
Projective Geometry 

Ernest Davis 

Csplash 

April 26, 2014 



Pappus’ theorem: 
Draw two lines 

 



Draw red, green, and blue points on 
each line 

. 



 
Connect all pairs of points with different colors. 

 



A = crossing of two red-green lines. B = crossing 
of red-blues. C=crossing of green-blues. 

 



Theorem: A, B, and C are collinear. 
 



More Pappus diagrams 



and more 



and more 



Pappus’ theorem 

The theorem has only to do with points lying on 
lines.  

No distances, no angles, no right angles, no 
parallel lines. 

You can draw it with a straight-edge with no 
compass. 

The simplest non-trivial theorem of that kind. 



Outline 

• The projective plane = 

         Euclidean plane + a new line of points 

• Projection 
– Fundamental facts about projection 

– The projective plane fixes an bug in projection. 

• Pappus’ theorem 

Time permitting:  

• Perspective in art 

• Point/line duality 



PART I: THE PROJECTIVE PLANE 



Euclidean geometry is unfair and 
lopsided! 

• Any two points are connected by a line. 

• Most pairs of lines meet in a point. 

• But parallel lines don’t meet in a point! 



To fix this unfairness 

Definition: A sheaf of parallel lines is all the lines 
that are parallel to one another. 

Obvious comment: Every line L belongs to 
exactly one sheaf (the set of lines parallel to L). 

 

 



Projective plane 

For each sheaf S of parallel lines, construct a 
new point p “at infinity”. Assert that p lies on 
every line in S. 

All the “points at infinity” together comprise the 
“line at infinity” 

The projective plane is the regular plane plus 
the line at infinity. 



Injustice overcome! 

Every pair of points U and V is connected by a 
single line. 

Case 1: If U and V are ordinary points, they are 
connected in the usual way. 

Case 2. If U is an ordinary point and V is the 
point on sheaf S, then the line in S through U 
connects U and V. 

Case 3. If U and V are points at infinity they lie 
on the line at infinity. 



Injustice overcome (cntd) 

If L and M are any two lines, then they meet at a 
single point. 

Case 1: L and M are ordinary, non-parallel lines: 
as usual. 

Case 2: L and M are ordinary, parallel lines: they 
meet at the corresponding point at infinity. 

Case 3: L is an ordinary line and M is the line at 
infinity: they meet at the point at infinity for L. 



Topology 

As far as the projective plane is concerned, there 
is no particular difference between the points at 
infinity and ordinary points; they are all just 
points. 

If you follow line L out to the point at infinity, 
and then continue, you come back on L from the 
other direction. (Note: there is a single point at 
infinity for each sheaf, which you get to in both 
directions.) 

 



The price you pay 

• No distances. There is no reasonable way to 
define the distance between two points at 
infinity. 

• No angles 



More price to pay:  
No idea of “between” 

• B is between A and C; i.e. you can go from A to 
B to C. 

• Or you can start B, pass C, go out to the point 
at infinity, and come back to A the other way. 
So C is between B and A. 

 

 



Non-Euclidean Geometry 

• The projective plane is a non-Euclidean 
geometry. 

• (Not the famous one of Bolyai and 
Lobachevsky. That differs only in the parallel 
postulate --- less radical change in some ways, 
more in others.)  



PART II:  PROJECTION 



Projection 

• Two planes: a source plane S and an image 
plane I. (Which is which doesn’t matter.) 

• A focal point f which is not on either S or I. 

• For any point x in S, the projection of x onto I,  
Pf,I(x) is the point where the line fx intersects I. 



Examples 

From http://www.math.utah.edu/~treiberg/Perspect/Perspect.htm 



From Stanford Encyclopedia of Philosophy, “Nineteenth Century 
Geometry”, http://plato.stanford.edu/entries/geometry-19th/ 



From 
http://www.math.poly.edu/~alvarez/teaching/projective-

geometry/Inaugural-Lecture/page_2.html  

 





Properties of projection 

1. For any point x in S, there is at most 
projection Pf,I(x). 

Proof: The line fx intersects I in at most 1 point. 

2. For any point y in I, there is at most one point 
x in S such that y = Pf,I(x).  

     Proof: x is the point where fy intersects S. 

 

 

 

 



  
3. If L is a line in S, then Pf,I(L) is a line in I. 

Proof: Pf,I(L) is the intersection of I with the plane 
containing f and L.  

4. If x is a point on line L in S, then Pf,I(x) is a 
point on line Pf,I(L). 

Proof: Obviously. 

Therefore, if you have a diagram of lines 
intersecting  at points and you project it, you get 
a diagram of the same structure. 

E.g. the projection of a Pappus diagram is 
another Pappus diagram.  



More properties of projection 

5. If S and I are not parallel, then there is one 
line in S which has no projection in I.  

Proof: Namely, the intersection of S with the plane 
through f parallel to I. 

6. If S and I are not parallel, then there is one 
line in I which has no projection in S. 

Proof: Namely, the intersection of I with the plane 
through f parallel to S. 

Call these the “lonely lines” in S and I. 

 

 

 



Using the projective planes  
takes care of the lonely lines! 

Suppose H is a sheaf  in S.  

The images of H in I all meet at one point h on 
the lonely line of  I. 

Any two different sheaves meet at different 
points on the lonely line of I. 

So we define the projection of the point at 
infinity for H in S to be the point on the lonely 
line where the images meet. 

 



Sheaves in the source plane, viewed 
head on 



Projection of sheaves  
in the image plane 



And vice versa 

Suppose H is a sheaf  in I.  

The images of H in S all meet at one point h on 
the lonely line of  S. 

Any two different sheaves meet at different 
points on the lonely line of S. 

So we define the projection of the point at 
infinity for H in I to be the point on the lonely 
line of S where the images meet. 

 



So projection works perfectly for 
projective planes. 

• For every point x in the projective plane of S 
there exists exactly one point y in the 
projective plane of I such that y = Pf,I(x). And 
vice versa. 



Redoing property 3  

• If L is a line in the projective plane of S, then 
Pf,I(x) is a line in the projective plane of I. 

Proof by cases: 

1. L is an ordinary line in S, not the lonely line of 
S. x is a point in L. We proved above that 
Pf,I(L) is a line M in I. 

A. If x is an ordinary point in L, not on the lonely 
line, then Pf,I(x) is on M. 

 



Proof, cntd. 

B. If x is the intersection of L with the lonely line, 
then Pf,I(x)  is the point at infinity for M 

C. If x is the point at infinity for L, then Pf,I(x) is the 
intersection of M with the lonely line in I. 

2. If L is the lonely line in S, then Pf,I(L)  is the 
line at infinity in I. 

3. If L is the line at infinity in S, then Pf,I(L)  is the 
lonely line in I. 

 



One more fact 

If L is any line in S, you can choose a plane I and 
a focus f such that Pf,I(L) is the line at infinity in I. 

Proof: Choose f to be any point not in S. Let Q be 
the plane containing f and L. Choose I to be a 
plane parallel to Q. 

  



PART 3: NOW WE CAN PROVE 
PAPPUS’ THEOREM! 



Now we can prove Pappus’ theorem! 

Proof: Start with a Pappus diagram 

 



We’re going to project the line AB to the line at 
infinity. That means that the two red-blue lines 
are parallel and the two red-green lines are 
parallel. We want to prove that C lies on the new 
line AB, which means that C lies on the line at 
infinity, which means that the two blue-green 
lines are parallel. 



But this is a simple proof in Euclidean geometry. 

 

 



PART 3: PERSPECTIVE 



One point perspective (Image plane is perpendicular to x axis) 
Perugino, Delivery of the keys to St. Peter, 1481. From Wikipedia, 

Perspective 
 



Two-point perspective:  
Image plane is parallel to z axis. 
(From Wikipedia, “Perspective”) 



3-point perspective 
Image plane is not parallel to any coordinate axis 

From Wikipedia, “Perspective” 



PART 4: POINT-LINE DUALITY 



Numerical representation for ordinary 
points and lines 

• A point is represented by a pair of Cartesian 
coordinates:  <p,q>.  e.g. <1,3> 

• A line is an equation of the form Ax+By+C = 0 
where A,B, and C are constants. E.g.          
2x+y-5=0.  A point <p,q> falls on the line if it 
satisfies the equation. 



Multiple equation for lines 

• The same line can be represented by multiple 
equations. Multiply by a constant factor. 

2x + y - 5=0 

4x + 2y – 10 = 0 

6x + 3y – 15 = 0 

are all the same line. 



Homogeneous coordinates for lines 

Represent the line Ax+By+C =0 by the triple 
<A,B,C> with the understanding that any two 
triples that differ by a constant factor are the 
same line. 

So, the triples <2,1,-5>,  <4,2,-10>,                       
<-6,-3,15>, <1, 1/2, -5/2>  and so on all 
represent the line 2x+y-5=0. 

 



Homogeneous coordinates for points 

We want a representation for points that works 
the same way. 

We will represent a point <p,q> by any triple 
<u,v,w> such that w ≠ 0, u=p*w and v=q*w. 

E.g. the point <1,3> can be represented by any 
of the triples <1,3,1>, <2,6,2>, <-3,9,-3>, 
<1/3,1,1/3> and so on. 

So again any two triples that differ by a constant 
multiple represent the same point. 



Point lies on a line 

Point <u,v,w> lies on line <A,B,C> if 
Au+Bv+Cw=0. 

 

Proof: <u,v,w> corresponds to the point        
<u/w, v/w>. If A*(u/w) + B*(v/w) + C = 0, then 
Au + Bv + Cw = 0. 



Homogeneous coordinates for a point 
at infinity 

• Parallel lines differ in their constant term. 

          2x + y – 5 = 0 

          2x + y – 7 = 0 

          2x + y + 21 = 0 

The point at infinity for all these has 
homogeneous coordinates <u,v,w> that satisfy 

     2u + v – Cw = 0 for all C 

Clearly v = -2u and w = 0. 



Homogeneous coordinates for a point 
at infinity 

Therefore, a point at infinity lying on the line 

       Ax + By + C = 0 

has homogeneous coordinates <-Bt, At, 0> 
where t ≠ 0. 

E.g. the triples <-2,1,0>, <4,-2,0> and so on all 
represent the point at infinity for the line 

    x + 2y – 5 = 0. 
 

 



Homogeneous coordinates for a point 
at infinity 

• Note that the points 

      Homogeneous             Natural 

      < -2, 1, 1>                     <-2, 1> 

      < -2, 1, 0.1>                  <-20, 10> 

      < -2, 1, 0.0001>           <-20000, 10000> 

lie further and further out on the line x+2y=0, 

so it “makes sense” that <-2, 1, 0> lies infinitely 

far out on that line. 



Homogeneous coordinates for the line 
at infinity 

The line at infinity contains all points of the form 

<u,v,0>. So if the homogeneous coordinates of 
the line at infinity are <A,B,C> we have 

Au + Bv + 0C = 0, for all u and v. So A=B=0 and C 
can have any non-zero value. 



Points in homogeneous coordinates 

Any triple <x,y,z>, not all equal to 0, with the 
rule that <xr,yr,zr> represents the same point for  
any r ≠ 0. 

 

Point <x,y,z> lies on line <a,b,c> if ax+by+cz=0. 



Lines  in homogeneous coordinates 

Any triple <x,y,z>, not all equal to 0, with the 
rule that <xr,yr,zr> represents the same line for  
any r ≠ 0. 

 

Line <x,y,z> contains point <a,b,c> if ax+by+cz=0. 



Point/Line duality 

Therefore: 

If you have any diagram of points and lines, you 
can replace every point with coordinates <a,b,c> 
with the line of coordinates <a,b,c> and vice 
versa, and you still have a valid diagram. 

If you do this to Pappus’ theorem, you get 
another version (called the “dual” version) of 
Pappus’ theorem. 



Pappus’ theorem: Dual formulation 

Pick any two points. Through each, draw a red 
line, a blue line, and a green line. 

 



Find the intersection of the lines of different 
color.  

 



Draw the lines that connects the two red-blue 
crossings, the two red-green crossings, and the 
two blue-green crossings. 

 

 



These lines are coincident 



Pappus’ theorem: Original and dual 

Draw two lines with red, 
blue and green points. 

Draw the lines connecting 
points of different colors. 

Find the intersections of 
the two red-blue, the two 
red-green, and the two 
blue-green lines. 

These points are collinear. 

Draw two points with red, 
blue, and green lines. 

Find the intersection of 
lines of different colors. 

Draw the lines connecting 
the two red-blue, the two 
red-green, and the two 
blue-green points. 

These lines are coincident. 


