Proof of the Cauchy-Schwarz inequality. To replace the proof given on p. 25.

I cannot now imagine why I included a proof of the Cauchy-Schwarz inequality from the triangle inequality, left unproven in the text, since a complete proof is not very difficult. Anyway, here is a proof, albeit not a very insightful one, since the value of q below is pulled out of a hat.
Let \vec{x} and \vec{y} be two vectors; we want to prove that $|\vec{x} \bullet \vec{y}| \leq|\vec{x}| \cdot|\vec{y}|$. Let $q=(\vec{x} \bullet \vec{y}) /|\vec{y}|^{2}$. Let $\vec{w}=\vec{x}-q \cdot \vec{y}$. Then $0 \leq|\vec{w}|^{2}=\vec{w} \bullet \vec{w}$, since that is true for all vectors. But

$$
\begin{gathered}
\vec{w} \bullet \vec{w}=(\vec{x}-q \vec{y}) \bullet(\vec{x}-q \vec{y})=\vec{x} \bullet \vec{x}-2 q \cdot(\vec{x} \bullet \vec{y})+q^{2} \cdot(\vec{y} \bullet \vec{y})= \\
|\vec{x}|^{2}-2 \frac{\vec{x} \bullet \vec{y}}{|\vec{y}|^{2}} \cdot \vec{x} \bullet \vec{y}+\left(\frac{\vec{x} \bullet \vec{y}}{\left|\vec{y}^{2}\right|}\right)^{2} \cdot|\vec{y}|^{2}=|\vec{x}|^{2}-\frac{(\vec{x} \bullet \vec{y})^{2}}{|\vec{y}|^{2}}
\end{gathered}
$$

Thus we have

$$
|\vec{x}|^{2}-\frac{(\vec{x} \bullet \vec{y})^{2}}{|\vec{y}|^{2}} \geq 0
$$

So $|\vec{x}|^{2} \cdot|\vec{y}|^{2} \geq(\vec{x} \bullet \vec{y})^{2}$, so $|\vec{x}| \cdot|\vec{y}| \geq|\vec{x} \bullet \vec{y}|$.
Once we have proven the Cauchy-Schwarz inequality, then it is easy to prove the triangle inequality:
$|\vec{x}+\vec{y}|^{2}=(\vec{x}+\vec{y}) \bullet(\vec{x}+\vec{y})=\vec{x} \bullet \vec{x}+2 \vec{x} \bullet \vec{y}+\vec{y} \bullet \vec{y}=|\vec{x}|^{2}+2 \vec{x} \bullet \vec{y}+|\vec{y}|^{2} \leq$ (by Cauchy-Schwarz) $|\vec{x}|^{2}+2|\vec{x}| \cdot|\vec{y}|+\vec{y}^{2}=(|\vec{x}|+|\vec{y}|)^{2}$.
Hence $|\vec{x}+\vec{y}| \leq|\vec{x}|+|\vec{y}|$.

