

Bibliography

The chapters where a work is cited are indicated by the numbers in brackets at the end of a listing.

IJCAI is an abbreviation for Proceedings of the International Joint Conference on Artificial Intelligence. AAAI is an abbreviation for Proceedings of the National Conference on Artificial Intelligence, an annual conference of the American Association of Artificial Intelligence.

- Addanki, Sanjaya, Roberto Cremonini, and J. Scott Penberthy. [1989]. Reasoning about Assumptions in Graphs of Models. In [Weld and de Kleer 1989] 546-552. [1]
- Agre, Philip E., and David Chapman..[1987]. Pengi: An Implementation of a Theory of Activity. *AAAI*. [9]
- Allen, James. [1983]. Maintaining Knowledge about Temporal Intervals. *Comm. ACM* 26:832-843. Reprinted in [Weld and de Kleer, 89]. [4]
- Allen, James. [1984]. Towards a General Theory of Action and Time. *Artificial Intelligence* 23:123-154. [5,7,9]
- Allen, James, and Pat Hayes. [1985]. A Common-Sense Theory of Time. *IJCAI* 528-531. [4]
- Ambler, A. P., and R.J. Popplestone. [1975]. Inferring the Position of Bodies from Specified Spatial Relations. *Artificial Intelligence* 6:157-174. [6]
- Andrews, P. [1986]. *An Introduction to Mathematical Logic and Type Theory: Truth through Proof*. New York: Academic Press. [2]
- Appelt, Douglas. [1982]. Planning Natural-Language Utterances to Satisfy Multiple Goals. SRI Artificial Intelligence Center Technical Note 259. Menlo Park, Calif. [2,10]
- Austin, J. L. [1961]. *Philosophical Papers*. Oxford University Press. [1,10]

- Ayer, A.J. [1946]. *Language, Truth, and Logic*. 2d ed. London: Golancz. [1]
- Baker, Andrew. [1989]. A Simple Solution to the Yale Shooting Problem. *Proc. First Int'l. Conf. on Principles of Knowledge Representation and Reasoning*, 11–21. San Mateo, Calif.: Morgan Kaufmann Publishers. [5].
- Ballantyne, A. M., and W. W. Bledsoe. [1977]. Automatic Proofs of Theorems in Analysis Using Nonstandard Techniques. *J. ACM* 24 (no. 3):353–374. [4]
- Ballard, Dana, and Christopher Brown. [1982]. *Computer Vision*. Englewood Cliffs, N.J.: Prentice Hall. [6]
- Barwise, Jon. [1975]. *Admissible Sets and Structures in an Approach to Definability Theory*. New York: Springer-Verlag. [2]
- Barwise, Jon, and John Etchemendy. [1987]. *The Liar: An Essay into Truth and Circularity*. Oxford University Press. [2]
- Barwise, Jon, and John Perry. [1983]. *Situations and Attitudes*. Cambridge, Mass.: MIT Press. [2]
- Bobrow, Daniel, ed. [1985]. *Qualitative Reasoning about Physical Systems*. Cambridge, Mass.: MIT Press. [4,7].
- Bobrow, Daniel, and Terry Winograd. [1977]. An Overview of KRL, a Knowledge Representation Language. *Cognitive Science* 1 (no. 1):3–46. Reprinted in [Brachman and Levesque 1985]. [1].
- Boggess, Lois C. [1979]. Computational Interpretation of English Spatial Prepositions. U. of Illinois Coordinated Science Lab, Tech. Rep. T-75. [6]
- Bonissone, P. [1987]. Plausible Reasoning. In S. Shapiro, ed. *Encyclopedia of Artificial Intelligence*. New York: Wiley and Sons. [3]
- Borning, A. [1977]. ThingLab — An Object-Oriented System for Building Simulations Using Constraints. *IJCAI* 497–499. [4]
- Bottema, O., and B. Roth. [1979]. *Theoretical Kinematics*. Amsterdam: North-Holland Pubs.
- Brachman, Ronald. [1985]. On the Epistemological Status of Semantic Networks. In [Brachman and Levesque 1985]. [1]
- Brachman, Ronald, and Hector Levesque, eds. [1985]. *Readings in Knowledge Representation*. San Mateo, Calif.: Morgan Kaufmann Publishers. [1]

- Brachman, Ronald, Hector Levesque, and Ray Reiter. [1989]. *Proc. of the First Int'l Conf. on Principles of Knowledge Representation and Reasoning (KR89)*. San Mateo, Calif.: Morgan Kaufmann Publishers. [1]
- Brooks, Rodney. [1981]. Symbolic Reasoning among 3-D Models and 2-D Images. *Artificial Intelligence* 17 (nos. 1-3):285-348. [4,6]
- Brooks, Rodney. [1982]. Solving the Find-Path Problem by Good Representation of Free Space. *AAAI* 381-386. [6]
- Brown, F., ed. [1987]. *The Frame Problem in Artificial Intelligence. Proc. of the 1987 Workshop*. San Mateo, Calif.: Morgan Kaufmann Publishers. [5]
- Bundy, Alan. [1978]. Will it Reach the Top? Prediction in the Mechanics World. *Artificial Intelligence* 10:129-146. [7]
- Bunt, H. [1985]. The Formal Representation of (Quasi-)Continuous Concepts. In [Hobbs and Moore 1985], 1-36. [7]
- Burge, T. [1977]. Belief *De Re*. *J. Philosophy*, June, 338-362. [2]
- Bylander, Tom, and B. Chandrasekaran. [1985]. Understanding Behavior through Consolidation. *IJCAI*, 450-454. [7]
- Carnap, Rudolf. [1967]. *The Logical Structure of the World: Pseudo-problems in Philosophy*. Translated by Rolf A. George. Berkeley, Calif.: University of California Press. [1]
- Chapman, David. [1987]. Planning for Conjunctive Goals. *Artificial Intelligence* 32:333-378. [9].
- Charniak, Eugene. [1981]. A Common Representation for Problem-Solving and Language-Comprehension Information. *Artificial Intelligence* 16 (no. 3): 225-255. [9]
- Charniak, Eugene. [1983]. The Bayesian Basis of Common Sense Medical Diagnosis. *AAAI* 70-73. [3]
- Charniak, Eugene. [1988]. Motivation Analysis, Abductive Unification, and Nonmonotonic Equality. *Artificial Intelligence* 34:275-296. [3]
- Charniak, Eugene, and Drew McDermott. *Introduction to Artificial Intelligence*. Reading, Mass.: Addison-Wesley. [1,10]
- Charniak, Eugene, Christopher Riesbeck, Drew McDermott, and James Meehan. [1988]. *Artificial Intelligence Programming*. 2d ed. Hillsdale, N.J.: Erlbaum Associates. [1]

- Cheeseman, Peter. [1985]. In Defense of Probability. *IJCAI* 1002–1009. [3]
- Chou, Shang-ching. [1986]. Methods and Examples in Mechanical Theorem Proving. Tech. Rep. No. 53, Institute for Computing Science, University of Texas at Austin. [6]
- Church, Alonzo. [1956]. *Introduction to Mathematical Logic*. Princeton University Press. [2]
- Cohen, Paul R. [1985]. *Heuristic Reasoning about Uncertainty: An Artificial Intelligence Approach*. San Mateo, Calif.: Morgan Kaufmann Publishers. [3]
- Cohen, Philip, and Hector Levesque. [1987]. Persistence, Intention, and Commitment. In [Georgeff and Lansky 1987]. [9]
- Cohn, A. G. [1985]. On the Solution of Schubert's Steamroller in Many Sorted Logic. *IJCAI*, 1169–1174. [2]
- Collins, John W., and Kenneth Forbus. [1987]. Reasoning about Fluids Via Molecular Collections. *AAAI*, 590–595. Reprinted in [Weld and de Kleer 1989]. [7]
- Craig, John J. [1986]. *Introduction to Robotics: Mechanics and Control*. Reading, Mass.: Addison Wesley. [6]
- Davidson, Donald. [1967]. The Logical Form of Action Sentences. In *The Logic of Decision and Action*, ed. Nicholas Rescher. Pittsburgh University Press. Reprinted in *Essays on Actions and Events*. Oxford University Press, 1980. [5]
- Davidson, Donald. [1974]. Belief and the Basis of Meaning. *Synthese* 27:309–323. Reprinted in *Inquiries into Truth and Interpretation*. Oxford University Press. [8]
- Davidson, Donald. [1975]. Thought and Talk. In *Mind and Language*, ed. S. Guttenplan. Oxford University Press. Reprinted in *Inquiries into Truth and Interpretation*. Oxford University Press, 1984. [1,8]
- Davis, Ernest. [1984]. A High Level Real-Time Programming Language, NYU Tech. Report No. 145. [5]
- Davis, Ernest. [1986]. *Representing and Acquiring Geographic Knowledge*. London: Pitman Publishing. [4,6]

- Davis, Ernest. [1987a]. Reasoning, Common Sense. In *The Encyclopedia of Artificial Intelligence*, ed. S. Shapiro. New York: John Wiley. [1]
- Davis, Ernest. [1987b]. Constraint Propagation with Interval Labels. *Artificial Intelligence*, 32:281–332. [4]
- Davis, Ernest. [1988a]. A Logical Framework for Commonsense Predictions of Solid Object Behavior. *AI in Engineering*, 3 (no. 3):125–140. [7]
- Davis, Ernest. [1988b]. Inferring Ignorance from the Locality of Visual Perception. *AAAI*, 786–790. [8]
- Davis, Ernest. [1989a]. Order of Magnitude Reasoning in Qualitative Differential Equations. In [Weld and de Kleer 1989]. [4]
- Davis, Ernest. [1989b]. Solutions to a Paradox of Perception with Limited Acuity. In [Brachman, Levesque, and Reiter 1989]. [8]
- Davis, Martin, and Reuben Hersh. [1972]. Nonstandard Analysis. *Scientific American* (June) 78–84. [4]
- Dawes, Robyn M. [1988]. *Rational Choice in an Uncertain World*. Harcourt Brace Jovanovich. [3]
- de Kleer, Johan. [1975]. Qualitative and Quantitative Knowledge in Classical Mechanics. Tech. Report 352, MIT AI Lab. [6,7]
- de Kleer, Johan. [1986]. An Assumption-Based Truth Maintenance System. *Artificial Intelligence*, 28:127–162. Reprinted in [Ginsberg 1987], 280–297. [1]
- de Kleer, Johan, and Daniel Bobrow. [1984]. Qualitative Reasoning with Higher-Order Derivatives. *AAAI*, 86–91. Reprinted in [Weld and de Kleer 1989]. [4]
- de Kleer, Johan, and John Seely Brown. [1985]. A Qualitative Physics Based on Confluences. In [Bobrow 1985]. [4,7]
- de Kleer, Johan, and John Seely Brown. [1986]. Theories of Causal Ordering. *Artificial Intelligence*, 29:33–62. Reprinted in [Weld and de Kleer 1989]. [7]
- Dean, Thomas. [1984]. Planning and Temporal Reasoning Under Uncertainty. *IEEE Conf. on Knowledge Representation*. [4]
- Dean, Thomas. [1985]. Temporal Reasoning Involving Counterfactuals and Disjunctions. *ICJAI*, 1060–1062. [5]

- Dean, Thomas, and Mark Boddy. [1988]. Reasoning about Partially Ordered Events. *Artificial Intelligence*, 36:375–387. Reprinted in [Weld and de Kleer 1989]. [5]
- Dean, Thomas, and Keiji Kanazawa. [1988]. Probabilistic Temporal Reasoning. *AAAI*, 524–529. [5]
- Dean, Thomas, James Firby, and David Miller. [1989]. Hierarchical Planning Involving Deadlines, Travel Times, and Resources. *Computational Intelligence*, 3. [9]
- DeMillo, R. A., R. J. Lipton, and A. J. Perlis. [1979]. Social Processes and Proofs of Theorems and Programs. *Comm. ACM*, 22:271–280. [1].
- Dennett, Daniel. [1978]. *Brainstorms*. Cambridge, Mass.: MIT Press. [8]
- Dennett, Daniel. [1981]. Beyond Belief. In *Thought and Object*, ed. Andrew Woodfield. Oxford University Press. [2,8]
- Downs, Roger M., and David Stea. [1973a]. *Cognitive Maps and Spatial Behavior: Process and Products*. Chicago, Ill.: Aldine Publishing Co. [6]
- Downs, Roger M., and David Stea. [1973b]. *Image and Environment*. Chicago, Ill.: Aldine Publishing Co. [6]
- Doyle, Jon. [1979]. A Truth-Maintenance System. Tech. Memo 521, MIT AI Lab. [4]
- Doyle, Richard. [1989]. Reasoning about Hidden Mechanisms. *IJCAI*, 1343–1349. [7]
- Drummond, Mark. [1987]. A Representation of Action and Belief for Automatic Planning Systems. In [Georgeff and Lansky 1987]. [9]
- Dyer, Michael. [1983]. *In-Depth Understanding: A Computer Model of Integrated Processing for Narrative Comprehension*. Cambridge, Mass.: MIT Press. [9,10]
- Etherington, David, and Ray Reiter. [1983]. On Inheritance Hierarchies with Exceptions. *AAAI*, 104–108. Reprinted in [Ginsberg 1987]. [3]
- Fagin, Ronald, and Joseph Halpern. [1985]. Belief, Awareness and Limited Reasoning. *IJCAI*, 491–501. [8]

- Fahlman, Scott. [1974]. A Planning System for Robot Construction Tasks. *Artificial Intelligence*, 4:1-49. [7,9]
- Faltings, Boi. [1987a]. Qualitative Place Vocabularies for Mechanisms in Configuration Space. Tech. Rep. UIUCDCS-R-87-1360, University of Illinois at Urbana. [6,7]
- Faltings, Boi. [1987b]. Qualitative Kinematics in Mechanisms. *IC-JAI*, 436-442. Reprinted in [Weld and de Kleer 1989]. [6,7]
- Faltings, Boi, Emmanuel Baechler, and Jeff Primus. [1989]. Reasoning about Kinematic Topology. *IJCAI*, 1331-1336. [7]
- Feys, R. [1937]. Les Logiques Nouvelles des Modalites. In *Revue Neoscholastique de Philosophie*. Vol. 40, 517-553, 1937, and vol. 41, 217-252, 1938. [2]
- Fikes, Richard E., and Nils J. Nilsson. [1971]. STRIPS: A new approach to the application of theorem proving to problem solving. *Artificial Intelligence* 2:189-208. [5,9]
- Fine, Terrence L. [1973]. *Theories of Probability: An Examination of Foundations*. New York: Academic Press. [3]
- Firby, James. [1989]. Adaptive Execution in Complex Dynamic Worlds. Research Report No. 672, Yale University. [9].
- Fleck, Margaret. [1987]. Representing Space for Practical Reasoning. *IJCAI*, 728-730. [6]
- Fodor, Jerry. [1975]. *The Language of Thought*. Harvard University Press. [1]
- Forbus, Kenneth. [1979]. A Study of Qualitative and Geometric Reasoning in Reasoning about Motion. Tech. Report No. 615, MIT AI Lab. [6,7]
- Forbus, Kenneth. [1985]. Qualitative Process Theory. In [Bobrow 1985]. [7]
- Forbus, Kenneth. [1986]. Interpreting Measurements of Physical Systems. *AAAI*, 113-117. [7]
- Forbus, Kenneth. [1989]. The Qualitative Process Engine. In [Weld and de Kleer 1989]. [7]
- Forbus, Kenneth, Paul Nielsen, and Boi Faltings. [1987]. Qualitative Kinematics: A Framework. *IJCAI*, 430-435. [7]

- Funt, Brian. [1989]. Problem Solving with Diagrammatic Representations. *Artificial Intelligence* 13:201–230. Reprinted in [Brachman and Levesque 1985]. [7]
- Gaifman, Haim. [1983]. Towards a Unified Concept of Probability. *Proc. Int'l. Conf. for Logic, Philosophy, and Methodology of Science*. Amsterdam: North-Holland Publishing.
- Gaifman, Haim. [1986]. A Theory of Higher Order Probabilities. In [Halpern and Moses 1986] 275–292.
- Gallin, D. [1975]. *Intensional and Higher Order Modal Logics*. New York: American Elsevier. [2]
- Geertz, Clifford. [1983]. Common Sense as a Cultural System. In *Local Knowledge: Further Essays in Interpretive Anthropology*. New York: Basic Books. [1]
- Gelernter, H. [1963]. Realization of a Geometry-Theorem Proving Machine. In *Computers and Thought*. eds. E. Feigenbaum and J. Feldman. New York: McGraw Hill.
- Gelsey, Andrew. [1987]. Automated Reasoning about Machine Geometry and Kinematics, *Third IEEE Conf. on Artificial Intelligence Applications*, 182–187. Reprinted in [Weld and de Kleer 1989]. [6,7]
- Genesereth, Michael, and Nils Nilsson. [1987]. *Logical Foundations of Artificial Intelligence*. San Mateo, Calif.: Morgan Kaufmann Publishers. [1,2,3].
- Gentner, Dedre, and Albert Stevens, eds. [1983]. *Mental Models*. Hillsdale, N.J.: Erlbaum Associates.
- Georgeff, Michael. [1988]. An Embedded Reasoning and Planning System. Australian Artificial Intelligence Center. [9]
- Georgeff, Michael, and Amy Lansky, eds. [1987]. *Reasoning about Actions and Plans: Proc. 1986 Workshop, Timberline, Oregon*. San Mateo, Calif.: Morgan Kaufmann Publishers. [9]
- Gettier, E. [1967]. Is Justified True Belief Knowledge? In *Knowledge and Belief*, ed. A. P. Griffiths. 144–146. Oxford University Press. [8]
- Ginsberg, Matthew L. [1986]. Counterfactuals. *Artificial Intelligence*, 30:35–79. [2]

- Ginsberg, Matthew L., ed. [1987]. *Readings in Nonmonotonic Reasoning*. San Mateo, Calif.: Morgan Kaufmann Publishers. [3]
- Goodman, N. [1961]. About. In *Mind*. 1-24. [2]
- Green, Cordell. [1969]. Application of Theorem Proving to Problem Solving. *IJCAI*, 219-240. [5,9].
- Grice, H. P. [1957]. Meaning. *Philosophical Review* 66:377-388. [3,10]
- Grosof, Benjamin. [1988]. Non-monotonicity in Probabilistic Reasoning. In [Lemmer and Kanal 1988]. [3]
- Gupta, A. [1982]. Truth and Paradox. *J. Philosophical Logic* 11, no. 1. [2]
- Haas, Andrew. [1983]. The Syntactic Theory of Belief and Knowledge. Bolt, Baranek, and Newman, Report No. 5368. [8]
- Haas, Andrew. [1986]. A Syntactic Theory of Belief and Action. *Artificial Intelligence* 28 (no. 3):245-292. [8]
- Halmos, Paul. [1960]. *Naive Set Theory*. New York: Van Nostrand Reinhold. [2]
- Halpern, Joseph, ed. [1986]. *Theoretical Aspects of Reasoning About Knowledge*. San Mateo, Calif.: Morgan Kaufmann. [8]
- Halpern, Joseph, and Yoram Moses. [1985]. A Guide to the Modal Logics of Knowledge and Belief. *IJCAI*, 480-490. [8]
- Hanks, Steven, and Drew McDermott. [1987]. Nonmonotonic Logic and Temporal Projection. *Artificial Intelligence* 33:379-412. [5]
- Harel, D. [1979]. First-Order Dynamic Logic. In *Lecture Notes in Computer Science*, eds. Goos and Hartmanis. Vol. 68. New York: Springer-Verlag. [5]
- Hayes, Patrick. [1977]. In Defense of Logic. *IJCAI*, 559-565. [1]
- Hayes, Patrick. [1978]. The Naive Physics Manifesto. In *Expert Systems in the Micro-electronic Age*, ed. D. Michie. Edinburgh, Scotland: Edinburgh University Press. Revised and reprinted in [Hobbs and Moore 1985]. [1,4,5,6,7]
- Hayes, Patrick. [1979a]. Naive Physics 1: Ontology for Liquids. Originally written 1979. Reprinted in [Hobbs and Moore 1985]. [6,7]

- Hayes Patrick. [1979b]. The Logic of Frames. In *Frame Conceptions and Text Understanding*. ed. D. Mentzing. Berlin: Walter de Gruyter and Co. Reprinted in [Brachman and Levesque 1985]. [3]
- Hendler, James. [1989]. Abstraction and Reaction. *Workshop on Knowledge, Perception, and Planning, IJCAI*.
- Hewitt, Carl. [1969]. PLANNER: A language for proving theorems in robots. *IJCAI*, 295-301. [9].
- Hintikka, Jaako. [1962]. *Knowledge and Belief*. Ithaca, N.Y.: Cornell University Press. [2,8]
- Hintikka, Jaako. [1969]. Semantics for Propositional Attitudes. In *Reference and Modality*, ed. L. Linsky. 145-167. Oxford University Press. [8]
- Hinton, Geoff. [1979]. Some demonstrations of the effects of structural descriptions in mental imagery. *Cognitive Science* 3. [6]
- Hobbs, Jerry. [1985a]. Introduction. In [Hobbs and Moore 1985]. [1]
- Hobbs, Jerry. [1985b]. Granularity. *IJCAI*, 432-435. Reprinted in [Weld and de Kleer 1989]. [1]
- Hobbs, Jerry. [1985c]. Ontological Promiscuity. *Proc. 23rd Annual Meeting of the Association for Computational Linguistics* (July). Chicago, Illinois. [2]
- Hobbs, Jerry. [1987]. World Knowledge and Word Meaning. *Proc. TINLAP-3*. Las Cruces, N.M. [1]
- Hobbs, Jerry, and Robert Moore, eds. [1985]. *Formal Theories of the Commonsense World*. Norwood, N.J.: ABLEX Publishing. [1]
- Hoffman, Christoph. [1989]. *Geometric and Solid Modeling: An Introduction*. San Mateo, Calif.: Morgan Kaufmann Publishers. [6]
- Hofstadter, Douglas. [1979]. *Godel, Escher, Bach: An Eternal Golden Braid*. New York: Basic Books. [2]
- Hofstadter, Douglas. [1985]. *Metamagical Themes*. New York: Basic Books. [2]
- Hughes, G. E., and M. J. Cresswell. [1968]. *An Introduction to Modal Logic*. London: Methuen and Co. [2,8]
- Hummel, Robert, and Michael Landy. [1986]. Evidence as opinions of experts. *Proc. Workshop on Uncertainty in AI*, 135-143. Philadelphia, Pa.

- Iwasaki, Yumi, and Herbert Simon. [1986]. Causality in Device Behavior. *Artificial Intelligence* 29:3-32. Reprinted in [Weld and de Kleer 1989]. [7]
- Jaynes, Edwin T. [1979]. Where Do We Stand on Maximum Entropy? In *The Maximum Entropy Principle*, eds. Raphael D. Levine and Myron Tribus. Cambridge, Mass.: MIT Press. [3]
- Johnson-Laird, P. N., and P. C. Wason. [1970]. A Theoretical Analysis of Insight into a Reasoning Task. *Cognitive Psychology* 1:134-148.
- Joskowicz, Leo. [1987]. Shape and Function in Mechanical Devices. *AAAI*, 611-618. Reprinted in [Weld and de Kleer 1989]. [6,7]
- Joskowicz, Leo, and Sanjaya Addanki. [1988]. From Kinematics to Shape: An Approach to Innovative Design. *IJCAI*, 347-352. [7]
- Kaelbling, Leslie P. [1986]. An Architecture for Intelligent Reactive Systems. In [Georgeff and Lansky 1987].
- Kahn, K., and G. A. Gorry. [1977]. Mechanizing Temporal Knowledge. *Artificial Intelligence*, 87-108.
- Kahneman, Daniel, and Amos Tversky. [1982]. On the Study of Statistical Intuition. *Cognition*, 11:123-141. [3]
- Kanal, Laveen N., and John F. Lemmer. [1986]. *Uncertainty in Artificial Intelligence*. Amsterdam and New York: Elsevier Science Publishers. [3]
- Kaplan, David. [1968]. Quantifying In. *Synthese* 19:178-214. [2]
- Kaplan, David, and Richard Montague. [1960]. A Paradox Regained. *Notre Dame Journal of Formal Logic* 1 (no. 3):79-90. Also in [Montague 1974]. [2,8]
- Kautz, Henry. [1986]. The Logic of Persistence. *AAAI*, 401-405. [5]
- Kautz, Henry, and James Allen. [1986]. Generalized Plan Recognition. *AAAI*, 32-37. [9]
- Kilmister, C. W., and J. E. Reeve. [1966]. *Rational Mechanics*. New York: American Elsevier. [7]
- Kolmogorov, A. N. [1950]. *Foundations of the Theory of Probability*. Translated by Nathan Morrison. New York: Chelsea Publishing.
- Kolodner, Janet. [1984]. *Conceptual Memory: A Computational Model*. Hillsdale, N.J.: Erlbaum. [3]

- Konolige, Kurt. [1982]. A First Order Formalization of Knowledge and Action for a Multi-agent Planning System. In *Machine Intelligence* 10, J. E. Hays and D. Michie. [8]
- Konolige, Kurt. [1985]. Belief and Incompleteness. In [Hobbs and Moore 1985]. [2,8]
- Kosslyn, Stephen. [1980]. *Image and Mind*. Harvard University Press. [6]
- Kowalski, Robert. [1979]. *Logic for Problem Solving*. New York: Elsevier Publishing. [1]
- Kripke, Saul. [1963a]. Semantical Considerations on Modal Logic. *Acta Philosophica Fennica, Modal and Many-Valued Logics* 83–94; Reprinted in *Reference and Modality*, ed. L. Linsky. London: Oxford University Press, pp. 63–72. [2]
- Kripke, Saul. [1963b]. Semantical Analysis of Modal Logic. *Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik*, Vol. 9, pp. 67–96. [2]
- Kripke, Saul. [1972]. Naming and Necessity. In *Semantics of Natural Language*. eds. D. Davidson and G. Harmon. Dordrecht, Holland: D. Reidel Publishing Co. pp. 253–355; Published as a book by Harvard University Press, 1980. [1, 2]
- Kripke, Saul. [1975]. Outline of a Theory of Truth. *Journal of Philosophy* 72:690–716. [2]
- Kube, Paul. [1985]. Cognitive Propositional Attitudes. Chapter 5 in Commonsense Summer: Final Report, ed. J. Hobbs. Report No. CSLI-85-35, Center for the Study of Language and Information, Stanford University. [8]
- Kuipers, Benjamin. [1975]. A Frame for Frames. In *Representation and Understanding*. eds. D. Bobrow and A. Collins. New York: Academic Press. [3]
- Kuipers, Benjamin. [1977]. Representing Knowledge of Large Scale Space. Tech. Rep. 418, MIT AI Lab. [6]
- Kuipers, Benjamin. [1978]. Modelling Spatial Knowledge. *Cognitive Science* 2 (no. 2):129–154. [6]
- Kuipers, Benjamin. [1985]. Commonsense Reasoning about Causality: Deriving Behavior from Structure. In [Bobrow 1985, pp. 169–204]. [7]

- Kuipers, Benjamin. [1986]. Qualitative Simulation. *Artificial Intelligence* 29:289–338. Reprinted in [Weld and de Kleer 1989] [4,7].
- Kuipers, Benjamin, and Charles Chiu. [1987]. Taming Intractible Branching in Qualitative Simulation. *AAAI*, 1079–1085. Reprinted in [Weld and de Kleer 1989]. [4]
- Kuipers, Benjamin, and Tod Levitt. [1988]. Navigation and Mapping in Large-Scale Space. *AI Magazine* 9 (no. 2):25–46. [6]
- Ladkin, Peter. [1987]. Models of Axioms for Time Intervals. *AAAI*, 234–239. [4].
- Lavin, Mark. [1979]. Analysis of Scenes from a Moving Viewpoint. In *Artificial Intelligence: An MIT Perspective*, eds. Patrick Winston and Richard Henry Brown. Vol. 2, MIT Press, pp. 185–208. [6]
- Lehnert, Wendy. [1981]. Affect and Memory Representations. *Proc. Third Conf. Cognitive Science Society*, 78–83. Berekley, Calif. [8]
- Lemmer, John F., and Laveen N. Kanal. [1988]. *Uncertainty in Artificial Intelligence* 2. Amsterdam and New York: Elsevier Science Publishers. [3]
- Lenat, Doug, and R. F. Guha. [1988]. The World According to CYC. MCC Tech. Rep. No. ACA-AI-300-88. [1]
- Lenat, Doug, Mayank Prakash, and Mary Shepherd. [1986]. CYC: Using Common Sense Knowledge to Overcome Brittleness and Knowledge Acquisition Bottlenecks. *AI Magazine* 6 (no. 4):65–85. [1]
- Levesque, Hector. [1984]. A Logic of Explicit and Implicit Belief. *AAAI*, 198–202. [9]
- Lewis, C. I., and C. H. Langford. [1932]. *Symbolic Logic*. New York: Dover. [2]
- Lewis, D. [1973]. *Counterfactuals*. Harvard University Press. [2]
- Lifschitz, Vladimir. [1985]. Closed-World Databases and Circumscription. *Artificial Intelligence* 27:229–235. Reprinted in [Ginsberg 1987]. [3]
- Lifschitz, Vladimir. [1987a]. Formal Theories of Action. In [Brown 1987]. [5]
- Lifschitz, Vladimir. [1987b]. On the Declarative Semantics of Logic Programs with Negation. In [Ginsberg 1987]. [3]

- Lifschitz, Vladimir. [1987c]. On the Semantics of STRIPS. In [Georgeff and Lansky 1987]. [5,9]
- Lifschitz, Vladimir, and John McCarthy, eds. [1989]. *Formalizing Common Sense: Papers by John McCarthy*. Norwood, N.J.: Ablex Publishing. [1].
- Malik, J., and T.O. Binford. [1983]. Reasoning in Time and Space. *IJCAI*, 343-345. [4]
- Manna, Zohar, and Richard Waldinger. [1987]. A Theory of Plans. In [Georgeff and Lansky 1987]. [9]
- Marcus, Ruth. [1986]. Rationality and Believing the Impossible. *J. of Philosophy* 80:321-330. [8]
- Mason, M. T. [1986]. Mechanics and Planning of Manipulator Pushing Operations. *Int'l J. Robotics Research* 5. [7]
- Mates, Benson. [1972]. *Elementary Logic*. Oxford University Press. [2]
- Mavrovouniotis, M. L. and G. Stephanopoulos [1988]. Formal Order-of-Magnitude Reasoning in Process Engineering. *Computer Chemical Engineering* 12:867-880. Reprinted in [Weld and de Kleer 1989].
- McCarthy, John. [1959]. Programs with Common Sense. In *Proc. Symposium on Mechanisation of Thought Processes* 1. London. [1]
- McCarthy, John. [1963]. Situations, Actions, and Causal Laws. Stanford AI Project Memo No. 2, July. [1,5]
- McCarthy, John. [1968]. Programs with Common Sense. In *Semantic Information Processing*, ed. M. Minsky. pp. 403-418. Cambridge, Mass.: MIT Press. Combined from [McCarthy 1959] and [McCarthy 1968]. [1]
- McCarthy, John. [1980]. Circumscription — A Form of Nonmonotonic Logic. *Artificial Intelligence* 13:27-39. Reprinted in [Ginsberg 1987]. [3]
- McCarthy, John. [1986]. Applications of Circumscription to Formalizing Common-Sense Knowledge. *Artificial Intelligence* 28:86-116. Reprinted in [Ginsberg 1987]. [3]

- McCarthy, John, and Patrick Hayes. [1969]. Some Philosophical Problems from the Standpoint of Artificial Intelligence. In *Machine Intelligence 4*, eds. B. Meltzer and D. Michie. Edinburgh: Edinburgh University Press. pp. 463–502. Reprinted in [Ginsberg 1987]. [1,5,9]
- McCarthy, John, M. Sato, T. Hayashi, S. Igarashi. [1978]. On the Model Theory of Knowledge. Computer Science Tech. Rep., STAN-CS-78-657, Stanford University, April. [8]
- McCloskey, Michael. [1983]. Naive Theories of Motion. In [Gentner and Stevens 1983, pp. 299–324]. [7]
- McDermott, Drew. [1974]. Assimilation of New Information by a Natural Language Understanding System. MIT AI Tech. Rep. [6]
- McDermott, Drew. [1976]. Artificial Intelligence meets Natural Stupidity. *SIGART Newsletter*, No. 57. Reprinted in *Mind Design: Philosophy, Psychology, Artificial Intelligence*. ed. J. Haugeland. MIT Press. 1981. [1]
- McDermott, Drew. [1978a]. Tarskian Semantics, or No Notation Without Denotation! *Cognitive Science* 2 (no. 3):277–282. [1]
- McDermott, Drew. [1978b]. Planning and Acting. *Cognitive Science* 2:71–109. [9]
- McDermott, Drew. [1982a]. A Temporal Logic for Reasoning about Processes and Plans. *Cognitive Science* 6:101–155. [5,7]
- McDermott, Drew. [1982b]. Nonmonotonic Logic II: Nonmonotonic Modal Theories. *J. Association for Computing Machinery* 29 (no. 1):33–57. [2,3]
- McDermott, Drew. [1985]. Reasoning about Plans. In [Hobbs and Moore 1985, pp. 427–448]. [9]
- McDermott, Drew. [1987a]. A Critique of Pure Reason. *Computational Intelligence* 3:151–160. [1]
- McDermott, Drew. [1987b]. Spatial Reasoning. In *The Encyclopedia of Artificial Intelligence*, ed. S. Shapiro. New York: John Wiley. [7]
- McDermott, Drew. [1989]. Regression Planning. Research Report No. 752, Yale Computer Science Dept. [9]
- McDermott, Drew, and Ernest Davis. [1984]. Planning Routes through Uncertain Territory. *Artificial Intelligence* 22:107–156. [4,6]

- McDermott, Drew, and Jon Doyle. [1980]. Non-Monotonic Logic I. *Artificial Intelligence* 13:41–72. [3]
- Meehan, James. [1976]. *The metanovel: Writing Stories by Computer*. Research Report No. 74, Yale Computer Science Dept. [4]
- Miller, David, James Firby, and Thomas Dean. [1985]. Deadlines, Travel Time, and Robot Problem Solving. *IJCAI*, 1052–1054.
- Minsky, Marvin. [1975]. A Framework for Representing Knowledge. In *The Psychology of Computer Vision*, ed. P. Winston. New York: McGraw-Hill. Reprinted in part in [Brachman and Levesque 1985]. [1,3]
- von Mises, Richard. [1964]. *Mathematical Theory of Probability and Statistics*. New York: Academic Press. [3]
- Montague, Richard. [1974]. *Formal Philosophy*. ed. Richard Thomason. New Haven, Conn.: Yale University Press. [1]
- Moore, Robert. [1980]. Reasoning about Knowledge and Action. Tech. Note 191, SRI International, Menlo Park, Calif. [2,8]
- Moore, Robert. [1982]. The Role of Logic in Knowledge Representations and Commonsense Reasoning. *AAAI*, 428–433. Reprinted in [Brachman and Levesque 1985]. [1]
- Moore, Robert. [1985a]. A Formal Theory of Knowledge and Action. In [Hobbs and Moore 1985, pp. 319–358]. [8]
- Moore, Robert. [1985b]. Semantical Considerations on Nonmonotonic Logic. *Artificial Intelligence* 25:75–94. [3,8]
- Moore, Robert, and Gary Hendrix. [1980]. Computational Models of Belief and the Semantics of Belief Sentences. Tech. Note 187, SRI International, Menlo Park, Calif. [8]
- Moravec, Hans. [1988]. Sensor Fusion in Certainty Grids for Mobile Robots. *AI Magazine* 9 (no. 2):61–74. [6]
- Morgenstern, Leora. [1987]. Knowledge Preconditions for Actions and Plans. *IJCAI*, 867–874. [9]
- Morgenstern, Leora. [1988]. Foundations of a Logic of Knowledge, Action, and Communication. Ph.D. Thesis, New York University. [2,8,9,10]
- Morgenstern, Leora. [1990]. Knowledge and the Frame Problem. In *The Frame Problem in Artificial Intelligence*. eds. K. Ford and P. Hayes. Greenwich: JAI Press. [8]

- Morgenstern, Leora, and Lynn Stein. [1988]. Why Things Go Wrong: A Formal Theory of Causal Reasoning. *AAAI*, 518-523. [5]
- Morris, Paul H. [1988]. The Anomalous Extension Problem in Default Reasoning. *Artificial Intelligence* 35:383-399. [5]
- Nagel, Ernest, and James Newman. [1958]. *Godel's Proof*. New York: New York University Press. [2]
- Newell, Alan. [1981]. The Knowledge Level. *AI Magazine* 2 (no. 2):1-20. [1]
- Newell, Alan, and Herbert Simon. [1963]. GPS, A Program that Simulates Human Thought. In *Computers and Thought*, eds. E. Feigenbaum and J. Feldman. New York: McGraw-Hill, pp. 279-298. [5,9]
- Nielsen, Paul. [1988]. A Qualitative Approach to Mechanical Constraint. *AAAI*, 270-274.
- Nilsson, Nils. [1980]. *Principles of Artificial Intelligence*. San Mateo, Calif.: Morgan Kaufmann Publishers.
- Nilsson, Nils. [1986]. Probabilistic Logic. *Artificial Intelligence* 28:71-87. [3]
- Novak, Gordon. [1977]. Representation of Knowledge in a Program for Solving Physics Problems. *IJCAI*, Cambridge, Mass. San Mateo, Calif.: Morgan Kaufmann. pp. 286-291. [6,7]
- Pearl, Judea. [1988a]. *Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference*. San Mateo, Calif.: Morgan Kaufmann Publishers. [3]
- Pearl, Judea. [1988b]. Embracing Causality in Causal Reasoning. *Artificial Intelligence* 35:259-271. [7]
- Pednault, Edwin P. D. [1988]. Extending Conventional Planning Techniques to Handle Actions with Context-Dependent Effects. *AAAI*, 55-59. [9]
- Perlis, Donald. [1985]. Language with Self-Reference I: Foundations. *Artificial Intelligence* 25:301-322. [2]
- Perrault, C. Raymond, and James Allen. [1980]. A Plan-Based Analysis of Indirect Speech Acts. *American J. of Computational Linguistics* 6 (no. 3-4):167-182. [10]

- Peshkin, M. A., and A. C. Sanderson. [1987]. Planning Robotic Manipulation Strategies for Sliding Objects. *Proc. Int'l. Conf. on Robotics and Automation*. [7]
- Piaget, Jean. [1952]. *The Origin of Intelligence in Children*. New York: International Universities Press. [1]
- Piaget, Jean, and Barbel Inhelder. [1967]. *The Child's Conception of Space*. New York: Basic Books. [6]
- Polanyi, Michael. [1958]. *Personal Knowledge: Towards a Post-Critical Philosophy*. University of Chicago Press. [8]
- Pratt, V. [1976]. Semantical Considerations on Floyd-Hoare Logic. *Proc. Seventeenth FOCS*, IEEE, 109-121. [5]
- Prior, A. N. [1967]. *Past, Present, and Future*. Oxford: Clarendon Press. [5]
- Putnam, Hilare. [1962]. It Ain't Necessarily So. *Journal of Philosophy* 59 (no. 22):658-71. [1]
- Putnam, Hilare. [1975]. The Meaning of 'Meaning'. In *Mind, Language, and Reality*, Cambridge University Press. [1]
- Pylyshyn, Zenon. [1984]. *Computation and Cognition: Toward a Foundation for Cognitive Science*. Cambridge, Mass.: MIT Press. [6]
- Pylyshyn, Zenon. [1987]. *The Frame Problem and Other Problems of Holism in Artificial Intelligence*. Norwood, N.J.: Ablex Publishing. [1,5]
- Quine, W. V. O. [1953]. Two Dogmas of Empiricism. In *From a Logical Point of View*. Harvard University Press. [1]
- Quine, W. V. O. [1969]. Propositional Objects. In *Ontological Relativity*, 137-160. New York: Columbia University Press. [2]
- Raiman, Olivier. [1986]. Order of Magnitude Reasoning. *AAAI*, 100-104. Reprinted in [Weld and de Kleer 1989]. [4]
- Randell, D. A., and A. G. Cohn. [1989]. Modelling Topological and Metrical Properties in Physical Processes. In [Brachman, Levesque, and Reiter 1989]. [6]
- Reichgelt, Hans. [In preparation.] *Knowledge Representation: An AI Perspective*. Norwood, N.J.: Ablex Publishing. [1]

- Reiter, Ray. [1978]. On Closed World Data Bases. In *Logic and Data Bases*, eds. H. Gallaire and J. Minker. New York: Plenum Press. Reprinted in [Ginsberg 1987] [3].
- Reiter, Ray. [1980a]. A Logic for Default Reasoning. *Artificial Intelligence* 13:81–132. Reprinted in [Ginsberg 1987]. [3]
- Reiter, Ray. [1980b]. Equality and Domain Closure in First-Order Databases. *J. Association for Computing Machinery* 27:235–249. [3]
- Requicha, Aristides A. G. [1980]. Representations for Rigid Solids: Theory, Methods, and Systems. *ACM Computing Surveys* 12 (no. 4):437–464. [6]
- Requicha, Aristides A. G. [1983]. Towards a Theory of Geometric Tolerancing. *The Int'l J. Robotics Research* 2 (no. 4):45–60. [6]
- Rescher, N., and A. Urquhart. [1971]. *Temporal Logic*. New York: Springer-Verlag. [5]
- Retz-Schmidt, Gudula. [1988]. Various Views on Spatial Prepositions. *AI Magazine* 9 (no. 2):95–108 [6]
- Rieger, Chuck. [1975]. The commonsense algorithm as a basis for computer models of human memory, inference, belief, and contextual language comprehension. *Theoretical Issues in Natural Language Processing I*. [9]
- Rieger, Chuck, and M. Grinberg. [1977]. The Declarative Representation and Procedural Simulation of Causality in Physical Mechanisms. *IJCAI*, 250–256. [7]
- Riesbeck, Christopher K. [1980]. 'You Can't Miss It!': Judging the Clarity of Directions. *Cognitive Science* 4 (no. 3):285–303. [6]
- Robinson, Abraham. [1966]. *Nonstandard Analysis*. Amsterdam: North-Holland Publishing. [4]
- Roseman, Ira. [1982]. *Cognitive Aspects of Discrete Emotions*. Ph.D. Thesis, Psychology Dept., Yale University. [8]
- Rosenschein, Stanley, and Leslie Kaelbling. [1986]. The Synthesis of Digital Machines with Provable Epistemic Properties. In [Halpern 1986]. [8]
- Rowat, Peter F. [1981]. Representing Spatial Experience and Solving Spatial Problems in a Simulated Robot Environment. Tech. Rep. 79-14, University of British Columbia Computer Science Dept. [6]

- Russell, Bertrand. [1903]. *Principles of Mathematics*. London: Kimble and Bradford. [1]
- Russell, Bertrand. [1940]. *Inquiry into Meaning and Truth*. London: George Allen and Unwin. [1]
- Russell, Bertrand. [1948]. *Human Knowledge: Its Scope and Limits*. New York: Simon and Schuster. [1,8]
- Ryle, Gilbert. [1949]. *The Concept of Mind*. New York: Barnes and Noble.
- Sacerdoti, Earl. [1975]. *A Structure for Plans and Behavior*. New York: American Elsevier. [9]
- Sacks, Elisha. [1987]. Hierarchical Reasoning about Inequalities. *AAAI*, 649-654. Reprinted in [Weld and de Kleer 1989]. [4].
- Sacks, Elisha. [1988]. Qualitative Analysis by Piecewise Linear Approximation. *Artificial Intelligence in Engineering* 3:151-155. [4].
- Sanders, Kate. [1989]. A Logic For Emotion. *Proc. Conf. for Cognitive Science*. Ann Arbor, Mich. pp. 357-363. [8].
- Schank, Roger. [1975]. *Conceptual Information Processing*. Amsterdam: North-Holland Publishing. [8]
- Schank, Roger. [1982]. *Dynamic Memory: A Theory of Reminding and Learning in Computers and People*. Cambridge, Mass.: Cambridge University Press. [8]
- Schank, Roger, and Robert Abelson. [1977]. *Scripts, Plans, Goals, and Understanding*. Hillsdale, N.J.: Lawrence Erlbaum Associates. [1,9]
- Schmolze, James G. [1986]. Physics for Robots. *AAAI*, 44-50. [7]
- Schubert, L. [1978]. Extending the expressive power of semantic networks. *Artificial Intelligence* 11:45-83. [1]
- Schwartz, Jacob, Micha Sharir, and John Hopcroft. [1987]. *Planning, Geometry, and Complexity of Robot Motion*. Norwood, N.J.: Ablex Publishing. [6]
- Shafer, G. [1976]. *A Mathematical Theory of Evidence*. Princeton, N.J.: Princeton University Press. [3]
- Shannon, C. E., and W. Weaver. [1949]. *The Mathematical Theory of Communication*. Urbana, Ill.: University of Illinois Press. [3]

- Shoham, Yoav. [1985a]. Naive Kinematics: One Aspect of Shape. *IJCAI*, 436-442. [6,7]
- Shoham, Yoav. [1985b]. Ten requirements for a theory of change. *New Generation Computing* 3. [5]
- Shoham, Yoav. [1987]. A Semantical Approach to Non-monotonic Logics. *IJCAI*, 389-393. Reprinted in [Ginsberg 1987]. [3]
- Shoham, Yoav. [1988]. *Reasoning about Change: Time and Causation from the Standpoint of Artificial Intelligence*. Cambridge, Mass.: MIT Press. [2, 3, 5, 7]
- Shoham, Yoav, and Drew McDermott. [1988]. Problems in Formal Temporal Reasoning. *Artificial Intelligence* 36:49-62. [5]
- Shore, John E., and Rodney W. Johnson. [1980]. Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy. *IEEE Transactions on Information Theory* IT-26 (no. 1):26-37. [3]
- Simmons, Reid. [1986]. 'Commonsense' Arithmetic Reasoning. *AAAI*, 118-124. Reprinted in [Weld and de Kleer 1989]. [4]
- Skinner, B. F. [1971]. *Beyond Freedom and Dignity*. Knopf. [8]
- Smith, Reid G., and Randall Davis. [1981]. Frameworks for Cooperation in Distributed Problem Solving. *IEE Transactions on Systems, Man, and Cybernetics*, 11:61-70. Reprinted in [Bond and Gasser, 88]. [10]
- Smullyan, Raymond. [1978]. *What is the name of this book?* Englewood Cliffs, N.J.: Prentice Hall. [2]
- Sobociński, B. [1953]. Note on a Modal System of Feys-Von Wright. *J. Computing Systems* 1:171-178. [2]
- Stefik, Mark. [1981]. Planning and Metaplanning (MOLGEN: Part 2). *Artificial Intelligence* 16:141-169. [9]
- Struss, Peter. [1989]. Problems of Interval-Based Reasoning. In [Weld and de Kleer 1989]. [4]
- Subramanian, Devika and John Woodfill. [1989]. Making Situation Calculus Indexical. In [Brachman, Levesque, and Reiter 1989], 467-474. [5]
- Sussman, Gerald J. [1975]. *A Computational Model of Skill Acquisition*. New York: American Elsevier. [9].

- Sussman, Gerald J., and Guy L. Steele. [1980]. CONSTRAINTS — A Language for Expressing Almost Hierarchical Descriptions. *Artificial Intelligence* 14:1–40. [4]
- Sussman, Gerald, Terry Winograd, and Eugene Charniak. [1970]. The Micro-planner Reference Manual. AI Memo 203, AI Lab, M.I.T. [9]
- Sutherland, I. E. [1963]. SKETCHPAD, A Man-Machine Communication System. MIT Lincoln Labs Tech. Report No. 296. [4]
- Tarski, Alfred. [1956]. The Concept of Truth in Formalized Languages. In *Logic, Science, and Metamathematics*. Oxford University Press.
- Tate, Austin. [1977]. Generating Project Networks. *IJCAI*, 888–893 [9]
- Thomason, Richmond. [1980]. A Note on the Syntactical Treatments of Modality. *Synthese* 44:391–395. [8]
- Thomason, Richmond. [1987]. The Context Sensitivity of Belief and Desire. In [Georgeff and Lansky 1987, pp. 341–360]. [8]
- Thorpe, Charles E. [1984]. Plan Relaxation: Path Planning for a Mobile Robot. *AAAI*, 318–321. [6]
- Turner, Raymond. [1984]. *Logics for Artificial Intelligence*. New York: John Wiley and Sons. [2,3].
- Tversky, Barbara. [1981]. Distortion in Memory for Maps. *Cognitive Psychology* 13 (no. 3):407–433. [6]
- van Benthem, J. F. A. K. [1983]. *The Logic of Time*. Dordrecht: Reidel. [4,5]
- Vardi, Moshe [1988]. Proc. Second Conference on Theoretical Aspects of Reasoning About Knowledge. San Mateo, Calif.: Morgan Kaufmann Publishers. [8]
- Vere, Steven. [1983]. Planning in Time: Windows and Durations for Activities and Goals. *IEEE PAMI-5/3*, 246–267. [5]
- Vilain, Marc. [1982]. A System for Reasoning about Time. *AAAI*. [5]
- Vilain, Marc, and Henry Kautz. [1986]. Constraint Propagation Algorithms for Temporal Reasoning. *AAAI*, 377–382. Revised (with Peter van Beek) and reprinted in [Weld and de Kleer 1989] [4]
- von Wright, George H. [1968]. *An Essay in Deontic Logic and the General Theory of Action*. Amsterdam: North-Holland Publishing. [10]
- Wallace, Richard S. [1984]. Three Findpath Problems. *AAAI*, 326–329. [6]
- Walther, C. [1987]. *A Many Sorted Calculus Based on Resolution and Paramodulation*. London: Pitman Press. [2]

- Waltz, David. [1975]. Understanding line drawings of scenes with shadows. In *The Psychology of Computer Vision*, ed. P. Winston. New York: McGraw-Hill. [4]
- Waltz, David. [1980]. Towards a Detailed Model of Processing for Language Describing the Physical World. *IJCAI 7*, 1-6. [6]
- Wang, Y. [1986]. On Impact Dynamics of Robotic Operations. Tech. Rep. CMU-RI-TR-86-14, Robotics Institute, Carnegie Mellon University. [7]
- Weld, Daniel. [1986]. The Use of Aggregation in Causal Simulation. *Artificial Intelligence* 30:1-17. Reprinted in [Weld and de Kleer 1989]. [4]
- Weld, Daniel. [1988a]. Comparative Analysis. *Artificial Intelligence* 36:333-374. Reprinted in [Weld and de Kleer 1989]. [4]
- Weld, Daniel. [1988b]. Exaggeration. *AAAI*, 291-295. Reprinted in [Weld and de Kleer 1989]. [4]
- Weld, Daniel, and Johan de Kleer. [1989]. *Qualitative Reasoning about Physical Systems*. San Mateo, Calif.: Morgan Kaufmann Publishers. [4,7]
- Whorf, Benjamin. [1956]. *Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf*, ed. J. B. Carroll. New York: John Wiley. [1]
- Wilensky, Robert. [1983]. *Planning and Understanding*. Reading, Mass.: Addison-Wesley. [9,10]
- Wilkins, David E. [1988]. *Practical Planning: Extending the Classical AI Planning Paradigm*. San Mateo, Calif.: Morgan Kaufmann Publishers. [9]
- Wilks, Yorick. [1976]. Philosophy of Language. In *Computational Semantics*, eds. E. Charniak and Y. Wilks. Amsterdam, New York, Oxford: North-Holland Publishing. [1]
- Williams, Brian. [1985]. Qualitative Analysis of MOS Circuits. In [Bobrow 1985, pp. 281-346]. [7].
- Wilson, N. L. [1959]. Substances without Substrata. *Review of Metaphysics* 12:521-539. [8]
- Wing, Jeannette, and Farhad Arbab. [1985]. Geometric Reasoning: A New Paradigm for Processing Geometric Information. Carnegie-Mellon Tech. Rep. CMU-CS-85-144. [6]

- Winograd, Terry, ed. [1980]. Special Volume on Non-Monotonic Logic. *Artificial Intelligence* 13 (nos. 1 and 2). [3]
- Wittgenstein, Ludwig. [1958]. *Philosophical Investigations*. Oxford University Press. [1]
- Woods, William A. [1975]. What's in a Link: Foundations for Semantic Networks. In *Representation and Understanding: Studies in Cognitive Science*, eds. D. G. Bobrow and A. M. Collins. New York: Academic Press. Reprinted in [Brachman and Levesque 1985]. [1]
- Wos, Larry, Ross Overbeek, Ewing Lusk, and Jim Boyle. [1984]. *Automated Reasoning: Introduction and Applications*. Englewood Cliffs, N.J.: Prentice Hall. [1]
- Zadeh, Lotfi. [1963]. Fuzzy algorithms. *Information and Control* 12:94–102. [3]
- Zadeh, Lotfi. [1987]. Commonsense and Fuzzy Logic. In *The Knowledge Frontier: Essays in the Representation of Knowledge*, eds. N. Cercone and G. McCalla. New York: Springer-Verlag, pp. 103–136.
- Zadrozny, Wlodek. [1989]. Cardinalities and Well-Orderings in a Common-Sense Set Theory. In [Brachman, Levesque, and Reiter 1989]. [2]

Glossary

These ambiguities, redundancies, and deficiencies recall those attributed by Dr. Franz Kuhn to a certain Chinese encyclopaedia entitled Celestial Emporium of Benevolent Knowledge. On those remote pages it is written that animals are divided into (a) those that belong to the Emperor, (b) embalmed ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray dogs, (h) those that are included in this classification, (i) those that tremble as if they were mad, (j) innumerable ones, (k) those drawn with a very fine camel's hair brush, (l) others, (m) those that have just broken a flower vase, (n) those that resemble flies from a distance.

Jorge Luis Borges, "The Analytical Language of John Wilkins," *Other Inquisitions*

This glossary lists most of the formal notations used in this book. Omissions fall primarily into the following four categories:

- Symbols that are highly specific to a problem or to a narrow microworld, such as "john," "table," and "heat_flow."
- Standard mathematical notation that is infrequently used, such as "sin(X)".
- Grouping symbols: parentheses, brackets, and commas.
- Notations that are dependent on a particular structuring of symbols, rather than on the use of a particular symbol, such as $\alpha^{\mathcal{I}}$, meaning the interpretation of α under interpretation \mathcal{I} .

An entry in this glossary consists of the following four parts, separated by periods.

1. The symbol and its use. A prefix symbol is followed immediately by its arguments. For a symbol that is not a prefix, we first list the symbol, then illustrate its placement relative to its arguments.

As in the text, object-level variables are represented by italicized capital symbols; metalevel variables are represented by Greek letters.

2. The category of the symbol. This is one of the following:
 - First-order logical symbol
 - Constant symbol
 - Function symbol
 - Predicate symbol
 - Special symbol; a symbol that appears inside a first-order formula, but is not interpreted in a standard way; syntactic sugar
 - Modal operator
 - Metalevel symbol
 - Symbol associated with plausible reasoning.
3. Explanation of the symbol, including the sorts or categories of its arguments.
4. Reference to the page where the symbol is defined.

Some symbols are given more than one definition. Some of these are symbols that have different categories in different theories, such as "know," which can be either a modal operator or a predicate with a string argument. Others are symbols that have been overloaded, such as square brackets, which can be used for grouping, to indicate a closed interval, or to indicate the sign of a quantity.

$\neg\phi$.	Logical. Negation of sentence ϕ . [p. 31]
$\vee. \phi \vee \psi$.	Logical. Boolean operator: Formula ϕ or formula ψ . [p. 31]
$\wedge. \phi \wedge \psi$.	Logical. Boolean operator: Formula ϕ and formula ψ . [p. 31]
$\Rightarrow. \phi \Rightarrow \psi$.	Logical. Boolean operator: Formula ϕ implies formula ψ . [p. 31]
$\Leftrightarrow. \phi \Leftrightarrow \psi$.	Logical. Boolean operator: Formula ϕ if and only if formula ψ . [p. 31]
$\dot{\vee}. \phi \dot{\vee} \psi$.	Logical. Boolean operator: Either formula ϕ or formula ψ but not both. [p. 31]
$\forall \mu \alpha(\mu)$.	Logical. Universal quantifier: Formula α holds for all values of variable μ . [p. 36]

$\exists \mu \alpha(\mu)$.	Logical. Existential quantifier: Formula α holds for some value of μ . [p. 36]
$\exists^1 \mu \alpha(\mu)$.	Logical. Unique existential quantifier: Formula α holds for a single value of μ . [p. 47]
0.	Constant. Zero. [p. 155]
∞ .	Constant. Infinite quantity. [p. 151]
\perp .	Constant. Null value. [p. 44]
\emptyset .	Constant. The empty set. [p. 49]
$[]$. $[L, U]$.	Function. Closed interval from quantity L to quantity U . [p. 151]
$[]$. $[X]$.	Function. Sign of quantity X , or interval containing X in some fixed partition. [p. 161, 168]
$+. X + Y$.	Function. Sum of quantities X and Y . [p. 155]
$\{ \}$. $\{ X_1, X_2, \dots, X_k \}$.	Function. The set containing X_1, X_2, \dots, X_k . [p. 48]
$-X$.	Function. Negative of differential quantity X . [p. 155]
$-.$ $X - Y$.	Function. Difference of quantities X and Y . [p. 155]
$-.$ $S - T$.	Function. Difference of sets S and T . [p. 50]
$\cup.$ $S \cup T$.	Function. Union of sets S and T . [p. 50]
$\cap.$ $S \cap T$.	Function. Intersection of sets S and T . [p. 50]
$<>.$ $< X_1, X_2, \dots >$.	Function, Tuple of entities X_1, X_2, \dots, X_k . [p. 50]
$\cdot.$ $X \cdot Y$.	Function. Product of quantity X with quantity Y . [p. 157]
ΔX .	Function (relative to two implicit situations). Change in parameter X from one situation to the other. The value of ΔX is in the differential space of the range of X . [p. 161]
$.$ $ S $.	Function. The cardinality of set S . [p. 158]

∂X .	Function. Sign of the derivative of parameter X . ∂X is a fluent whose range is the differential space of the range of X . [p. 166]
$\sim A$.	Function. Negation of state A . $\sim A$ is a state. [p. 224, 402]
$O. (X, Y)$.	Function. Open interval from quantity X to quantity Y . [p. 152]
$=. X = Y$.	Predicate. Entity X is equal to entity Y . [p. 43]
$<. X < Y$.	Predicate. Quantity X is less than quantity Y . [p. 147]
$\in. X \in S$.	Predicate. Entity X is an element of set S . [p. 48]
$\subseteq. S \subseteq T$.	Predicate. Set S is a subset of set T . [p. 50]
$\ll. X \ll Y$.	Predicate. Quantity X is negligible as compared to quantity Y . [p. 180]
$\neq. X \neq Y$.	Predicate. Entities X and Y are not equal. [p. 43]
$\sim. X \sim Y$.	Predicate. Sign X is compatible with sign Y . [p. 161]
$\propto_{Q+}. F \propto_{Q+} G$.	Predicate (sort of; see text). Parameter F is qualitatively proportional to parameter G . [p. 322]
$\propto_{Q-}. F \propto_{Q-} G$.	Predicate (sort of; see text). Parameter F is inversely qualitatively proportional to parameter G . [p. 322]
$\{ \}. \{ \mu \alpha(\mu) \}$.	Special. The set of all μ such that α holds. [p. 48]
$\prec\!\succ. \prec\!\!ABCDE\!\succ$.	Special. String of characters ABCDE. [p. 78]
$@. \prec\!\!@X@\!\succ$.	Special. Splice the name of X into a character string. [p. 370]

!. $\prec!X!\succ.$	Special. Splice X with an extra level of quotation into a character string. [p. 370]
$\downarrow. \prec\downarrow X\downarrow\succ.$	Special. Splice string X into a character string. [p. 370]
$\iota(\mu)\alpha(\mu).$	Special. μ is a variable, and α is an open formula. The unique μ such that $\alpha(\mu)$ holds. [p. 48]
$\models. \models \phi.$	Metalevel. Sentence ϕ is universally valid. [p. 29]
$\models. \mathcal{I} \models \phi.$	Metalevel. Sentence ϕ is true in interpretation \mathcal{I} . [p. 29]
$\models. \Gamma \models \phi.$	Metalevel. Sentence ϕ is a semantic consequence of set of sentences Γ . [p. 29]
$\vdash. \Gamma \vdash \phi.$	Metalevel. Formula ϕ can be proven from set of formulas Γ . [p. 29]
$\text{ab}(X).$	Predicate. Entity X is abnormal (used in non-monotonic inference). [p. 113]
$\text{abut}(\text{RR, PP, FF}).$	Predicate. Regions RR and PP abut in boundary FF . [p. 258]
$\text{acquainted}(AA).$	Function. State of all the agents in set AA having common knowledge of their respective names. [p. 438]
$\text{action}(ACTOR, ACTION, OBJECT, SOURCE, DESTINATION).$	Function. In conceptual dependency, the event type of agent $ACTOR$ performing action type $ACTION$ on object $OBJECT$ taking it from location $SOURCE$ to location $DESTINATION$. [p. 450]
$\text{active}(S, P).$	Predicate. Process P is active during situation S . [p. 323]
$\text{actor_of}(E).$	Function. The agent who is the actor of event type E . [p. 410]
$\text{after}(\theta, \phi).$	Modal. The state that follows if event ϕ occurs in a situation where state θ holds. [p. 231]
$\text{always}.$	Constant. The set of all situations. [p. 224]

angle(X,Y,Z).	Function. The angle formed by the rays Y – X and Y – Z. [p. 251]
angle(\hat{E} , \mathcal{C}).	Function. The angle between direction \hat{E} and the x axis of coordinate system \mathcal{C} (in two dimensions). [p. 298]
angle(\mathcal{F} , \mathcal{C}).	Function. The angle between the x axes of coordinate systems \mathcal{F} and \mathcal{C} (in two dimensions). [p. 298]
apply($O, A_1 \dots A_k$).	Function. Combines a string O , which spells out an operator, with strings $A_1 \dots A_k$, which spell out arguments, and returns the string that spells out the application of O to $A_1 \dots A_k$. [p. 78]
assumptions(S).	Metalevel. In natural deduction, the assumptions of proof step S . [p. 87]
atrans.	Constant. In CD, the action type of transferring possession. [p. 452]
attend.	Constant. In CD, the action type of focusing a sensory organ. [p. 452]
before(I, J).	Predicate. Interval I ends strictly before interval J begins. [p. 148]
believe(A, ϕ, S).	Modal. Agent A believes sentence ϕ in situation S . (S may be omitted if time is not an issue.) [p. 356, 381]
believe(A, P, S).	Predicate. Agent A believes the sentence spelled out by string P in situation S . (S may be omitted if time is not an issue.) [p. 356, 367]
believing(A, ϕ).	Modal. The state of agent A believing sentence ϕ . [p. 381]
believing(A, P).	Function. The state type of A believing the sentence spelled out by P . [p. 381]
bel_acc(A, W_1, W_2).	Predicate. Possible world W_2 is accessible from world W_1 relative to the beliefs of A . [p. 72, 365]
border(RR, PP, S).	Predicate. In TOUR, path PP is on the border of region RR. S is a Boolean, indicating

boundary(AA).	whether the forward direction of PP goes clockwise or counterclockwise around RR . [p. 281]
bounded(RR).	Function. The boundary of region AA . [p. 258]
bpc($A, B1, B2$).	Predicate. Region RR is bounded. [p. 255]
bulk(RR , \tilde{D}).	Predicate. Behavior $B2$ is compatible with the perceptions of agent A in behavior $B1$. [p. 388]
can_achieve(A, G, S).	Predicate. Region RR is bulk with radius \tilde{D} (see text for formal definition). [p. 343]
can_do(A, P, S).	Predicate. Agent A can achieve goal G in situation S . [p. 422]
card(S).	Function. Cardinality of set S . [p. 158]
change(F, D).	Function. Event type of quantity-valued fluent F changing in direction D . [p. 452]
circle(O , \tilde{D}).	Function. The circle with center O and radius \tilde{D} . [p. 251]
CIRC(T, μ).	Plausible. The circumscription of theory T in predicate μ . [p. 111]
ck_acc($FAA, W1, W2$).	Predicate. Possible world $W2$ is accessible from world $W1$ relative to the common knowledge of FAA . FAA is a fluent ranging over sets of agents. [p. 439]
clock_time.	Constant. The fluent that gives the clock time in a given situation. [p. 190]
close(X, Y).	Predicate. The difference between quantities Y and X is negligible as compared to their magnitude. [p. 180]
colinear(X , Y , Z).	Points X , Y , Z are colinear. [p. 251]
common_know(SAA, P, S).	Predicate. The agents in the set denoted by string SAA have common knowledge of the sentence spelled out by string P in situation S . [p. 438]

complement(RR).	Function. The complement of region RR . [p. 255]
concs($\mathcal{S}, \mathcal{D}, \mathcal{E}$).	Plausible. In default logic, the conclusions from the set of sentences \mathcal{S} using default rules \mathcal{D} in extension \mathcal{E} . [p. 116]
concurrent($E_1 \dots E_k$).	Function. The event type of event types $E_1 \dots E_k$ occurring concurrently. [p. 228]
cond(A, E_1, E_2).	Function. The event type "If state type A holds, then event type E_1 , else event type E_2 ." [p. 225]
cond(θ, ϕ_1, ϕ_2).	Modal. If state θ , then event ϕ_1 , else event ϕ_2 . [p. 231]
congruent(AA, BB).	Predicate. Regions AA and BB are congruent without reflection. [p. 255]
conj(Q).	Function. Conjugate of quaternion Q . [p. 302]
connected_component(CC, XX).	Predicate. Region CC is a connected component of region XX . [p. 255]
connected(XX).	Predicate. Region XX is connected. [p. 255]
contains(I, J).	Predicate. Interval I contains interval J . [p. 149]
content(\mathcal{S}).	Metalevel. In natural deduction, the content of proof step \mathcal{S} . [p. 86]
coor1(\mathbf{P}, \mathcal{C}).	Function. Maps a k -dimensional point \mathbf{P} and a coordinate system \mathcal{C} onto a $k + 1$ -by-1 column array consisting of the coordinates of \mathbf{P} in \mathcal{C} followed by 1. [p. 297]
coordinates(\mathbf{P}, \mathcal{C}).	Function. The coordinates (a k -tuple) of k -dimensional point \mathbf{P} in coordinate system \mathcal{C} . [p. 247, 295]
cylinder($\tilde{L}, \tilde{R}, \mathcal{F}$).	Function. The right circular cylinder of height \tilde{L} and radius \tilde{R} with the bottom face in the x-y plane of coordinate system \mathcal{F} centered at the origin. [p. 274]
d_belief(A, ϕ).	Modal. The degree (a real number) to which agent A believes sentence ϕ . [p. 370]

dbl_quote(S).	Function. String S with an extra level of quotation (a string). [p. 81]
dboundary(RR).	Function. Boundary of two-dimensional region RR directed counterclockwise around RR . [p. 276]
dboundary(RR).	Function. Boundary of three-dimensional region RR directed outward from RR . [p. 343]
declarative.	Constant. Declarative mode of illocutionary acts.
dedge(X, Y).	Function. Directed edge from X to Y . [p. 276]
deliberate(A, E).	Function. Event type of the deliberate performance by A of the action denoted by string E . [p. 414]
delta(X).	Function (relative to two implicit situations). Change in parameter X from one situation to the other. The value of $\delta(X)$ is in the differential space of the range of X . [p. 160]
denotation(S).	Function. The entity denoted by string S . [p. 81]
deriv(P).	Function. The derivative of parameter P with respect to time. $\text{deriv}(P)$ is a parameter whose range is in the differential space of the range of P . [p. 165]
diameter(RR).	Function. The diameter (a length) of region RR . [p. 249]
direction(X, Y).	Function. The direction of the ray from X to Y . [p. 251]
dir_cosines(\hat{D}, \mathcal{C}).	Function. Maps k -dimensional direction \hat{D} and coordinate system \mathcal{C} to the k -tuple of directional cosines. [p. 295]
disable(S, E).	Predicate. In CD , state S makes event E impossible. [p. 453]
distinct($X_1 \dots X_k$).	Predicate. Entities $X_1 \dots X_k$ are all unequal. [p. 43]
dist(X, Y).	Function. The distance (a length) between points X and Y . [p. 249]

$\text{do}(A, E)$.	Function. The event type of agent A performing action type E . [p. 410]
$\text{during}(I, J)$.	Predicate. Interval I starts after and ends before interval J . [p. 148]
$\text{empty}(\mathbf{RR})$.	Function. State of region \mathbf{RR} being empty. [p. 343]
$\text{enable}(S, E)$.	Predicate. In CD, state S makes event E possible. [p. 453]
$\text{end}(I)$.	Function. Maps an interval I to its least upper bound. [p. 151]
$\text{eq}(F, G)$.	Function. The state type of fluent F being equal to fluent G . [p. 189]
$\text{equal}(I, J)$.	Predicate. Intervals I and J are equal. [p. 148]
$\text{event_part}(K1, K2)$.	Predicate. Event token $K1$ is part of event token $K2$. [p. 192]
expel .	Constant. In CD, the action type of emitting something from the body of the agent. [p. 452]
FALSE .	Metalevel. Falsehood. [p. 32]
$\text{feasible}(P)$.	Function. State of plan P being feasible. [p. 398]
$\text{filled_liquid}(\mathbf{RR})$.	Function. State of region \mathbf{RR} being filled with liquid. [p. 343]
$\text{finishes}(I, J)$.	Predicate. Interval I starts after interval J , but they end together. [p. 148]
$\text{fixed}(O)$.	Predicate. Object O is immovable. [p. 334]
$\text{flow_through}(\mathbf{F})$.	Function. Fluent of the flow of liquid through directed face \mathbf{F} . [p. 343]
$\text{future}(\phi)$.	Modal. State ϕ will hold at all future times. $\text{future}(\phi)$ is a state. [p. 231]
$\text{goal}(A, G, S)$.	Predicate. In situation S , agent A has the goal denoted by string G . [p. 414]
$\text{goes_through}(\mathbf{FF}, \mathbf{PP})$.	Function. Event type of region-valued fluent \mathbf{FF} going through region \mathbf{PP} . [p. 262]

goodness(E, S).	Function. The ethical value (a quantity) of event type E in situation S . [p. 449]
grasp.	Constant. In CD, the action type of the agent grasping an object. [p. 452]
$H(S)$.	Plausible. Entropy. S is a probability distribution defined on a frame of discernment. [p. 131]
happiness(A).	Function. In CD, the fluent of agent A 's happiness over time. [p. 452]
health_val(A).	Function. In CD, the fluent of agent A 's health over time. [p. 452]
horizontal(PP).	Predicate. Planar surface PP is horizontal. [p. 255]
illoc(AS, AH, M, P).	Function. The event type of agent AS performing an illocutionary act with agent AH being the hearer, M being the mode, and string P being the content. [p. 442]
imperative.	Constant. The imperative mode of an illocutionary act. [p. 442]
ind.	Constant. The interval of all quantities. [p. 161]
infinite_on_left(I).	Predicate. Interval I is unbounded below. [p. 151]
infinite_on_right(I).	Predicate. Interval I is unbounded above. [p. 151]
influence(P, Q).	Function. The influence of process P on parameter Q . $\text{influence}(P, Q)$ is a fluent ranging over the differential space of Q . [p. 323]
ingest.	Constant. In CD, the action type of consuming an object. [p. 452]
initiate(S, M).	Predicate. In CD, action of state S initiates mental state M . [p. 453]
inside(II, RR).	Predicate. Region II is an inside of region RR . [p. 251]

instrumental(E_1, E_2).	Predicate. In CD, action E_1 is instrumental to action E_2 . [p. 453]
intersect(I, J).	Predicate. Intervals I and J have more than a single point in common. [p. 207]
interval(I).	Predicate. I is an interval. [p. 150]
is_constant(S).	Predicate. String S is a constant. [p. 80]
is_inside(Π , \mathbf{BB}).	Predicate. Region Π is inside the box \mathbf{BB} .
is_meaningful(S).	Predicate. String S is meaningful (a term or a formula). [p. 80]
is_sentence(S).	Predicate. String S is a sentence. [p. 80]
is_symbol(S).	Predicate. String S spells out a single symbol. [p. 80]
is_term(S).	Predicate. String S is a term. [p. 80]
join(I, J).	Function. If I and J are intervals that meet, $\text{join}(I, J)$ is the interval that starts with the beginning of I and ends with the end of J . [p. 149]
know(A, ϕ, S).	Modal. Agent A knows sentence ϕ in situation S . (S may be omitted if time is not an issue.) [p. 373]
know(A, P, S).	Predicate. Agent A knows the sentence spelled out by string P in situation S . (S may be omitted if time is not an issue.) [p. 373]
know_acc(A, W_1, W_2).	Predicate. Possible world W_2 is accessible from world W_1 relative to the knowledge of agent A . [p. 377]
know_fluent(A, F, S).	Modal. In situation S , agent A knows the current value of fluent F . [p. 382]
knowing(A, ϕ).	Modal. The state of agent A knowing sentence ϕ . [p. 381]
knowing(A, P).	Function. The state type of agent A knowing the sentence spelled out by P . [p. 381]
know_val(A, τ, S).	Modal. Agent A knows the value of term τ in situation S . [p. 378]

$\text{know_val}(A, T, S)$.	Predicate. Agent A knows the value of the term spelled out by string T in situation S . [p. 378]
$\text{know_whether}(A, \phi, S)$.	Modal. Agent A knows in situation S whether sentence ϕ is true. [p. 378]
$\text{know_whether}(A, P, S)$.	Predicate. Agent A knows in situation S whether the sentence spelled out by string P is true. [p. 378]
$\text{kp_satisfied}(A, E, S)$.	Predicate. The knowledge preconditions of the action spelled out by string E are satisfied for agent A in situation S . [p. 419]
$L(\phi)$.	Modal. ϕ is necessarily true. Used in this book as a generic modal operator. [p. 60]
$\text{label}(S)$.	Metalevel. In natural deduction, the label of proof step S . [p. 86]
$\text{leads_to}(P, G)$.	Function. A state in which the execution of plan P will lead to the accomplishment of goal G . [p. 398]
$\text{liquid_at_rest}(\text{RR})$.	Function. The state type of all the liquid in region RR being at rest. [p. 343]
$\text{liquid_in}(\text{RR})$.	Function. The fluent of the quantity of liquid in region RR . [p. 342]
$\text{lower_bound}(X, I)$.	Predicate. X is a lower bound for interval I . [p. 151]
$M(\phi)$.	Modal. ϕ is possibly true. Used here as a generic modal operator. [p. 60]
mbuild .	Constant. In CD, the action type of making a mental construction. [p. 452]
$\text{meaning_of}(S, K)$.	Function. The meaning of string of phonemes S in speech-act token K . $\text{meaning_of}(S, K)$ is a string of symbols in a formal language. [p. 443]
$\text{measure}(\tilde{M}, \mathcal{C})$.	Function. The measure (a real number) of length \tilde{M} in coordinate system \mathcal{C} . [p. 295]
$\text{meets}(I, J)$.	Predicate. Interval I ends as interval J begins. [p. 148]

$\text{mloc}(M, P)$.	Function. In CD, the fluent of mental location P containing mental object M . [p. 452]
$\text{mode_of}(S, K)$.	Function. The mode of string of phonemes S in speech-act token K . For example, $\text{mode_of}(S, K)$ may be “declarative” or “imperative.” [p. 443]
$\text{monotonic}(QD, QI, QF, SG)$.	Predicate. Parameter QD depends on parameter QI in the direction indicated by sign SG for fixed values of parameter QF . [p. 163]
$\text{motionless}(O)$.	Function. The state of object O being motionless. [p. 345]
move .	Constant. In CD, the action type of moving a body part. [p. 452]
mtrans .	Constant. In CD, the action type of communicating information from one mental location to another. [p. 452]
$\text{name_of}(X)$.	Function. A constant string denoting entity X . [p. 81]
neg .	Constant. The interval of negative quantities. [p. 161]
$\text{normal}(\mathbf{RR})$.	Predicate. Region \mathbf{RR} is normal. [p. 258]
null .	Constant. The event type of a no-op. [p. 226]
$\text{obligatory}(E, S)$.	Predicate. Event type E is obligatory in situation S . [p. 449]
$\text{occurs}(I, E)$.	Predicate. Event type occurs during interval I . [p. 192]
$\text{occurs}(I, \phi)$.	Modal. Event ϕ occurs during interval I . [p. 231]
$\text{occurs_exclusively}(K)$.	Predicate. Event token K constitutes all that occurs during its time period. [p. 230]
$\text{occurs_in}(I, E)$.	Predicate. Event type E occurs some time during interval I . [p. 412]
$\text{Odds}(E)$.	Plausible. The odds on event E . [p. 129]
$\text{Odds}(E \mid F)$.	Plausible. The odds on event E given event F . [p. 129]

on_path(PP, $\mathbf{X}_1, \dots, \mathbf{X}_k$). Predicate. In TOUR, places $\mathbf{X}_1 \dots \mathbf{X}_k$ appear in that order on path PP. [p. 281]
opening(OO, \mathbf{XX} , \mathbf{II}). Predicate. Region OO is an opening of barrier region \mathbf{XX} into interior region \mathbf{II} . [p. 261]
ordered(X, Y). Predicate. Quantities X and Y are ordered with respect to one another. [p. 150]
origin(\mathcal{C}). Function. The origin (a point) of coordinate system \mathcal{C} . [p. 251]
OU($E F$). Plausible. The update in the odds of event E given event F . [p. 130]
overlaps(I, J). Predicate. Interval I overlaps interval J from the left. [p. 148]
overlap_of(I, J). Function. The common subinterval of overlapping intervals I and J . [p. 149]
overlap_reg(\mathbf{XX}, \mathbf{YY}). Predicate. Regions \mathbf{XX} and \mathbf{YY} overlap. [p. 251]
owner_of(O). Function. The fluent of object O 's owner (an agent) over time. [p. 451]
P(E). Plausible. The <i>a priori</i> probability of event E . [p. 120]
P($E F$). Plausible. The conditional probability of event E given event F . [p. 120]
past(ϕ). Modal. State ϕ held at all future times. past(ϕ) is a state. [p. 231]
pc($A, L1, L2$). Predicate. Layout $L2$ is compatible with layout $L1$ relative to the perceptions of A . [p. 387]
permits(A, E). Function. State type of agent A permitting event type E . [p. 451]
permitted(E, S). Predicate. Event type E is permitted in situation S . [p. 449]
place(O). Function. The fluent of the region occupied by object O over time. [p. 328]
planar(\mathbf{RR}). Predicate. Region \mathbf{RR} lies in a plane. [p. 255]

$\text{plan}(A, P, S)$.	Predicate. In situation S , agent A intends to carry out the plan described in string P . [p. 414]
$\text{plausible}(\Gamma, \phi)$.	Plausible. Generic plausible inference. Sentence ϕ is a plausible inference given Γ , in the absence of evidence against ϕ . [p. 101]
pos.	Constant. The interval of positive quantities. [p. 161]
$\text{position}(O)$.	Function. The fluent of solid object O 's position over time. In each situation, $\text{position}(O)$ is a rigid mapping. [p. 328]
$\text{possible_occur}(S, E)$.	Predicate. It is possible for event type E to occur starting in situation S . [p. 213]
$\text{precedes}(S1, S2)$.	Predicate. Situation $S1$ precedes situation $S2$. [p. 190]
$\text{present_in}(O, S)$.	Predicate. Entity O exists in situation S . [p. 191]
$\text{prevent}(E)$.	Function. The event type of preventing event type E . [p. 215]
$\text{prim_change}(I, F)$.	Predicate. Primitive fluent F changes during interval I . [p. 204]
$\text{prim_fluent}(F)$.	Predicate. F is a primitive fluent. [p. 204]
$\text{prim_state}(F)$.	Predicate. F is a primitive state. [p. 204]
$\text{primitive}(E)$.	Predicate. Event type E is primitive. [p. 230]
$\text{primitive_component}(KP, KC)$.	Predicate. Event token KP is a primitive component of compound event token KC . [p. 230]
$\text{primitive_routine}(ACT, A)$.	Predicate. ACT , a function from arguments to an action type, is a primitive robotic routine for agent A . [p. 419]
$\text{process}(P, A)$.	Predicate. P is a process of type A . [p. 323]
$\text{prohibited}(E, S)$.	Predicate. Event type E is prohibited in situation S . [p. 449]

$\text{pronunciation}(P, S, L)$.	Predicate. String of phonemes P is an acceptable pronunciation of string of characters S in language L . [p. 441]
propel .	Constant. In CD, the action type of exerting a force on an object. [p. 452]
ptrans .	Constant. In CD, the action type of moving an object. [p. 452]
$\text{quat}(\mathbf{P}, \mathcal{F})$.	Function. The quaternion corresponding to point \mathbf{P} in coordinate system \mathcal{F} . [p. 302]
real_chronicle .	Constant. In a branching theory of time, the chronicle that actually occurs. [p. 213]
$\text{reason}(M, E)$.	Predicate. In CD, mental state M is a reason for action E . [p. 453]
$\text{rectangle}(\mathcal{C}, IX, IY)$.	Function. The rectangle of points with coordinates in $IX \times IY$ in coordinate system \mathcal{C} . [p. 251]
$\text{regular}(\mathbf{RR})$.	Predicate. Region \mathbf{RR} is regular. [p. 258]
$\text{result}(S, E)$.	Function. In the situation calculus, the result of performing action type E in situation S . [p. 217]
$\text{result}(E, S)$.	Predicate. In CD, event E results in state S . [p. 453]
$\text{scale}_U(X)$.	Function. The measure of quantity X relative to unit quantity U . [p. 156]
$\text{sequence}(E_1 \dots E_k)$.	Function. Event type of the occurrence of event types $E_1 \dots E_k$ in sequence. [p. 225]
$\text{sequence}(\phi_1 \dots \phi_k)$.	Modal. Event of the occurrence of events $\phi_1 \dots \phi_k$ in sequence. [p. 231]
$\text{set}(S)$.	Predicate. S is a set. [p. 49]
$\text{shape}(O)$.	Function. The shape (a region) of object O . [p. 328]
$\text{sign}(X)$.	Function. The sign (an interval) of differential quantity X . [p. 161]

simply_connected(RR).	Predicate. Region RR is simply connected. [p. 256]
sincere(K).	Predicate. Speech-act token K is sincere. [p. 443]
solid(O).	Predicate. O is a solid object. [p. 342]
solid_coating(RR, \tilde{D}).	Function. The state of region RR being the “coating” within distance \tilde{D} of solid objects. [p. 343]
some_future(ϕ).	Modal. State ϕ will be true at some point in the future. some_future(ϕ) is a state. [p. 231]
some_past(ϕ).	Modal. State ϕ will be true at some point in the past. some_past(ϕ) is a state. [p. 231]
sort_of(O).	Function. The sort of entity O . [p. 45]
speak(P).	Function. The event type of speaking the phoneme string P . [p. 441]
speak.	Constant. In CD, the action type of making a sound. [p. 452]
star($\mathbf{X}, < \mathbf{PP}_1, S_1 >, \dots, < \mathbf{PP}_k, S_k >$).	Predicate. In TOUR, places $\mathbf{PP}_1 \dots \mathbf{PP}_k$ meet at place \mathbf{X} . Moreover, the directed paths \mathbf{PP}_i with sense S_i occur counterclockwise around \mathbf{X} . [p. 281]
start(I).	Function. The greatest lower bound (a quantity) of interval I . [p. 151]
starts(I, J).	Predicate. Interval I starts with interval J , but finishes first. [p. 148]
subst($SNEW, SVAR, SOLD$).	Function. The result (a string) of substituting $SNEW$ for every occurrence of variable symbol $SVAR$ in string $SOLD$. [p. 80]
success(P, G).	Function. The fluent giving the degree to which plan P will succeed in achieving goal G in each starting situation. [p. 409]
sum_over(S, F).	Function (second order). The sum of F over set S . F is a function from S to some differential quantity space. [p. 158]

surf_norm(PP, X).	Function. The surface normal (a vector) pointing out of region PP at surface point XX. [p. 263]
Th(\mathcal{S}).	Metalevel. The set of first-order consequences of theory \mathcal{S} . [p. 116]
time_of(K).	Function. The time interval in which event (or state) token K occurs. [p. 191]
token_of(K, E).	Predicate. Event (or state) token K is a token of event (state) type E . [p. 191]
tolerance(CC, < EE ₁ , \tilde{D}_1 >, ..., < EE _k , \tilde{D}_k >).	Predicate. Directed edges EE ₁ ... EE _k approximate directed curve CC within tolerances \tilde{D}_1 ... \tilde{D}_k . [p. 275]
transfer(O, A).	Function. Action type of transferring possession of object O to agent A . [p. 451]
true_in(S, A).	Predicate. State A is true in S . S is a situation, a possible world, or a layout. [p. 56, 73, 188, 365, 389]
true_in(S, ϕ).	Modal. State A is true in situation S . [p. 231]
TRUE.	Metalevel. Truth. [p. 32]
true(P).	Predicate. String P spells out a true sentence. [p. 81]
tuple($X_1 \dots X_k$).	Function. The tuple of $X_1 \dots X_k$ in order. [p. 50]
twilight_zone.	Constant. Imaginary situation that results from an impossible event “occurring.” [p. 400]
two_d(FF).	Predicate. Region FF is two dimensional. [p. 258]
unit_length(\mathcal{C}).	Function. The unit of length in coordinate system \mathcal{C} . [p. 251]
upper_bound(X, I).	Predicate. Quantity X is an upper bound of interval I . [p. 151]
use_of(E, A, O).	Event type E constitutes a use of object O by agent A . [p. 451]

$\text{valid}(P, G)$.	Function. State type of plan P being a valid way to accomplish goal G in a situation. [p. 398]
$\text{value_in}(S, F)$.	Function. Value of fluent F in S . S is a situation, a possible world, or a layout. [p. 58, 73, 160, 188, 365, 387]
$\text{value_in}(S, \tau)$.	Modal. Value of term τ in situation S . [p. 231]
$\text{volume}(\text{RR})$.	Function. The volume of region RR . [p. 263]
w_0 .	Constant. The real world. [p. 74]
$\text{wait}(T)$.	Function. The action of waiting for time duration T . [p. 410]
$\text{wait_until}(Q)$.	Function. The action of waiting until state Q becomes true. [p. 410]
$\text{wait_while}(E)$.	Function. The action of waiting until event E is complete. [p. 410]
$\text{while}(A, E)$.	Function. Event type E occurs repeatedly as long as A holds at the beginning of each iteration. $\text{while}(A, E)$ is an event type. [p. 225]
$\text{while}(\theta, \phi)$.	Modal. Event ϕ occurs repeatedly as long as θ holds at the beginning of each iteration. [p. 231]
$\text{x_axis}(\mathcal{C})$.	Function. The positive x direction in coordinate system \mathcal{C} . [p. 251]
$\text{z_coor}(\mathbf{P}, \mathcal{C})$.	Function. The z coordinate (a real number) of point \mathbf{P} in coordinate system \mathcal{C} . [p. 256]
$\text{z_y_z_euler}(\mathcal{F}, \mathcal{C})$.	Function. The Z-Y-Z Euler angles (a triple of real numbers) of the orientation of coordinate frame \mathcal{F} relative to coordinate frame \mathcal{C} . [p. 274]

Index of Names

A

Abelson, R., 392, 428, 429, 432, 445, 450, 455
Addanki, S., 26, 348
Agre, P., 395, 425, 432
Allen, J., 181, 237, 349, 432, 455
Ambler, A., 306
Andrews, P., 76, 91
Appelt, D., 91, 455
Arbab, F., 246
Austin, J., 17, 440, 455
Ayer, A. J., 17, 26

B

Baker, A., 237
Ballantyne, A. M., 182
Ballard, D., 307
Barwise, J., 20, 92, 355
Binford, T., 181
Bledsoe, W., 182
Bobrow, D., 26, 182
Boddy, M., 432
Boggess, L., 307
Bond, A., 455
Bonissone, P., 141
Borning, A., 181
Brachman, R., 25
Brooks, R., 181, 307, 432
Brown, C., 307
Brown, F., 237
Brown, J. S., 176, 181, 313, 347
Bundy, 348
Bunt, H., 349

C

Burge, T., 91
Bylander, T., 347
Carnap, R., 17, 26
Chandrasekaran, B., 347
Chapman, D., 215, 395, 425, 431–432
Charniak, E., 25–26, 141, 431–432, 450
Cheeseman, P., 141
Chiu, C., 176, 182
Chou, S., 246
Church, A., 91
Cohen, Paul, 141
Cohen, Philip, 432, 455
Cohn, A. J., 91
Collins, J., 349
Craig, J., 307
Cresswell, M. J., 91, 391

D

Davidson, D., 15, 237, 354, 362, 375, 391
Davis, E., 25, 181–182, 278, 305, 340, 348, 392
Davis, M., 180, 182
Davis, R., 347, 439, 455
Dawes, R., 141
de Kleer, J., 26, 176, 181, 287, 306, 313, 347
Dean, T., 181, 237, 431
DeMillo, R. A., 13
Dennett, D., 91, 354, 374, 391

Downs, R., 308
 Doyle, J., 141
 Doyle, R., 349
 Drummond, M., 431
 Dyer, M., 392, 432, 455

E

Etchemendy, J., 92
 Etherington, D., 140

F

Fagin, R., 389, 391
 Fahlman, S., 348, 431
 Faltings, B., 307, 348
 Feys, R., 66
 Fikes, R., 215, 237, 431
 Fine, T., 141
 Firby, J., 425, 431
 Fleck, M., 243, 305
 Fodor, J., 15
 Forbus, K., 306, 321, 348
 Funt, B., 348

G

Gaifman, H., 121, 139
 Gallin, D., 91
 Gassser, L., 455
 Geertz, C., 26
 Gelernter, H., 246
 Gelsey, A., 306, 348
 Genesereth, M., 25, 70, 89, 92,
 110, 140
 Gentner, D., 347
 Georgeff, M., 431, 455
 Gettier, E., 374, 391
 Ginsberg, M., 91, 140
 Godel, K., 30, 77, 84
 Goodman, N., 91
 Gorry, G., 237
 Green, C., 237, 431
 Grice, H.P., 98
 Grinberg, M., 348

Grosof, B., 141
 Gupta, A., 92

H

Haas, A., 92, 389, 391-392
 Halmos, P., 91
 Halpern, J., 389, 390, 453
 Hanks, S., 210, 237
 Harel, D., 237
 Hayes, P., 26, 141, 181, 200,
 237, 306, 342, 347, 417,
 419, 432
 Hendler, J., 432
 Hendrix, S., 391
 Hersh, R., 180, 182
 Hewitt, C., 431
 Hintikka, J., 91, 390-391
 Hinton, G., 308
 Hobbs, J., 15, 17, 24-25, 91
 Hoffmann, C., 307
 Hofstadter, D., 92
 Hopcroft, J., 307
 Hughes, G. E., 91, 391
 Hummel, R., 141

I

Inhelder, B., 308
 Iwasaki, Y., 349

J

Jaynes, E., 141
 Johnson, R.W., 131
 Joskowicz, L., 306, 348

K

Kaelbling, L., 354, 375, 391, 432
 Kahn, K., 237
 Kahneman, D., 139
 Kanazawa, K., 237
 Kaplan, D., 91-92, 391
 Kautz, H., 181, 211, 237, 432
 Kilmister, C., 340

- Kolmogorov, A. N., 119
Kolodner, J., 141
Konolige, K., 92, 391-392
Kosslyn, S., 308
Kowalski, R., 26
Kripke, S., 26, 67, 91-92, 367,
 391
Kube, P., 392
Kuipers, B., 141, 176, 182, 279,
 305, 347
- L**
- Ladkin, P., 181
Landy, M., 141
Langford, C. H., 66
Lansky, A., 431
Lavin, M., 306
Lehnert, W., 392
Leibniz, G., 354
Lenat, D., 22, 25
Lesperance, Y., 436
Levesque, H., 25, 389, 390, 432,
 455
Levitt, T., 306
Lewis, C. I., 66
Lewis, D., 91
Lifschitz, V., 25, 140, 237, 431
Lipton, R. J., 13
Litman, D., 455
- M**
- Malik, J., 181
Manevitz, L., 64
Manna, Z., 431
Marcus, R. B., 64
Marcus, R., 374, 391
Mason, M., 349
Mates, B., 86, 91
McCarthy, J., 1, 25, 91, 140,
 200, 237, 363, 391, 417,
 419, 432
McCarty, L. T., 455
McCloskey, M., 312
- McDermott, D., 25, 91, 141, 154,
 181, 210, 223, 237, 278,
 305, 307, 348-349, 422,
 431, 450
Meehan, J., 184
Miller, D., 431
Minsky, M., 26, 141
Mises, R., 119
Montague, R., 17, 92, 391
Moore, R., 25-26, 70, 72, 91,
 98, 141, 364, 383, 390-
 391, 419, 422, 432
Moravec, H., 306
Morgenstern, L., 92, 237, 378,
 383, 391, 419, 432, 455
Morris, P., 237
Moses, Y., 390, 453
- N**
- Nagel, T., 30
Newell, A., 26, 431
Newman, J., 30
Nielsen, P., 348
Nilsson, N., 25, 70, 89, 92, 110,
 141, 215, 237, 431, 140
Novak, G., 307
- P**
- Pearl, J., 99, 141, 349
Pednault, E., 423, 432
Perlis, A. J., 13, 44
Perlis, D., 92
Perrault, R., 455
Perry, J., 20, 92, 355
Peshkin, M., 349
Piaget, J., 26, 308
Polanyi, M., 378
Pollack, M., 455
Popplestone, R., 306
Pratt, V., 237
Prior, A. N., 237
Putnam, H., 26, 374, 391
Pylyshyn, Z., 26, 237, 308

Q

Quine, W. V. O., 12, 91

R

Raiman, O., 182
 Reeve, J. E., 340
 Reichgelt, H., 26
 Reiter, R., 115, 140
 Requicha, A., 307
 Rescher, N., 237
 Retz-Schmidt, G., 307
 Rieger, C., 347, 432
 Riesbeck, C., 307
 Robinson, A., 180, 182
 Roseman, I., 392
 Rosenschein, J., 455
 Rosenschein, S., 354, 375, 391
 Rowat, P., 306
 Russell, B., 17, 26, 49, 119, 390
 Ryle, G., 378, 390

S

Sacerdoti, E., 182, 215, 431
 Sacks, E., 181
 Sanders, K., 392, 455
 Sanderson, A. C., 349
 Schank, R., 17, 141, 346, 391–
 392, 428–429, 432, 445,
 450, 455
 Schmolze, J., 349
 Schoppers, M., 432
 Schubert, L., 26
 Schwartz, J., 307
 Searle, J., 443, 455
 Shafer, G., 141
 Shannon, C., 132
 Sharir, M., 307
 Shoham, Y., 91, 140, 211, 237,
 306, 348–349
 Shore, J.E., 131
 Simmons, R., 181
 Simon, H., 349, 431

Skinner, B., 354, 395

Smith, R., 439, 455

Smulyan, R., 92

Sobociński, B., 66

Sridharan, N., 455

Stea, D., 308

Steele, G., 181, 347

Stefik, M., 431

Stein, L., 237

Stevens, A., 347

Struss, P., 182

Stuart, C., 455

Sussman, G., 181, 347, 431

Sutherland, I. E., 181

T

Tarski, A., 38, 92
 Tate, A., 431
 Thomason, N., 392
 Thorpe, C., 307
 Turner, R., 89, 140–141
 Tversky, A., 139
 Tversky, B., 308

U

Urquhart, A., 237

V

van Benthem, J., 181, 237
 Vardi, M., 391, 455
 Vere, S., 237, 431
 Vilain, M., 181, 237

W

Waldinger, R., 431
 Wallace, R., 307
 Walther, C., 91
 Waltz, D., 307
 Wang, Y., 349
 Weaver, W., 132
 Weld, D., 181–182, 347
 Whorf, B., 15

- Wilensky, R., 413, 432, 455
Wilkins, D., 431
Wilks, Y., 17
Williams, B., 182, 347
Wilson, N., 362
Wing, J., 246
Winograd, T., 26, 140, 431
- Wittgenstein, L., 15, 17, 455
Woods, W., 26
Wos, L., 26
- X, Y, Z
- Zadeh, L., 20, 25, 99, 141

General Index

A

abduction, 4
abnormality predicate, 113
ABSTRIPS, 431
abutment, 258
accessibility relation, 67, 365
ACRONYM, 181
actions, 346
 concurrent, 413
 deliberate, 414
 directly executable, 419
 in CD, 450
add list, 215
addition, 154
agents, 346, 353–354
analogy, 100
anchored propositions, 229
Archimedean property, 156
architectures, domain-independent, 26
area, 247
arrogance, axiom of, 359, 362, 376, 391
assimilation, 4
assumption, rule of inference in natural deduction, 87
autoepistemic inference, 98, 364
axiom
 logical, 31
 proper, 31
 rule of inference in natural deduction, 87
schema, 30

B

Barcan axiom, 62, 64
Bayes's formula, 123–125, 129, 136
behavior, 387, 388
belief, 356–373
 axioms in syntactic form, 371–372
 axioms in terms of possible worlds, 368
 axioms of, 358–365, 391
 degree of, 96, 370–373
 derivable, 357
 explicit, 357
 implicit, 357
 modal theory, 356, 390
 syntactic theory, 367–370, 391
blocks-world, 193–209
bound occurrence of a variable, 36
boundary representation, 274–278
BOUNDER, 181
BUILD, 431

C

calculus, propositional, 31
cardinality, 158
causal axioms, 193
CD, 346, 392, 450–453, 455
charity, principle of, 360, 362, 391
cheating husbands problem, 455

- chronicle, 212
 circumscription, 109, 142
 with variable predicates, 114
 circumscriptive axiom schema, 110
 clobbering, in TWEAK, 403
 clock times, 190
 closed-world assumption, 106, 140, 142
 in cognitive maps, 244
 cognitive maps, 242, 305
 coherence, axiom of, 359, 361
 common knowledge, 436–439, 453
 communication, 435, 440–448, 455
 completeness, 10
 of a logic, 30
 of an axiom system, 30
 theorem, Godel, 30
 component model, 312–320, 347
 comprehension, axiom of, 49
 used to generate states and events, 223
 conceptual dependency, *see* CD
 concurrency, 228–230
 actions, 413
 events and frame axioms, 206
 conditionals, 225
 configuration spaces, 14, 282–286
 consequential closure, 55, 62, 98, 357–359, 375,
 on common knowledge, 438
 consistency, axiom of, 359, 361
 constant symbol, 36
 constant, sentential, 31
 constraints, in TWEAK, 402
 constructive solid geometry, *see* CSG
 containment, 255–257
 continuity, in spatial curves, 290
 continuity, rule of, 172
 control structures, 225
 cooperation, 439
 coordinate system, 247, 295
 coordinate transformations, 294–302
 counterfactuals, 91
 cross-world identification, 74
 CSG, 14, 270–274, 307
 curvature, 289
 CYC, 25
- D**
- DAG, 148
 data-dependencies, 141
 de dicto modality, 74
 de re modality, 74, 91
 declarative acts, 440
 declarative representation, 3
 deduction theorem in a nonmonotonic logic, 143
 deduction, 4, 16
 default rules, 97
 default theory, 115–117, 140
 definite descriptor, 47
 definitional equivalence, 34
 delete list, 215
 deletion, 4
 Dempster-Shafer theory, 141
 derivability, 29
 derivatives, 164–166
 DEVISER, 431
 difference, 154–155
 difference space, 154
 differential, surface, 263
 direction, 247
 representation of, 295
 discharging, 65, 86, 87
 distance, 249
 domain closure, 103, 140, 142
 durations, 190
 dynamic analysis, 334, 348
 dynamic logic, 237
 dynamic modal operators, 231
 DYNAVU, 306

E

emotion, 392
 endorsements, 141
 entities, 38
 entropy, maximum, 131–135
 envisionment graph, 175, 185, 293
ENVISION, 14, 313, 347
 equality, 43
 equidistribution, principle of, 126–127, 131, 132
 equilibrium, perturbation of, 319
 establishment, in TWEAK, 407
 ethics, 435, 448–450, 455
 Euler angle, 300
 event, 192–193
 complex, 220–225
 external, 409
 mental, 353
 probabilistic, 120
 propositions, 229
 template, in TWEAK, 402
 token, 192
 type, 192
 abstraction hierarchy, 193
 as sets of intervals, 223
 in TWEAK, 402
 evidence
 combination, 128
 independent, 128
 exclamatory acts, 440
 existence, unique, 47
 existential generalization, 88
 existential specification, 88
 expert systems, 17, 21
 explanation, 99
 extension in a default theory, 116
 extensional operators, 56–59
 extensionality, 38
 axiom of, 49

F

filler of a schema slot, 99
 fitting, 255–257
 fluents, 58, 188–191
 as functions on situations, 223
 Boolean, 188
 derived, 203
 primitive, 203
 folk psychology, 354
FORBIN, 431
 force, 334
 formula
 closed, 37
 closure of, 38
 ground, 41
 in predicate calculus, 36
 open, 37
 frames, 99
 frame axioms, 201–208
 frame of discernment, 123
 frame problem, 198–212, 237
 as plausible inference, 209–212
 with concurrent actions, 228
 free occurrence of a variable, 36
 frequency, principle of relative, 126–127
FROB, 348
 function symbol, 36
 function, extensional, 40
 function, partial, 44
 fuzzy logic, 20, 25, 141

G

gap axioms (temporal), 202
 generalization, 100
 generalized cylinder, 272
 geometric reasoning, 241–310
 geometry, Euclidean, 243
 goal subsumption, 413
 goals, 395–433
 achievement, 429

crisis, 429
 delta, 429
 entertainment, 429
 preservation, 429
 satisfaction, 429
 going through, topological definition, 302-305
 GPS, 431
 Gricean conditions, 98, 103
 ground, 334

H

HACKER, 431
 histories, 237, 342

I

illocutionary acts, 440, 442-445
 image, 283
 imperative acts, 440, 442
 implementation, 6, 12
 implication, material, 46, 66
 incompleteness, 18-19
 incompleteness theorem, Gödel, 30, 84
 inconsistency, 29
 independence, 127-128
 principle of, 133
 indexicals, 20-21
 in common knowledge, 437
 indifference, principle of, 126
 individuals, 38
 induction, 4, 100
 mathematical, 30
 inference, 3
 tautological, 33
 inference rule, 29
 infinitesimals, 178-180
 influence
 plans of, 439, 445-448
 influences of a process, 321

information
 control-level, 3
 object-level, 3
 information theory, 132
 inheritance of properties, default, 142
 interpretation, 29
 in predicate calculus, 40
 of a modal language, 69
 interrogative acts, 440
 intervals, 148-154, 237
 calculus, 184
 closed, 151
 gapped, 152
 open, 152
 over a partial ordering, 150
 unbounded, 151
 unimodal, 170
 introspection
 negative, 363
 axiom of, 359
 positive, 363, 375
 axiom of, 359
 on common knowledge, 438
 on plans and goals, 415
 on uncertain belief, 373

J, K

kinematic analysis, 332-333, 348
 knowing about, 378
 knowing how, 378
 knowing what, 378-381
 knowing whether, 378-381
 knowledge, 373-377
 axioms of, 375, 391
 base, 3
 common, 436-439
 modal theory, 390
 of plans and goals, 415
 preconditions, 417, 432
 syntactic theory, 391
 Kripke structure, 67, 69

L

lambda abstraction, 50
 landmark values, 168
 language
 formal, 6, 27–28
 natural, 14–16, 21, 26
 object, 31
 layout, 387, 392
 learning, 12, 21
 liar sentence, 83–85, 92, 94
 liquids, 342–346
 LISP, 26
 locutionary acts, 440–441
 logic, 27–29
 autoepistemic, 141
 axiomatic, 29
 deontic, 455
 first-order, 28, 35–52
 fuzzy, 99
 higher-order, 91, 110
 nonmonotonic, 101–118
 programming, 13, 26
 propositional, 28, 31–34
 role of, 16, 26
 sentential, 31
 sorted, 44
 logical system, 28
 loops, 225

M

mapping, spatial, 247
 mathematics, 24, 146
 maximum-entropy, 141, 143
 mean value theorem, 176
 in spatial curves, 290
 measure space, 147
 differential, 154
 integral, 154
 MECHO, 348
 memory, short-term and long-term, 389, 392
 MERCATOR, 14, 274–278, 305
 metalanguage, 31

methodology, 4–12, 26
 microworld, 6, 26
 minds, 351–393
 and time, 381, 391
 realistic models, 388–390
 modal logic, 59–76, 91
 axioms of, 62
 semantics of, 66–72
 syntax, 60
 systems of, 66
 modal operators, iterated, 63, 67
 modal temporal logic, 229–233
 mode (of a dynamic systems), 169
 augmented, 171
 sequence, 169
 transition network, 166, 185
 modus ponens, 34
 MOLGEN, 431
 monotonic relations, 159–164, 184
 monotonicity in logic, 101
 motion, 261–262
 motivation analysis, 395, 432
 multiplication, 157

N

naive physics, 311
 NASL, 431
 natural deduction, 37, 86–90
 natural kinds, 23
 natural-language text, spatial information in, 307
 necessitation, 62, 64, 360, 363
 necessity, 60
 negation as failure, 141
 Newtonian mechanics, 334–342
 NEWTON, 14, 181, 287, 306, 339, 348
 NML, 141
 no function in structure principle, 313, 347

NOAH, 182, 431
NONLIN, 431
nonmonotonic logic, *see* logic; monotonic
nonmonotonicity, in the behavior of an algorithm, 108
normal default theory, 115
normalization of a region, 272
null values, in temporal reasoning, 191
NX, 306

O

occupancy arrays, 14, 264–270, 308
oct tree, 268
ontology, 6
opacity, referential, 55, 355
in goals and plans, 414
operators
on sentences, 52–55, 91
semantic, 79
syntactic, 79
order, 147–148
order of magnitude, 178–180, 182

P

paradoxes, 83–85
parameter topology, rule of, 172
parameters, 159–160, 312
in QP theory, 322
partial orderings, 182
paths, in TOUR, 279
PENGI, 425
perception, 386–388, 391
and communication, 442
performative acts, 440
perlocutionary acts, 440
philosophy, 22–24, 26
physical reasoning, 242, 311–350

spatial representations for, 306
piano-movers problem, 307
places in TOUR, 279
planners, 431
non-linear, 398, 401–408, 431
reactive, 425–427, 432
task-reduction, 411
plans
construction, 395
description, complete versus partial, 397
execution, 423
multiagent, 439
trace, in TWEAK, 402
points, spatial, 247
ports, 312
position, relative, 249–255
possession, 435
possibility, 60
possible course of events, 212
possible worlds, 66–74
and situations, 383–385
applied to knowledge, 377
in a first-order theory, 72–74
in a theory of belief, 365–367
representation of common knowledge, 439
representation of goals and plans, 414
semantics for probability, 125, 141
semantics, compared with syntactic theories, 82
preconditions, 193–195, 215, 400
of a process, 321
predicate calculus, 35–52, 89
common errors, 45–47
proof systems, 37
semantics, 38–42
syntax, 36–38

preference relation on models, 118, 140
 present moment, 233–237
 prevention, 215, 411
 privileged access, 359, 361, 391
 on uncertain belief, 373
 probabilistic model, applied to
 beliefs of agents, 372
 probability, 119–125, 141
 conditional, 120
 higher-order, 121
 prior, 120
 subjective, 119
 procedural representation, 3
 process, 321–328
 Prolog, 13
 promotion, in TWEAK, 407
 proof, 28
 in natural deduction, 86–89
 step, 86
 structure, 87
 propositional attitudes, 355
 propositional calculus, 31–35
 proof theory, 33
 semantics, 32
 syntax, 31
 provability, 84

Q

QA3, 237, 431
 QDE, 14, 173–177, 181, 185, 291, 320
 higher-order, 182
 QP theory, 14, 321–348
 quad tree, 268
 qualification problem, 97
 qualitative differential equation,
 see QDE
 qualitative process theory, *see*
 QP theory
 qualitative proportionality, 322
 quantification, 36

into opaque contexts, 54, 61,
 74–76, 379, 391
 into probabilistic sentences,
 121
 limited, 44, 46
 over sentences, 55, 76
 quantifier exchange, 89
 quantifiers, semantics of, 42
 quantities, 145–185
 quasi-quotes, 370
 quaternions, 300–302
 query answering, 4
 quotation, *see* syntactic theory

R

ramification problem, 198
 RAP, 14, 425–427, 432
 real arithmetic, 156–158, 181
 real world, 74
 reasoning, plausible, 95–144
 recursive definitions, 51–52
 regions, 247
 in TOUR, 279
 set operations, 248
 regular region, 258
 reification, 8, 50
 relation, extensional, 38
 resolution, 37
 rigid designator, 70, 75–76, 91, 379
 rigid mappings, 294–302
 used with occupancy array, 267
 robotics, 21, 307
 rotations, representation, 298–302
 route maps, 278–282
 route planning, 242

S

S4 (modal logic system), 66
 S5 (modal logic system), 66
 sampling, 135–137

- scale, real-valued, 156–157
 schemas, 99, 141
 scope of quantifiers, 37
 self-reference, 83–85, 92
 semantics, 28
 sentence, 28
 - in predicate calculus, 37
 - universally valid, 29
 separation of variables, in TWEAK, 407
 sequences, 225
 seriality, 69
 set theory, 48–50, 91
 shapes, approximating, 243
 signs, 159–164, 181, 184
 - compatibility, 161
 SIPE, 431
 situation calculus, 217–219
 situation logic, 92
 situations, 187–191, 237
 - and possible worlds, 383–385
 Skolemization, 37
 slot of a schema, 99
 solid objects, 328–342
 Sorites paradox, 20, 98
 sorts, 44–45, 91
 soundness, 30
 SPAM, 306
 spatial reasoning, 241–310
 - psychological studies, 307
 speech acts, 440–450
 spelling out, of a metalevel construct by a string, 79
 splitting, 65
 - inference rule, 143
 state-coherence axioms, 193
 state propositions, 229
 state token, 191
 state type, 191
 - as sets of situations, 223
 - in TWEAK, 402
 states, 188–191
 - complex, 220
 mental, 353
 statistical inference, 125–140
 step addition, in TWEAK, 407
 step, in TWEAK, 403
 strings, 77, 92
 - symbolic, 78
 - meaningful, 78
 STRIPS, 215, 237, 240, 431
 subtraction, 154
 symbol, logical, 28
 symbol, nonlogical, 28
 - in predicate calculus, 36
 syntactic operators, 92
 syntactic theory, 76–85
 syntax, 28
- T**
- T (modal logic system), 66
 tangent to a curve, 289
 Tarskian semantics, 38–43
 task reduction, 431
 tautology, 33
 - rule of inference in natural deduction, 87
 temporal logic, 187–240
 - modal, 229–237, 240
 temporal operator, 56
 temporal reasoning, implementations, 237
 tense logic, 231
 term, 36
 - ground, 41
 theorem prover, 13, 16
 theorem proving, geometric, 246
 theory, 31
 time, 187–240
 - branching, 212–215, 239
 - real-valued, 219–220
 TOUR, 14, 278–282, 305
 transparency, referential, 55
 truth, axiom schema, 83
 Tschebyscheff's inequality, 136
 TWEAK, 14, 215, 401–408, 431
 type-token distinction, 191

U

uncertainty, 18
unique names assumption, 107
 in cognitive maps, 246
 in frame axioms, 204
unit quantity, 156
universal generalization, 88
universal specification, 88
ur-element, 49
UTAK, 306
utility, expected, 99

V

vagueness, 15, 17, 19, 25, 99
variable predicates in circumscription, 114

variable symbol, 36
veridicality, 375
vision, 21, 241, 307
volumetric representation, 271
volume, 247

WXYZ

waiting, 410
Waltz propagation, 181
WHISPER, 348
white knight, in TWEAK, 406
Yale shooting problem, 210-212,
 237