Additional Exercises: Chapter 6
Linear Algebra and Probability for Computer Science Applications

For the following exercises you may use Matlab. You should show the computation involved, not just give the answer.

Exercise 1

Let P be the plane in \mathbb{R}^{3} containing the three points $\langle 1,0,1\rangle\langle 1,2,3\rangle$ and $\langle-1,2,1\rangle$ and let Q be the plane containing the three points $\langle 5,2,1\rangle,\langle 1,0,1\rangle$, and $\langle-3,-1,-1\rangle$. Find the line that is the intersection of P and Q and represent it in parameterized form $\{p+t \cdot \vec{v} \mid t \in \mathbb{R}\}$

Exercise 2

Find the distance between the line $\langle 1,0,2\rangle+t \cdot\langle 1,-1,1\rangle$ and the line $\langle 3,-2,-1\rangle+u \cdot\langle-2,1,1\rangle$. Hint: If L and M are two skew lines in \mathbb{R}^{3} (or higher dimension) - that is, two lines that are not parallel but do not intersect - and \mathbf{p} and \mathbf{q} are their two closest points, then the line containing \mathbf{p} and \mathbf{q} is perpendicular to both L and M.

Exercise 3

Let P be the same plane as in Exercise 1. Are the two points $\langle 12,16,-2\rangle$ and $\langle-5,18,-10\rangle$ on the same side of P or on opposite sides?

