TR T PP AT R SO

Chapter 6
Space

He bound him onto a swift camel and brought him into the
desert. Three days they rode, and then the captor said, “O king
of time and crown of the century! In Babylon you lured me into
a labyrinth of brass cluttered with many stairways, doors, and
walls; now the Almighty has brought it to pass that I show you
mine, which has neither stairways to climb, nor doors to force,
nor unending galleries to wear one down, nor walls to block
one’s way.”

Jorge Luis Borges, “The Two Kings and their Two Labyrinths”

In the animal kingdom as a whole, spatial reasoning is probably the
most common and basic form of intelligence. Nearly all animals have
some control over their movements, and any but the simplest local
criteria for choosing a motion requires some spatial knowledge of the
environment. Flatworms can be taught to turn right or left; honey
bees find their way around large areas and communicate their knowl-
edge; many migratory creatures, such as salmon, navigate their ways
across oceans. The common human habit of converting problems of all
kinds into spatial terms (drawing a diagram or graph) suggests that,
for people, spatial reasoning is a particularly powerful and accessible
mode of cognition.

In everyday cognition, spatial reasoning serves three primary func-
tions:

e High-level vision: The process of interpreting vision draws on a
large body of knowledge about the shapes, positions, and motions
of objects.

e Physical reasoning: The behavior of most physical systems depends
strongly on their spatial layout. Changes to spatial layout form a

241

242 Space

large part of the behavior of physical systems. General common-
sense physical reasoning requires a rich geometric vocabulary and
a strong spatial reasoner.

e Route planning: The problem of getting from one place to another,
or of moving another object from one place to another, is critical
for any mobile creature. A large part of this problem is the spatial
reasoning involved in retrieving a path leading from the source to
the destination. (It should be noted that there are other aspects to
the route-planning problem. The hard part of planning to get to
the top of Mount Everest or to get supplies to the eastern front is
not the spatial reasoning.)

Other cognitive tasks draw on spatial reasoning to a lesser degree.
Natural-language processing must use spatial reasoning in dealing
with scene descriptions and route instructions. Spatial analogies are
used for problem solving of all kinds.

A major part of all these applications, especially route planning, is
the construction and maintenance of a cognitive map. A cognitive map
is a knowledge structure that describes the spatial layout of an envi-
ronment; it keeps track of what things are where. Thus, a cognitive
map encodes the same type of information as a cartographical map.
Typical kinds of information recorded might include “The red block is
on the blue block,” “Looking south from New Haven you can see Long
Island,” “Oklahoma has a long thin panhandle on the west,” “Land el-
evation increases steadily going west through Nebraska,” and “There
is no salt at this end of the table.” There are, however, two key differ-
ences between cartographical and cognitive maps. On the one hand,
a cartographical map is constrained to represent most of its informa-
tion pictorially, so that people can read it easily, while a cognitive map
may use any data structure that supports efficient routines. On the
other hand, a cognitive map must in general deal much more deeply
with the problems of approximation and of partial knowledge. Some-
one who is drawing a cartographical map generally chooses a certain
uniform level of accuracy and completeness for his map, gathers his
information to that level, and makes sure that his map reflects that
information. Occasionally, cartographical maps indicate uncertainty,
by marking an area “Terra incognita” or by marking uncertainty toler-
ances on the positions of objects, but these are exceptions, rather than
the general rule. A cognitive map, by contrast, must record informa-
tion gathered catch-as-catch-can by a creature whose primary interest
is probably not the gathering of spatial information, through a vari-
ety of modes: direct perception, particularly vision; natural language;
and physical inference. Such information will tend to vary widely in
its precision and its completeness; some regions will be known well,

R R

g

243

others only sketchily. The design of a cognitive map must therefore
reflect both the kinds of information to be retrieved from the map and
the kinds of information available in constructing the map.

In many applications, a cognitive map must be combined with a
temporal knowledge base to record facts about spatial relations over
time and about motion, such as “Jane used to be only four feet tall,”
“There were no rabbits in Australia before 1800,” “Eric crossed the
border from Spain to France in October,” “The bus is coming down the
street at 10 miles an hour,” and “I will reach the corner before the
bus.”

The state of the art in spatial reasoning, like that in quantitative
reasoning, is at a rather different level than in most of the other
domains we study in this book. Almost any particular sound com-
monsense inference in spatial reasoning can be expressed and proven
as a theorem of Euclidean geometry using well-known mathematical
terminology and axioms. (This does not apply to plausible spatial in-
ference. Characterizing these is an open problem.) Thus, there are
few ontological problems in spatial reasoning. The space of common-
sense reasoning may almost always be taken to be Euclidean space,!
and the sorts of entities needed to be standard geometric sorts such
as points, vectors, mappings, and regions. Likewise, there are essen-
tially no representational or axiomatic problems, in the sense of new
concepts that need a formal definition, or axiomatic systems that need
to be formulated or evaluated.

Nonetheless, choosing a language for a particular type of spatial
reasoning can be trickier than it appears at first glance. Precisely
because spatial representations appear so straightforward, a variety
of ambiguities can be hidden under the rug in a representation, to
make trouble at a later date. We give two examples:

1. Shape: Many cognitive maps approximate the complex shapes of
real-world features in terms of an idealized simple geometry. In
such cases, it is often possible to find two quite different legitimate
representations for the same actual shape (Figure 6.1). It is there-
fore important to define the sense of approximation involved, so
that sound rules for matching can be found. Consider, for example,
the following approximation criteria for two-dimensional shapes:

i. The approximation boundary is everywhere close to the
real boundary. (“Close” and “small” in these criteria
are to be interpreted relative to the diameter of the
approximating shape.)

1There has been some interesting research on the use of nonstandard geometries in
commonsense reasoning [Fleck 1987].

244 . Space

Figure 6.1 Two representations for a single shape

ii. The real boundary is everywhere close to the approxi-
mation.)

ili. There is a continuous one-to-one function from the ap-
proximation interior onto the real interior that moves
points only a small amount.

iv. The area of the symmetric difference between the two
regions is small.

v. The tangent to the approximation is close to the tan-
gent to the real boundary at some nearby point.

Different approximation criteria lead to different evaluations of cor-
rectness. For example, in Figure 6.2, example A satisfies criteria
(i), (iv), and (v); B satisfies (ii); C satisfies (i), (ii), (iii), and (v); D
satisfies (iv); E satisfies (i), (ii), (iii), and (iv); and F satisfies (i),
(i), (iv), and (v).

2. Individuation of objects: In a cognitive map that enumerates dis-
crete objects, two questions arise about the significance of the enu-
meration. The first question is essentially the validity of a closed-
world assumption on objects. Can it be assumed that any object
that is in the area shown in the map and that can be detected by
the sensors is represented in the map? If so, precisely how do we
delimit the area within which the closed-world assumption applies,
and the class of objects to which it applies? If the assumption does

C — — |

C
L= = 7 7 7
I o
I r I
I o
I I

E F

Real shape in solid.
Approximation in dotted line

Figure 6.2 Criteria of approximation

246 Space

not apply in a blanket way, is there any particular way to repre-
sent the fact that an area is clear of all objects, or of all objects of
a given type? Is it ever possible to infer soundly from a map that
a given area is clear of objects of a given type?

The second question is essentially the validity of the unique-names
assumption. Can we assume that two separate object descriptions
in the map correspond to two different real-world objects? If only
separated parts of an object have been perceived, must their rep-
resentations in the map be identified as being definitely the same
object? or possibly the same object?

How the semantics of a map should decide these issues of shape
approximation and object individuation depends on the type of infor-
mation available and the use being made of the information. For
example, if the smooth motion of an object is important in some appli-
cation, then its surface properties will likewise be important, and the
semantics of the representation must constrain them. Another exam-
ple: if the robot often sees only parts of objects due to occlusion, the
map should allow the separate representation of two separated parts
of an object.

Even when all problems of ontology and. representation have been
addressed for a given class of spatial problems, it is generally very dif-
ficult to design a useful spatial inference module. The very richness
of geometric theory makes it essentially hopeless to expect useful re-
sults from applying a general-purpose geometric theorem prover to
arbitrarily constructed sentences in a geometric language. (Programs
that do geometrical theorem proving such as [Gelernter 1963], [Wing
and Arbab 1985], [Chou 1986] are not, in general, suitable for com-
monsense reasoning applications, such as cognitive map maintenance,
particularly in view of the typically large size of the knowledge base
involved.) It is generally necessary to restrict very tightly the kind
of information allowed in a knowledge base and the kinds of infer-
ences to be made, and then to devise special-purpose algorithms to
perform these inferences. Even so restricted, many simple geometric
problems are computationally intractable, and must be addressed by
approximate algorithms or heuristics.

In view of the state of the field, this chapter will focus on illustrating
specific representations and methods of inference rather than giving
general principles. In Section 6.1, we will illustrate how a number of
specific commonsense inferences can be represented and justified. In
Section 6.2, we will look at the knowledge structures used in a number
of actual spatial reasoning programs.

SRR A T T

o

Table 6.1 Sorts of Geometric Entities

Sort Notation Example
Points Bold face P
Lengths Tildes L
Directions Hats D
Coordinate systems Script letters c
Mappings Greek capitals d
Regions Double letters in bold PP

We will use a number of geometric sorts in this chapter:

e Points: These are the fundamental components of our ontology. A
point is an atomic location in space. The space as a whole is a set
of points.

e Measures: Lengths, areas, and volumes. Each of these is a dif-

ferential measure space. Area is length squared; volume is length
cubed. : ’

e Directions: A direction can be viewed as a point on the unit sphere.

e Coordinate systems: A right-handed orthogonal coordinate system
consists of an origin (a point), a unit length, and a triple of mutually
orthogonal axis directions. Let P be a point, and let C be a three-
dimensional coordinate system, with origin O, unit length L, and
axis directions £, E,, and E5. Then the function “coordinates(P,C)”
gives the triple of real numbers < p;,p,,ps > satisfying the equa-
tion

P=0+p -L-Ey+4+py-L-Ey+p3-L-FE3

e Mappings: A mapping is a function from the space to itself.

e Regions: A region is a set of points.

We distinguish the sort of variable and constant symbols by conven-
tions of typography and diacritical marks as shown in Table 6.1.

Figure intentionally omitted for reasons of copyright

e i

e

R i AL

T AR T SR S o R 418 07

Figure 6.3 Example Scenario: Calvin and his socks

6.1 Spatial Inferences: Examplés

In this section, we will show how a number of commonsense spatial
inferences can be stated and justified in termis of Euclidean geome-
try. Our purpose is to illustrate both the range of geometric issues
that arise even in relatively simple scenarios, and also the ontologi-
cal, representational, and inferential adequacy of Euclidean geometry
in dealing with these issues.

Our examples all relate to the scenario illustrated in Figure 6.3.
Calvin is downstairs, barefoot; his socks and shoes are in a closed
bureau drawer upstairs.

6.1.1 Set Operations on Regions

Given that Calvin is inside the living room, and that the living room
is disjoint from the bedroom, infer that Calvin is not in the bedroom.

This involves only Boolean operations on point sets. Let cc be the
region occupied by Calvin; let 11 be the living room; let bb be the
bedroom. Then the givens are represented cc C 11 (Calvin is in the
living room) and 11 N bb = @ (The living room is disjoint from the
bedroom). From these, together with the implicit constraint cc #0
(Calvin is nonempty), the conclusion cc ¢ bb (Calvin is not in the
bedroom) follows directly.

6.1 Spatial Inferences: Examples 249

6.1.2 Distance

Given that Calvin is less than 100 feet from the nearest point of the
bedroom, that the bedroom is less than 40 feet in diameter, and that
the socks are inside the bedroom, deduce that Calvin is less than 140
feet from the socks.

We express this inference using the Euclidean distance function
“dist(A,B),” mapping two points A and B to a length. The distance
function obeys the metric axioms:

dist(A,A) = 0.
dist(A,B) = dist(B,A).
dist(A,B) < dist(A,C) + dist(C,B). (Triangle inequality)

We define the distance between two regions as the distance between
their closest points. :

dist(PP,QQ) = glb{dist (P,Q) | P € PP, Q € QQ}

We also introduce the function “diamete.r(PP),” mapping a region
PP to the maximum distance between two points in PP.

diameter(PP,QQ) = lub{ dist(P1,P2) | P1,P2¢ PP }

Returning to our example, let ss be the region occupied by the socks.
We can formalize the constraints as follows:
Calvin is less than 100 feet from the bedroom. dist(ce,bb) < 100
The bedroom is less than 40 feet in diameter. diameter(bb) < 40
The socks are in the bedroom. ss C bb
(Implicit.) The socks are nonempty. ss#0

Applying the triangle inequality and the above definitions to these
constraints, it follows directly that Calvin is less than 140 feet from
the socks.

dist(ce,ss) < 140

6.1.3 Relative Position

Consider the situation shown in Figure 6.4. Calvin is standing at the
doorway of the bedroom. We model the information provided him by
his sensors as constraints on the distance from objects to his visual
reference point, the angle intercepted by objects at the reference point,
and the relative orientations of objects. Calvin also knows from pre-
vious experience that the bureau is a 30- by 12-inch rectangle with
one-inch sides, and that the socks form a two-inch-radius circular ball

250 Space

Figure 6.4 Geometry of bedroom

inside the bureau. (For this example, we will assume that the bureau
drawer and socks are exactly these ideal shapes. We also restrict
this problem to two dimensions. We will loosen these assumptions in
Section 6.1.4.) What can Calvin deduce about the distance from his
reference point to the socks?

Expressing this problem requires a number of standard geometric
primitives to describe angles, coordinate systems, and shapes. These
are illustrated in Table 6.2. We also need topological primitives to
describe the relations between the socks and the bureau drawer: The
socks are inside the drawer, but they do not overlap the material of

6.1 Spatial Inferences: Examples 251

Table 6.2 Primitives for Relative Position Example

Angles:
angle(X,Y,Z) — Function. Angle from ray X-Y to Z-Y.
colinear(X,Y,Z) — Predicate. X,Y,Z are on the same

line in that order.

Coordinate systems:

origin(C) — Function. Origin of coordinate
system C.
unit_length(C) — Function. Unit length of C
x_axis(C) — Function. Positive x direction in C.
directionX,Y) — Function. Direction from X to Y.
Shapes:
rectangle(C,/X,IY) — Function. The rectangular region of
every point whose x coordinate in C is
in IX and whose y coordinate is in IY.
circle(O,L) — Function. The circle of center O and
radius L.
Topological: '
inside(II,RR) — Predicate. II is an inside of closed
box RR.
is_inside(AA,BB) — Predicate. AA is inside BB.
if AA is a subset of some inside of BB.
overlapreg(AA,BB) — Predicate. Regions AA and BB
overlap.

the drawer. We may define these as follows. A bounded region RR
is a closed box if the complement of RR has more than one connected
component. Necessarily, one of these components will be unbounded;
the rest will be bounded. The unbounded component is the outside of
RR; any bounded component is an inside. Two regions AA and BB
overlap if their interiors intersect.

Table 6.2 enumerates the new primitives needed in this problem.
Table 6.3 shows the constants in this problem. Table 6.4 shows the
input constraints.

252 Space

Table 6.3 Constants for Relative-Position Example

¢,w,p,q,S — points as in Figure 6.4.

bb — the region occupied by the material of the bureau.
ss — the region occupied by the socks.

« = angle(w,c,p).

B = angle(P,c,q)-

6 = angle(q,p,w).

d = dist(w,c).

ft — standard foot.

in — standard inch.

B — frame of reference aligned with bureau with origin

at q.

The calculation involves four parts. The first step is to determine
that the bureau drawer has a unique inside, rectangle(g, [1,29], [1, 11]).
(B is a coordinate system with an origin q, a unit length of an inch,
and an x axis oriented along the direction from p to q.) This can be
established from four observations: (a) The region bb includes the
four edges from < 1,1 > to < 29,1> to-< 29,11 > to < 1,11 > back to
< 1,1 >. Therefore any point in the polygon enclosed by these edges
is either an element of bb or inside bb. The interior of this polygon
is just rectangle(g, [1,29],[1,11]). (b) The region bb does not include
any points inside rectangle(g, [1,29], (1,11]). (c) The region bb does
not include any points not in rectangle(f, [0, 30],[0,12]). Hence, any
such point is in the outside of bb. (d) Any point that is not outside
rectangle(g, [0, 30], [0, 12]) and not inside rectangle(g, [1,29],[1, 11]) is in
bb. The desired result follows directly from these facts.

The second inference in our calculation is that the center of the
socks s is located somewhere in rectangle(g, [3,27],(3,9]). From the
first step, we know that s is somewhere in rectangle(g, [1, 29],[1, 11)).
From the shape description of the drawer and the socks, it is easily
determined that, if the x coordinate of s were less than 3 or greater
than 27, or if the y coordinate were less than 3 or greater than 9, then
the socks and the drawer would overlap. Since they cannot overlap,
the result follows.

The third step is to use the constraints on lengths and angles to fix
bounds on the distance between the point s and the point c. We will
do this using as reference a coordinate system C with origin ¢, unit

6.1 Spatial Inferences: Examples 253

Table 6.4 Constraints in Relative-Positions Example

d/ ft € [20,25).
ft =12 -in.

angle(p,w,c) = 7 /2.
a € [30°, 40°].

B € [5°,10°].

9 € [145°,160°).

origin(B) =q. _
unit_length(B) = in.
x.axis(B) = direction(p,q).

bb = rectangle(B, [0,30],[0,1]) U rectangle(B, [0,11,[0,12) U
rectangle(B, [0,30],[11,12]) U rectangle(B, [29,30],[0,12]).

ss = circle(s,2 - in).

is_inside(ss,bb).

—overlap_reg(ss,bb).

length of a foot, and x axis aligned along the line c-w. For any point
a and coordinate system F let a, » be the x coordinate of a relative to
F and a,, 5 be the y coordinate. The equations in Table 6.5 can then
be derived from standard trigonometric rules.

The problem now is to find bounds on the expression in Table 6.5,
given the constraints on the parameters. As it happens, in this ex-
ample, the distance attains its maximum and minimum values over
this region at extremes of the parameters. (Since these functions are
nonlinear, this is not true in general.) The minimum value of the dis-
tance is 22.3 feet, attained when d = 20, a = 30°, 8 = 5°, § = 145°,
Sz, = 3, and sy 5 = 9. The maximum value of the distance is 36.4
feet, attained when d = 25, o = 40°, g = 10°, 8 = 160°, s, 5 = 27, and
SyB= 3.

The final step of this calculation is to determine that the distance
from Calvin to the socks is 2 inches less than the distance from Calvin
to the center s. This follows directly from the definition of a circle as
the locus of all points within the radius of the center. The final answer,

254 Space

Table 6.5 Equations for Relative-Positions Example

: d
dist(p,c) = —(«)

angle(c,p,q) = 0 + @ — 7/2

angle(c,q,p) = 37/2— (0 + a +)

dist(c,q) = dist(p,c) - sin(angle(c,p,q))/sin(angle(c,q,p)) =

dcos(8 +)
cos(a) cos(8 + o + B)
' dcos(f
= diste g costo +§) = SEE ol)
_ . dcos(f in(a +
q, ¢ = dist(c,q) sin(a + 8) = ciii(a)to:();r E:ra: ﬁ’é)?)
in .
S
c?cos(G + a)cos(a + B)

cos(a) cos(0 + o +) —(1/12 -8z 5 - sin(8) — sy B - cos(f))

S0 = Gy = - (5e - cos(0) + 5,5 -sin(0) =
d cos(6 i .
Ry Ta 1) 12O)

dist(c,s) = \/s2 . +82 . - ft

6.1 Spatial Inferences: Examples 255

therefore, is that the distance from the reference point ¢ to the socks
is between 22.1 and 36.2 feet.

6.1.4 Containment and Fitting

Assume that a shoe is 10 inches long, 4 inches wide, and 3 inches
high, and that the bureau drawer is 12 inches deep, 8 inches high, 30
inches wide, and 1 inch thick. Infer that a shoe can fit in the drawer.
In this example, by contrast with the previous one, we will work with
three dimensions. Further, we will not assume that the shapes of the
objects involved correspond exactly to an ideal; rather we give only
approximate bounds of the regions that they fill.

First, we must give a precise interpretation to the two concepts of
the inside of a bureau drawer, and of an object fitting in a space.
“Inside” here means something different than in the previous section,
since the drawer does not topologically separate its inside from its out-
side. In this case of a container with an opening on top, the meaning
is something like the following: Region RR is inside container CC if
one could put a horizontal “lid” onto CC, and RR would be enclosed
by the lidded container.

Formally, we define a region XX to be an open box with opening SS
and inside IT if SS is a horizontal planar surface; XX U SS is a closed
box; and IT is the inside of XX U SS but not of XX by itself. (Figure
6.5). The formal definitions below use the predicates “planar(PP)”
and “horizontal(PP)” (of a planar surface PP) with their standard
interpretations.

open_box(XX,PP,II) &
[planar(PP) A horizontal(PP) A inside(II, XX U PP) 1.

inside_open_box(II,XX) < 3pp open_box(XX,PP,II).

Object O fits in region RR if there is a physically possible placement
of O that is a subset of RR. In the case of a rigid object like a shoe, the
physically possible placements of O are all congruent to one another
(without reflection). We can therefore characterize the regions that
can potentially be occupied by the shoe by characterizing the region the
shoe occupies in some standard position, and then stating that it may
occupy any congruent shape. The statement that the shoe fits inside
the drawer is then interpreted as “There is some subset of the inside
of the drawer that is congruent to the standard shape of the shoe.” To
represent this, we introduce the predicate “congruent(AA,BB),” with
a narrowed interpretation that excludes reflections.

256 Space

— s

Figure 6.5 Inside of an open box

Next, we formalize the information given about the shoes and the
drawer. Let hh and dd be the regions occupied by the shoes and
the drawer in some arbitrary configuration. The statement about the
dimensions of the shoe can be stated by asserting that the shoe lies
within the box < [0,10],[0,4],[0,3] > in some coordinate frame with
inch unit. Formally, ‘

3¢ unitlength(C) = in A hh C rectangle(C, [0,10], (0,41, [0,3])

The description of the drawer is more complicated, since we have
to specify more than just its outer limits. There are several ways of
formalizing the description above; our formalization will assert that
the material of the drawer lies entirely within an inch on the inside
of the horizontal sides and bottom of a shell of the specified dimen-
sions. Specifically, let D be a reference frame for the drawer in a
standard position, with opening on top. Let ddb0 be a 30-by-12-by-
8-inch box containing the shelf. Let ddb1be the sides and bottom of
this box; that is, the boundary of the box minus the top. Then we
assert that (i) the shelf is contained within ddb0; (ii) all of the shelf
is within an inch of ddb1; (iii) every point of ddb1is within an inch of
some point of the shelf; and (iv) the shelf is simply connected; that is,
there are no holes through it (Figure 6.6). Introducing the functions
“z_coor(P,C)” and “simply_connected(RR)” with their natural interpre-
tations, we can formalize the constraints as follows:

unit_length(D) = 7.

3
:

6.1 Spatial Inferences: Examples 257

Side View (Y-Z plane)

I RRRaR)y

R

ddb0 - solid rectangle
ddb1 - doubled edges of ddb0
dd - hatched region : Lo

Figure 6.6 Shape of shelf

ddb0 = rectangle(D, [0,30], [0,12], [0,8]). :
ddb1 = boundary(ddb0) — { P | z_coor(P,D) = 8 }.
ddc ddbo0. ?
Vpcdq dist(P,ddbl) < in.

VPE db1 dist(P,dd) < in.

simply_connected(dd).

It is easily shown from these constraints that the drawer is an open

box with an inside of at least 28 by 10 by 7, and that, therefore the
shoe fits inside the drawer.

3r1,mH1 inside_open_box(I1, dd) A HH1 C II A congruent(HH1,hh)

258 Space

6.1.5 Abutment and Overlapping

When Calvin is wearing his socks, they cover the whole surface of his
foot.? Therefore, his feet do not directly touch his shoes while he is
wearing his socks.

In order to describe two objects meeting in space, we introduce the
function “boundary(AA)”, giving the boundary of region AA. We also
use the function “abut(AA,BB,FF)”, meaning that AA and BB abut
on surface FF. Formally, abut(AA,BB,FF) holds if AA and BB do not
overlap, but their boundaries have a non-null intersection, and FF is
that intersection. :

abut(AA,BB,FF) <
[-~overlap reg(AA,BB) A
boundary(AA) N boundary(BB) = FF # (]

To prevent the sock from being a planar surface, which would allow
the shoe to touch the foot right through the sock, we require that all
the physical objects involved be regular. A regular region is “three-
dimensional” throughout; it does not reduce to a two-dimensional sur-
face or a one-dimensional curve anywhere. (Formally, we will define a
region RR as normal if RR is closed, and every point in RR is on the
boundary of an arbitrarily small connected open subset of RR. This
is slightly stronger than the usual definition, that RR is equal to the
closure of its interior.)

One might think that the constraint that the sock abuts the whole
foot on its entire outer surfaces, together with the physical constraints
that the shoe and sock cannot overlap and must be regular, would
be sufficient to support the conclusion that the shoe cannot abut the
foot. However, such a conclusion would not be valid, as Figure 6.7
illustrates.

Therefore, we must weaken the conclusion to state that the shoe
cannot abut the foot in an extended region. (An alternative is to
strengthen the premises to assert that the sock has no such thin
points.) To express this, we introduce the predicate “two_d(FF)”, which
means that FF is the union of separated two-dimensional surfaces.
(One possible formal definition is that FF has zero volume but nonzero
area.) Our conclusion is now that the shoe does not abut the foot in-
any face.

Tables 6.6 and 6.7 show the formalization of the problem and its
solution.

2This is not exactly realistic, since socks do not directly cover the inner surfaces of
the toes. The assumption more accurately describes a skin-tight glove.

6.1 Spatial Inferences: Examples 259

Table 6.6 Axioms for the Shoe-Sock Example

Geometric Axioms

e The boundary of a regular shape is two dimensional
regular(XX) = two_d(boundary(XX))

e If the union of two regions BB and CC is two dimensional, then
either BB or CC is two dimensional. (We assume that all sets -
involved are measurable.)

two_d(BB U CC) = [two_d(BB) V two_d(CC)]

e Let AA, BB and CC be regular; let BB abut AA in FF and let CC
abut AA in GG. If FF N GG is two dimensional, then BB overlaps
CC. (Figure 6.8)

[regular(AA) A regular(BB) A regular(CC) A
abut(BB,AA,FF) A abut(CC,AA,GG) A two_ d(FF N GG)]
= overlap_reg(BB,CC)

Physical Axioms

e A solid object is regular.
solid(X) = regular(value_in(S,place(X)))
e Two solid objects do not overlap.

solid(X) A solid(Y) A X #Y =
—overlap_reg(value_in(S,place(X)),value_in(S,place(Y)))

260 Space

Table 6.7 Specifications for the Shoe-Sock Example

Constants
sl — A situation where Calvin is wearing his sock
foot — the foot
sock — the sock
shoe — the shoe
ankle — the ankle
ff1l — the region occupied by the foot
ssl — the region occupied by the sock
hhl — the region occupied by the shoe
aal — the region occupied by the ankle
ool — the outer surface of the foot

Problem Specifications

e Definitions of the point sets.

ff1 = value_in(s1,place(foot)).
ss1 = value_in(s1,place(sock)).
hh1 = value_in(s1,place(shoe)).
aal = value_in(s1,place(ankle)).

e Unique names: The sock, shoe, foot, and ankle are distinct.
distinct(sock,shoe,foot,ankle).

e The sock, shoe, foot, and ankle are solid objects.
solid(sock) A solid(shoe) A solid(foot) A solid(ankle).

The sock covers the entire outer surface of the foot.

0ol C boundary(ss1).

e The boundary of the foot consists of its outer surface and the face
where it abuts with the ankle.

Jaa abut(ffl,aal,AA) A AA U ool = boundary(ff1).

Conclusion

The shoe does not abut the foot in a face.

abut(hhl,ff1,FF = -two_d(FF).

6.1 Spatial Inferences: Examples 261

Figure 6.7 Contact through a thin point

6.1.6 Motion

(Note: This section depends on Chapter 5.) The only opening of the
bedroom is the doorway. Infer that Calvin must go through the door-
way to get from the living room to the bedroom.

The major concepts to be represented here are that of the opening
of a region, and that of going through a region. The first is straight-
forward, given the concepts we have already developed. A region OO
is an opening of the barrier BB into the interior region II iff IT is an
inside of the closed box BB U 0O, but II is not an inside of BB by
itself.

opening(O0,BB,II) < inside(II,BB U 00) A -inside(IL,BB)

The constraint in our problem is then that the doorway is the only
opening into the bedroom through a solid barrier. Formally, let ww be
the doorway. Our constraint is that there is a region XX, corresponding
to the walls, ceiling, and floor of the bedroom, such that the doorway
is an opening through XX into the bedroom.

Ixx regular(XX) A -
Vs XX C value_in(S,place(house)) A opening(ww,XX,bb)

262 Space

BB

e \\

Figure 6.8 A common extended abutment implies an overlap

The second concept we need is that of an object going through a
region. This is not (as far as I know) a standard geometrical term,
and it is technically somewhat tricky. The formal definition is given
in Appendix B of this chapter. Here, we will just introduce the event
“goes_through(FF, PP)” meaning that fluent FF goes through region
PP. For this example, we need the following axiom on this predicate:
Let FF be a continuous fluent whose values are regular regions (such
as “place(0)”); let XX be a regular region; and let OO be an opening
through barrier XX into interior space II. If FF goes from outside XX
into IT without ever overlapping XX, then FF must go through 0OO.

[continuous(FF) A opening(00,XX,II) A regular(XX) A
value_in(start(I),FF) C outsideXX U 00) A
value_in(end(I),FF) c II A

Vser regular(value_in(S,FF)) A
—overlap_reg(value_in(S,FF) XX)] =
goes_through(FF,00)

Now, given that Calvin and the house are two distinct solid objects,
it can be shown that Calvin must go through the doorway to go from
outside the room to inside it.

6.1 Spatial Inferences: Examples 263

6.1.7 Surface Differential

Infer that Calvin cannot open the bureau drawer without touching the
handle.

The inference here involves the following steps: Calvin can move
the drawer out of the bureau only by exerting a net force on it with
a positive component in the outward direction. The force exerted by
Calvin on the drawer at any point of contact between him and the
drawer is normal to the surface of the drawer and directed into the
material of the drawer. Therefore, to push the drawer out of the bu-
reau, Calvin must make contact with the drawer at some point where
the surface normal into the material of the drawer is directed away
from the bureau. Though there are a number of such areas on the
surface of the drawer, the only such area that is accessible to Calvin’s
hand when the drawer is closed is the inner surface of the handle.
Therefore, Calvin must touch the inner surface of the handle in order
to open the drawer.

We will not give a detailed formalization of this inference. The
bulk of the inference process is showing that the other surfaces of
the drawer with the proper orientation are not accessible to Calvin,
an inference which is involved but not deep. The major new primitive
needed is the predicate “surfnorm(PPX),” which gives the surface
normal pointing outward from a solid region PP at point X. X must
be on the boundary of PP, and must be a point where the boundary
is smooth.

6.1.8 Other Predicates

Other situations require the use of still further types of spatial pred-
icates. The curvature of two-dimensional curve PP at point X will be
important in the characterization of a roller-coaster track discussed
in Section 6.2.6. The volume of a three-dimensional region, denoted
“volume(RR),” will be used in Section 7.4 to characterize the quantity
of a liquid. A spatial description of a textured object such as a sieve,
a sponge, a golf ball, or a fur coat must be in terms of the density of
a certain kind of feature. Many natural objects such as clouds, moun-
tain tops, and rivers have characteristic irregularities of shape, which
can be represented in terms of fractals. A representation of a shape
of a tree should express the fact that its upper part is tree structured
in the graph-theory sense. (Excuse the nonpun.) The arboreal trunk
is the graphical root; the arboreal branches are the graphical inter-
mediate nodes, getting smaller as one gets further in the graph from

264 Space
KIKIK|K
K K
K|IK|K|K|K|KIK
KIK|K|K|K|K]K|K
K KIK|IK|K|K|K|K|K|K
c|c|C|C|C K| K KIKIKIK|IK|K|K|K|K
c|c|c|c|c|c|C KK KIKIK|K|K|K[|K|K|K
C c|Cc|C|C|C K|K KIKIK|K|K|K|K|K[K
C c|c|cCc|Cc|C KIKIKIK|K|K|K|K|K|K|K
c|c|c|Cc|Cc|C|C KIK|IK[K|K|K|K|K|K
c|Cc|C|C|C KIK|K|K|K|K|K|K|K
c|c|c|Cc|C KIK|K|K|K|K|K[K|K
c|c|c|Cc|C KIKIK|K|K|K|K|K|K

Figure 6.9 An occupancy array

the root, and connected to their parent nodes by biological branchmg,
and the arboreal leaves are the graphical leaves.

6.2 Knowledge Structures

In this section we will discuss the spatial representations used in a
number of actual AI programs. We have, in some cases, simplified
or modified the actual representation for the sake of clarifying the
presentation.

6.2.1 Occupancy

One of the simplest of all spatial representation schemes is the spatial
occupancy array. In an occupancy array A, the element A[I, J] corre-
sponds to the square [I,I+ 1] x [J,J + 1] in a fixed coordinate system.
The array element holds a list of the objects that occupy its square.
(Figure 6.9). (For efficiency of retrieval, it may be efficient to associate
a list of the squares occupied with the representation of the object.)

6.2 Knowledge Structures 265

e AN N\
L l A |

Figure 6.10 Matching shapes in a simple occupancy array

Occupancy arrays have a number of attractive features. They are
easy for a programmer to visualize, to interpret, and to interface to
graphics systems. They are similar to the pixel representation of an
image that forms the input to most vision systems. Certain compu-
tations, such as checking intersection or performing translations are
easily performed and easily adapted to parallel implementations. Fur-
thermore, there is a large body of psychological experiments on visu-
alization whose results have been interpreted as indicating that two-
dimensional occupancy arrays are used in human spatial reasoning.
However, as we shall see, in their simplest form, they are rather in-
flexible and inexpressive. In the following, we will consider a number
of limitations and propose schemes for extending the representation to
remove them; unfortunately, these extensions also tend to complicate
the representation and make it harder to use.

Almost all actual implementations of occupancy arrays use the Boo-
lean labeling indicated above; a square is either occupied by an object
or unoccupied. They do not, in general, distinguish between fully and
partially occupied squares. Rather, the functions that operate on the
representation generally use an implicit assumption that cells on the
boundary of the region may be fully or partially occupied, but those in
the interior must be fully occupied. For example, a routine designed
to match a given shape against a typical template would be tolerant of
changes of one tile more or less on the exterior, since these can arise
Jjust as a result of the exact position of the shape with respect to the
grid, but would be intolerant of changes in the interior. (Figure 6.10)

This assumption, however, means that the system is incapable of
accurately representing shapes where interior squares are not wholly
filled, or that if such shapes are represented, the functions may give
incorrect answers. For example, if the system were asked whether
the two shapes represented in Figure 6.11A intersect, it would an-

266 Space

P | P |PafprjPialPl Q |Q CAS XAV A A R‘
P | P [palrarialral Q [Q SN \\‘\\
A7Y 7 J
P | P [pa|palralra] Q |Q / S N
P | P |pa|pajpalrie Q| Q /’i// P ‘E
P | P |Palralralre] Q |Q Q/ SN
A. B

Figure 6.11 False evaluation of intersection

[P PP
P[P[P P[P
PI[P[F[P[P PI[P|P[P
PIF[F|F[P P[P[F|F[P[P

P|P[F[F|F[P|P PIF[F[F[F|P
plPlP[P[P[P[P [P[P|P]P[P[P[P|P]

Figure 6.12 Occupancy array with partial/full occupancy

swer “Yes”; as Figure 6.11B shows, however, this need not be correct.
We have therefore three options: (i) to exclude by fiat objects such
as those in Figure 6.11B that have complex behavior on a scale com-
parable to the grid size; (ii) to refuse to accept queries such as “Do
two objects intersect?” requiring that the query be posed instead as
“Do the two objects come within the grid size of one another?”; and
(iii) to distinguish between squares that are partially occupied from
those that are fully occupied. Since the first two are necessarily very
restrictive, we will here explore only the third. Figure 6.12 shows this
representation applied to the sample figures of Figure 6.10.

The representation must be further extended in order to compute
motions of an object. Suppose that we start with a shape such as is
illustrated in Figure 6.13, and we specify that the object translates
one-half a grid length to the right. How, then, shall we label squares
1 and 7 in the result? Square 1 may either be partially occupied or
empty; 7 may be partially occupied or full. It therefore seems expedi-
ent to add these labels to the representation, and also the label “Don’t
know,” meaning that the square may be full, partial, or empty.

)
»
<a

6.2 Knowledge Structures

FIFIFIFIFIFIF]

12 3 4586 7

Figure 6.13 Loss of knowledge due to motion

12

Figure 6.14 Disjunction in occupancy arrays

Our representation now has seven possible labels for each square
and object; full, partial, empty, full or partial, partial or empty, or
don’t know. The operations on the representations, however, are qual-
itatively very much the same as in the initial simple representation.
Functions like the intersection of two objects can still be computed
cell by cell; all that is needed is a table specifying how to compute the
combinations of labels on the cell. (Exercise 1.) -

Motion raises another issue that is more troublesome. Suppose, as
in Figure 6.14, we start with an object that partially occupies cell 1,
and we move it half a cell length to the right. Now, cell 1 may be
either empty or partial, and cell 2 may be either empty or partial.
However, they cannot both be empty. Thus, we should add a disjunc--
tion, “Either cell 1 is partial or cell 2 is partial,” to our individual cell
labels. However, the cost of computing with such constraints is so
large (problems become NP-hard) and the information expressed is in
general so weak, that these are not generally worth including.

With or without the use of disjunctive constraints, the motion of a
shape is almost always accompanied by a substantial loss of informa-
tion. If a series of k rotations is applied incrementally to a single cell,
in the end there will be on the order of k2 cells that cannot be labeled
“Empty.” (Figure 6.15). One method to avoid this problem in comput-
ing the results of motions is to represent a region as a pair of an ideal,
time-invariant shape, represented as an occupancy array, and a rigid
mapping (Figure 6.16). The mapping corresponds to the change in po-
sition of the object; it is recomputed each time the object moves. This

268 Space

2]2
[z]z]z[7]
3[3[3[3 2|2
3333
3|3]3]3 11
3(3[3(3 NE
444
4|4ala|4]a
4|4|4|4|4|a]|4
4|alalala|a|a ; @
4| 4|4|a|a
444

Incremental rotations of 45° applied to square 0 around point P.

Figure 6.15 Rotation applied to a Occupancy Array

representation relies on the fact that the compositions of two rigid
mappings is a rigid mapping and is easily computed. Appendix A of
this chapter discusses effective representations for rigid mappings. To
perform operations that require an occupancy-array representation of
the actual spatial region occupied at a given time, the rigid mapping
is applied to the time-invariant shape; since this is a single motion,
the loss of information is as small as possible. :

Another serious problem with occupancy arrays is that they can
be very space inefficient. If the features of interest are spread out
over a region of diameter D and you need to represent details of size
6, then you need an array of size D?/6% in two dimensions and of
size D3/6° in three dimensions. This space requirement can often be
overcome by the use of quad trees or oct trees. A quad tree is a tree of
squares, structured by containment. Squares that lie entirely inside
or entirely outside an object are leaves of the tree; they are not further
decomposed. A square is decomposed to smaller squares only if the
object partly overlaps the square (Figure 6.17). Analogously, an oct
tree decomposes three-dimensional space into a hierarchy of labeled
cubes.

6.2 Knowledge Structures 269

Displaced Coordinate System

X' Y
Actual
Region
Qccupied
Y
Ref X
eference
Coordinate Resfzraenece
System P

Figure 6.16 Occupancy Array and Rigid Mapping

The most serious limitation of occupancy arrays is their clumsiness
at expressing partial knowledge. Frequently, an intelligent creature
may know two separate areas in detail, while knowing only roughly
the relative positions of the two objects. For example, suppose that
Frederick knows the position of his socks in his bureau drawer to
within three inches, and the position of his stapler on his office desk
to within three inches, but knows the relative position of his office
from his home only to within a quarter of a mile and knows nothing
at all about their relative orientation. Then Frederick’s knowledge
cannot be represented in a single occupancy array or quad tree. If the
positions of the office and the house are represented with the appro-
priate uncertainty, all knowledge about the position of the stapler will
be washed out. Instead, we will need a number of occupancy arrays,
one for each area and scale of information, and these arrays will be
related by partial constraints. At this point, however, any query that
involves combining information across different maps will involve pri-
marily computing with the constraints connecting the maps, which
vitiates most of the advantages of the representation.

Figure intentionally omitted for reasons of copyright

wover 3

(From [Ballard and Brown 1982].)

Figure 6.17 Quad tree

In short, occupancy arrays can be an effective representation when
the level of precision of information is more or less constant, and global
knowledge is not much less precise than local information. In other cir-
cumstances they are inadequate, and must be augmented with other
knowledge structures.

6.2.2 Constructive Solid Geometry

Constructive solid geometry (CSG) is another basic system for repre-
senting shapes. In CSG, a complex shape is described as the combi-
nation of shapes in different positions. For example, Figure 6.18 illus-

62 Knowledge Structures 271

N1
N/

(From [Davis 1986a).)

Figure 6.18 A human as the union of cylinders

trates the representation of a human figure as the union of a collection
of cylinders. CSG is a typical example of a volumetric representation.

A CSG language contains a number of composition operators, a vo-
cabulary of primitive shapes, and a system for describing relative po-
sition. In simple CSG systems, the only composition operator may be
forming the union of two regions. More complex systems may include
the intersection and set difference operations as well. (Technically,
since intersection and set difference can lead to regions that are not
normal, the operations used in CSG are generally intersection or set

272 Space

N

/224

'\(U’é

The intersection of the closed regions AA and BB includes both the
cross-hatched region and the heavy-lined edge. Normalization drops
the dangling edge.

Figure 6.19 Normalized set operations

difference followed by a normalization procedure (Figure 6.19). The
normalization of region RR is the closure of the interior of RR.)

What primitive shapes are used in a CSG system depends on which
shapes occur naturally in the domain in question. In dealing with
tools, the natural primitives are shapes that are easy to manufac-
ture, such as prisms and cylinders. In dealing with natural objects,
a popular choice as primitive is the generalized cylinder, the volume
generated by sweeping a shape along a central axis. Each general-
ized cylinder is described in terms of its cross section, its axis, and its
sweeping rule. Each of these may be chosen from a fixed vocabulary of
primitive values with numerical parameters. For instance, the cross
section may be a circle or a polygon; the axis may be a straight line
or a circular arc; and the sweeping rule may be constant, linear con-
traction, or two different linear contractions in orthogonal directions.
With each generalized cylinder is associated a coordinate system; the
cylinder occupies a standard position and orientation within its own
coordinate system. Figure 6.20 shows a variety of generalized cylin-
ders.

The position of a given shape in a region can be described using the
strategies for expressing rigid mappings given in Appendix A of this
chapter.

The quantities used in the ‘shape or position description may be
represented as exact quantities or as constrained parameters. Such
constraints can be used either to represent partial knowledge of the

right
Figure intentionally omitted for reasons of copyrig

(From [Brooks 1981]).

From Artificial Intelligence, published by North-Holland Publishing Co., Amsterdam.
Copyright 1981 by North-Holland Publishing Co.

Figure 6.20 Gener_.alized Cylinders

exact parameter values or to represent generic shapes that may vary
within the constraints, Table 6.8 shows part of a representation for
the human body of Figure 6.18. :

A disadvantage of this method for relating the positions of regions
is that the available information often relates to the positions of the

For a volumetric representation to be used as an approximation
for shapes that do not conform exactly to its ideals (i.e., that are not

274 Space

Table 6.8 CSG Generic Shape

human = head U neck U torso U
ru.arm (right upper) U rl.arm U lu_arm U ll.arm U
right_thigh U right_shin U left_thigh U left_shin.

r* cylinder(L, R, F) is the rlght circular cylinder of length L and radius
R, positioned so that the axis is allgned on the z axis of F and the
center of the bottom face is the origin of F */

torso = cylinder(torso_height,torso_radius,torso_frame).
torso_height € overall_height - [.25, .4].
torso_radius € torso_height - [.25, .5].

ru_arm = cylinder(upper_arm length, upper_arm radius,
ru_arm_frame).

upper_arm_length € torso_height - [.6,.9].
upper.arm.radius € upper_arm_length - [.1,.2].

/* Position of arm relative to torso. The origin of the arm frame is
placed slightly inside the torso, to avoid unsightly gaps when the arm
bends. See Appendix A of this chapter for an explanation of the Z-Y-Z
Euler angles */

coordinates(origin(ru-arm_frame), torso_frame) =
1/scale(torso_frame) - < torso_radius — upper_arm_radlus 0
torso_height — upper_arm_radius >.

z_y_z_euler(ru_arm frame, torso_frame) = < 61, 0, 3 >.
0, € [0, 1(’/4]‘

8, € [0,47/3).

63 € [-27/3,47/3].

6.2.3 Boundary Representation

Information about the relations between the boundaries of objects,
such as discussed above, can be expressed most easily in a boundary-
based representation. In this section, we discuss a two- dimensional
boundary representation used in the MERCATOR program [Davis
1986a). MERCATOR is designed to simulate how a robot could put
together a cognitive map in two dimensions by traveling through a
region and using a vision system.

The most notable characteristic of the MERCATOR representatlon
is its use of three well-defined types of partial knowledge:

(]
-]
Ut

6.2 Knowledge Structures

e Partial knowledge of dimension, direction, and angle, both in the
shapes of single objects and in the relative positions of objects.

e Partial knowledge of the shapes of objects. The fine detail of the
shape of an object may be unknown if the object has been seen only
from a considerable distance.

e Partial knowledge of the extent of an object. If an object has been
partially occluded, then the knowledge base must record what has
been seen without overconstraining the unseen part.

In order to deal with these three issues, MERCATOR uses a two-
level representation. The first level consists of a grid of points con-
nected by edges. Partial knowledge of dimensions and directions is
expressed through constraints on the lengths and directions of the
edges. MERCATOR uses a particularly simple form of constraint: in-
terval bounds on the measurements of length and direction relative
to a fixed coordinate system. The second level relates the shape of
objects to the grid of edges. The known part of the boundary of an
object is approximated by a chain of edges; the approximation is a tag
indicating the maximum deviation of the real boundary from its ap-
proximation. If parts of an object have not been seen, then the chain
of approximating edges does not form a closed cycle.

Formally, the second level of representation, relating the approx-
imation of the boundary to its real position, is expressed using the
predicate

tolerance(CC, << EELD; >,...,< EEk, D >>),

The predicate “tolerance” takes as arguments a directed curve CC and
a tuple of pairs < EEi, D; >, where EEi is a directed edge and D; is
a distance. The predicate is true if there is a direction-preserving,
continuous, one-to-one function from the union of the EEj to CC such
that no point in EEi is moved by more than D;.

Table 6.9 and Figure 6.21 illustrate the MERCATOR representation.

MERCATOR uses this same representation both for the simulated
visual input and for the permanent cognitive map. MERCATOR must
therefore address three problems: first, to match the objects in the
visual input with objects in the known map; second, to incorporate
the new information in the visual input into the cognitive map; and
third, to use the cognitive map to retrieve spatial information. Due to
the richness of the representation and the inherent complexity of two-
dimensional space, it is demonstrably computationally infeasible to
develop complete algorithms for these tasks. Even reasonable heuris-
tic algorithms tend to be quite involved.

276 Space

Table 6.9 MERCATOR Representation

Grid of edges:

dist(a,b) € [10,15] - foot.
dist(b,c) € [20,30] - foot.
dist(b,e) € [10,15] - foot.
dist(c,d) € [11,17] - foot.
dist(c,f) € [12,18] - foot.
dist(e,f) € [12,16] - foot.
dist(e,j) € [8,12] - foot.

dist(f,g) € [12,18] - foot.
dist(g,h) € [9,15] - foot.

dist(h,i) € [13,19] - foot.
dist(i,j) € [12,16] - foot.

(% below is a standard reference direction.)

angle(b-a,z) € [20°,35°].

angle(c-b,z) € [0°,5°].

angle(e-b,z) € [80°,90°].

angle(d-c,z) € [15°,40°].

angle(f-¢,z) € [120°,130°].

angle(f-e,z) € [-10°,0°].

angle(j-e,z) € [80°,90°].

angle(g-f,z) € [95°,110°].

angle(h-g,z) € [70°,85°].

angle(i-h,z) € [175°,185°].

angle(j-i,z) € [280°,305°].

(dboundary(RR) below is the boundary of region RR, directed counterclock-
wise around RR.

dedgeX,Y) is the directed edge from X to Y.)

tolerance(dboundary(road),
<< dedge(a,b), 1.5 - foot >, < dedge(b,c), 1.2 - foot >,
< dedge(c,d), 0.6 - foot >>).

tolerance(dboundary(road),
<< dedge(d,c), 1.2 - foot >, < dedge(c,b), 1.2 - foot >,
< dedge(b,a), 0.5 - foot >>).

tolerance(dboundary(lake),
<< dedge(e,f), 2.5 - foot >, < dedge(f,g), 1.8 - foot >,
< dedge(g,h), 1.8 - foot™>, < dedge(h,i), 2.5 - foot >,
< dedge(i,j), 2.5 - foot >, < dedge(j,e), 1.5 - foot >>).

o
-1
~X

6.2 Knowledge Structures

Figure 6.21 MERCATOR representation

For example, to compute tight bounds on the distance between two
points U and V in the first-level grid, given the constraints on edges in
the graph, is demonstrably NP-hard. MERCATOR uses the following
heuristic: Find a path of edges from U to V, and evaluate the distance
from U to V under randomly chosen values for the lengths and ori-
entations of the edge satisfying the constraints. To find the distance
between two polygons in the grid, MERCATOR uses a heuristic search
to pick out likely candidates for the closest pairs of vertices and edges,
and then uses a similar Monte Carlo search to evaluate the distance
between each candidate vertex-edge pair. To find bounds on the dis-
tance between two objects (or, more exactly, between the known parts
of two objects), MERCATOR finds the distance between their approx-

prm

278 Space

imating polygons, then adds in an uncertainty corresponding to the
sum of the accuracies of the two approximations.

Two particular omissions in the MERCATOR representation should
be noted. First, the language of constraints used — interval bounds
on lengths and directions of edges — is not powerful enough to express
many common states of partial knowledge. There is no way in such a
representation to express the statement that a given quadrilateral is g
square of unknown dimensions, or of unknown orientation, since each
side of the square must be allowed to vary independently within the
specified bounds. This defect could be remedied, in either of two ways.
One way would be just to allow symbolic constraints of a more complex
form, such as a constraint “length(EE) = length(FF)” for two edges EE
and FF. The other would be to use multiple coordinate frames. We
could then describe a square of unknown size and orientation by saying
that it is a square of size 1 in some coordinate frame, but that the unit
length and orientation of that frame are only partially known. (This
approach is used in [McDermott and Davis 1984].) Of course, either of
these extensions would make the problems of computing values from
a map even more difficult.

A second omission in the MERCATOR representation is that it of-
fers no way to express absence information. A cognitive map in MER-
CATOR never rules out, explicitly or implicitly, the possibility of any
number of other objects being anywhere they choose. MERCATOR
always allows the possibility that it may have overlooked objects of
any kind, and it is not aware of restrictions on the positions of objects,
such as the rule that solid objects may not overlap. Therefore, if the
matcher of MERCATOR is given two maps, such as in Figure 6.22,
which disagree entirely except for two matching objects, the matcher
will not conclude that they represent two different places. Rather,
it will conclude that the matching objects are in fact the same, and
that the remaining objects were Just overlooked on one occasion or the
other.

6.2.4 Topological Route Maps

Most land travel over extended distances is carried out on well-defined
roads, which are very long and thin. The primary knowledge needed
for planning routes for such travel'is the incidence relations between
roads and places: which roads meet, where they meet, and which
places lie on which roads. It is considerably less important to know dis-
tance or angle relations; one should distinguish between a ten-minute
ride and a three-hour ride, or between a gentle left turn and a hard

6.2 Knowledge Structures 279

Filing Desk
Cabinet es Ai:r;tlray
Book
Case
Chair
Night
Table

Bureau @Ashtray

Bed

Absent other information, MERCATOR will identify the two ashtrays,
and will create a composite containing all the objects from both rooms,
freely overlapping one another.

Figure 6.22 Maps matched by MERCATOR

right, but precise measurements are not generally needed. Global spa-
tial knowledge is often entirely superfluous; it is notorious that people
can travel from point a to point b for years, and still have only vague
or mistaken notions of their relative positions. The TOUR program
[Kuipers 1978] was designed for-performing assimilation and inference
on such information about incidence relations.

TOUR uses three ontological sorts of entities: places, which are
points; paths, which are directed curves; and regions. There is also a
single mobile robot; the robot is the only thing that moves over time.

280 Space

Figure 6.23 World state in TOUR

The state of the robot is defined by its position, which is a place, and
its orientation, which is a path and a direction on the path. Figure
6.23 shows a typical world state. A TOUR cognitive map is a collection
of atomic, ground formulas, together with a state function that tracks
the current position of the robot. Table 6.10 lists the primitives used
by TOUR; Table 6.11 gives the TOUR representation of the world state
of Figure 6.23.

The TOUR program simulates the assimilation of a cognitive map
through the execution of these actions. The robot starts out knowing
nothing about the relations in the world. It is given a series of exe-
cutable actions to carry out. When it executes a “go” command, it can
add its destination on the path traveled, in the proper direction from
its source. When it executes a “burn” command, it finds itself on a
new path, which it can record as meeting the star of its current place.
TOUR does not support the assimilation of region information.

62 Knowledge Structures 281

Table 6.10 Primitives in TOUR

Static, spatial predicates:

on_path(PP, X, X,,... , X;) —

Places X; through X; occur in that order on path PP.
starX, < PP;, S >, <PPy, S5, >...< PP, S, >) —

Paths PP; through PP; all meet at place X; moreover, the di-
rected paths PP; with sense S; occur in counter-clockwise or-
der around X. S; is a Boolean, indicating forward or backward
direction.?

border(RR , PP ,S) —

Path PP is on the border of region RR. S is a Boolean, indicating
whether the forward direction on PP goes clockwise or counter-
clockwise around RR.

X eRR
RR1 C RR2

State function:

robotX,PP, S) — :
The robot is now at place X oriented along path PP in the di-
rection indicated by Boolean S.

Events:

goforward — The robot moves to the next place along current
path.

turn(R) — Turn to next path at current place. R is a Boolean,
indicating clockwise or counter-clockwise rotation.

3The actual TOUR program indicated the angle of the various paths, and the angle
of rotation in the “turn” action described below.

282 Space

Table 6.11 World State in TOUR

path(main, a, e, g, k).
path(elm, d,e,f).
path(maple, ij k).
path(adam, b,ej).
path(burke,c,f,h k).
path(fones,g,h).

star(e, < elm, + >, < adam, - >, < main, — >,

<elm, - > < adam, + >, < main, + >),
star(f, < elm, + >, < burke, - >, < elm, - > < burke, + >),
star(g, < main, + >, < fones, + >, < main, — >),
star(f, < burke, + >, < burke, - >, < fones, - >).
star(j, < maple, + >, <adam, - >, < maple, - >, < adam, + >).
star(k, < maple, + >, < burke, - >, < main, — >,

< maple, - >, < burke, + >),

border(maple, park, +).
border(adam, park, —).
border(elm, park, —).

robot(g, main,+).

6.2.5 Configuration Spaces

In reasoning about the motion of hard objects among hard obstacles,
it is sometimes helpful to view the problem in terms of a configura-
tion space. A configuration is a positioning of all the mobile objects
n the problem, and a configuration space is the space of all such con-
figurations. The dimensionality of the configuration space is the total

mining the angle of the Joint (Figure 6.24), They are thus described
in a four-dimensional configuration space.

6.2 Knowledge Structures 283

The configuration space of the pair of jointed rods has four dimensions:
X, ,¢andd

Figure 6.24 Configuration of a joint

Using a configuration space thus reduces a complex state description
to a single point, at the cost of imposing a complex, high-dimensional
space. The space is rather complex because some of its dimensions
correspond to rotations and are therefore cyclical.

The configuration space is divided into physically attainable regions,
where the actual objects do not overlap, and physically unattainable
regions, where they do. All physical behavior must take place in the
physically attainable regions. For example, a feasible motion of the
objects from one positioning to another corresponds to a continuous
path in configuration space from the starting point to the ending point
through the physically attainable region.

If RR is the region occupied by an object O in some standard po-
sition, and C is a configuration of O, then we will denote the region
occupied by O in C as “image(C, RR).” In this book, we will use this
only in the case where O is a rigid object, so that the configuration C
is a rigid mapping in space. ,

Configuration spaces are easiest to use and most effective when the
problem is structured so that the configuration space has relatively
few dimensions. This can happen if the motion of the mobile objects is
restricted by some external constraint to a few degrees of freedom. An
example is a pair of meshed gears that are each pinned so that they

284 Space

Figure 6.25 Meshed gears

can only rotate around their axes. The relative position of the gears is
completely determined by their two orientations, and the relevant con-
figuration space describes the pairs of orientations that do not cause
them to overlap (Figure 6.25). Another example is in the analysis of
jointed objects such as robots: A configuration space analysis focuses
attention on the actual configurations that the robot can attain, rather
than all conceivable combinations of positions of its parts.

The dimension of the configuration space can also be reduced if the
mobile object has some kind of continuous symmetry so that move-
ments in the symmetry group can be ignored: An example is a circular
disk moving in two space around obstacles. The configuration space of
the disk is two dimensional, since it is invariant under rotations. This
configuration space is the set of positions of the center of the disk. The
unattainable regions have the shape of the obstacles, swollen by the
radius of the disk (Figure 6.26).

Configuration spaces are particularly useful in reasoning about rigid
objects in circumstances where their physical behavior depends on,
their shapes and positions, and is independent of such issues as veloc-
ity and mass. Consider, for example, a collection of blocks on a table
that move only when they are pushed. Suppose that the motion of
one block is controlled by an external force, and we wish to determine
the motions of the remaining blocks. This behavior can be calculated
from the configuration space as follows: If the motion of the controlled
block lies in the interior of the space, then the other blocks remain
motionless. If the motion of the controlled block will bring it into the
area of the space forbidden by the other blocks, then the configuration
as a whole moves along the boundary of the forbidden area, in a way
that the control block executes its specified motion (Figure 6.27).

6.2 Knowledge Structures 285

N
E§i
-
\

. Physical
M
Igi\;llr:g Space
T

3? T
] |
] 2
3 L/
L/
4 |
3 ; L Configuration
3 T Space

Figure 6.26 Configuration space of a disk

286 Space

Physical space

AA%E

A
\

A Configuration space
hatched region is

Y physically

_»r’

If block A is pushed to the right, the configuration follows the marked
path through configuration space. :

Figure 6.27 Configuration space in quasi-static environments

1o
w
a

6.2 Knowledge Structures

6.2.6 The Roller Coaster

NEWTON [de Kleer 1975] is a program that predicts the behavior of
a cart on a roller-coaster track from qualitative information about the
shape of the track. The cart is assumed to move without friction under
the force of gravity. The problem is to predict how the velocity and
position of the cart will change over time. The cart is not securely
held to the track, so it is possible that the cart may fall or fly off the
track. NEWTON will predict that the cart comes off the track, but
does not attempt to guess its further fate.

In a complete model, we would have to consider the cart and the
track as three-dimensional objects, that may be in contact over some
extended region. (Figure 6.28). However, for the purposes of quali-
tative reasoning, we may make some radical simplifications. We as-
sume that we can ignore the third dimension, and describe the entire
system in terms of a world with one horizontal and one vertical di-
mension. We assume that the interactions between the cart and the
track depend only on the boundary of the track; hence, we can model
the track as a curve in two dimensions, with a distinguished clockwise
direction around it. (The two-dimensional representation of the track
may cross itself; the two corresponding parts of the three-dimensional
track would be slightly displaced in the third dimension at the cross
point.) The cart is assumed to be small enough (compared to any shape
features of the track) that the shape of the cart is irrelevant and the
contact between the cart and the track can be approximated as a sin-
gle point. Therefore, we can describe the state of the cart simply by
specifying the location of the contact point and requiring that the cart
lies on the outside of the track rather than inside it. Whether these
approximations can be validly made for a particular cart and track is
outside the scope of NEWTON’s theory.

Two forces affect the behavior of the cart relative to the track: the
gravitational force and the centrifugal force. The gravitational force
is always constant, and directed vertically downward. The centrifugal
force is always directed along the normal to the track. Where the cur-
vature is positive (the track curves up toward the cart), the centrifugal
force points inward to the track; where it is negative, the centrifugal
force points outward, away from the track. The magnitude of the cen-
trifugal force is proportional to the square of the velocity of the cart
times the curvature of the track.

We can summarize the effect of these two forces in the following two
rules:

1. The acceleration of the cart along the track is proportional to the
component of gravity in the direction tangent to the track. (The

288 Space

Figure intentionally omitted for reasons of copyright

Figure 6.28 Cart on a roller coaster

6.2 Knowledge Structures 289

centrifugal force is always normal to the track.) If the forward di-
rection of the track is uphill, then the cart will accelerate backward;
if it is downhill, the cart will accelerate forward.

2. The force holding the cart on the track is the sum of the centrifugal
force plus the component of gravity in the direction normal to the
track. If this sum is positive or zero, the cart will stay on the track;
if it becomes negative, the cart will fall or fly off the track.

Reasoning about the behavior of the cart therefore requires some
specification of the shape of the track, including its tangent and cur-
vature at each point, and the history of position and velocity of the
cart along the track over time. In NEWTON, the shape of the track is
represented as an ordered sequence of segments. For each segment,
we record the quadrant of the forward tangent direction, the sign of
the curvature, and whether the segment is an isolated point or is a
curve of finite length. (See Figure 6.29 and Table 6.12.) The segments
are chosen so that the quadrant of the tangent direction and the sign
of the curvature have a single value over the segment.*

Directions are divided into eight quadrant values: Up, Right, Down,
Left, Up-Right, Up-Left, Down-Right, Down-Left (abbreviated U, R, D,
L, UR, UL, DR, DL). We will call the first four “point directions,” and
the last four “range directions.” (Figure 6.30)

This representation for curves is analogous to the representation of
temporal parameters discussed in Section 4.8. Here, the independent
variable, corresponding to time, is arc length; the dependent variables,
corresponding to parameters, are curvature and direction.

We specify the position of the cart at an instant in terms of the
segment of the curve where it is located. We specify its velocity as
going forward on the curve, going backward, or standing still. A state
of the cart is specified by giving the position of the cart and its velocity.
We also label each state with an indication of whether it persists for
finite time or whether it occurs only for an instant. For example, the
starting state of the cart illustrated in Figure 6.29 is specified as being
in SEG4, with a positive velocity; the state lasts for finite time. The
special state “FELL_OFF” is terminal.

The task of the NEWTON program is thus to characterize the pos-
sible sequences of states of the cart, given the shape description of the
"~ track and some starting state of the cart. The output of the program
is expressed in terms of a mode transition graph, which shows which
states can follow other states. As discussed in Section 4.9, any pos-

4The actual NEWTON program supported a richer representation with metric infor-
mation about height, which allowed some ambiguities in behavior to be resolved.

290 Space

segz SEG3 SEG10

Figure 6.29 Track in NEWTON

sible behavior of the system must correspond to a path through the
graph; the converse is not true.

There are two problems to be solved: (1) Determine whether a shape
description of the track is consistent; and (2) Find the behavior of the
cart. We will consider each of these in turn.

The shape description of the track must satisfy the following geo-
metrical constraints:

A.1. Continuity. The quadrant of the tangent must change contin-
uously, going from one range in the circle of quadrants to a
neighboring range (Figure 6.30). The sign of the curvature must
change continuously; to go from negative to positive curvature
or vice versa, it must go through zero.

A.2. Mean-value theorem. The curvature is the derivative of the tan-
gent angle; hence, changes in the tangent must be in the direc-
tion indicated by the curvature. Specifically:

i. If the tangent direction changes from a point direction to
the neighboring range in the counterclockwise (clockwise) di-
rection, then the curvature in the second segment must be
positive (negative).

ik

62 Knowledge Structures 291

UL UR

DL DR

Figure 6.30 Quadfants of directions

ii. If the tangent direction changes from a range direction to the
neighboring point in the counterclockwise (clockwise) direc-
tion, then the curvature in the first segment must be positive
(negative).

A3. A segment with a point direction and nonzero curvature must
occupy only a point and it must border a segment with a range
direction on both sides. A segment with a range direction and a
nonzero curvature must have finite length.

A.4. (Topology of change.) It is impossible that one segment should
have nonzero curvature and a point tangent direction and that
an adjacent segment have zero curvature and a range tangent
direction.

Any sequence of segments obeying these constraints is a valid shape
description. Note that, if two segments appear consecutively, at least
one must be of finite length.

We can now describe the dynamics of the system using qualitative
differential equations, as described in Section 4.9. Let PP be the
direction curve of the track; let X(T') be the arc length coordinate
of the cart along the track; and let V(T') be the derivative of X(T').
Then the acceleration of the cart along the track is proportional to the

292 Space

Table 6.12 Qualitative Representation of the Track in Figure 6.29

Segment Tangent Inward Normal Curvature Length

SEG1 DR DL POS Finite
SEG2 R D POS Point
SEG3 UR DR POS Finite
SEG4 UR DR ZERO Finite
SEG5 UR DR NEG Finite
SEG6 R D NEG Point
SEG7 DR DL NEG Finite
SEG8 DR DL ZERO Point
SEG9 DR DL POS Finite
SEG10 R D POS Point
SEG11 UR DR POS Finite
SEG12 U R POS Point
SEG13 UL UR POS Finite
SEG14 L U POS Point
SEG15 LD UL POS Finite
SEG16 LD UL ZERO Point
SEG17 LD UL NEG Finite
SEG18 L U NEG Point
SEG19 UL UR NEG Finite

component of the forward tangent in the downward direction. This can
be stated in the following pair of qualitative differential equations:

X =V)
0V = —[direction(tangent(PP , X)) - k]

where tangent(PP, X) is the forward tangent to the curve PP at X,
and k is the vertical direction.

These equations are adequate as long as the cart stays on the track.
If the cart were attached to the track, like a bead on a wire, they would
be a full specification of the behavior. We can extend the system to
consider the possibility that the cart may fall off the track as follows:
As stated above, the cart will fall off if the sum of the centrifugal force
with the component of gravitational force in the direction normal into
the track becomes negative. If both of these terms are negative, or
one is negative and the other zero, then the sum must be negative; if
one is negative and the other positive, then the sum could be negative,

6.2 Knowledge Structures 293

zero, or positive. The sign of the centrifugal force is equal to the sign
of the curvature. Therefore, we can formulate the following rule:

Falling off: The cart may fall off at point X if and only if either
normal(PP , X) has a component vertically down or if curvature(PP ,
X) is negative and V is nonzero. The cart must fall off if normal(PP ,
X) has a component vertically down, and either V is zero or curvature
(PP, X) is not positive.

By combining these special falling-off transitions with the transi-
tions generated in solving the above QDE’s, we can find the behavior
of the cart.

For example, the cart in Figure 6.29 starts in a state, which we call
ST4a, in which it is located in SEG4 with a positive velocity. Since the
tangent to SEG4 is upward and to the right, the acceleration must be
negative. Since the inward normal to the track is downward and to the
right, the force of gravity pushes it onto the track. Since the curvature
of the track is zero, the centrifugal force is zero. Therefore, the cart
cannot fly off the track. Two transitions out of ST4a are possible. The
velocity may carry the position to the next segment. Then the cart will
be on SEGS5 with positive velocity; this is state ST5a. Alternatively,
the acceleration may bring the velocity to zero. Then the cart will still
be on segment SEG4 with zero velocity; this is state ST4b.

In state ST5a, the acceleration of the cart on the track is negative,
since the forward tangent to SEG5 is upward to the right. Since the
inward normal is downward and to the right, the gravitational force
tends to hold the cart on the track. However, since the curvature of the
track is negative, the centrifugal force tends to push the cart off the
track. If the velocity of the cart is large, so that the centrifugal force
is large, or if the slope of the track is large, so that the component of
gravity pushing toward the track is small, then the centrifugal force
may overcome gravity, and the cart will fly off the track. Otherwise,
there are three possible transitions: either the velocity will carry the
cart onto segment SEGS, or the acceleration will bring the velocity to
zero, or both will happen simultaneously (Figure 6.31).

By continuing this type of analysis, one can create the complete
envisionment graph for the behavior. (Exercise 3). The transition
graph allows many different possible behaviors: the cart may oscillate
in the first valley, in the second valley, or between the two valleys; it
may fly off on the hill, or fall off in the overhang (SEG11, SEG12, and
SEG13). If it makes it to the inverted hill (segment SEG17), then it
must fall off.

294 Space

ST4a) ST4b ST4c
XeSEG4 =1 XeSEG4 =1 XeSEG4
IVI=POS IVI=0 IVI=NEG

/

ST5a ST5b ST5c
XeSEGS =1 XeSEG5 =1 XeSEGS
IVI=POS IVI=0 IVI=NEG

v

STéa STéb
XeSEG6 =1 XeSEGS6
IVI=POS IVI=0

FELL_OFF

Figure 6.31 State transitions in NEWTON

6.3 Appendix A: Coordinate Transformations

As we have seen in Sections 6.1.3, 6.2.1, and 6.2.2, it is often con-
venient to describe spatial information in terms of coordinates in a
specially chosen coordinate system. There are a number of purposes
that may be served by such a representational strategy:

e It may simplify description and calculation. For example, the in-
equalities that describe a solid-right cylinder are very much simpler
in a coordinate system aligned with the axis of the cylinder than
in other coordinate systems.

e Ifthe shape moves rigidly through space over time, then the motion
of the object can be described by having its coordinate system move

6.3 Appendix A: Coordinate Transformations 295

and the shape of the object remain constant relative to its own
coordinate system. The motions of a coordinate system are much
simpler and easier to describe than the transformations of a region.

e The information available to an intelligent creature is often precise
on a local scale and much less precise on a global scale. In such
a case, it may be effective to use a collection of local coordinate
systems.

In order to use this strategy, we must have a language for express-
ing the relations between one coordinate system and another, and for
computing with these relations. This appendix presents a number of
ways to do this.

Formally, a coordinate system in n-space is a tripleC =< O, L, DD >,
where O is the origin (a point), L is the unit length, and DD is the
frame of axis directions, an n-tuple < D, ... D, > of mutually perpen-
dicular directions, ordered with the “right-hand” orientation. Fixing
a coordinate system gives a standard way of naming points, lengths,
and directions:

Let C =< O,L,< D,...D, >> be a coordinate system in n-space.
We define the measure of length | M in C, “measure(M, C),” to be the real
number M /L. The product L - D is defined"as the vector with length
L and direction D. Finally, we define the coordinates of a vector V in
C to be the unique n-tuple of real numbers c; ...c, such that

V:cl-f,-lﬂ)1+...+c,,‘l—/-Dn

We define the coordinates of a point A in C, “coordinates(A, C),” to
be equal to the coordinates of the vector A - O. In this representation,
addition and subtraction of vectors and points can be carried out place
by place.

There are a number of ways of using coordinate systems to specify
a direction £. One ‘approach is to use the directional cosines: that is,
the projections of £ on the coordinate axes. Formally, we define the
direction cosines of direction E, written “dir_cosines(Z, C),” to be the
coordinates of L - E Another approach is to represent E in terms of
the angle between £ and the coordinate axes. In two dimensions, only
one angle is needed; we define “angle(£, C)” to be the angle between E
and the x axis of C. In three dimensions, two angles are needed. There
are a number of ways to choose these angles One typical approach
is to use the co-latitude of £, which is the angle between £ and the
z axis, and the longitude of E, which is the angle between the x axis
and the x—y projection of £ (Flgure 6.32).

296 Space

Figure 6.32 Angle representations for a direction

The relation between two frames C and F can be represented by
characterizing the elements of 7 — its erigin, unit length, and frame
of axis directions — in terms of C. The unit and origin are straight-
forward; the unit is given by its measure and the origin by its coordi-
nates. There are, however, a number of ways of representing the axis
directions, each with strengths and weaknesses.

The first method is to represent the frame of axis directions of
F in terms of .theadirectional cosines of each direction. Let C and
F =<0, L,< D;,D; >> be two two-dimensional coordinate frames.
Let coordinates(0,C) = < Oy, 0, >; let measure(L, C) = L; let dir_cosines
(Dl,C) = < Dy, D,y >; and let dir_cosines(f)g,C) =< Dzl, Dqys >. The
transformations from F to C obey the following rules:

For any length M, measure(M,C) = L-measure(M, F).

For any direction E, let dir_cosines(E, F) = < E;, E; >. Then
dir_cosines(Z,C) = < D11 E; + Dy Ey, Do E; + DooEy >

For any point P, let coordinates(P,) = < P, P, >. Then

coordinates(P, C) = < O; + L(DuPl + D21P2),
O3 + L(D12Py + D22 Ps) >

The last two transformations above can be written more concisely
and clearly in matrix notation. Let us identify any pair of numbers
with the corresponding column array.

6.3 Appendix A: Coordinate Transformations 297

< X1,X2 >= [X J

X3

Let dir_cosines(D D, C) be the square array of direction cosines

dir_cosines(DAD:C) = [31: gzl]
1 2

Then the above formulas may be expressed as follows:

dir_cosines(£, C) = dir_cosines(D D, C) - dir_cosines(£, F)

coordinates(_P, C) = coordinateng,C) +
measure(L,C) - dir_cosines(DD,C) - coordinates(P, F)

The rule for coordinate transformations above uses a matrix mul-
tiplication and a vector addition. These two can be collapsed into a
single matrix multiplication. This reduction involves adding an ad-
ditional fictional dimension. We represent a two-dimensional point P
in coordinate frame C by a column array of three elements: the two
coordinates of P in C and the number 1. .

coorl(P,C) =< coordinates(P,C),1 >

We represent the coordinate transformation from C to F by the three-
by-three array:
LDy LDy O
K = LD12 LD22 02
0 0 1

The transformation from coordinate system F to C can now be rep-
resented just as multiplying by the matrix K.

coorl(P,C) = K - coorl(P, F)

If the matrix above is considered as a representation for the trans-
formation from F to C, then the composition of transformations can
be computed as the product of matrices, and the inversion of a trans-
formation can be computed as the inverse of the matrix.

Three-dimensional coordinate transformations can be handled anal-
ogously.
The advantage of this representation is the simplicity of the above

formulas. The disadvantages arise from the fact that it is highly
redundant. The representation uses four numbers to represent a

298 Space

two-dimensional rotation, which is a one-parameter space, and nine
numbers to represent a three-dimensional rotation, which is a three-
parameter space. This redundancy means that the numbers used here
are mutually constrained. If exact values are known, then there is no
problem. However, if only partial information is available, then rea-
soning with this information will involve incorporating these built-in
constraints, either explicitly or implicitly. This complicates both the
representation of partial information and calculations with it. It is
therefore worth considering alternative representations for rotations,
based on angles. These simplify the representation of rotations, at the
cost of complicating the transformation equations. Here, we must con-
sider the two-dimensional case, which is quite easy, separately from
the three-dimensional case, which is difficult.

In two dimensions, the rotation from coordinate frame C to F can be
represented by the angle between their x directions, which we denote
“angle(F,C)”. Let “angle(E,C)” be the angle between the direction E
and the x axis of C. We then have the following simple equations:

angle(E, F) + angle(F,C) = angle(E, C) mod 27.
angle(G, F) + angle(F,C) = angle(G,C) mod 27.
angle(F,C) = — angle(C,) mod 27

Moreover, uncertainty in the amount of a rotation can be repre-
sented in simple interval constraints, such as angle(F,C) € [20°,30°].

Overall, the coordinate transformation from F to C is represented in
terms of four real numbers: The coordinates < O;,0, > of the origin
of F in C; the angle o between F and C; and the scale change L. The
transformation formula is as follows: Let < P, P, > be the coordinates
of point P in . Then

coordinates(P,C) = < O; + L - Picos(a) — L - P;sin(a),
O2 + L - Pisin(a) + L - P;cos(a) >

Thus, computing coordinate transformation requires computing trigono-
metric functions. Similarly, computing angles given coordinate or dis-
tance information requires computing inverse trigonometric functions.
By contrast, all calculations with directional cosines are algebraic.

The elegance of angles as representations for two-dimensional di-
rections and rotations relies on a few particular properties of these
spaces. None of these properties hold in three dimensions; hence, the
representation of three-dimensional rotations and directions is neces-
sarily clumsier and more complicated.

6.3 Appendix A: Coordinate Transformations 299

Figure 6.33 Noncommutativity of three-dimensional rotations

e Rotations do not commute. The result of a 90° rotation around the
x axis followed by a 90° rotation arourd the z axis is not equal to
the result of the same rotations in the opposite order (Figure 6.33).

e The three-parameter space of rotations is not isomorphic to the
two-parameter space of directions. In particular, there is not a
unique rotation that maps one direction D into another E; there is
a class of such rotations.

e There is no mapping that preserves congruence, either from the
plane to the space of three-dimensional directions, or from three
space to the space of three-dimensional rotations. Therefore, no
technique for naming directions in terms of two real parameters,
or for naming rotations in terms of three real parameters, can treat
all points uniformly; any naming will treat some points and some
areas differently from others. (This last point can be made more
strongly in topological terms: Any continuous mapping from two
space to the space of three-dimensional directions, or from three
space to the space of three-dimensional rotations, must have topo-
logical singularities.)

These properties suggest strongly that any representation for three-
dimensional directions and rotations will have some inelegancies.
There are a number of ways of choosing three angles associated with
a rotation as the representation of the rotation. For example, any

300 Space

three-dimensional rotation has a fixed axis that remains unchanged. A
rotation can therefore be represented by giving the colatitude and lon-
gitude of the direction of the axis of rotation, and the angular amount
of the rotation. Similar representations can be derived by writing a ro-
tation as the composition of three rotations of variable angles around
fixed axes. For example, let ¥z (a) be the rotation by angle a around
the z axis, and let ¥y (B) be the rotation by angle 4 around the y
axis. It is then a fact that any rotation can be decomposed in the form
¥z(a) Uy (B)-¥z(y) for some angles «,3,v. The triple < a, 3,7 > are
known as the Z-Y-Z Euler angles of the rotation. (Figure 6.34)

Such angle-based systems have the advantage that, with practice,
they can be easily visualized (at least as compared to the nine direc-
tional cosines). Moreover, they lend themselves to certain types of
physical calculations; the Euler angles, for example, are useful in cal-
culating the energy of objects that are radially symmetric. However,
for pure geometric calculations, they are mostly horrible. To deter-
mine the image of an arbitrary direction under a rotation described in
terms of a three-axis system, or to compose two rotations described in
a three-axis system, it is generally necessary to compute many trigono-
metric and inverse trigonometric functions; in effect, to translate from
the axis-system to the directional cosines and then translate back.

Another technique for representing three-dimensional rotations is to
use quaternions. Quaternions are less compact than the above angle
representations, having one redundant parameter, but they are much
easier to compute with. A quaternion is a triple of four numbers,
<a,b,c,d >, generally written a + bi + ¢j + dk. (The symbols i,j,k here
are particular quaternion constants, rather than geometrical points.)
Quaternions may be added and multiplied according to the following
rules: Let P =a +bi+ cj + dk. Let Q = w + zi + yj + zk. Then

P+Q (a+w)+(b+2)i+(c+y)i+ (d+2)k
PQ = (aw—bz—cy—dz)+
(az +bw + cz — dy)i+ (ay — bz + cw + dz)j +
(az + by — cz + dw)k

This complicated rule for multiplication can be derived from the
following simpler axioms:

i. Multiplication is associative. P(QW) = (PQ)W.

ii. Multiplication distributes over addition on either side.
(P + Q)W = PW + QW.
WP +Q)=WP+WQ.

6.3 Appendix A: Coordinate Transformations 301

Figure 6.34 Euler angles. P; = X; — Y, plane. P, = X3 — Y3 plane.

302 Space

iii. The quaternion a+0i+0j+ 0k is identified with the scalar a.
Multiplication of a quaternion by a scalar is commutative.
Pa =aP.
iv. i’=j=Kk* = -1.
V. ij=—ji=k;jk=—-kj=i;ki=—ik=j.

As part v makes evident, multiplication of quaternions is not com-
mutative. '

Let P = a+ bi+ ¢j + dk. We define conj(P),the conjugate of P, to be
a—bi—cj—dk.

We may now apply quaternion arithmetic to directions as follows.
Let < P;, P,, P; > be the coordinates of point P in coordinate frame F.
Identify P with the quaternion

quat(P,F) =1+ Pji+ Pj+ Pk

Let C be a coordinate frame with the same origin and unit length as
F, so that they differ only by a rotation ®. Let N be the direction that
is fixed under ®; let < Ny, No, N3 > = dir_cosines(N ,C), and let 8 be
the amount of &. We map the rotation to the quaternion

quat(F, C) = cos(6/2) + sin(8/2)(N1i + Noj + Nak)
Then the following identities hold:

a. quat(V,C) = quat(F,C) - quat(V, F) - conj(quat(F, C)).
b. quat(G, C) = quat(G, F) - quat(F ,C).

That is, we can carry out a rotation of a coordinate system in terms
of multiplication by quaternions. Proofs of these equations can be
found in [Bottema and Roth 1979, chap. 131.

6.4 Appendix B: Going Through

In this appendix, we formally define the event of a fluent FF “going
through” a surface PP. The primary purpose in this discussion is to
illustrate the technique and issues that arise in characterizing topo-
logical properties of motion.)

Let PP be a smooth surface homeomorphic to a closed disk. For
the purposes of our discussion here, references to the “boundary” and
“interior” of PP will not be taken relative to the containing three-
dimensional space (in which all of PP is on the boundary). Rather, by

6.4 Appendix B: Going Through 303

PP

FF

Start = End

Figure 6.35 Going through and coming back

the boundary of PP, we mean the curve that forms the edge of PP;
formally, the image of the boundary of the unit disk in two dimensions,
under some homeomorphism between the disk and PP. The interior of
PP s all points not in the boundary. FF is restricted to be a continuous
fluent whose value at each time instant is a regular region. (We will
give the definition for three-dimensional space; the definition for a
two-dimensional object going through a curve is analogous.)

Note that whether FF goes through PP cannot be determined from
the starting and ending positions of the fluent. In fact, FF may go
through PP and yet start and end in the same position. (Figure 6.35).

We begin with the following definition: Let PP be as above. A region
RR is a divided neighborhood of PP if (i) RR is a connected open set
in the three-dimensional space; (ii) RR contains the interior of PP,
but not the boundary of PP; and (iii) the difference RR — PP consists
of two connected components (Figure 6.36). It is easily seen that we
can assign labels “positive” and “negative” to the components of all
divided neighborhoods of PP in a consistent way; that is, so that the
positive components of any two divided neighborhoods intersect with
each other, as do their negative components.

Let X be a point-valued fluent. We say that X threads PP once
positively during the time interval [T, T3] if there is a divided neigh-
borhood NN of PP satisfying the following conditions.

1. value.in(Ty,X) is in the negative component of NN.

304 Space

T s e

PP — Solid Curve
RR — Interior of dotted curve

Figure 6.36 Divided neighborhood

2. value_in(T},X) is in the positive component of NN.
3. For all T € [Ty, T3], valuein(T, X) is in NN.

We say that X threads PP negatively during [Ty, T;] if, for some
divided neighborhood, X goes from the positive to the negative com-
ponents of NN, while always staying in NN. We-say that X does not
thread PP if, for some divided neighborhood NN, X stays in NN dur-
ing I and starts and ends in the same component of NN. (Note that
this includes, as a special case, cases where X does not intersect PP
at all during I.)

Note that these evenfs are mutually exclusive during a single inter-

val I; that is, if X threads PP positively in I, then it does not thread

PP negatively in I, or fail to thread PP in I. However, any of these
event types may be occur within any of the others; for example, it is
possible for X to thread PP positively in I, but to thread PP negatively
in some subinterval I2 of I. (Figure 6.37).

Now, let PP and X be as above, and let [4, B] be a time interval such

that neither value_in(4,X) nor value_in(B,X) are in PP. Assume fur- =

ther that X does not intersect the boundary of PP during the interval
(4, B]. It can be shown that it is possible to break up the interval [4, B]
into a finite sequence of subintervals [4o = A, A1), [A1,A2). .. [Ak-1, Ak =
B] such that in each interval [Ai, Ai41], exactly one of the following
holds: ,

a. X threads PP once positively in [A;, Aiga].

b. X threads PP once negatively in [A;, Aip1]
¢. X does not thread PP in [4;, Aipl

6.5 References 305

PP

C

X threads PP positively between A and D but negatively between B and C

Figure 6.37 Positive and negative threadings

Assign the number 1 to intervals of type (a), —1 to intervals of type
(b), and 0 to intervals of type (c). Add up all these numbers to get a
total k¥ (which may be positive, zero, or negative). Then we say that X
threads PP positively k times in the interval [4, B]. It can be shown
that this total k is the same for any subdivision of [A, B] satisfying
conditions (a) — (c). '

Finally, let FF be a region-valued fluent. We say that FF goes
through PP k times positively during I if the following holds: Let
X be a continuous point-valued fluent. Moreover, let X stay in the
interior of FF during I; that is, for any situation S in 7, value_in(S X)
is an interior point of value_in(S,FF). Then X threads PP k times
positively.

6.5 References

General: [McDermott 1987b] is a survey of work on commonsense
spatial reasoning. [Fleck 1987] presents an alternative spatial topol-
ogy for use in commonsense reasoning. [Randell and Cohn 1989] dis-
cuss and axiomatize a variety of topological and metrical operators.
Cognitive maps: Several research projects have addressed the

problem of constructing and using cognitive maps. Kuipers’ TOUR
program [1977, 1978] and Davis’s MERCATOR program [1986a] are

O —

306 Space

described in the text. Lavin’s DYNAVU [1979] constructs a map of a
landscape of Gaussian hills rising above a plane from simulated vi-
sual input, recording the coordinates and height of the peaks with
some measure of uncertainty. Rowat’s UTAK [1981] constructs a cog-
nitive map of a two-dimensional layout of objects and uses it to plan
the manipulation of objects. It used an occupancy array. McDermott’s
SPAM [McDermott and Davis 1984] creates a three-dimensional map
from a series of symbolic constraints. SPAM uses multiple frames of
references, whose relative positions are partially specified by interval
bounds on length ratio, origin coordinates, and angles between coordi-
nate axes. Figures are represented as unions and differences of cylin-
ders with spherical endcaps. The NX program [Kuipers and Levitt
1988] constructs a cognitive map consisting of a collection of perceptu-
ally distinguishable places, with sensory-motor rules for getting from
one to another, from simulated sonar input. Moravec [1988] uses a
bit-map representation of space, with cells labeled by probability of
occupancy.

Closely related is the problem of reconstructing a spatial arrange-
ment from constraints. Ambler and Popplestone [1975] study combin-
ing constraints derived from coplanarity of faces of given polyhedra.

Physical reasoning: Some work on physical reasoning has stud-
ied geometric features important in physics. Much of this is discussed
further in Chapter 7. De Kleer’'s NEWTON [1975], discussed in Sec-
tion 6.2.6, represented curves in two dimensions with a distinguished
vertical dimension in terms of the signs of their derivatives and the
relative heights of distinguished points. He used this representation
to find the behavior of a point object moving on such a curve. [Forbus
1979] considered a similar two-dimensional world where the ground is
a polyline whose edges are specified in terms of the sign of the normal
and the relative heights of their endpoints. He used this representa-
tion to find a physically meaningful decomposition of free space into
regions bounded by the ground and horizontal and vertical lines, and
to determine the behavior of elastic balls moving in this world. [Hayes
1978] studied representations for the shapes of containers of liquids
in a three-dimensional space with a distinguished vertical. Hayes’s
representations combined physical properties with spatial properties;
the spatial aspects of his representations mostly relate to topology
and the vertical dimension. [Davis 1988] discussed a variety of spa-
tial concepts necessary for qualitative descriptions of the dynamics of
solid objects; in particular, differential surface properties. [Shoham
1985] analyses the differential motions possible for rigid objects con-
strained by other rigid objects in two dimensions. Recent work on the
kinematics of mechanisms ([Gelsey 1987; Joskowicz 1987]) has been

6.5 References 307

largely concerned with finding the extended motions possible to a piece
or collection of pieces in a three-dimensional mechanism. Faltings
[1987a,b] discusses the use of configuration space in the analysis of
mechanisms and gives a thorough analysis of the configuration space
of pairs of polygonal objects, each with one degree of freedom, such as
pairs of interlocking gears.

One physical-reasoning problem that has been studied in great depth
is the “piano movers” problem: how to move an object around obsta-
cles from a starting to an ending position. Heuristics for various forms
of this problem are discussed in [Brooks 1982], [Thorpe 1984] and
[Wallace 1984]. The problem has also been studied extensively from
the point of view of computational geometry; [Schwartz Sharir, and
Hopcroft, 1987] contains many important papers in this area.

Natural language: The interpretation of spatial information in
natural-language text has been a central part of a number of AI pro-
grams, including [McDermott 1974], [Boggess 1979], [Novak 1977],
[Riesbeck 19801, [Waltz 1980], and [Retz-Schmidt 1988].

Vision and robotics: Much of the work in spatial reasoning in
AT has been done in the contexts of vision and of robotics. Vision re-
search in this area is mainly concerned with representing figures and
shapes so that they can be easily matched against images. [Ballard
and Brown 1982] contains a fine survey of this research. The CSG
representation discussed in Section 6.2.2 is modeled on that used by
Brooks [1981], who applied constructive solid geometry to visual recog-
nition. Robotics has mostly worked on the problem of determining the
figure occupied by a manipulator, given joint positions, and of finding
a method of getting a manipulator or an entire mobile robot with con-
tents into a desired configuration. This research is surveyed in [Craig
1986].

Other computer science: Spatial reasoning is also central in
other areas in computer science, particularly computer-aided design,
computer graphics, and computational geometry. Of these, computer-
aided design is the closest in its interests to Al [Requicha 1980]
surveys representations of three-dimensional figures, and [Requicha
1983] deals with questions of tolerances. Computational geometry
seeks to find very efficient algorithms for geometrical problems; like
most work in algorithms, it tends to focus more on issues of efficiency
rather than expressiveness. [Hoffmann 1989] surveys shape repre-
sentations from the point of computational geometry. As mentioned
above, [Schwartz, Sharir, and Hopcroft 1987] contains many impor-
tant papers on the piano-movers problem.

Psychology: Spatial reasoning has been studied extensively by cog-

308 Space

nitive psychologists, possibly because of the ease of designing experi-
ments. [Piaget and Inhelder 1967] studies the development of spatial
reasoning in children. [Downs and Stea 1973a] surveys psychological
studies of cognitive mapping. [Downs and Stea 1973b] is a collection
of articles on spatial reasoning generally. [Tversky 1981] presents
some interesting results on characteristic errors in cognitive maps.
The nature of mental imagery has been the subject of substantial de-
bate among cognitive scientists. The “pro-imagery” side is argued in
[Kosslyn 1980]; the “anti-imagery” side is argued in [Pylyshyn 1984]
and [Hinton 1979].

6.6 Exercises

(Starred problems are more difficult.)

1. Consider an occupancy-array spatial representation in which each
region is marked in each cell with one of the following labels: F
(full), P (partial), E (empty), FP (full or partial), EP (empty or
partial, or DK (don’t know).

(a) Boolean operation on regions can be.carried out cell by cell.
That is, it is possible to compute functions like the intersection
of two regions AA and BB by looping through each cell X in
the array, and computing the intersection of AA and BB on X.
To do this we would use rules like “If AA is full in X, and BB
is full or partial in X, then A intersection B is full or partial
in X.” Such rules can be displayed in a table of AA values by
BB values; the above rule would place “FP” as the value in
the “F” row and “FP” column. Construct such tables for the

- intersection, union, and complementation operations.

(b) Do the tables constructed in part a satisfy De Morgan’s laws?:
Do they have the property that union can be distributed over
intersection, and vice versa? Do they observe the law of asso-
ciativity?

(c) Describe an algorithm that takes as input two regions AA and
BB and determines whether AA is a subset of BB. (Note: The
answer can be “True,” “False,” or “Maybe.”)

(d) * Describe an algorithm that takes as input two regions AA
and BB and returns upper and lower bounds on the minimal
distance between AA and BB. Your algorithm should return a
lower bound that is as tight as possible, given the information,
and an upper bound that is within one grid length of the best-
possible upper bound, given the information.

6.6 Exercises 309

(e) *** Give an algorithm that gives a tight upper bound on the
minimal distance between two regions. (Note: If you solve this
problem, please inform the author of this book.)

2. Let AA,BB,CC,DD range over connected, bounded, regular, non-

3.

4.

empty regions in the X-Z planes. We wish to define the concept
of AA being “above” BB, and we have a number of desirable prop-
erties and proposed definitions. Let x(P) and z(P) be the x and z
coordinates of point P.

Definitions:

(a) AA is above BB if, for every point A in AA and B in BB, z(A)
> z(B).

(b) AA is above BB if, for every point A in AA, there is a point B
in BB such that z(A) > z(B).

(c) AA is above BB if, for every point B in BB there is a point A
in AA such that z(A) > z(B) and x(A) = x(B).

(d) AA is above BB if z(A) > z(B) for every point A in AA and B
in BB such that x(A) = x(B).

Axioms:

W. If AA is above BB then BB is not above AA.

X. If AAis above BB and CC is a subset of AA, then CC is above
BB.

Y. If AA is above BB and DD is a subset of BB, then AA is above
DD.

Z. If AA is above BB, then, if AA is “moved downward” without
intersecting BB, then the result of that motion is above BB.
Formally, if AA is above BB and, for all t € [0,k], AA — ¢3 is
disjoint from BB, then AA —k; is above BB.

(a) State which of these axioms are true under which of these
definitions.

(b) Can you find a definition of “above” that satisfies all these prop-
erties? Can you find such a definition that at all corresponds
to the standard meaning of “above™

Find the complete transition graph for the attainable states of the
cart on the track in Figure 6.29.

Extend the CSG representation of a human in Table 6.8 by adding
the right upper leg and its position relative to the torso. The con-
straints you give should have some distant relation to the variation
possible for a human being and the range of positions that a hu-
man can achieve. Do not worry about achieving any great degree
of precision; the representation is too crude to achieve it.

310 Space

5. Figure 6.1 shows a shape approximated by two different polygons.
Show how these two approximations can be expressed in the MER-
CATOR representation.

6. * Using the information in Table 6.9, find a lower bound on the
distance between the lake and the road. (Your demonstration of
the lower bound need not be rigorously complete. The lower bound
need not be tight, but it should be greater than two feet.)

