
Optimal Path Planning on a Semi-Dynamic Subdivision Graph∗

Yi-Jen Chiang†, David Kirkpatrick§, Chee Yap‡, and Zhaoqi Zhang‡

†Department of Computer Science & Engineering, Tandon, NYU, New York, NY, USA
§Department of Computer Science, University of British Columbia, Vancouver, Canada

‡Department of Computer Science, Courant, NYU, New York, NY, USA

Abstract1

Soft Subdivision Search (SSS) is a framework for implementing path planning algorithms2

in robotics. It has a theoretically rigorous foundation and yet has proven to be practical and3

efficient. Until now, there is no optimality guarantee on the returned path. Standard algorithms4

to compute optimal (shortest) paths in graphs are based on Dijkstra’s or A-star algorithms.5

But the graph produced by SSS is semi-dynamic in the sense that it evolves by adding new6

vertices and new edges. Adapting Dijkstra or A-star to this setting is novel and challenging.7

We introduce an SSS-based algorithm for the case where the robot is a disc, and discuss the8

prospects for generalization.9

1 Introduction10

Beginning in the 1980s, algorithmic path planning has a rigorous foundation using algebraic al-11

gorithms [9, 6, 3, 1]. In computational geometry, exact planners were designed for various robots12

(mostly planar robots) such as a disc, rods, robot arms, multiple discs, etc. However, the im-13

plementations of such algorithms are rarely exact except for those implemented using an “exact14

library” such as LEDA, CGAL or Core [2, 10]. But the use of “exact libraries” is too expensive15

for most applications. Instead, most roboticists prefer to implement their exact algorithms using16

machine precision, which immediately loses their a priori guarantees of correctness. To overcome17

this limitation of exact algorithms, it became popular to replace exact algorithms by randomized18

sampling method such as PRM or RRT [5, 7]. However, the guarantees of such algorithms are19

provided by “convergence theorems” whose conditions are often unverifiable.20

Starting in [11], we introduced a rigorous “soft foundation” for path planning based on the Sub-21

division Paradigm. The novelty consists in our definition of resolution-exactness as a new cor-22

rectness criteria for path planning, and our introduction of soft predicates for achieving resolution-23

exactness. We call our framework the Soft Subdivision Search or SSS. Moreover, as shown by a24

series of papers [11, 8, 12, 13, 4], we were able to implement our algorithms for a variety of robots25

and exceed the performance of the state-of-the-art sampling algorithms. In [4], our method pro-26

vided the first rigorously implemented algorithm for 5-DOF (5 degrees of freedom) spatial robots27

(rod robot and ring robot in 3D).28

Previous SSS algorithms were contented to just find any path. In the present paper, we address29

the problem of finding the shortest path in the SSS framework. In the exact setting, this is essentially30

∗Supported in part by NSF grant CCF-2008768. Author Email: chiang@nyu.edu; kirk@cs.ubc.ca; yap@cs.nyu.edu;
zz1918@nyu.edu.

1



a form of Dijkstra’s algorithm. But as we shall see, this is considerably more subtle in the soft31

setting of resolution-exactness.32

1.1 The Problem of Semi-Dynamic Shortest Path for a Disc33

Consider a disc robot with radius r0 > 0. The configuration space of this robot is Cspace = R2.34

The input to our path planning problem is a 5-tuple35

(B0,Ω, s, t, ε) (1)

where B0 ⊆ Cspace is an axis-aligned box called the region-of-interest (ROI), Ω ⊆ R2 is a polygonal36

obstacle set, s, t ∈ Cspace are the start and target configurations, and ε > 0. The free space37

Cfree = Cfree(Ω) is the set {γ ∈ Cspace : ∆(γ, r0) ∩ Ω = ∅} where ∆(γ, r0) is the disc centered38

at γ of radius r0. A solution to the input (1) is a path π from s to t restricted to B0, i.e.,39

π : [0, 1]→ B0 ∩ Cfree is a continuous function with π(0) = s and π(1) = t.40

In this paper, we call π an `1-path if the range of π is a finite union of horizontal and vertical41

line segments. Let Π1(s, t, ε) denote the set of all `1-paths from s to t in which each line segment42

has length at least ε.43

Given a subdivision S, the skeleton graph GS of S is an undirected graph GS = (VS , ES)44

whose vertices v ∈ VS are the corners of boxes in S. We also identify v with a point of R2. Each edge45

(u, v) ∈ ES corresponds to a horizontal or vertical line segment [u, v] contained in the boundary46

∂B of some box B ∈ S. Moreover, the cost cost(u, v) is just the `1 distance ‖u− v‖1.47

Let C : S → {G, Y,R} be a coloring of the boxes in S into Green/Yellow/Red. We say C is
admissible if no red box can be adjacent to a green box. This coloring induces a coloring of the
vertices and edges of GS as follows: C : (VS ∪ ES)→ {G, Y,R} where

C(v) =

{
C(B) if v ∈ ∂B and C(B) 6= Y,
Y else.

(2)

C(u, v) =

{
C(B) if [u, v] ⊆ ∂B and C(B) 6= Y,
Y else.

(3)

See Figure 1.48

49

For simplicity, we assume that s, t are vertices in VS (it is easy to modify if this assumption50

fails). We are interested in computing the shortest green path from s to t. Here we define “shortest”51

to be in the `1-norm sense. We could use Dijkstra’s algorithm or any A-star variant to solve this52

problem.53

What is new is the following twist: the subdivision S is, in reality, produced by our SSS54

algorithm. The main issue is how to modify the graph GS as S evolves. We call GS a semi-55

dynamic graph in the sense that we only add new vertices to VS , but never delete vertices.56

Moreover, what is guaranteed about the “shortest path” produced by such an algorithm?57

1.2 Review of Basic Concepts58

We briefly review the basic concepts in subdivision path planning (e.g., see [11]). Fix a box B0 ⊆ R2.59

A subdivision tree T rooted in B0 is a finite tree in which each node of T is a box B ⊆ B0 such that60

either B is the root or else, B is obtained by splitting its parent B′ into four congruent children.61

2



Figure 1: (Left) Subdivision S; (Right) Skeleton graph GS .

The set S = S(T ) of leaves of T is called a subdivision of B0. Two boxes B,B′ ∈ S are adjacent62

if their boundaries intersect in an interval (∂B) ∩ (∂B′) of positive length.63

In the context of path planning, B0 is a set of the configuration space of a planar disc robot. Let64

S be a subdivision of B0. A valid C : S → {G, Y,R} is one that guarantees that every point in a65

G-box (resp. R-box) represents a FREE (resp., STUCK) configuration of a robot. We do not guarantee66

anything for points in a Y-box. Let s, t be two FREE configurations in B0. Then Box(s) = Box(s;S)67

is any box in S that contains s.68

2 Approximate Optimal-Path Algorithm69

To focus on the main algorithm, we shall assume that the input is a 4-tuple (S, s, t, ε) where S is70

a subdivision with an admissible coloring in which Box(s) and Box(t) are green, and ε > 0.71

The main loop of our algorithm consists of two nested while-loops: the outer while-loop is72

controlled by a queue Q of fringe boxes (which are yellow; to be defined in the algorithm next).73

While Q is non-empty, we take a fringe box and split it. This produces new vertices that are put74

into another queue Q′. The inner while-loop is controlled by Q′, and it basically executes Dijkstra’s75

algorithm to propagate the d-values of the vertices in Q′.76

77

7879

3



Figure 2: (Left) A fringe box B that is going to be split; (Right) Updated d-values after the split.

Approximate Optimal-Path Algorithm:
INPUT: (S, s, t, ε)
OUTPUT: NO-PATH or an “approximate” `1-optimal path between s and t

with path length no larger than the shortest path of clearance ≥ K ′ε.
. I. Setup Phase
Initialize the function d : VS → R≥0 ∪ {∞} where

d(v) =

{
‖s− v‖1 if v is a vertex of Box(s)
∞ else

(Run Dijkstra’s algorithm on the graph (GS)green using the d-function.)
. II. Main Loop
Initialize the queue Q to contain all the fringe boxes, where

we define SS , called the settled set, to be {v : there is a path of green edges from s to v},
and a box B ∈ S is defined to be fringe if C(B) = yellow and SS ∩ ∂B 6= ∅.

While Q 6= ∅
B ← Q.getNext()
S.add(split(B)) and ”color” the children of B
Update GS .
. Update the d-function of GS :

Let d(v) =∞ if v is a new vertex.
Initialize new queue Q′ to contain the set SS ∩ ∂B.
While Q′ 6= ∅
v ← Q′.getMin() / d(v) is minimum
For each u adjacent to v

If (d(u) =∞)
add to Q any yellow box B with u ∈ ∂B / B is a new fringe box

If (d(u) > d(v) + cost(v, u))
d(u)← d(v) + cost(v, u) / Update d(u) in GS
If (u is not in Q′) Q′.add(u) with key d(u)
Else Q′.decrease key(u, d(v) + cost(v, u)) / Decrease the key of u in Q′

If (d(t) =∞) output NO-PATH
Else return d(t) and the corresponding path between s and t

80

4



CONJECTURE: If this algorithm outputs a path π, then π satisfies

`1(π) ≤ min
{
`1(π

′) : π′ is a path from s to t with clearance ≥ K ′ε.
}

Here K ′ = O(K) with K being the constant associated with the resolution-exact SSS algorithm.81

3 Conclusion and Future Work82

• This is the first effort to produce an (approximate) optimal path in the soft setting of SSS.83

• We can easily turn this Dijkstra-type algorithm into an A-star algorithm by adding a heuristic84

function h(v) that is a lower bound on the `1-distance from v to t.85

• A trivial lower bound to be used for h(v) is simply ‖v − t‖1. But a more sophisticated lower86

bound can be obtained by the d-function from the vertex t using both green and yellow edges.87

• For correctness of the algorithm, the Q.getNext() is unrestricted. However, we plan to88

implement various heuristics (e.g., breadth first search, random, greedy best first, etc.) to89

understand the best heuristic.90

References91

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.92

Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston,93

2005.94

[2] D. Halperin, E. Fogel, and R. Wein. CGAL Arrangements and Their Applications. Springer-95

Verlag, Berlin and Heidelberg, 2012.96

[3] D. Halperin, O. Salzman, and M. Sharir. Algorithmic motion planning. In J. E. Goodman,97

J. O’Rourke, and C. Toth, editors, Handbook of Discrete and Computational Geometry, chap-98

ter 50. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition, 2017. Expanded from second99

edition.100

[4] C.-H. Hsu, Y.-J. Chiang, and C. Yap. Rods and rings: Soft subdivision planner for Rˆ3 x101

Sˆ2. In Proc. 35th Symp. on Comp. Geometry (SoCG 2019), pages 43:1–43:17, 2019.102

[5] L. Kavraki, P. Švestka, C. Latombe, and M. Overmars. Probabilistic roadmaps for path103

planning in high-dimensional configuration spaces. IEEE Trans. Robotics and Automation,104

12(4):566–580, 1996.105

[6] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, 2006.106

[7] S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning. The International107

Journal of Robotics Research, 20(5):378–400, 2002. Original RRT paper.108

[8] Z. Luo, Y.-J. Chiang, J.-M. Lien, and C. Yap. Resolution exact algorithms for link robots.109

In Proc. 11th Intl. Workshop on Algorithmic Foundations of Robotics (WAFR ’14), volume110

107 of Springer Tracts in Advanced Robotics (STAR), pages 353–370, 2015. Aug. 3-5, 2014,111

Boǧazici University, Istanbul, Turkey.112

5



[9] J. T. Schwartz and M. Sharir. On the piano movers’ problem: I. the case of a two-dimensional113

rigid polygonal body moving amidst polygonal barriers. Communications on Pure and Applied114

Mathematics, 36:345–398, 1983.115

[10] V. Sharma and C. K. Yap. Robust geometric computation. In J. E. Goodman, J. O’Rourke,116

and C. Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 45, pages117

1189–1224. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition, 2017.118

[11] C. Wang, Y.-J. Chiang, and C. Yap. On soft predicates in subdivision motion planning.119

Comput. Geometry: Theory and Appl. (Special Issue for SoCG’13), 48(8):589–605, Sept. 2015.120

[12] C. Yap, Z. Luo, and C.-H. Hsu. Resolution-exact planner for thick non-crossing 2-link121

robots. In K. Goldberg, P. Abbeel, K. Bekris, and L. Miller, editors, Algorithmic Founda-122

tions of Robotics XII: Proc. 12th WAFR 2016, Springer Proceedings in Advanced Robotics,123

pages 576–591. Springer, 2020. (WAFR 2016: Dec. 13-16, 2016, San Francisco.) Book124

link: https://www.springer.com/gp/book/9783030430887. For proofs and more experimen-125

tal data, see arXiv:1704.05123 [cs.CG].126

[13] B. Zhou, Y.-J. Chiang, and C. Yap. Soft subdivision motion planning for complex planar127

robots. Comput. Geometry: Theory and Appl., 92, 101683, Jan. 2021. (Conference version128

appeared in Proc. 26th European Symp. on Algorithms (ESA 2018), pp. 73:1–73:14, 2018).129

6


	1 Introduction
	1.1 The Problem of Semi-Dynamic Shortest Path for a Disc
	1.2 Review of Basic Concepts

	2 Approximate Optimal-Path Algorithm
	3 Conclusion and Future Work

