`−1.

Theorem 12. The Blackbox Evaluation Algorithm halts and gives a correct output:

y′ = H(a;b;x)± 2−`.

Proof. We need to prove partial correctness (i.e., any output is correct) and halting. Halting is easy: the
algorithm has one loop in Step 2, seeking to produce an interval [u] satisfying (18). This loop must halt
since the input is assumed to satisfy |x| < 1 if p = q + 1.

Write F (x) for H(a;b;x). Note that Step 5 of the algorithm returns y′ = F (x′) ± 2−`−1. So partial
correctness amounts to the claim that y′ is equal to F (x)± 2−`. This claim follows if we show

F (x′) = F (x)± 2−`−1.

By Step 4, x′ = x± δ where δ = 2−s/M where s ≥ ` + 1 and M ≥ 1. The Mean Value Theorem says

F (x± δ) = F (x)± δ · F ′(x± δ). (19)

According to Step 2,
x± δ = x± 2−s/M = x± 2−s = x± 2−`−1.

Therefore, by Step 3, |F ′(x± δ)| ≤M . Plugging into (19),

F (x′) = F (x± δ) = F (x)± δ ·M = F (x)± 2−`−1

as desired. Q.E.D.

The power of the above blackbox algorithm is seen in the following application.

Corollary 13. Fixing x, define G(a;b) := H(a;b;x). If x is any computable real number, then G(a;b) is
absolutely approximable for all rational a,b.

Computable real numbers (i.e., those with a recursive blackbox) include all algebraic numbers and most
of the common constants of analysis such as π and e.

5 Complexity

We bound the complexity of approximating H(a;b;x) to absolute `-bits. This is quite involved but mostly
routine book-keeping. But one interesting detail is that we need to sharpen the algorithm of Section 3 before
an explicit bound is possible.

Throughout this section, we fix the the input to H̃ with the usual parameters (a,b, x, `) where a,b, x
are rational, ` an integer. We say the size of this input is the quadruple

(q′, n,m, `)
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where q′ = q +1, n = maxi,j{size(ai), size(bj)} and m = size(x). Our main result is a complexity bound as
a function of the size (q′, n,m, `). We remark that it is also of interest to bound the complexity under the
assumption that x is a bigfloat, since this allows more compact representation of x.

We will write Ni for the computed upper bound on ni (i = 0, 1, 2, 3). Although our main result con-
cerns approximation with absolute error bounds, we will need the following useful lemma on relative error
approximation:

Lemma 14. Let a = N
D be a rational number and n = size(a) = max{lg |N |, lg |D|}. There exist algorithms

to approximate a to relative s bits of precision in O(M(s) + lg n) time.

Proof. We represent N and D as bigfloats 〈msb(N), N〉 and 〈msb(D), D〉, then by Lemma 1, we can
evaluate N

D to relative s bits in O(M(s) + lg n) time. Q.E.D.

Corollary 15. (i) Let a, b be rational numbers with at most n bits in their numerators and denominators.
Then we can evaluate a + b to relative s bits in O(M(s) + lg n) time. (ii) We can compute s1(a) to relative
s bits in O(q′(M(s + lg q′) + lg n)) time.

Proof. (i) Evaluating a + b to relative s bits can be done by first approximating a and b to relative s + 2
bits, truncating them to s + 2 bits, and then adding those values up to relative s bits. The first step takes
O(M(s) + lg n) time and the addition takes O(s + lg n) time, so the total running time is O(M(s) + lg n).
(ii) The complexity comes from evaluating a balanced binary tree whose leaves are a1, . . . , ap. Q.E.D.

The upper bound N0 (for n0) in our algorithm and the complexity of computing N0 is shown below:

Lemma 16. We have N0 ≤ 23q′(n+m). Computing N0 takes O(M(q) + m) time for the case p < q + 1 and
O(M(n) + lg m + lg q′) time for the case of p = q + 1.

Proof. Recall from (4) that

n0 :=

{
max{ā + 2 b−max, (2q+2|x|)

1
q+1−p } if p < q + 1,

ā+b−max

|x|−(1/p)−1
+ b−max if p = q + 1.

Consider p < q + 1. If |x| ≥ 1 then (2q+2|x|)1/(q+1−p) ≤ 2q+2|x| ≤ 2q+2+m. The bound (2q+2|x|)1/q+1−p ≤
2q+2+m still holds even if |x| < 1. It is enough to compute q+1−p

√
|x| to relative q′ bits, which takes

O(M(q) + m) time. For the case of p = q + 1, we have ā

1− p
√
|x|
≤ 2n+mp. So N0 ≤ 2(n+m)(q′+2) ≤ 23q′(n+m).

We compute 1

1− p
√
|x|

to relative n bits, which takes O(M(n) + lg m + lg q′) time. Q.E.D.

In the case of p < q + 1, the complexity of computing N1 is easy and shown as follows:

Lemma 17. If p < q + 1, then n1 ≤ 3q′2n. Moreover, we can compute it in time O(q′M(n + lg q′)).

Proof. To bound n1, we note that
|s1(b′)|, |s+

1 (a)|, |s−1 (a)|

are each bounded by q′2n. Hence |r| ≤ 3q′2n. We can compute

r′ =
ds1(b′)e − 1

2

⌊
s+
1 (a)

⌋
− 2

⌊
s−1 (a)

⌋
q + 1− p

and
n0 = max{

⌈
a+

max

⌉
, 2
⌈
a−max

⌉
,
⌈
b−max

⌉
, r′}.

Since s1(b′), s+
1 (a), s−1 (a) has at most (n + lg q′) bits, we can evaluate them to relative (n + lg q′) bits to get

ds1(b′)e ,
⌊
s+
1 (a)

⌋
,
⌊
s−1 (a)

⌋
in time O(q′M(n + lg q′)) by Corollary 15. Q.E.D.

However, for the case of p = q + 1, we need first analyze the complexity of finding the smallest k, which
is shown in the following three lemmas:
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Lemma 18. Let α = k
√

a − k
√

b where a, b > 0 are rational numbers of size t. Then lg |α| ≥ −(2t + 1)k2. If
a, b are integers then lg |α| ≥ −(t + k)k.

Proof. We use the BFMSS rule [5] to compute u( k
√

a) ≤ 2t and `( k
√

a) ≤ 2t, with the same bound
when a is replaced by b. Hence u(α) = 22t+1. Since the degree of α is ≤ k2, we get |α| ≥ u(α)−k2

and lg |α| ≥ −(2t + 1)k2. When a, b are integers, we obtain u( k
√

a) ≤ 2t/k and `( k
√

a) = 1, giving us the
improvement stated. Q.E.D.

Corollary 19. Let α = sk(b′) − sk(a), β = k
√

sk(a) − k
√

sk(b). Then lg |α| ≥ −2(kn + lg q′), lg |β| ≥
−(2q′(kn + lg q′) + 1)k2.

Proof. We note that sk(a) and sk(b) have size at most (kn + lg q′). Q.E.D.

Lemma 20. Deciding the sign of sk(b′) − sk(a) takes O(kn + lg q′) time and deciding the smallest k such
that sk(b′) 6= sk(a) takes O(q′2n + q′ lg q′) time.

Proof. We can evaluate sk(b′)− sk(a) to absolute 2(kn + lg q′) bits to get the sign in time O(kn + lg q′).
In at most q′ steps, we can find the smallest index k, which takes O(q′2n + q′ lg q′) time. Q.E.D.

Now we have the complexity of computing n1:

Lemma 21. If p = q + 1, then n1 ≤ 24q′3n. Moreover, we can compute it in time O(M(q3n)).

Proof. To see the upper bound for n1, we note from the definition in (??) and (??) that the numerator
is at most 22n+lg q′+1 and the denominator is at least 2−q′2(2(nq′+lg q′)+1), hence n1 ≤ 24q′3n. Then we can
compute n1 to 4q′3n relative bits which will take O(M(q′3n)) time. Q.E.D.

If we follow the scheme of the previous section, it remains to bound n3. However, no finite bound is
possible under that scheme. To see this, note that for n > n2, although we know that |xf(n)| < 1, it can
be arbitrarily close to 1, which implies n3 can be arbitrarily large. Moreover, this difficulty only arises when
p = q + 1. Hence, when p = q + 1, we shall modify the definition in (16).

Lemma 22. If p = q + 1, redefine n2 := max{n0, n1, n
′
2} where

n′2 :=
a+
max + b−max

q
√

1 + 2−m − 1
+ b−max. (20)

Then,
1− |xf(n2)| ≥ 2−2m.

and hence − lg(|x|f(n2)) ≤ 2m.

Lemma 23. n2 ≤ 2q′(7q′2n+3m). The computation of n2 takes O(q3n + m) time.

Lemma 24. We have the bound

n3 ≤ 4m
(
` + 1 + 2q′2(7q′2n + 3m)2q′(7q′2n+3m)

)
≤ 4m

(
` + 24q′(2q′2n+m)

)
The computation of n3 takes time

O(M(lg(`) + q′3n + qm)).

Let us define
N = 4m

(
` + 24q′(2q′2n+m)

)
. (21)

Now we analyze the complexity of computing the approximation S̃N such that |S̃N − SN | ≤ 2−`−1 where
SN =

∑N
k=0 tk. It is sufficient that for each k, 0 ≤ k ≤ N , we compute an approximation t̃k such that

|t̃k − tk| ≤ 2−`−1−lg N .

Noting that tk = ukxk, lg |uk| ≤ 2kq′ lg(2n + k) and lg |xk| ≤ km, it is sufficient to compute uk and xk to
relative r + 2 bits where

r = (` + 1 + lg N + 2kq′ lg(2n + k) + km).
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Lemma 25. We can compute xk to r + 2 relative precision in time O(kM(r)).

Proof. To compute xk to relative r + 2 bits, we can use two steps:

1. compute x to relative (r + 2 + lg(k + 1)) bits and truncate,

2. multiply them (in linear order or binary tree order).

Note that x is a rational number N
D with bit length m, so the first step can be done in time O(M(r +

lg k)+ lg m). For the second step, if we do the multiplication in linear order, x2 = x×x can be done in time
O(M(r+lg k)+lg m), x3 = x2×x can be done in time O(M(r+lg k)+lg(2m)), . . . , xk = xk−1×x can be done
in time O(M(r +lg k)+ lg((k− 1)m)), so the total running time is O(kM(r +lg k)+k lg(km)) = O(kM(r)).

Q.E.D.

Lemma 26. We can compute uk to r + 2 relative precision in time O((k + q′)M(r)).

Proof. Computing uk to relative r + 2 bits can be done the following steps:

1. compute (ai)k, (bj)k to relative (r + 4 + lg q′) bits and truncate,

2. compute P (k) = (a1)k(a2)k · · · (ap)k to relative (r + 4) bits and truncate,

3. compute Q(k) = (b1)k(b2)k · · · (bq)k(1)k to relative (r + 4) bits and truncate,

4. compute P (k)
Q(k) to relative r + 2 bits.

The first step can be done in time O(kM(r +lg q +lg k)+k lg(kn)) = O(kM(r)). The second and third step
can be done in time O(q′M(r + lg q′) + kq′ lg(2n + k)) = O(q′M(r)), and the final step can be done in time
O(M(r) + kq′ lg(2n + k)) = O(M(r)). Therefore, computing uk takes O((k + q′)M(r)) time. Q.E.D.

Corollary 27. The summation SN takes O(N2M(` + q′N lg N + Nm)) time where N is defined in (21).

Proof. Note that r = O(`+ q′N lg N +Nm), so computing tk takes at most O(NM(`+ q′N lg N +Nm))
time, hence the total running time for computing SN is O(N2M(` + q′N lg N + Nm)). Q.E.D.

The upshot of these calculations yields:

Theorem 28. The general hypergeometric function H can be approximated in time that is

O(N2M(` + q′N lg N + Nm))

where
N = 4m

(
` + 24q′(2q′2n+m)

)
and M(n) is defined as the complexity of multiplying two n-bit numbers. Thus, the uniform complexity of
hypergeometric functions are polynomial in ` and single exponential in n, m, q′.

6 Final Remarks

Finally, we briefly discuss the main open problem arising from this work, and also mention our implementa-
tion.

The open problem is whether H is relatively approximable. Yap [35] has shown that a real function f
is relatively approximable iff it is absolutely approximable and its zero problem Zero(f) is decidable. Since
we have shown H to be absolutely approximable, it suffices to show the decidability of the zero problem,
Zero(H):

Given rational a,b, x, is H(a;b;x) = 0?
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For instance, Beukers has shown that

B(a) := 2F1(1− 3a, 3a; a; 1/2) = 22−3a cos(πa). (22)

By setting a = 1/2, we obtain B(1/2) =2 F1(− 1
2 , 3

2 ; 1
2 ; 1

2 ) = 0. So the issue is to detect identities of this sort
automatically. We consider two related problems:

(RD): Given rational a,b, x, is H(a;b;x) rational?
(RE): Given rational a,b, x, r, is H(a;b;x) = r?

Clearly, Zero(H) can be reduced to the special case of (RE) in which the parameters a,b are positive, using
the transformation F = pFq(a;b;x) = Sn + Rn where Rn =

∑
k≥n tk, then

Rn = tnp+1Fq+1(a + n, 1;b + n, 1 + n;x)

For instance, Beuker’s example above can be transformed in this way to

2F1(−
1
2
,
3
2
;
1
2
;
1
2
) = 1 + t1 · 3F2(

1
2
,
5
2
, 1;

3
2
, 2;

1
2
)

where t1 = −3/4. Hence,

3F2(
1
2
,
5
2
, 1;

3
2
, 2;

1
2
) = 3/4.

Implementation. We implemented the uniform evaluation algorithm of Section 3 in Core Library; all out-
puts are confirmed with Maple. We use this algorithm to approximate instances of Beuker’s series: e.g., ap-
proximating B(1/2) =2 F1(−1/2, 3/2; 1/2; 1/2) to 300 digits (996 bits) yields b = 4.279162749215984826099513e−
301. It may be verified that − lg |b| = 998. Again, for B(1/4) = 2F1(1/4, 3/4; 1/4; 1/2) = 22−3/4 cos(π/4) =
23/4, we obtain n0 = 1, n3 = 995 and B(1/4) = 1.681792830 · · · 1863989, which agrees with 23/4 for 300
digits. We actually implemented two versions of the evaluation algorithm: the non-progressive version
computes n0, n1, n3 directly, using the lemmas above. It turns out that n1 = 1 in all our examples, so
we focus on n0 and n3 only. In the progressive version, we evaluate the partial sum Sn =

∑n−1
k=0 tk for

increasing n. For each n, we check to see if the conditions that define n0 and n3 hold: for n0, this means
|x|f(n) < 1 for n ≥ n0. For n3, this means Rn =

∑
k≥n tk ≤ 2−`−1 for n ≥ n3; we use the fact that for

n ≥ n1, if f(n) ↗ then |Rn| ≤ |tn|
1−|x| ; else if f(n) ↘ then |Rn| ≤ |tn|

1−|x|f(n) (see [15, 14]). The trade-off
is that we spend more time per term but we need fewer terms in the summation; the timing below shows
that the progressive version is faster. The following table gives some timing (in seconds) for approximating
various elementary functions f(x) to 300 absolute bits, starting at x = x0 to x = x1, by increments of δx.
The corresponding timing in Maple is shown. The range of values for n1 and n3 (non-progressive) and ñ1, ñ3

(progressive) are indicated. Our implementation is straightforward, and thus there is room for optimization.
Although slower than Maple, our performance seems respectable because it is likely that Maple uses well-
known asymptotically fast algorithms for such elementary functions. All timings are on a Sun Blade 1000
2x750 MHz UltraSPARC III, with 2 GB memory.

f(x) x0 x1 δx Prog. Time Non-Prog. Maple Time n1 en1 n3 en3

exp(x) 0.01 3.14 0.07 0.4 1.1 0.17 1 1 60− 64 8− 15
sin(x) 0.01 3.14 0.07 3.5 1:34.8 0.24 1− 2 1− 2 994 43− 106
arctan(x) 0.01 3.14 0.07 8.7 29.5 0.34 1− 150 1 995 65− 487
arcsin(x) 0.01 1.00 0.07 24.6 1:24.1 0.18 1− 2 1 995 75− 444
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