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development. This paper presents a programming 
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parsing text sentences with the comprehensive English 
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current implementation of the Linguistic String Parser. 
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Introduction 

The Restriction Language (RL) was developed by the 
Linguistic String Project at New York University in 
order to provide a convenient form for expressing a 
large-coverage, detailed grammar of English. The lan- 
guage and its compiler are presently operative on the 
CDC 6600, and they function as part of a highly de- 
veloped system for parsing English scientific texts. The 
successive implementations of the English parsing sys- 
tem, as well as its large grammar of English, have been 
described elsewhere [1-5]. This paper will describe the 
design and special features of the symbolic language in 
which the grammar is written. 

While the major features of the language grew out 
of the needs of our particular type of grammar (lin- 
guistic string grammar), we have tried to respond to 
these needs by adding the most general mechanisms 
consistent with reasonable efficiency. For  example, 
those parts of the metalanguage which depend on the 
choice of grammatical theory have been relegated for 
the most part to user-defined routines. In this way, we 
believe we have constructed a vehicle flexible enough to 
serve in a variety of language analysis tasks, which may 
use different linguistic theories, with little or no change 
in the system. 

Background 

The possibility of processing natural language texts 
as part of computerized information systems was one 
of the early goals (along with machine translation) of 
research projects in computational linguistics in the late 
1950's. As early as 1957, a project at the University of  
Pennsylvania was initiated to develop a sentence analysis 
program based on transformational theory for applica- 
tion in information retrieval [6]. Syntactic segmentation 
of sentences, using string analysis [7], was to be the first 
step in this process. The Linguistic String Project in- 
herited this task, and it took, in fact, a number of years 
to make the string segmentation step operational on a 
broad scale. In the foreign language area, pioneer work 
on computerized analysis of Russian texts was done at 
the Bureau of Standards in the late 1950's [8, 9], leading 
to a later generalization and application to English in 
the Harvard Predictive Analyzer [10]. 

These and other early projects in computational 
linguistics had large, real-world, technological goals, 
and drew upon a large reservoir of linguistic theory, 
tools, and data. What was unfortunately lacking at that 
time was a computational formulation of all the neces- 
sary language detail, as well as the programming tools 
to deal with such a large and complex data array as a 
natural language grammar. We believe that these two 
obstacles have been largely overcome in the past decade. 
Linguistic knowledge has accumulated, and a great deal 
of effort has gone into casting linguistic facts into a 
computable form. At the same time, the development of 
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higher level programming languages and compilers 
makes it possible to deal with complex data on several 
levels, reserving the highest level with the briefest state- 
ments for human use. In the case of  the natural language 
system, this is essential because of the very large amount  
of detail. 

The language described here is our answer to the 
need for a higher level tool for natural language process- 
ing. Its design was heavily influenced by our experience 
in using a large grammar  to parse long and complex 
sentences, such as one finds in scientific texts. We found 
that the key to successful text parsing lay in the portion 
of the grammar  which deals with the special detail of 
natural language: in our system, the restriction com- 
ponent of  the grammar.  The major focus of  the Restric- 
tion Language, then, is to provide a succinct and 
pow,.rful vehicle for expressing the detailed grammatical 
and semantic constraints that operate in sentences. We 
will illustrate how the language accomplishes this task 
in the Linguistic String Parsing (LSP) system. 

The LSP grammar  has two principal components:  a 
context-free grammar  and a set of restrictions. The con- 
text-free grammar  associates with each input sentence a 
set (possibly empty) of parse trees. The restrictions state 
conditions on a parse tree which must be met in order 
for the tree to be accepted as a correct analysis of the 
input sentence. The restrictions are used to express de- 
tailed wellformedness constraints that are not con- 
veniently statable in the context-free component.  These 
may be contextual constraints on the linking of different 
subtrees or, in the case of natural language, may involve 
attributes of  the particular lexical items which are asso- 
ciated with terminal symbols of the parse tree. Thus, for 
a natural language parse tree which terminates in a 
well-formed sentence string consisting of Noun -k- 
Verb -k- ".",  e.g. "John worries.", there are many word 
sequences conforming to this categorization which are 
not well-formed sentences, such as "John worry." 
(violates subject-verb agreement in number),  "John 
wears." (verb occurs without necessary object), and 
"John occurs." (inappropriate subjec t noun for verb). 
Restriction rules specifying constraints must be applied 
if the output of the parsing program is to contain no 
incorrect parses. 

The restrictions in the grammar are procedures 
which look at the parse tree and the attributes of the 
sentence words and return an OK or a not OK signal. This 
basic strategy of grammar  design, in which a context- 
free framework is augmented by a set of conditions 
written as procedures, has become quite popular;  it is 
used, for example, in the systems of Woods [12] and 
Winograd [11]. Our own use of such an organization 
dates from the first implementation of the Linguistic 
String Parser in 1964-65 [13]. This approach was moti- 
vated by a need to provide an adequate English grammar  
for parsing scientific texts. It  was clear that such a 
grammar  would be large and would have to be able to 
absorb increasing levels of detail without exploding. 
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The two-component  organization has made this pos- 
sible: the context-free grammar,  which defines the 
broad construction patterns of sentences, remains rela- 
tively stable, while the restrictions, which cover the 
detailed constraints, are gradually refined. The restric- 
tions are relatively independent of  one another, so that 
these refinements can be made locally, without a major 
revision of the restrictions at each step. 

Even so, the development of  a large-coverage gram- 
mar  is a lengthy procedure because of the amount  of 
detail which must be included. The restrictions in the 
earlier versions of our system were prepared in a list- 
structure format  similar to LISP. This level of description 
is comparable to those used in other current systems, 
such as Winograd's  PROGRAMMAR and the LISP pro- 
cedures employed by Woods. At this level, however, our 
grammar  ran to several thousand lines. As a result, to 
facilitate further experimentation and development of 
the grammar,  we chose to design a language especially 
suited to such linguistic tasks; its first application and 
test of adequacy would be the writing of restrictions. 
A syntax-directed translator which compiles this Re- 
striction Language into an internal list-structure form 
is included in the most recent implementation of the 
Linguistic String Parser. 

An Overview of the Language 

The design of the RL has been affected by a number 
of considerations which differentiate it from most other 
programming languages. These considerations include 
1. The primary application: stating predicates on 
trees. 
2. Interaction of the restrictions with the context-free 
parsing process. 
3. The solution of problems inherent in natural- 
language grammar.  
The first consideration has motivated a choice of style: 
since the restrictions s tate  conditions, the general form 
of the language has been made declarative rather than 
procedural. Specifically, the basic statements of RE 
appear as simple English declarative sentences, such as: 
T H E  C O R E  O F  T H E  S U B J E C T  I S  N O T  P L U R A L .  Generally the 
subject of the RL statement locates a node in the parse 
tree or an attribute of  a word definition, and the predi- 
cate performs some test on that node or attribute. These 
basic statements may be combined into restrictions of 
arbitrary complexity by the use of  the logical connec- 
tives B O T H  . . . A N D  . . . , E I T H E R  . . . O R  . . . ,  I F  . . . T H E N  

. . . ,  etc. A provision for what are in effect procedures 
without arguments is also provided. Any RE statement 
may be assigned a name beginning with a S and then be 
referenced from any point in another statement where 
the original statement could appear. In this way, tests 
common to several restrictions need appear only once, 
and complex restrictions can be divided into a sequence 
of statements. 
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Procedures which may take arguments are also in- 
cluded, but under a different guise and for a different 
purpose. The components of  a sentence which are tested 
by any single restriction are related to each other by 
one of a small number  of  structural relationships (this is 
a consequence of the use of linguistic string theory as a 
framework for the grammar) .  Rather  than have the 
sequences of tree-climbing operations which realize 
these relationships stated explicitly in each restriction 
which uses them, they are placed in procedures called 
routines. The restrictions refer only to these routines, 
and never directly to individual tree-climbing opera- 
tions. The restrictions are thereby made easier to read 
and independent of the particular tree structures used 
to represent the string analysis. 

Underlying our description of the semantics of  the 
RE is the notion of an implicit pointer, which may 
point to any node in the parse tree, any attribute, or any 
word of the input sentence. This pointer is moved by 
the tree-climbing operations in the routines, and thus 
indirectly by each statement in a restriction. The pointer 
will be referred to by such phrases as "where the restric- 
tion is" or "the node which has been located." In addi- 
tion, each statement and routine set an implicit flag 
to signal success or failure. This flag is used by the 
logical connectives to determine the flow of control and, 
ultimately, to determine whether the restriction succeeds 
or fails. 

In the next section, we shall use an example to intro- 
duce some basic concepts and to illustrate the language 
features. After that, we shall describe some of the indi- 
vidual features in greater detail. 

An Example 

Figure I shows the source form of restriction WSEL1 
(w: wellformedness, SEE: selection) taken from the LSP 
grammar  of English. The intent of  the restriction, stated 
in the comment  card (beginning with *), is to insure that 
an appropriate noun is selected as the object of a given 
transitive verb. "Appropr ia te"  here means normally 
acceptable in written English, excluding such special 
literary contexts as fairy tales, poetry, and the like. For  
example, in parsing the sentence "John eats each day.",  
WSELI rejects the parse which has "each day"  as the 
object of  "eats."  This sentence has only one appropriate  
parse, with "John eats" as the main clause and "each 
day"  as a time adjunct of  the main clause. 

To understand this restriction a few facts about  the 
English parsing program and grammar  should be stated. 
All words in a text to be parsed are defined in a word 
dictionary, which is supplied as a separate input to the 
parser. Each word definition is a sequence of categories, 
such as N (noun), PRO (pronoun), TV (tensed, i.e. in- 
flected, verb), representing the major  parts of speech to 
which the given word belongs. Each category may have 
associated with it a set of attributes (such as SINGULAR, 

Fig. 1. A restriction from the English grammar. 

*WSELI: Suitable object N for given verb 

WSELI = IN OBJECT AFTER NSTGO: 
IF ALL OF $OBJECT-NOUN, SGOVERNING-VERB, 
$FORBIDDEN-NOUN-LIST ARE TRUE, THEN SNO- 
COMMON IS TRUE. 

$0B0~CT-W~ = TH~ COR~ X 3  OF T H ~  OBJECT XI0 
IS N OR PRO. 

$GOVERNING-VERB = AT XI0 THE VERB-COELEMENT 
X4 EXISTS. 

$FORBIDDEN-NOUN-LIST = THE CORE OF X4 HAS 
THE ATTRIBUTE NOTNOBJ X5. 

$NO-COMMON = X3 AND X5 HA~ NO COMMON ATTRIBUTE. 

Fig. 2. Entries from the word dictionary. 

EATS 
TV: .12, N: .Ii. 

.12 = SINGULAR, NOTNOBJ: .i, NOTNSUBJ: .2, OBJLIST: .3. 
.i = NTIMEI, NTIME2, NSENTI, NSENT2, NSENT3, NHU~N. 
.2 = NTIME1, NTI~2, NSENTI, NSENT2, NSENT3. 
.3 = DP2: .6, DP3: .6, DP4: .6, PN: .5, NST~O, NULLOBJ 
.5 = PVAL: ('THROUGH', 'INTO'). 
.6 = DPVAL: ('UP', 'AWAY'). 

.ii = PLURAL, NONHUMAN 

Tree Structure 

t 
E A T S  

T V  

SINGULAR NOTNOBJ NOTNSUBJ OBJLIST 

DP2 DP3 _DP4 PN NSTGO . 

NTIMEI 

ill DPVAL PVAL 

DPVAL 'THROUGH ' 

DPVAL ' UP ' "AWAY ' 

' U P ' ' AWAY ' 

' UP ' "AWAY ' 

NTIME2 NSENTI NSENT2 | , • 

NTIMEI jNTIME2 pNSENTI NSENT2 • NSE~IT3 

N 

IPLURAL NONHUMAN 

NULLOBJ 

'INTO' £ 

NSENT3 

NHUMAN 

DAY 
N: .ii. 

.ii = SINGULAR, NTI~I, NUNIT, NONHUMAN. 

Tree Structure 

Fig. 3. Parse tree for "John eats each day." Note: Terminal sym- 
bols are flagged by an asterisk in front of the symbol name. Other 
nodes with no descendants indicated in the parse trees actually have 
a single descendant, the symbol NULL (the empty string). 

SENTENCE 

INTRODUCER CENTER ENDMARK 

l SE  ON ! .... 
SA, SO JECT SA ENS  . VSA 

LTE  
LTL 7 
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PLURAL, NOMINATIVE, NTIME1, NTIME2) and attributes of  
the attributes organized into a tree structure for that 
category. In parsing, when a category is matched by a 
terminal symbol of the parse tree, a pointer is created 
from the terminal node to the attribute tree of that 
category. In this way, restrictions can test attributes and 
subattributes of the sentence words associated with 
particular terminal nodes of the parse tree. 

Relevant to our example, dictionary entries for 
"eats"  and "day"  are shown in Figure 2, along with the 
tree diagrams for these definitions. It  will be seen in 
Figure 2 that "day"  has the category N (noun) with the 
attribute NTIME1 among other attributes, and that the 
verb "eats"  has the category TV (tensed verb), with 
attribute NOTNOBJ (among others), whose attributes in 
turn are NTIME1, NTIME2, NSENT1, NSENT2, NSENT3, and 
NHUMAN. NOTNOBJ is assigned in the word dictionary 
to transitive verbs; its attributes for a given verb are 
those noun subclasses of  the grammar  which are not 
appropriate noun objects of  the given verb (in scien- 
tific writing). Thus the appearance of NTIMEI as an 
attribute of  NOTNOBJ in the entry for "eats"  indicates 
that nouns having the attribute NTLMEI (e.g. "day")  are 
not acceptable as the noun object of forms of "eat ."  

The parse tree for "John eats each day."  is shown in 
Figure 3. In this parse the main clause (the value of 
CENTER) is an ASSERTION string, whose definition, as it 
appears in the context-free component  of  the grammar,  
is: 

(ASSERTION) :: = (SA) (SUBJECT) (SA) (TENSE) (SA) (VERB) 
(SA) (OBJECT) (RV) (SA). 

In the parse tree, sibling nodes (corresponding to ele- 
ments of a single definition) are shown connected hori- 
zontally to stress their sequential order, with only the 
leftmost sibling connected to the parent. The four syn- 
tactic types, SUBJECT, TENSE, VERB, and OBJECT, are said 
to be required, since they take on a null value only under 
special conditions. The other nodes correspond to posi- 
tions where modifiers, or adjunct strings, may occur; 
five are of  the type SA (sentence adjuncts), modifiers of  
the assertion as a whole, and one is of  the type RV (right 
adjuncts of  the verb) occurring after the verb object 
(e.g. " fas t"  in "He made up his mind rather fast."). In 
the grammar,  string definitions, such as ASSERTION, have 
a single option with several elements, whereas adjunct 
set definitions, such as SA and RV, have several options, 
each of  one element. 

In Figure 3, all of  the SA nodes in ASSERTION except 
the last, as well as the RV node, have the value NULL, 
which means that no sentence words are subsumed. 
NULL is included as one option of all adjunct set defini- 
tions and represents the fact that modifiers are optional. 
The OBJECT node in Figure 3 has a null value (NULLOBJ) 
of different linguistic significance; it satisfies OBJECT 
when the governing verb (here "eats") occurs intransi- 
tively. The TENSE node also has a NULL value; this node 
is nonempty only when a modal  ("will," "can,"  etc.) 

occurs. I f  the tense is morphologically tied to the verb, 
as is the case in "eats,"  then the terminal symbol TV 
Occurs under VERB and the TENSE node is empty. 

Space does not permit a detailed discussion of  the 
substructures of  the parse tree in Figure 3. (The LSP 
grammar  is described in [14, 15].) However, it can be 
noted that the SUBJECT node and the final SA node in 
ASSERTION both dominate subtrees which terminate in 
nodes labeled N, corresponding to nouns in the sentence 
("John"  and "day,"  respectively). Both of  these sub- 
trees contain an entity LNR whose three elements, LN, 
NVAR, RN, stand for the Left adjuncts of  the Noun, fol- 
lowed by a Noun or one of its VARiants, followed by 
the Right adjuncts of  the Noun. This type of structure 
corresponds to a type of definition in the string gram- 
mar,  called an LXR-type definition. This type of struc- 
ture is seen again in Figure 3 under VERB, LNAMER, and 
LTR. The LXR-type definition is the standard representa- 
tion in the LSP grammar  for a sentence word with its 
associated modifiers. The introduction of standard 
definition types into the grammar  has facilitated the 
writing of  powerful tree-climbing routines whose path 
through the parse tree can be stated in terms of node 
types, such as LXR, ADJUNCT SET, STRING, rather than 
individual nodes, such as LNR, RN, ASSERTION, whenever 
this amount  of  generality is needed [16]. 

This can be illustrated with reference to Figure 3 by 
introducing a routine which is invoked in the restric- 
tion we are about to describe. In Figure 3 one observes 
that each of the nonnull nodes, SUBJECT, VERB, and post- 
object SA in ASSERTION, has a special relation to a particu- 
lar terminal node in its subtree, respectively to N 
("John") ,  TV ("eats"),  and N ("day") .  I f  a breadth-first 
downward scan of  the subtree is made from the higher- 
level node of each pair, passing through all nodes except 
those corresponding to an adjunct set, and terminating 
at the first terminal node encountered, then in each case, 
the terminal node in question will be the one reached. 
The importance of  this is that the words corresponding 
to these terminal nodes are each the carrier in the sen- 
tence of  the linguistic relation named by the higher level 
node of the pair; e.g., " John"  is the subject in the main 
assertion in the sentence, "eats"  is the main verb, and 
"day"  (with adjunct "each") has the relation of sen- 
tence adjunct to the other elements. This relation be- 
tween node-pairs, called core, is crucial to the operation 
of restrictions. By means of the routine CORE, which 
executes the breadth-first scan described above, con- 
straints which are expressed in terms of higher level 
grammatical  relations, such as subject, object, and 
governing verb, can be applied to the words in the sen- 
tence which satisfy these grammatical relations? 

With these preliminary remarks, we may now delve 
In some cases, the core of a node is a string. For example in 

the sentence "What John eats is fish.", the core of the subject is a 
string which subsumes the words "What John eats." Thus, a more 
precise definition of the core of a node ,~ (a not of type STRING) is 
the unique node of type STRING or ATOMIC (terminal node) in 
the subtree below a, which is not below a node of type ADJUNCT 
SET in that subtree. 
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into the restriction itself (Figure 1). The restriction 
begins with the line 

WSEL1 = IN OBJECT AFTER NSTGO: 

which identifies the restriction and says when and where 
it should be executed. In our system a top-down parser 
interprets the context-free component of the grammar 
and produces the parse trees for a sentence sequentially. 
In principle, all the restrictions could be applied after 
each parse tree had been completed. It is more efficient, 
however, to execute each restriction as soon as enough 
of the parse tree has been built for it to apply. For this 
reason each restriction lists one or more definitions and 
indicates whether the restriction is to be executed before 
a particular option is tried or after a subtree has been 
completed below a particular option or element. I f  a 
restriction fails, the parser backs up and tries for an al- 
ternate analysis. Thus, the restriction WSEL1 will be 
executed immediately after a subtree corresponding to 
the option NSTGO (Noun STrinG in Object) of OBJECT 
has been completed. This will occur in the analysis of 
the sentence "John eats each day." when the parser 
constructs a subtree below OBJECT subsuming "each 
day";  the appearance of the parse tree when this sub- 
tree is completed is shown in Figure 4. The restriction 
begins at the node in the parse tree corresponding to 
the first definition named in the initial portion of the 
restriction; in this case, at the OBJECT node. 

The body of the restriction is an implication with 
three conjoined premises and one conclusion. Each of 
the four basic statements has been assigned a name be- 
ginning with a 8: 

IF ALL OF $OBJECT=NOUN, ~GOVERNING-VERB, ~FORBIDDEN- 
NOUN-LIST ARE TRUE, 

THEN $NO-COMMON IS TRUE. 

The first premise, 

~;OBJECT-NOUN = THE CORE X3 OF THE OBJECT Xl0  IS N 
OR PRO. 

tests whether the core of the object is a noun or pro- 
noun, and in addition stores a pointer to the node OB- 
JECT in register XI0 and a pointer to the core in register 
X3. Operating on the tree in Figure 4, this will place in 
X3 a pointer to the atomic node N ("day"). Registers, 
symbols consisting of an "X"  followed by an integer, 
are the variables of the RE; they may contain pointers 
to any node, attribute, or sentence word. Should this 
first premise fail, the restriction is satisfied and a 
success signal will be returned to the context-free parser; 
the other statements will not be evaluated. This is as it 
should be, since if the object is not a noun or pronoun 
the object cannot be in an unacceptable noun or pro- 
noun subclass. 

The second premise, 

~GOVERNING-VERB -- AT Xl0  THE VERB-COELEMENT 
X4 EXISTS. 

394 

Fig. 4. Partial parse tree rejected by restriction WSEL1. 

ITS  SL CENTER 

I ASSEt~ION 

SA SUBJECT ,SA TENSE SA VERB SA OBJECT 

INSTG LV VVAR RV NSTGO 

LNR ~ INSTG 

N~ NAMESTG LN NVAR RN 

LNAME R , *N 

TPOS ~/ QPOS APOS NSPOS NPOS 

/ 

also has as its aim to locate and store a node on which 
further processing will be done. This node is the verbal 
sibling of OBJECT, in this case VERB. In other strings the 
verbal element may have a different name and different 
substructure (e.g. a Ving form, as in "is eating"), so that 
it is convenient to define a generalized routine, VERB- 
COELEMENT, which locates the desired verbal sibling in 
all cases. The SGOVERN1NG-VERB test, applied to the tree 
in Figure 4, starts at OBJECT (the value of X10), executes 
the VERB-COELEMENT routine, which brings it to the 
node VERB, and stores a pointer to VERB in X4. Again, if 
this test fails, the restriction is trivially satisfied, since 
this means there is no governing verb present. 

The third premise, 

•EORBIDDEN-NOUN-LIST = THE CORE OF X4 HAS THE 
ATTRIBUTE NOTNOBJ X5. 

invokes the CORE routine starting at the node VERB (the 
value of X4) to obtain the governing verb itself (here 
TV, "eats"). It then searches the attribute list of category 
TV in the dictionary definition of "eats" for NOTNOBJ. 
If  the search is successful, a pointer to the attribute 
NOTNOBJ is placed in X5. 

The conclusion, 

SNO-COMMON = X3 AND X5 HAVE NO COMMON 
ATTRIBUTE 

compares the attribute list of category N of "day"  (the 
value of X3) with the attribute li.st of NOTNOBJ in 
"eats" (the value of X5). If  these lists have no element in 
common then "day"  is acceptable as an object of  
"eats." In this case they have the attribute NTIME1 in 
common, so that the test $NO-COMMON fails, and the 

• partial parse tree shown in Figure 4 is rejected. 
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Principal Constructions of  the Restriction Language 

Since the chief form of statement in the Restriction 
Language is a declarative sentence consisting of a sub- 
ject and a predicate, we shall begin our presentation 
with a description of the various forms the subject and 
predicate can take. Thereafter we shall consider how 
statements may be combined with logical connectives 
and how register references and assignments can be 
inserted in statements. From there we shall turn to some 
statement forms not fitting the subject-predicate mold: 
the imperative forms used in the routines and some of 
the more unusual features of the language. 

The Subject• As we noted earlier, the subject of a 
restriction language statement generally locates a node, 
attribute, or sentence word which is then tested by the 
predicate• Since the routines carry the burden of locat- 
ing nodes in the parse tree, the routine invocation is the 
most frequently used type of subject• If  a routine has no 
argument, it is invoked by simply writing its name: 
CORE. If a routine takes an argument, the argument is 
written immediately after the routine name. COELEMENT 
SUBJECT calls the routine COELEMENT with the argument 
SUBJECT; this will search the siblings of the current node 
for a node named SUBJECT. If a node name appears 
alone, without any routine name: OBJECT, a routine 
called STARTAT is invoked with the node name as argu- 
ment. STARTAT examines the current node and the nodes 
one level below the current node for the node name 
given as argument. Frequently more than one routine 
must be executed to get from the starting point to the 
node to be tested. This can be accomplished by com- 
bining several routine calls with the word "OF." 
For example, 

CORE OF THE VERB-COELEMENT OF OBJECT 2 

would first execute STARTAT with argument OBJECT, then 
VERBCOELEMENT (which would begin where STARTAT 
finished) and finally CORE (which would begin where 
VERB-COELEMENT finished). If  any routine invoked by a 
statement fails, execution of the entire statement is im- 
mediately terminated with a failure indication. Opera- 
tions are also provided for locating a word in the sentence, 
such as the first or last word subsumed by a node or the 
next word to be matched in the parsing process. 

The Predicate. The predicate tests whether the node, 
attribute, or word located by the subject has a particu- 
lar property. The chief types of tests which can be made 
are the following• 

1. Test of node name. One can test if the current node 
has a certain name with the IS predicate: 

. . . I S  N. 

Any set of node names can be defined as a type of node. 
One can then test whether the name of the current node 
is in a given set with the IS OF TYPE predicate: 

• . . IS OF TYPE ADJSET. 

T h e  ar t ic les  A,  A N ,  T H E  a re  i gno red  by  the  R L  c o m p i l e r  
a n d  m a y  be  inse r ted  f reely  to e n h a n c e  readab i l i ty .  

2. Test for attribute. To test if an atomic node or an 
attribute has a particular attribute, the HAS ATTRIBUTE 
predicate can be used: 

• . . HAS ATTRIBUTE PLURAL•  

It is frequently necessary to test both an atomic node's 
name and one of its attributes, or an attribute and one 
of the attributes of the attribute. Such conditions can be 
expressed succinctly by following the atomic node 
name or attribute by a colon (read "which has attribute") 
and the second attribute: 

• . . I S  N : P L U R A L  

• • . HAS ATTRIBUTE N O T N O B J : N T I M E 1 .  

3. Test for name of word. The IS predicate also serves 
to test the name of the word matched to an atomic node: 
• . .  IS 'THE'. The same predicate serves to test the name 
of a sentence word located by the subject of a restric- 
tion statement. 

4. Test for subsumed word. The SUBSUMES predicate 
tests whether any of the words subsumed by a node 
meets a stated condition. Any test which can be applied 
to a single sentence word (test for name, for category, 
or for category and attribute) can also be used in the 
SUBSUMES predicate: 

• . . SUBSUMES t,I 

• . . SUBSUMES N" NTIME I .  

in order to keep the semantics of the RL as simple 
and explicit as possible, we have endeavored to compile 
the more complex test operations into calls on routines 
in the grammar whenever feasible. Since the process of 
iterating through the words subsumed by a node can 
be expressed in terms of more elementary operations 
already in the RL, the SUBSUMES predicate is compiled 
into a call on the SUBSUMERT routine. The test which 
must be performed on each word is passed as an argu- 
ment in the form of a procedure to the routine SUB- 
SUMERT (in this respect SUBSUMERT differs from the 
routines invoked in the subject, which take a node name 
as argument). The special case where a node subsumes 
no sentence words can be tested for with the IS EMPTY 
predicate. 

5. No test. Occasionally one only wants to determine 
whether a node specified in the subject can be located 
in the parse tree; no further test on that node is re- 
quired. One instance of this occurred in the second 
premise of WSEL1. For this purpose RL provides the 
EXISTS predicate, which always succeeds (the statement 
fails only if the subject fails). 

6. Parse tree tests. Any condition regarding the struc- 
ture of the parse tree can be expressed entirely in the 
subject of a statement. For example, starting at the node 
NAMESTG, to determine whether it occurs as part of a 
tree dominated by SUBJECT, one can execute: 

IMMEDIATE SUBJECT OF NAMESTG EXISTS• 
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where IMMEDIATE is a routine which looks up in the 
parse tree for the node named in the argument. Since an 
important  consideration in the design of the RE has 
been the readability of  the grammar,  however, we allow 
the user some alternative formulations. First, the final 
routine may be invoked in the predicate, using the HAS 
predicate: 

NAMESTG HAS IMMEDIATE SUBJECT• 

Second, in the case of  a few routines there is an alterna- 
tive wording which is much more natural in the predi- 
cate position; for the routine IMMEDIATE We also permit: 

NAMESTG IS OCCURRING AS SUBJECT. 

Fig. 5. Parse tree for the sentence"  John  eats fish and  cheese dai ly."  

INTRO_[ SENTENCE 

DUCER CENTER ENDMARK 

I AS SE RT YON !" . " 

SA RV SA %t.~ SUBJECT ,SA TENSE ,SA VERB SA OBJECT . 

NAMESTG *N "AND" Q-CO J 

NVAR 

T~TLE l S~E~A~ I 

The negation of any predicate may be expressed 
simply by adding NOT to the verb: 

. .  IS NOT N 

. . . D O E S  NOT SUBSUME I,v• 

Wherever a word or symbol may appear in a predicate, 
the disjunction of two or more words or symbols may 
appear  instead: 3 

• . . IS  N OR PRO 

• . . DOES NOT SUBSUME rAY OR VANV. 

A few of the tests which must be made in the gram- 
mar  do not fit neatly into the subject-predicate organiza- 
tion, and so are included as separate types of state- 
ments. One of these is the COMMON ATTRIBUTE test, 
which was used (in its negated form) in WSEL1. Another 
is the THERE I S . . .  AHEAD, which tests whether any 
sentence word not yet matched by a node in the parse 
tree meets a stated condition; for example, 

THERE IS AN N 'NTIME1 AHEAD. 

This statement is used in optimization restrictions, to 
avoid trying an option if a required category or attribute 
is not present in the remainder of the sentence. 

Connectives. The RL provides a full range of connec- 
tives for specifying logical combinations of statements 
and thereby in effect for specifying the flow of control 
within a restriction. The logical operators include NOT, 
AND, OR, N E I T H E R . . .  N O R . . . ,  I F . . .  T H E N . . . ,  and 
can be nested to any depth. The operator evaluates only 
as many statements as are required to determine the 
value of the operator;  thus, in a statement of the form 
BOTH a AND b, if a fails the entire statement fails, and b 
is not executed. Iteration operators, for constructing 
loops with a termination test either at the beginning or 
end, are also available, although in the current grammar  
they are used only inside the routines. 

Any construction which can be used in the subject 
of  a statement to locate a node can also be used in an 

3 The  fact that  dis junct ion m a y  be expressed in predicates 
whereas conjunct ion  requires the combin ing  of  entire s ta tements  is 
a consequence  of  the list s t ructure  into which the  R L  is t ranslated:  
each e lementary  test operat ion takes a list of  symbols  as its argu-  
ment ,  and  succeeds if any  one of  the symbols  can  be found.  In 
practice, testing for a conjunct ion  of  symbols  is a rare occurrence 
in the g rammar ,  so this has  proved no inconvenience. 

A T . . .  or I N . . .  phrase before a statement, to specify 
where a statement should begin. For  example, 

AT OBJECT BOTH THE CORE X 3  IS N OR PRO AND THE 

VERB-COELEMENT X 4  EXISTS. 

is equivalent to the first two premises of  WSEL1. 
Registers. As we noted earlier, registers are the vari- 

ables of  the RL. A register may be assigned a value by 
writing its name after any subject, predicate, or routine 
invocation. The value assigned to the register is a pointer 
to the node, attribute, or word at which the restriction 
is located after the subject, predicate, or routine is exe- 
cuted. The register may be referenced by using it in the 
subject of a statement or in an AT phrase; both usages 
are illustrated in WSEL1. Registers are used frequently 
in the grammar  in order to avoid having to locate the 
same node several times in one restriction. 

Commands. The declarative statement format,  which 
has proven so convenient for stating the restrictions, is 
not particularly suitable for the routines, especially the 
low-level routines which deal in terms of elementary 
tree motion and testing operators. The RE therefore pro- 
vides an imperative format,  similar to that used in pro- 
cedural languages, for writing routines. In this format  
each statement or command specifies an individual 
elementary operation, such as GO UP, GO DOWN, GO 
LEFT, GO RIGHT (in the parse tree); TEST FOR SUBJECT; 

STORE IN X5; DO CORE (routine invocation). Commands  
may be strung together with semicolons (this is equiva- 
lent in effect to combining them with BOTH.. .  AND. . . ) .  

Monitoring the Parsing Process. Although the fore- 
going discussion would indicate that the restrictions 
evaluate each parse tree independent of  the course of the 
parsing process to that point, this is not quite correct• 
Both for reasons of efficiency and to avoid unlikely 
analyses when more common analyses are available, 
several statements are included which can monitor  the 
overall parsing process. The simplest such statement 
tests whether 

A PARSE HAS BEEN OBTAINED. 
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The parser also provides a more sophisticated method of 
selecting a preferred analysis by defining nested subsets 
of the English grammar.  The input sentence is first 
analyzed with respect to the smallest subset, a grammar  
containing the common English constructions. If  no 
parse is obtained, the sentence is reanalyzed with re- 
spect to the next larger subset, which includes some in- 
frequent constructions. This process is repeated until 
an analysis is obtained or the entire grammar  has been 
used. These subsets are specified in the grammar  by 
including restrictions which test one of a set of switches. 
These switches are all off in the initial attempt at ana- 
lyzing a sentence, and are turned on one by one in the 
subsequent stages of the process. Because of the richness 
of the grammar,  this mechanism also makes an important 
contribution to parsing efficiency. The current grammar  
defines two subsets; the smaller, the "non-rare"  gram- 
mar, is still adequate for most of the sentences in scien- 
tific texts. As a result, the time lost on reanalyzing the 
more unusual sentences is less than the time saved in 
analyzing the more common sentence types with a 
smaller grammar.  

One further statement provided in the RL makes it 
possible to find out how far the context-free parser has 
backed up since the last parse tree for the sentence was 
found. This test is used as part  of a scheme to avoid 
generating several parse trees in cases of  permanent 
predictable ambiguity, such as when an adjunct string 
can be attached at several points in the tree (see [1] for 
further explanation). 

Node Attributes. The RL includes a facility for assign- 
ing and testing node attributes. A node attribute is in 
effect a variable associated with a particular node in the 
parse tree; these variables may be assigned either the 
value true or false, or a pointer to some other node in 
the parse tree. Unlike assignments to registers, node 
attributes are not erased when a restriction is finished. 
Node attributes simplify the task of writing the grammar  
and can make the restrictions and routines much more 
efficient. For example, if a lengthy routine is frequently 
executed, one can save time by recording the node 
located by the routine as a node attribute of  the starting 
node the first time the routine is executed at that node, 
and referring to the node attribute thereafter. Another 
application arises when one wants to know whether a 
particular node occurs in some subtree. Rather than 
search the entire subtree, one can assign a node attri- 
bute to the root of the subtree when the node in ques- 
tion is attached, and test that node attribute later. 

A complication arises because a restriction housed 
on one node can assign an attribute to some other node. 
An instance of this arises in the relative clause construc- 
tion. When an ASSERTION string occurs in a relative 
clause, the omitted element (e.g. the OBJECT in "what  I 
eat"  and the SUBJECT in "what eats me") is marked by 
assigning it the value NULLWH. When the ASSERTION is 
completed, a restriction checks that precisely one ele- 
ment has been omitted. This could be done by having 
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the restriction search all possible points of omission. A 
more efficient procedure, employed in the LSP grammar,  
is to have a restriction housed on NULLWH assign the 
node attribute DIDOMIT to the ASSERTION node. The 
restriction on the ASSERTION need then merely check 
for the presence of this attribute. 

Suppose, however, that the sentence contained a 
clause without omission, such as "that  I eat cheese." 
The parser might try the value NULLW~ for OBJECT 
(and hence assign DIDOMIT to the ASSERTION above). 
Because of this (incorrect) choice, the parser would 
eventually get stuck, unable to complete the parse; it 
would then back up and try an alternate option for 
OBJECT (in this case, "cheese"). At this point the node 
attribute DIDOMIT should be removed, since the ASSER- 
TION no longer contains an omission. This erasure is 
performed automatically by the parser: if a node at- 
tribute is assigned by a restriction invoked when a node 
N is completed, the attribute will be erased when the 
parser "backs up"  into node N. Similarly, if a restric- 
tion were executed when node N was attached to the 
tree, any node attributes assigned by that restriction 
will be erased when node N is detached from the tree. 
Just as the execution of restrictions and hence the as- 
signment of node attributes is synchronized with the 
forward progress of the context-free parser, the undoing 
of these assignments must be synchronized with the 
backup of the parser. 

An example of  the use of  this feature in connection 
with conjunctions is given below. 

Conjunctions. The extensive treatment of conjunc- 
tional constructions in the English grammar  has given 
rise to several unusual features of  the RL. For example, 
when one attempts to provide for all the different struc- 
tures which can be headed by conjunctions, it becomes 
apparent that the grammar  would be overburdened by 
explicit definition of all conjunctional strings. The defi- 
nitions of the conjunctional strings are therefore gen- 
erated dynamically when a conjunction is encountered 
in the parsing process. The generated conjunction 
string consists of  a conjunction followed by a sequence 
of elements which repeats a sequence of elements al- 
ready present in the parse tree. Which particular se- 
quefice is generated depends on where the conjunction 
string is to be placed in the parse tree. For example, 
in the parse tree for the sentence "John eats fish and 
cheese daily" shown in Figure 5, the conjunctional 
string has been inserted to the right of  the node NVAR 
in the LNR dominated by OBJECT; the "repeating" por- 
tion (Q-CONJ) of the string here consists of the node 
NVAR, SO that the whole local construction consisting of  
the first NVAR plus the conjunctional string containing 
the second NVAR covers the word-sequence "fish and 
cheese." Had the word-sequence been, for example, 
"John eats fish but dislikes cheese," the conjunctional 
string would have been inserted after OBJECT and the 
value of Q-CONJ would be the sequence of elements: 
VERB, SA, OBJECT. A more complete description of the 
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algorithm for generating conjunctional strings is to be 
found in earlier LSP papers [1, 5J. 

Two features of the parser make the dynamic gen- 
eration of definitions possible. The first is an interrupt 
mechanism, which is activated when the parser reaches 
a word with a special conjunction flag in its definition. 
The definition specifies a node which is inserted into the 
parse tree after the last completed node. Expansion of 
this node triggers the execution of special restrictions 
which construct the conjunctional string definition. In 
this way the process of  generating the conjunctional 
string definitions is made explicit in the grammar  and 
can be easily changed by the grammar  writer. Actual 
construction of the definition is made possible by a 
GENERATE command in the RL, which causes a new op- 
tion with specified elements to be added to the definition 
of the current node. 

Once a conjunctional string has been placed in the 
parse tree, it is efficient to cross-reference the two struc- 
turally similar elements on each side of the conjunction. 
This is done by a restriction which assigns node at- 
tributes. We assign to the pre-conjunction element (the 
first NVAR in Figure 5) a node attribute POSTCONJELEM 
whose value is a pointer to the structurally similar ele- 
ment occurring after the conjunction (the second NVAR 
in Figure 5). The node attribute PRECONJELEM is the 
counterpart  assigned to the post-conjunction element; 
it points to the structurally similar pre-conjunction 
element. The automatic erasure feature of  the node at- 
tributes assures that these pointers will be deleted when 
the conjunctional string is detached. 

Conjunctional strings present a problem in the exe- 
cution of restrictions. For  example, contrast the sen- 
tences "John eats fish and cheese daily." with "John 
eats fish and calls daily." Clearly "calls" is intended 
here as a second verb whose subject is " John"  and not 
as a conjunction of "fish" (similar to the status of 
"cheese" in Figure 5). The restriction which accepts 
"cheese" in Figure 5 but would reject "calls" as the 
object of  "eats"  is the same WSEL1 which rejected "each 
day"  as the object of  "eats"  in the parse tree of Figure 
4. In the parse tree of Figure 5, however, the restriction 
must recognize that the conjoined N is a second core- 
value of OBJECT, and must execute the tests ~OBJECT- 
NOUN and $NO-COMMON twice, once with the CORE OF 
THE OBJECT equal to N ("fish") and once with it equal to 
the conjoined N ( " c h e e s e " / " c a l l s " ) .  4 

How can we arrange for the restrictions to be re- 
executed in this fashion? One way, clearly, is to rewrite 
all the restrictions to test for coniunction, but this is an 
enormous task. What  we would like, rather, is to allow 
the routines to be multivalued in the case of conjunc- 
tion. This has been achieved in the parser by incorporat-  
ing a nondeterministic programming mechanism [17]. I f  
a routine such as CORE returns two values, the remainder 
of  the restriction is first executed using the first value; 

E • t~ h 4 WSEL1 fails when the OBJ CT ls c eese and calls" because 
"calls" is an NSENT1 ("the call for people to assemble"), and 
NSENT1 appears on the NOTNOBJ list of" eats." 

Fig. 6. Another restriction from the English grammar. Note: A 
restriction statement marked GLOBAL is available for use in other 
restrictions. The global statement $NHUMAN referenced above, 
but not shown here, tests whether the node stored in X9 is or could 
be a "human" noun. 

*DSN2 : AN SN STRING OR ASSERTION OCCURS AS TIIE RIGHT ADJUNCT OF 
* AN ADJECTI~ZE RA ONLY FOR CERTAIN SUBCLASSES OF ADJECTIVES 
* AND VING (IT IS TRUE THAT HE CAME, *IT IS ROUND THAT HE 
* CAME, IT IS SURPRISING THAT HE LEFT, *IT IS SURROUNDING 
* THAT HE LEFT; SHE IS ANXIOUS FOR YOU TO KNOW (ASENT3)). 
* IN ALL CASES BUT ASENT3 THE ULTIMATE SUBJECT MUST BE "IT". 
* FOR ASENT3 THE ULTIMATE SUBJECT MUST BE HUMAN. 

DSN2 = IN RA RE SN, ASSERTION: fiLL OF $HOST, $NOCOMMA, $NOT- 
ADJINRN, SIT, $HUMAN ARE TRUE. 

$HOST = HOST Xl IS ASENTI OR ASENT3 OR VSENTI. 

$NOT-ADJINRN = RA IS NOT OCCURRING IN ADJIN~. 

$NOCOblMA = THE PRECEDING WORD IS NOT ",". 

SIT = IF EITHER XI IS VSENT1 OR BOTH X1 IS ASENTI AND Xl IS NOT 
ASENT3, THEN SSUBJIT. 

$SUEJIT = THE CORE X3 OF THE ULTIMATE-SUBJECT XI0 IS "IT". (GLOBAL) 

$HUbL~N = IF X1 IS ASENT3 THEN AT THE CORE X9 OF THE ULTIMATE- 
SUBJECT $NHUMAN [W-POS22] IS TRUE. 

Fig. 7. ASSERTION parse tree for "It is true that he came." 

ASSERTION 

~ SA VERB tSA OBJECT RV SA SUBJECT SA TENSE SA 

NVAR tASTG 
LAR 

LA AVAR P& 

LCDA ~ SN 

THATS 

~ "T HAT" 

SA UBJECT SA TENSE SA VERB SA 

NSTG LV[ VVAR RV 

VTV LNR 

LN NVAR RN 

!.PRO 

OBJECT 

*NULLOBJ 

RV SA 

if that succeeds, the portion of the restriction following 
the call on CORE is reexecuted using the second value. 
Only if both executions succeed is the entire restriction 
considered successful. Modifying the routines in this 
way greatly reduces the number  of changes that have 
to be made to the restrictions for conjunctions. 

The nondeterministic programming mechanism is 
invoked through the STACK command.  The principal 
value of a routine is simply the point in the tree located 
by the last statement in a routine. To return some alter- 
nate value as well, the routine has to execute the STACK 
command  while positioned at that alternate node. In 
this way, the parser does not assume any particular 
structures for handling conjunctions, so the grammar  
writer retains the maximum possible flexibility. 
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Expressive Power of RL 

The grammar writer gains two major advantages 
from using the Restriction Language and its associated 
routines. First, the grammar is relatively short and read- 
able. This means it can be easily inspected and the in- 
terrelation of its parts kept in mind rather readily. The 
current LSP English grammar consists of less than 200 
BNF definitions and about the same number of restric- 
tions, together totaling about 2000 lines. The second 
gain is the ability to focus on the global logic of the 
linguistic operations without attending to the details of 
each computation, which are relegated to the level of the 
execution of routines. This means not only that the 
burden of writing a grammar is lighter but that the 
grammar itself can be richer. More complex linguistic 
operations can be undertaken than would otherwise be 
possible, simply because the tools for formulating and 
executing them are available. 

This point would best be illustrated by tracing one 
of the longer and more intricate restrictions of the gram- 
mar, such as one governing relative clauses with em- 
bedding, or the agreement of subject and verb. Un- 
fortunately, the long restrictions require too much ex- 
planation of the linguistic material. However, some im- 
pression of the expressive power of the RL can be gotten 
by considering an LSP grammar restriction of moderate 
length, the restriction DSN2 shown in Figure 6. 

DSN2 is one of the restrictions concerned with the 
placing of sentential complements (called SN strings in 
the LSP grammar) of the type illustrated by "that he 
came," "for  him to leave," "whether they left or not ."  
In order for an occurrence of an SN string following a 
predicate adjective to be well formed ("It  is true that 
he came"), various conditions must be satisfied, as 
stated in the text of DSN2. The first condition is stated 
in the restriction subpart gHOST. When executed, gHOST 

tests whether the adjectival element associated with the 
SN string is of the appropriate subclass (*"It  is round 
that he came"). This adjectival element stands in the 
relation of host to the SN string in question. The execu- 
tion of the HOST routine starting at the SN node locates 
the adjectival element which is to be tested. This can be 
illustrated by referring to the ASSERTION parse tree for 
the sentence "It  is true that he came", shown in Figure 
7. 

In the upper right portion of Figure 7, several levels 
below the OBJECT node of ASSERTION is the LXR-type 
node LAR, standing for an adjective (or other adjectival 
element, such as VING or a compound adjective) with 
its left and right adjuncts. The adjectival element in this 
case is the terminal symbol ADJ ("true") and the value 
of the right adjunct (RA) node is SN. 6 Given the three- 

5 SN strings are not modifiers of the elements they adjoin, but 
it is convenient to analyze them as occurring in adjunct position 
vis h vis these elements since they are regularly associated with the 
occurrence of particular subclasses in the element position. It is 
also to be noted that the subject " i t "  in " I t  is true that he came" 
appears in the parse tree as a PRO, though it is not functioning as a 
pronoun here. 

element standard form for all LXR type definitions, the 
routine HOST goes from any node in either the right- 
most or leftmost subtree of an LXg configuration to the 
core of the center element. Thus, its execution starting 
from SN ends at ADJ, the correct element to be tested. 

The test gNOT-ADJINRN rules out SN occurrences 
following an adjective which is occurring as a right 
adjunct of a noun. Thus, it would be wellformed to have 
an adjective in this position followed by adjuncts other 
than SN ("The implication, clear to all, was that he was 
present") but not by an SN string (*The implication, 
clear that he was present, was understood by all). In 
the BNF part of the English grammar, there is a defini- 
tion ADJINRN for the occurrence of an adjective with its 
optional adjuncts (LAR) as a right adjunct of a noun. 
Hence, in order to verify that an SN in RA is not occur- 
ring in this position, the test gNOT-ADJINRN employs the 
predicate IS NOT OCCURRING IN ADJINRN. This predicate 
looks upward in the parse tree for ADJINRN (but not 
above the first STRING type node) ; if an ADJINRN is found 
the restriction fails. 

The test gNOCOMMA rules out, e.g. *"It is true, that 
he came," in which a comma intervenes between the 
predicate adjective and the complement. The execution 
o f  THE PRECEDING WORD locates the sentence word last 
attached to the parse tree. DSN2 is executed when the 
option SN of RA is about to be attached, so in "I t  is 
true, that he came" THE PRECEDING WORD is " , ' .  

The remaining tests of DSN2, $IT, SSUBJIT, and gnu- 
MAN apply constraints to the subject, depending on 
which subclass of adjective or VING is present in the 
predicate adjective position. The comments preceding 
DSN2 in Figure 6 give some indication as to these sub- 
classes, and detailed definitions of all adjective, noun, 
and verb subclasses in the LSP grammar are found in 
[18]. The most interesting feature in the test gSUBJIT is 
the use of the routine ULTIMATE-SUBJECT. By means of 
this routine, the same restriction DSN2 which checks 
that the subject is " i t"  in "It  is true that he came," also 
checks for " i t"  in "It  seems to be true that he came," 
in "It  seems to be considered to have appeared probable 
that he came," etc., to an arbitrary depth of embedding. 
There are several extended scope routines of this type 
in the grammar. Being of the same order of complexity 
as some of the longer restrictions, their formulation is 
also considerably facilitated by writing them in the 
Restriction Language. 

Conclusion 

Five years ago, after several years of development, 
the Linguistic String Project possessed a grammar capa- 
ble of analyzing a wide spectrum of English sentences. 
In the course of this development, the restrictions con- 
stituting the bulk of the grammar gradually grew into a 
mass of nonperspicuous list-structure code; further 
refinement of the code became increasingly difficult. 
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The response to this problem was the language we have 
described in this paper.  

The unusual  features o f  the Restriction Language  are 
a consequence o f  the special requirements o f  our  appli- 
cation. The basic nature o f  the appl ica t ion--s ta t ing  re- 
strictions on parse t rees-- is  reflected in the declarative 
syntax and the repertoire o f  basic operations. The spe- 
cial requirements o f  natural  language g rammar  and the 
need to interact with the context-free parser have led to 
a number  o f  features: switches which define g rammar  
subsets, node attributes with automat ic  erasure, inter- 
rupts, dynamical ly generated definitions, nondeter-  
ministic programming,  and a set o f  routines correspond-  
ing to the fundamenta l  grammatical  relations. As we 
noted in earlier sections, these features were responses 
to specific problems that  we faced in working with a 
large string g rammar  in a text processing situation. In 
designing the Restriction Language,  however,  we have 
tried to separate as much as possible what  is general to 
the problem of  treating natural  language f rom what  
specifically relates to our  theoretical linguistic frame- 
work.  The latter appears explicitly in the definitions o f  
the routines as par t  o f  the grammar .  

The next step in sentence analysis is t ransformat ional  
decompos i t ion - - the  reduct ion o f  a sentence to a set o f  
kernel sentences connected by t ransformations.  We are 
starting this decomposi t ion process f rom the linguistic 
string analyses currently produced by our  program.  
Initial work  has been done  on specifying the inverse 
t ransformat ions  and the condit ions under  which they 
should be applied. This work  has shown that  the Re- 
striction Language  is well suited to stating the inverse 
t ransformat ions  themselves. The parsing p rogram has 
recently been expanded to handle these t ransformations,  
and the t ransformat ions  themselves are being gradually 
assembled. 
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