
Information Retrieval C.A. Montgomery
and Language Processing Editor

The Restriction
Language for
Computer Grammars
of Natural Language
Naomi Sager and Ralph Grishman
New York University

Over the past few years, a number of systems for the
computer analysis of natural language sentences have
been based on augmented context-free grammars: a
context-free grammar which defines a set of parse trees
for a sentence, plus a group of restrictions to which a
tree must conform in order to be a valid sentence
analysis. As the coverage of the grammar is increased,
an efficient representation becomes essential for further
development. This paper presents a programming
language designed specifically for the compact and
perspicuous statement of restrictions of a natural
language grammar. It is based on ten years' experience
parsing text sentences with the comprehensive English
grammar of the N.Y.U. Linguistic String Project, and
embodies in its syntax and routines the relations which
were found to be useful and adequate for computerized
natural language analysis. The language is used in the
current implementation of the Linguistic String Parser.

Key Words and Phrases: natural language, parsing,
grammar, programming languages

C R Categories: 3.42, 3.79, 4.22

Copyright © 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This research was supported in part by the Natienal Science
Foundation, Division of Social Sciences, Grants GS2462 and
GS27925. Authors' address: New York University, Linguistic
String Project, 2 Washington Square Village, 2B, New York, New
York 10012.

390

Introduction

The Restriction Language (RL) was developed by the
Linguistic String Project at New York University in
order to provide a convenient form for expressing a
large-coverage, detailed grammar of English. The lan-
guage and its compiler are presently operative on the
CDC 6600, and they function as part of a highly de-
veloped system for parsing English scientific texts. The
successive implementations of the English parsing sys-
tem, as well as its large grammar of English, have been
described elsewhere [1-5]. This paper will describe the
design and special features of the symbolic language in
which the grammar is written.

While the major features of the language grew out
of the needs of our particular type of grammar (lin-
guistic string grammar), we have tried to respond to
these needs by adding the most general mechanisms
consistent with reasonable efficiency. For example,
those parts of the metalanguage which depend on the
choice of grammatical theory have been relegated for
the most part to user-defined routines. In this way, we
believe we have constructed a vehicle flexible enough to
serve in a variety of language analysis tasks, which may
use different linguistic theories, with little or no change
in the system.

Background

The possibility of processing natural language texts
as part of computerized information systems was one
of the early goals (along with machine translation) of
research projects in computational linguistics in the late
1950's. As early as 1957, a project at the University of
Pennsylvania was initiated to develop a sentence analysis
program based on transformational theory for applica-
tion in information retrieval [6]. Syntactic segmentation
of sentences, using string analysis [7], was to be the first
step in this process. The Linguistic String Project in-
herited this task, and it took, in fact, a number of years
to make the string segmentation step operational on a
broad scale. In the foreign language area, pioneer work
on computerized analysis of Russian texts was done at
the Bureau of Standards in the late 1950's [8, 9], leading
to a later generalization and application to English in
the Harvard Predictive Analyzer [10].

These and other early projects in computational
linguistics had large, real-world, technological goals,
and drew upon a large reservoir of linguistic theory,
tools, and data. What was unfortunately lacking at that
time was a computational formulation of all the neces-
sary language detail, as well as the programming tools
to deal with such a large and complex data array as a
natural language grammar. We believe that these two
obstacles have been largely overcome in the past decade.
Linguistic knowledge has accumulated, and a great deal
of effort has gone into casting linguistic facts into a
computable form. At the same time, the development of

Communications July 1975
of Volume 18
the ACM Number 7

higher level programming languages and compilers
makes it possible to deal with complex data on several
levels, reserving the highest level with the briefest state-
ments for human use. In the case of the natural language
system, this is essential because of the very large amount
of detail.

The language described here is our answer to the
need for a higher level tool for natural language process-
ing. Its design was heavily influenced by our experience
in using a large grammar to parse long and complex
sentences, such as one finds in scientific texts. We found
that the key to successful text parsing lay in the portion
of the grammar which deals with the special detail of
natural language: in our system, the restriction com-
ponent of the grammar. The major focus of the Restric-
tion Language, then, is to provide a succinct and
pow,.rful vehicle for expressing the detailed grammatical
and semantic constraints that operate in sentences. We
will illustrate how the language accomplishes this task
in the Linguistic String Parsing (LSP) system.

The LSP grammar has two principal components: a
context-free grammar and a set of restrictions. The con-
text-free grammar associates with each input sentence a
set (possibly empty) of parse trees. The restrictions state
conditions on a parse tree which must be met in order
for the tree to be accepted as a correct analysis of the
input sentence. The restrictions are used to express de-
tailed wellformedness constraints that are not con-
veniently statable in the context-free component. These
may be contextual constraints on the linking of different
subtrees or, in the case of natural language, may involve
attributes of the particular lexical items which are asso-
ciated with terminal symbols of the parse tree. Thus, for
a natural language parse tree which terminates in a
well-formed sentence string consisting of Noun -k-
Verb -k- ".", e.g. "John worries.", there are many word
sequences conforming to this categorization which are
not well-formed sentences, such as "John worry."
(violates subject-verb agreement in number), "John
wears." (verb occurs without necessary object), and
"John occurs." (inappropriate subjec t noun for verb).
Restriction rules specifying constraints must be applied
if the output of the parsing program is to contain no
incorrect parses.

The restrictions in the grammar are procedures
which look at the parse tree and the attributes of the
sentence words and return an OK or a not OK signal. This
basic strategy of grammar design, in which a context-
free framework is augmented by a set of conditions
written as procedures, has become quite popular; it is
used, for example, in the systems of Woods [12] and
Winograd [11]. Our own use of such an organization
dates from the first implementation of the Linguistic
String Parser in 1964-65 [13]. This approach was moti-
vated by a need to provide an adequate English grammar
for parsing scientific texts. It was clear that such a
grammar would be large and would have to be able to
absorb increasing levels of detail without exploding.

3 9 1

The two-component organization has made this pos-
sible: the context-free grammar, which defines the
broad construction patterns of sentences, remains rela-
tively stable, while the restrictions, which cover the
detailed constraints, are gradually refined. The restric-
tions are relatively independent of one another, so that
these refinements can be made locally, without a major
revision of the restrictions at each step.

Even so, the development of a large-coverage gram-
mar is a lengthy procedure because of the amount of
detail which must be included. The restrictions in the
earlier versions of our system were prepared in a list-
structure format similar to LISP. This level of description
is comparable to those used in other current systems,
such as Winograd's PROGRAMMAR and the LISP pro-
cedures employed by Woods. At this level, however, our
grammar ran to several thousand lines. As a result, to
facilitate further experimentation and development of
the grammar, we chose to design a language especially
suited to such linguistic tasks; its first application and
test of adequacy would be the writing of restrictions.
A syntax-directed translator which compiles this Re-
striction Language into an internal list-structure form
is included in the most recent implementation of the
Linguistic String Parser.

An Overview of the Language

The design of the RL has been affected by a number
of considerations which differentiate it from most other
programming languages. These considerations include
1. The primary application: stating predicates on
trees.
2. Interaction of the restrictions with the context-free
parsing process.
3. The solution of problems inherent in natural-
language grammar.
The first consideration has motivated a choice of style:
since the restrictions s tate conditions, the general form
of the language has been made declarative rather than
procedural. Specifically, the basic statements of RE
appear as simple English declarative sentences, such as:
T H E C O R E O F T H E S U B J E C T I S N O T P L U R A L . Generally the
subject of the RL statement locates a node in the parse
tree or an attribute of a word definition, and the predi-
cate performs some test on that node or attribute. These
basic statements may be combined into restrictions of
arbitrary complexity by the use of the logical connec-
tives B O T H . . . A N D . . . , E I T H E R . . . O R . . . , I F . . . T H E N

. . . , etc. A provision for what are in effect procedures
without arguments is also provided. Any RE statement
may be assigned a name beginning with a S and then be
referenced from any point in another statement where
the original statement could appear. In this way, tests
common to several restrictions need appear only once,
and complex restrictions can be divided into a sequence
of statements.

Communications July 1975
of Volume 18
the ACM Number 7

Procedures which may take arguments are also in-
cluded, but under a different guise and for a different
purpose. The components of a sentence which are tested
by any single restriction are related to each other by
one of a small number of structural relationships (this is
a consequence of the use of linguistic string theory as a
framework for the grammar) . Rather than have the
sequences of tree-climbing operations which realize
these relationships stated explicitly in each restriction
which uses them, they are placed in procedures called
routines. The restrictions refer only to these routines,
and never directly to individual tree-climbing opera-
tions. The restrictions are thereby made easier to read
and independent of the particular tree structures used
to represent the string analysis.

Underlying our description of the semantics of the
RE is the notion of an implicit pointer, which may
point to any node in the parse tree, any attribute, or any
word of the input sentence. This pointer is moved by
the tree-climbing operations in the routines, and thus
indirectly by each statement in a restriction. The pointer
will be referred to by such phrases as "where the restric-
tion is" or "the node which has been located." In addi-
tion, each statement and routine set an implicit flag
to signal success or failure. This flag is used by the
logical connectives to determine the flow of control and,
ultimately, to determine whether the restriction succeeds
or fails.

In the next section, we shall use an example to intro-
duce some basic concepts and to illustrate the language
features. After that, we shall describe some of the indi-
vidual features in greater detail.

An Example

Figure I shows the source form of restriction WSEL1
(w: wellformedness, SEE: selection) taken from the LSP
grammar of English. The intent of the restriction, stated
in the comment card (beginning with *), is to insure that
an appropriate noun is selected as the object of a given
transitive verb. "Appropr ia te" here means normally
acceptable in written English, excluding such special
literary contexts as fairy tales, poetry, and the like. For
example, in parsing the sentence "John eats each day.",
WSELI rejects the parse which has "each day" as the
object of "eats." This sentence has only one appropriate
parse, with "John eats" as the main clause and "each
day" as a time adjunct of the main clause.

To understand this restriction a few facts about the
English parsing program and grammar should be stated.
All words in a text to be parsed are defined in a word
dictionary, which is supplied as a separate input to the
parser. Each word definition is a sequence of categories,
such as N (noun), PRO (pronoun), TV (tensed, i.e. in-
flected, verb), representing the major parts of speech to
which the given word belongs. Each category may have
associated with it a set of attributes (such as SINGULAR,

Fig. 1. A restriction from the English grammar.

*WSELI: Suitable object N for given verb

WSELI = IN OBJECT AFTER NSTGO:
IF ALL OF $OBJECT-NOUN, SGOVERNING-VERB,
$FORBIDDEN-NOUN-LIST ARE TRUE, THEN SNO-
COMMON IS TRUE.

$0B0~CT-W~ = TH~ COR~ X 3 OF T H ~ OBJECT XI0
IS N OR PRO.

$GOVERNING-VERB = AT XI0 THE VERB-COELEMENT
X4 EXISTS.

$FORBIDDEN-NOUN-LIST = THE CORE OF X4 HAS
THE ATTRIBUTE NOTNOBJ X5.

$NO-COMMON = X3 AND X5 HA~ NO COMMON ATTRIBUTE.

Fig. 2. Entries from the word dictionary.

EATS
TV: .12, N: .Ii.

.12 = SINGULAR, NOTNOBJ: .i, NOTNSUBJ: .2, OBJLIST: .3.
.i = NTIMEI, NTIME2, NSENTI, NSENT2, NSENT3, NHU~N.
.2 = NTIME1, NTI~2, NSENTI, NSENT2, NSENT3.
.3 = DP2: .6, DP3: .6, DP4: .6, PN: .5, NST~O, NULLOBJ
.5 = PVAL: ('THROUGH', 'INTO').
.6 = DPVAL: ('UP', 'AWAY').

.ii = PLURAL, NONHUMAN

Tree Structure

t
E A T S

T V

SINGULAR NOTNOBJ NOTNSUBJ OBJLIST

DP2 DP3 _DP4 PN NSTGO .

NTIMEI

ill DPVAL PVAL

DPVAL 'THROUGH '

DPVAL ' UP ' "AWAY '

' U P ' ' AWAY '

' UP ' "AWAY '

NTIME2 NSENTI NSENT2 | , •

NTIMEI jNTIME2 pNSENTI NSENT2 • NSE~IT3

N

IPLURAL NONHUMAN

NULLOBJ

'INTO' £

NSENT3

NHUMAN

DAY
N: .ii.

.ii = SINGULAR, NTI~I, NUNIT, NONHUMAN.

Tree Structure

Fig. 3. Parse tree for "John eats each day." Note: Terminal sym-
bols are flagged by an asterisk in front of the symbol name. Other
nodes with no descendants indicated in the parse trees actually have
a single descendant, the symbol NULL (the empty string).

SENTENCE

INTRODUCER CENTER ENDMARK

l SE ON !
SA, SO JECT SA ENS . VSA

LTE
LTL 7

392 Communications July 1975
of Volume 18
the ACM Number 7

PLURAL, NOMINATIVE, NTIME1, NTIME2) and attributes of
the attributes organized into a tree structure for that
category. In parsing, when a category is matched by a
terminal symbol of the parse tree, a pointer is created
from the terminal node to the attribute tree of that
category. In this way, restrictions can test attributes and
subattributes of the sentence words associated with
particular terminal nodes of the parse tree.

Relevant to our example, dictionary entries for
"eats" and "day" are shown in Figure 2, along with the
tree diagrams for these definitions. It will be seen in
Figure 2 that "day" has the category N (noun) with the
attribute NTIME1 among other attributes, and that the
verb "eats" has the category TV (tensed verb), with
attribute NOTNOBJ (among others), whose attributes in
turn are NTIME1, NTIME2, NSENT1, NSENT2, NSENT3, and
NHUMAN. NOTNOBJ is assigned in the word dictionary
to transitive verbs; its attributes for a given verb are
those noun subclasses of the grammar which are not
appropriate noun objects of the given verb (in scien-
tific writing). Thus the appearance of NTIMEI as an
attribute of NOTNOBJ in the entry for "eats" indicates
that nouns having the attribute NTLMEI (e.g. "day") are
not acceptable as the noun object of forms of "eat ."

The parse tree for "John eats each day." is shown in
Figure 3. In this parse the main clause (the value of
CENTER) is an ASSERTION string, whose definition, as it
appears in the context-free component of the grammar,
is:

(ASSERTION) :: = (SA) (SUBJECT) (SA) (TENSE) (SA) (VERB)
(SA) (OBJECT) (RV) (SA).

In the parse tree, sibling nodes (corresponding to ele-
ments of a single definition) are shown connected hori-
zontally to stress their sequential order, with only the
leftmost sibling connected to the parent. The four syn-
tactic types, SUBJECT, TENSE, VERB, and OBJECT, are said
to be required, since they take on a null value only under
special conditions. The other nodes correspond to posi-
tions where modifiers, or adjunct strings, may occur;
five are of the type SA (sentence adjuncts), modifiers of
the assertion as a whole, and one is of the type RV (right
adjuncts of the verb) occurring after the verb object
(e.g. " fas t" in "He made up his mind rather fast."). In
the grammar, string definitions, such as ASSERTION, have
a single option with several elements, whereas adjunct
set definitions, such as SA and RV, have several options,
each of one element.

In Figure 3, all of the SA nodes in ASSERTION except
the last, as well as the RV node, have the value NULL,
which means that no sentence words are subsumed.
NULL is included as one option of all adjunct set defini-
tions and represents the fact that modifiers are optional.
The OBJECT node in Figure 3 has a null value (NULLOBJ)
of different linguistic significance; it satisfies OBJECT
when the governing verb (here "eats") occurs intransi-
tively. The TENSE node also has a NULL value; this node
is nonempty only when a modal ("will," "can," etc.)

occurs. I f the tense is morphologically tied to the verb,
as is the case in "eats," then the terminal symbol TV
Occurs under VERB and the TENSE node is empty.

Space does not permit a detailed discussion of the
substructures of the parse tree in Figure 3. (The LSP
grammar is described in [14, 15].) However, it can be
noted that the SUBJECT node and the final SA node in
ASSERTION both dominate subtrees which terminate in
nodes labeled N, corresponding to nouns in the sentence
("John" and "day," respectively). Both of these sub-
trees contain an entity LNR whose three elements, LN,
NVAR, RN, stand for the Left adjuncts of the Noun, fol-
lowed by a Noun or one of its VARiants, followed by
the Right adjuncts of the Noun. This type of structure
corresponds to a type of definition in the string gram-
mar, called an LXR-type definition. This type of struc-
ture is seen again in Figure 3 under VERB, LNAMER, and
LTR. The LXR-type definition is the standard representa-
tion in the LSP grammar for a sentence word with its
associated modifiers. The introduction of standard
definition types into the grammar has facilitated the
writing of powerful tree-climbing routines whose path
through the parse tree can be stated in terms of node
types, such as LXR, ADJUNCT SET, STRING, rather than
individual nodes, such as LNR, RN, ASSERTION, whenever
this amount of generality is needed [16].

This can be illustrated with reference to Figure 3 by
introducing a routine which is invoked in the restric-
tion we are about to describe. In Figure 3 one observes
that each of the nonnull nodes, SUBJECT, VERB, and post-
object SA in ASSERTION, has a special relation to a particu-
lar terminal node in its subtree, respectively to N
("John") , TV ("eats"), and N ("day") . I f a breadth-first
downward scan of the subtree is made from the higher-
level node of each pair, passing through all nodes except
those corresponding to an adjunct set, and terminating
at the first terminal node encountered, then in each case,
the terminal node in question will be the one reached.
The importance of this is that the words corresponding
to these terminal nodes are each the carrier in the sen-
tence of the linguistic relation named by the higher level
node of the pair; e.g., " John" is the subject in the main
assertion in the sentence, "eats" is the main verb, and
"day" (with adjunct "each") has the relation of sen-
tence adjunct to the other elements. This relation be-
tween node-pairs, called core, is crucial to the operation
of restrictions. By means of the routine CORE, which
executes the breadth-first scan described above, con-
straints which are expressed in terms of higher level
grammatical relations, such as subject, object, and
governing verb, can be applied to the words in the sen-
tence which satisfy these grammatical relations?

With these preliminary remarks, we may now delve
In some cases, the core of a node is a string. For example in

the sentence "What John eats is fish.", the core of the subject is a
string which subsumes the words "What John eats." Thus, a more
precise definition of the core of a node ,~ (a not of type STRING) is
the unique node of type STRING or ATOMIC (terminal node) in
the subtree below a, which is not below a node of type ADJUNCT
SET in that subtree.

393 Communications July 1975
of Volume 18
the ACM Number 7

into the restriction itself (Figure 1). The restriction
begins with the line

WSEL1 = IN OBJECT AFTER NSTGO:

which identifies the restriction and says when and where
it should be executed. In our system a top-down parser
interprets the context-free component of the grammar
and produces the parse trees for a sentence sequentially.
In principle, all the restrictions could be applied after
each parse tree had been completed. It is more efficient,
however, to execute each restriction as soon as enough
of the parse tree has been built for it to apply. For this
reason each restriction lists one or more definitions and
indicates whether the restriction is to be executed before
a particular option is tried or after a subtree has been
completed below a particular option or element. I f a
restriction fails, the parser backs up and tries for an al-
ternate analysis. Thus, the restriction WSEL1 will be
executed immediately after a subtree corresponding to
the option NSTGO (Noun STrinG in Object) of OBJECT
has been completed. This will occur in the analysis of
the sentence "John eats each day." when the parser
constructs a subtree below OBJECT subsuming "each
day"; the appearance of the parse tree when this sub-
tree is completed is shown in Figure 4. The restriction
begins at the node in the parse tree corresponding to
the first definition named in the initial portion of the
restriction; in this case, at the OBJECT node.

The body of the restriction is an implication with
three conjoined premises and one conclusion. Each of
the four basic statements has been assigned a name be-
ginning with a 8:

IF ALL OF $OBJECT=NOUN, ~GOVERNING-VERB, ~FORBIDDEN-
NOUN-LIST ARE TRUE,

THEN $NO-COMMON IS TRUE.

The first premise,

~;OBJECT-NOUN = THE CORE X3 OF THE OBJECT Xl0 IS N
OR PRO.

tests whether the core of the object is a noun or pro-
noun, and in addition stores a pointer to the node OB-
JECT in register XI0 and a pointer to the core in register
X3. Operating on the tree in Figure 4, this will place in
X3 a pointer to the atomic node N ("day"). Registers,
symbols consisting of an "X" followed by an integer,
are the variables of the RE; they may contain pointers
to any node, attribute, or sentence word. Should this
first premise fail, the restriction is satisfied and a
success signal will be returned to the context-free parser;
the other statements will not be evaluated. This is as it
should be, since if the object is not a noun or pronoun
the object cannot be in an unacceptable noun or pro-
noun subclass.

The second premise,

~GOVERNING-VERB -- AT Xl0 THE VERB-COELEMENT
X4 EXISTS.

394

Fig. 4. Partial parse tree rejected by restriction WSEL1.

ITS SL CENTER

I ASSEt~ION

SA SUBJECT ,SA TENSE SA VERB SA OBJECT

INSTG LV VVAR RV NSTGO

LNR ~ INSTG

N~ NAMESTG LN NVAR RN

LNAME R , *N

TPOS ~/ QPOS APOS NSPOS NPOS

/

also has as its aim to locate and store a node on which
further processing will be done. This node is the verbal
sibling of OBJECT, in this case VERB. In other strings the
verbal element may have a different name and different
substructure (e.g. a Ving form, as in "is eating"), so that
it is convenient to define a generalized routine, VERB-
COELEMENT, which locates the desired verbal sibling in
all cases. The SGOVERN1NG-VERB test, applied to the tree
in Figure 4, starts at OBJECT (the value of X10), executes
the VERB-COELEMENT routine, which brings it to the
node VERB, and stores a pointer to VERB in X4. Again, if
this test fails, the restriction is trivially satisfied, since
this means there is no governing verb present.

The third premise,

•EORBIDDEN-NOUN-LIST = THE CORE OF X4 HAS THE
ATTRIBUTE NOTNOBJ X5.

invokes the CORE routine starting at the node VERB (the
value of X4) to obtain the governing verb itself (here
TV, "eats"). It then searches the attribute list of category
TV in the dictionary definition of "eats" for NOTNOBJ.
If the search is successful, a pointer to the attribute
NOTNOBJ is placed in X5.

The conclusion,

SNO-COMMON = X3 AND X5 HAVE NO COMMON
ATTRIBUTE

compares the attribute list of category N of "day" (the
value of X3) with the attribute li.st of NOTNOBJ in
"eats" (the value of X5). If these lists have no element in
common then "day" is acceptable as an object of
"eats." In this case they have the attribute NTIME1 in
common, so that the test $NO-COMMON fails, and the

• partial parse tree shown in Figure 4 is rejected.

Communications July 1975
of Volume 18
the ACM Number 7

Principal Constructions of the Restriction Language

Since the chief form of statement in the Restriction
Language is a declarative sentence consisting of a sub-
ject and a predicate, we shall begin our presentation
with a description of the various forms the subject and
predicate can take. Thereafter we shall consider how
statements may be combined with logical connectives
and how register references and assignments can be
inserted in statements. From there we shall turn to some
statement forms not fitting the subject-predicate mold:
the imperative forms used in the routines and some of
the more unusual features of the language.

The Subject• As we noted earlier, the subject of a
restriction language statement generally locates a node,
attribute, or sentence word which is then tested by the
predicate• Since the routines carry the burden of locat-
ing nodes in the parse tree, the routine invocation is the
most frequently used type of subject• If a routine has no
argument, it is invoked by simply writing its name:
CORE. If a routine takes an argument, the argument is
written immediately after the routine name. COELEMENT
SUBJECT calls the routine COELEMENT with the argument
SUBJECT; this will search the siblings of the current node
for a node named SUBJECT. If a node name appears
alone, without any routine name: OBJECT, a routine
called STARTAT is invoked with the node name as argu-
ment. STARTAT examines the current node and the nodes
one level below the current node for the node name
given as argument. Frequently more than one routine
must be executed to get from the starting point to the
node to be tested. This can be accomplished by com-
bining several routine calls with the word "OF."
For example,

CORE OF THE VERB-COELEMENT OF OBJECT 2

would first execute STARTAT with argument OBJECT, then
VERBCOELEMENT (which would begin where STARTAT
finished) and finally CORE (which would begin where
VERB-COELEMENT finished). If any routine invoked by a
statement fails, execution of the entire statement is im-
mediately terminated with a failure indication. Opera-
tions are also provided for locating a word in the sentence,
such as the first or last word subsumed by a node or the
next word to be matched in the parsing process.

The Predicate. The predicate tests whether the node,
attribute, or word located by the subject has a particu-
lar property. The chief types of tests which can be made
are the following•

1. Test of node name. One can test if the current node
has a certain name with the IS predicate:

. . . I S N.

Any set of node names can be defined as a type of node.
One can then test whether the name of the current node
is in a given set with the IS OF TYPE predicate:

• . . IS OF TYPE ADJSET.

T h e ar t ic les A, A N , T H E a re i gno red by the R L c o m p i l e r
a n d m a y be inse r ted f reely to e n h a n c e readab i l i ty .

2. Test for attribute. To test if an atomic node or an
attribute has a particular attribute, the HAS ATTRIBUTE
predicate can be used:

• . . HAS ATTRIBUTE PLURAL•

It is frequently necessary to test both an atomic node's
name and one of its attributes, or an attribute and one
of the attributes of the attribute. Such conditions can be
expressed succinctly by following the atomic node
name or attribute by a colon (read "which has attribute")
and the second attribute:

• . . I S N : P L U R A L

• • . HAS ATTRIBUTE N O T N O B J : N T I M E 1 .

3. Test for name of word. The IS predicate also serves
to test the name of the word matched to an atomic node:
• . . IS 'THE'. The same predicate serves to test the name
of a sentence word located by the subject of a restric-
tion statement.

4. Test for subsumed word. The SUBSUMES predicate
tests whether any of the words subsumed by a node
meets a stated condition. Any test which can be applied
to a single sentence word (test for name, for category,
or for category and attribute) can also be used in the
SUBSUMES predicate:

• . . SUBSUMES t,I

• . . SUBSUMES N" NTIME I .

in order to keep the semantics of the RL as simple
and explicit as possible, we have endeavored to compile
the more complex test operations into calls on routines
in the grammar whenever feasible. Since the process of
iterating through the words subsumed by a node can
be expressed in terms of more elementary operations
already in the RL, the SUBSUMES predicate is compiled
into a call on the SUBSUMERT routine. The test which
must be performed on each word is passed as an argu-
ment in the form of a procedure to the routine SUB-
SUMERT (in this respect SUBSUMERT differs from the
routines invoked in the subject, which take a node name
as argument). The special case where a node subsumes
no sentence words can be tested for with the IS EMPTY
predicate.

5. No test. Occasionally one only wants to determine
whether a node specified in the subject can be located
in the parse tree; no further test on that node is re-
quired. One instance of this occurred in the second
premise of WSEL1. For this purpose RL provides the
EXISTS predicate, which always succeeds (the statement
fails only if the subject fails).

6. Parse tree tests. Any condition regarding the struc-
ture of the parse tree can be expressed entirely in the
subject of a statement. For example, starting at the node
NAMESTG, to determine whether it occurs as part of a
tree dominated by SUBJECT, one can execute:

IMMEDIATE SUBJECT OF NAMESTG EXISTS•

395 C o m m u n i c a t i o n s Ju ly 1975
o f V o l u m e 18
the A C M N u m b e r 7

where IMMEDIATE is a routine which looks up in the
parse tree for the node named in the argument. Since an
important consideration in the design of the RE has
been the readability of the grammar, however, we allow
the user some alternative formulations. First, the final
routine may be invoked in the predicate, using the HAS
predicate:

NAMESTG HAS IMMEDIATE SUBJECT•

Second, in the case of a few routines there is an alterna-
tive wording which is much more natural in the predi-
cate position; for the routine IMMEDIATE We also permit:

NAMESTG IS OCCURRING AS SUBJECT.

Fig. 5. Parse tree for the sentence" John eats fish and cheese dai ly."

INTRO_[SENTENCE

DUCER CENTER ENDMARK

I AS SE RT YON !" . "

SA RV SA %t.~ SUBJECT ,SA TENSE ,SA VERB SA OBJECT .

NAMESTG *N "AND" Q-CO J

NVAR

T~TLE l S~E~A~ I

The negation of any predicate may be expressed
simply by adding NOT to the verb:

. . IS NOT N

. . . D O E S NOT SUBSUME I,v•

Wherever a word or symbol may appear in a predicate,
the disjunction of two or more words or symbols may
appear instead: 3

• . . IS N OR PRO

• . . DOES NOT SUBSUME rAY OR VANV.

A few of the tests which must be made in the gram-
mar do not fit neatly into the subject-predicate organiza-
tion, and so are included as separate types of state-
ments. One of these is the COMMON ATTRIBUTE test,
which was used (in its negated form) in WSEL1. Another
is the THERE I S . . . AHEAD, which tests whether any
sentence word not yet matched by a node in the parse
tree meets a stated condition; for example,

THERE IS AN N 'NTIME1 AHEAD.

This statement is used in optimization restrictions, to
avoid trying an option if a required category or attribute
is not present in the remainder of the sentence.

Connectives. The RL provides a full range of connec-
tives for specifying logical combinations of statements
and thereby in effect for specifying the flow of control
within a restriction. The logical operators include NOT,
AND, OR, N E I T H E R . . . N O R . . . , I F . . . T H E N . . . , and
can be nested to any depth. The operator evaluates only
as many statements as are required to determine the
value of the operator; thus, in a statement of the form
BOTH a AND b, if a fails the entire statement fails, and b
is not executed. Iteration operators, for constructing
loops with a termination test either at the beginning or
end, are also available, although in the current grammar
they are used only inside the routines.

Any construction which can be used in the subject
of a statement to locate a node can also be used in an

3 The fact that dis junct ion m a y be expressed in predicates
whereas conjunct ion requires the combin ing of entire s ta tements is
a consequence of the list s t ructure into which the R L is t ranslated:
each e lementary test operat ion takes a list of symbols as its argu-
ment , and succeeds if any one of the symbols can be found. In
practice, testing for a conjunct ion of symbols is a rare occurrence
in the g rammar , so this has proved no inconvenience.

A T . . . or I N . . . phrase before a statement, to specify
where a statement should begin. For example,

AT OBJECT BOTH THE CORE X 3 IS N OR PRO AND THE

VERB-COELEMENT X 4 EXISTS.

is equivalent to the first two premises of WSEL1.
Registers. As we noted earlier, registers are the vari-

ables of the RL. A register may be assigned a value by
writing its name after any subject, predicate, or routine
invocation. The value assigned to the register is a pointer
to the node, attribute, or word at which the restriction
is located after the subject, predicate, or routine is exe-
cuted. The register may be referenced by using it in the
subject of a statement or in an AT phrase; both usages
are illustrated in WSEL1. Registers are used frequently
in the grammar in order to avoid having to locate the
same node several times in one restriction.

Commands. The declarative statement format, which
has proven so convenient for stating the restrictions, is
not particularly suitable for the routines, especially the
low-level routines which deal in terms of elementary
tree motion and testing operators. The RE therefore pro-
vides an imperative format, similar to that used in pro-
cedural languages, for writing routines. In this format
each statement or command specifies an individual
elementary operation, such as GO UP, GO DOWN, GO
LEFT, GO RIGHT (in the parse tree); TEST FOR SUBJECT;

STORE IN X5; DO CORE (routine invocation). Commands
may be strung together with semicolons (this is equiva-
lent in effect to combining them with BOTH.. . AND. . .) .

Monitoring the Parsing Process. Although the fore-
going discussion would indicate that the restrictions
evaluate each parse tree independent of the course of the
parsing process to that point, this is not quite correct•
Both for reasons of efficiency and to avoid unlikely
analyses when more common analyses are available,
several statements are included which can monitor the
overall parsing process. The simplest such statement
tests whether

A PARSE HAS BEEN OBTAINED.

396 Communica t ions July 1975
of Volume 18
the A C M N u m b e r 7

The parser also provides a more sophisticated method of
selecting a preferred analysis by defining nested subsets
of the English grammar. The input sentence is first
analyzed with respect to the smallest subset, a grammar
containing the common English constructions. If no
parse is obtained, the sentence is reanalyzed with re-
spect to the next larger subset, which includes some in-
frequent constructions. This process is repeated until
an analysis is obtained or the entire grammar has been
used. These subsets are specified in the grammar by
including restrictions which test one of a set of switches.
These switches are all off in the initial attempt at ana-
lyzing a sentence, and are turned on one by one in the
subsequent stages of the process. Because of the richness
of the grammar, this mechanism also makes an important
contribution to parsing efficiency. The current grammar
defines two subsets; the smaller, the "non-rare" gram-
mar, is still adequate for most of the sentences in scien-
tific texts. As a result, the time lost on reanalyzing the
more unusual sentences is less than the time saved in
analyzing the more common sentence types with a
smaller grammar.

One further statement provided in the RL makes it
possible to find out how far the context-free parser has
backed up since the last parse tree for the sentence was
found. This test is used as part of a scheme to avoid
generating several parse trees in cases of permanent
predictable ambiguity, such as when an adjunct string
can be attached at several points in the tree (see [1] for
further explanation).

Node Attributes. The RL includes a facility for assign-
ing and testing node attributes. A node attribute is in
effect a variable associated with a particular node in the
parse tree; these variables may be assigned either the
value true or false, or a pointer to some other node in
the parse tree. Unlike assignments to registers, node
attributes are not erased when a restriction is finished.
Node attributes simplify the task of writing the grammar
and can make the restrictions and routines much more
efficient. For example, if a lengthy routine is frequently
executed, one can save time by recording the node
located by the routine as a node attribute of the starting
node the first time the routine is executed at that node,
and referring to the node attribute thereafter. Another
application arises when one wants to know whether a
particular node occurs in some subtree. Rather than
search the entire subtree, one can assign a node attri-
bute to the root of the subtree when the node in ques-
tion is attached, and test that node attribute later.

A complication arises because a restriction housed
on one node can assign an attribute to some other node.
An instance of this arises in the relative clause construc-
tion. When an ASSERTION string occurs in a relative
clause, the omitted element (e.g. the OBJECT in "what I
eat" and the SUBJECT in "what eats me") is marked by
assigning it the value NULLWH. When the ASSERTION is
completed, a restriction checks that precisely one ele-
ment has been omitted. This could be done by having

397

the restriction search all possible points of omission. A
more efficient procedure, employed in the LSP grammar,
is to have a restriction housed on NULLWH assign the
node attribute DIDOMIT to the ASSERTION node. The
restriction on the ASSERTION need then merely check
for the presence of this attribute.

Suppose, however, that the sentence contained a
clause without omission, such as "that I eat cheese."
The parser might try the value NULLW~ for OBJECT
(and hence assign DIDOMIT to the ASSERTION above).
Because of this (incorrect) choice, the parser would
eventually get stuck, unable to complete the parse; it
would then back up and try an alternate option for
OBJECT (in this case, "cheese"). At this point the node
attribute DIDOMIT should be removed, since the ASSER-
TION no longer contains an omission. This erasure is
performed automatically by the parser: if a node at-
tribute is assigned by a restriction invoked when a node
N is completed, the attribute will be erased when the
parser "backs up" into node N. Similarly, if a restric-
tion were executed when node N was attached to the
tree, any node attributes assigned by that restriction
will be erased when node N is detached from the tree.
Just as the execution of restrictions and hence the as-
signment of node attributes is synchronized with the
forward progress of the context-free parser, the undoing
of these assignments must be synchronized with the
backup of the parser.

An example of the use of this feature in connection
with conjunctions is given below.

Conjunctions. The extensive treatment of conjunc-
tional constructions in the English grammar has given
rise to several unusual features of the RL. For example,
when one attempts to provide for all the different struc-
tures which can be headed by conjunctions, it becomes
apparent that the grammar would be overburdened by
explicit definition of all conjunctional strings. The defi-
nitions of the conjunctional strings are therefore gen-
erated dynamically when a conjunction is encountered
in the parsing process. The generated conjunction
string consists of a conjunction followed by a sequence
of elements which repeats a sequence of elements al-
ready present in the parse tree. Which particular se-
quefice is generated depends on where the conjunction
string is to be placed in the parse tree. For example,
in the parse tree for the sentence "John eats fish and
cheese daily" shown in Figure 5, the conjunctional
string has been inserted to the right of the node NVAR
in the LNR dominated by OBJECT; the "repeating" por-
tion (Q-CONJ) of the string here consists of the node
NVAR, SO that the whole local construction consisting of
the first NVAR plus the conjunctional string containing
the second NVAR covers the word-sequence "fish and
cheese." Had the word-sequence been, for example,
"John eats fish but dislikes cheese," the conjunctional
string would have been inserted after OBJECT and the
value of Q-CONJ would be the sequence of elements:
VERB, SA, OBJECT. A more complete description of the

Communications July 1975
of Volume 18
the ACM Number 7

algorithm for generating conjunctional strings is to be
found in earlier LSP papers [1, 5J.

Two features of the parser make the dynamic gen-
eration of definitions possible. The first is an interrupt
mechanism, which is activated when the parser reaches
a word with a special conjunction flag in its definition.
The definition specifies a node which is inserted into the
parse tree after the last completed node. Expansion of
this node triggers the execution of special restrictions
which construct the conjunctional string definition. In
this way the process of generating the conjunctional
string definitions is made explicit in the grammar and
can be easily changed by the grammar writer. Actual
construction of the definition is made possible by a
GENERATE command in the RL, which causes a new op-
tion with specified elements to be added to the definition
of the current node.

Once a conjunctional string has been placed in the
parse tree, it is efficient to cross-reference the two struc-
turally similar elements on each side of the conjunction.
This is done by a restriction which assigns node at-
tributes. We assign to the pre-conjunction element (the
first NVAR in Figure 5) a node attribute POSTCONJELEM
whose value is a pointer to the structurally similar ele-
ment occurring after the conjunction (the second NVAR
in Figure 5). The node attribute PRECONJELEM is the
counterpart assigned to the post-conjunction element;
it points to the structurally similar pre-conjunction
element. The automatic erasure feature of the node at-
tributes assures that these pointers will be deleted when
the conjunctional string is detached.

Conjunctional strings present a problem in the exe-
cution of restrictions. For example, contrast the sen-
tences "John eats fish and cheese daily." with "John
eats fish and calls daily." Clearly "calls" is intended
here as a second verb whose subject is " John" and not
as a conjunction of "fish" (similar to the status of
"cheese" in Figure 5). The restriction which accepts
"cheese" in Figure 5 but would reject "calls" as the
object of "eats" is the same WSEL1 which rejected "each
day" as the object of "eats" in the parse tree of Figure
4. In the parse tree of Figure 5, however, the restriction
must recognize that the conjoined N is a second core-
value of OBJECT, and must execute the tests ~OBJECT-
NOUN and $NO-COMMON twice, once with the CORE OF
THE OBJECT equal to N ("fish") and once with it equal to
the conjoined N (" c h e e s e " / " c a l l s ") . 4

How can we arrange for the restrictions to be re-
executed in this fashion? One way, clearly, is to rewrite
all the restrictions to test for coniunction, but this is an
enormous task. What we would like, rather, is to allow
the routines to be multivalued in the case of conjunc-
tion. This has been achieved in the parser by incorporat-
ing a nondeterministic programming mechanism [17]. I f
a routine such as CORE returns two values, the remainder
of the restriction is first executed using the first value;

E • t~ h 4 WSEL1 fails when the OBJ CT ls c eese and calls" because
"calls" is an NSENT1 ("the call for people to assemble"), and
NSENT1 appears on the NOTNOBJ list of" eats."

Fig. 6. Another restriction from the English grammar. Note: A
restriction statement marked GLOBAL is available for use in other
restrictions. The global statement $NHUMAN referenced above,
but not shown here, tests whether the node stored in X9 is or could
be a "human" noun.

*DSN2 : AN SN STRING OR ASSERTION OCCURS AS TIIE RIGHT ADJUNCT OF
* AN ADJECTI~ZE RA ONLY FOR CERTAIN SUBCLASSES OF ADJECTIVES
* AND VING (IT IS TRUE THAT HE CAME, *IT IS ROUND THAT HE
* CAME, IT IS SURPRISING THAT HE LEFT, *IT IS SURROUNDING
* THAT HE LEFT; SHE IS ANXIOUS FOR YOU TO KNOW (ASENT3)).
* IN ALL CASES BUT ASENT3 THE ULTIMATE SUBJECT MUST BE "IT".
* FOR ASENT3 THE ULTIMATE SUBJECT MUST BE HUMAN.

DSN2 = IN RA RE SN, ASSERTION: fiLL OF $HOST, $NOCOMMA, $NOT-
ADJINRN, SIT, $HUMAN ARE TRUE.

$HOST = HOST Xl IS ASENTI OR ASENT3 OR VSENTI.

$NOT-ADJINRN = RA IS NOT OCCURRING IN ADJIN~.

$NOCOblMA = THE PRECEDING WORD IS NOT ",".

SIT = IF EITHER XI IS VSENT1 OR BOTH X1 IS ASENTI AND Xl IS NOT
ASENT3, THEN SSUBJIT.

$SUEJIT = THE CORE X3 OF THE ULTIMATE-SUBJECT XI0 IS "IT". (GLOBAL)

$HUbL~N = IF X1 IS ASENT3 THEN AT THE CORE X9 OF THE ULTIMATE-
SUBJECT $NHUMAN [W-POS22] IS TRUE.

Fig. 7. ASSERTION parse tree for "It is true that he came."

ASSERTION

~ SA VERB tSA OBJECT RV SA SUBJECT SA TENSE SA

NVAR tASTG
LAR

LA AVAR P&

LCDA ~ SN

THATS

~ "T HAT"

SA UBJECT SA TENSE SA VERB SA

NSTG LV[VVAR RV

VTV LNR

LN NVAR RN

!.PRO

OBJECT

*NULLOBJ

RV SA

if that succeeds, the portion of the restriction following
the call on CORE is reexecuted using the second value.
Only if both executions succeed is the entire restriction
considered successful. Modifying the routines in this
way greatly reduces the number of changes that have
to be made to the restrictions for conjunctions.

The nondeterministic programming mechanism is
invoked through the STACK command. The principal
value of a routine is simply the point in the tree located
by the last statement in a routine. To return some alter-
nate value as well, the routine has to execute the STACK
command while positioned at that alternate node. In
this way, the parser does not assume any particular
structures for handling conjunctions, so the grammar
writer retains the maximum possible flexibility.

398 Communications July 1975
of Volume 18
the ACM Number 7

Expressive Power of RL

The grammar writer gains two major advantages
from using the Restriction Language and its associated
routines. First, the grammar is relatively short and read-
able. This means it can be easily inspected and the in-
terrelation of its parts kept in mind rather readily. The
current LSP English grammar consists of less than 200
BNF definitions and about the same number of restric-
tions, together totaling about 2000 lines. The second
gain is the ability to focus on the global logic of the
linguistic operations without attending to the details of
each computation, which are relegated to the level of the
execution of routines. This means not only that the
burden of writing a grammar is lighter but that the
grammar itself can be richer. More complex linguistic
operations can be undertaken than would otherwise be
possible, simply because the tools for formulating and
executing them are available.

This point would best be illustrated by tracing one
of the longer and more intricate restrictions of the gram-
mar, such as one governing relative clauses with em-
bedding, or the agreement of subject and verb. Un-
fortunately, the long restrictions require too much ex-
planation of the linguistic material. However, some im-
pression of the expressive power of the RL can be gotten
by considering an LSP grammar restriction of moderate
length, the restriction DSN2 shown in Figure 6.

DSN2 is one of the restrictions concerned with the
placing of sentential complements (called SN strings in
the LSP grammar) of the type illustrated by "that he
came," "for him to leave," "whether they left or not ."
In order for an occurrence of an SN string following a
predicate adjective to be well formed ("It is true that
he came"), various conditions must be satisfied, as
stated in the text of DSN2. The first condition is stated
in the restriction subpart gHOST. When executed, gHOST

tests whether the adjectival element associated with the
SN string is of the appropriate subclass (*"It is round
that he came"). This adjectival element stands in the
relation of host to the SN string in question. The execu-
tion of the HOST routine starting at the SN node locates
the adjectival element which is to be tested. This can be
illustrated by referring to the ASSERTION parse tree for
the sentence "It is true that he came", shown in Figure
7.

In the upper right portion of Figure 7, several levels
below the OBJECT node of ASSERTION is the LXR-type
node LAR, standing for an adjective (or other adjectival
element, such as VING or a compound adjective) with
its left and right adjuncts. The adjectival element in this
case is the terminal symbol ADJ ("true") and the value
of the right adjunct (RA) node is SN. 6 Given the three-

5 SN strings are not modifiers of the elements they adjoin, but
it is convenient to analyze them as occurring in adjunct position
vis h vis these elements since they are regularly associated with the
occurrence of particular subclasses in the element position. It is
also to be noted that the subject " i t " in " I t is true that he came"
appears in the parse tree as a PRO, though it is not functioning as a
pronoun here.

element standard form for all LXR type definitions, the
routine HOST goes from any node in either the right-
most or leftmost subtree of an LXg configuration to the
core of the center element. Thus, its execution starting
from SN ends at ADJ, the correct element to be tested.

The test gNOT-ADJINRN rules out SN occurrences
following an adjective which is occurring as a right
adjunct of a noun. Thus, it would be wellformed to have
an adjective in this position followed by adjuncts other
than SN ("The implication, clear to all, was that he was
present") but not by an SN string (*The implication,
clear that he was present, was understood by all). In
the BNF part of the English grammar, there is a defini-
tion ADJINRN for the occurrence of an adjective with its
optional adjuncts (LAR) as a right adjunct of a noun.
Hence, in order to verify that an SN in RA is not occur-
ring in this position, the test gNOT-ADJINRN employs the
predicate IS NOT OCCURRING IN ADJINRN. This predicate
looks upward in the parse tree for ADJINRN (but not
above the first STRING type node) ; if an ADJINRN is found
the restriction fails.

The test gNOCOMMA rules out, e.g. *"It is true, that
he came," in which a comma intervenes between the
predicate adjective and the complement. The execution
o f THE PRECEDING WORD locates the sentence word last
attached to the parse tree. DSN2 is executed when the
option SN of RA is about to be attached, so in "I t is
true, that he came" THE PRECEDING WORD is " , ' .

The remaining tests of DSN2, $IT, SSUBJIT, and gnu-
MAN apply constraints to the subject, depending on
which subclass of adjective or VING is present in the
predicate adjective position. The comments preceding
DSN2 in Figure 6 give some indication as to these sub-
classes, and detailed definitions of all adjective, noun,
and verb subclasses in the LSP grammar are found in
[18]. The most interesting feature in the test gSUBJIT is
the use of the routine ULTIMATE-SUBJECT. By means of
this routine, the same restriction DSN2 which checks
that the subject is " i t" in "It is true that he came," also
checks for " i t" in "It seems to be true that he came,"
in "It seems to be considered to have appeared probable
that he came," etc., to an arbitrary depth of embedding.
There are several extended scope routines of this type
in the grammar. Being of the same order of complexity
as some of the longer restrictions, their formulation is
also considerably facilitated by writing them in the
Restriction Language.

Conclusion

Five years ago, after several years of development,
the Linguistic String Project possessed a grammar capa-
ble of analyzing a wide spectrum of English sentences.
In the course of this development, the restrictions con-
stituting the bulk of the grammar gradually grew into a
mass of nonperspicuous list-structure code; further
refinement of the code became increasingly difficult.

399 Communications July 1975
of Volume 18
the ACM Number 7

The response to this problem was the language we have
described in this paper.

The unusual features o f the Restriction Language are
a consequence o f the special requirements o f our appli-
cation. The basic nature o f the appl ica t ion--s ta t ing re-
strictions on parse t rees-- is reflected in the declarative
syntax and the repertoire o f basic operations. The spe-
cial requirements o f natural language g rammar and the
need to interact with the context-free parser have led to
a number o f features: switches which define g rammar
subsets, node attributes with automat ic erasure, inter-
rupts, dynamical ly generated definitions, nondeter-
ministic programming, and a set o f routines correspond-
ing to the fundamenta l grammatical relations. As we
noted in earlier sections, these features were responses
to specific problems that we faced in working with a
large string g rammar in a text processing situation. In
designing the Restriction Language, however, we have
tried to separate as much as possible what is general to
the problem of treating natural language f rom what
specifically relates to our theoretical linguistic frame-
work. The latter appears explicitly in the definitions o f
the routines as par t o f the grammar .

The next step in sentence analysis is t ransformat ional
decompos i t ion - - the reduct ion o f a sentence to a set o f
kernel sentences connected by t ransformations. We are
starting this decomposi t ion process f rom the linguistic
string analyses currently produced by our program.
Initial work has been done on specifying the inverse
t ransformat ions and the condit ions under which they
should be applied. This work has shown that the Re-
striction Language is well suited to stating the inverse
t ransformat ions themselves. The parsing p rogram has
recently been expanded to handle these t ransformations,
and the t ransformat ions themselves are being gradually
assembled.

Received February 1974; revised November 1974

References
1. Sager, N. Syntactic analysis of natural language. In Advances
in Computers, No. 8, F. Alt and M. Rubinoff (Eds.), Academic
Press, New York, 1967.
2. String Program Reports, Nos. 1-5, Linguistic String Project,
New York U., 1965-1969.
3. Sager, N. The string parser for scientific literature. In Natural
Language Processing, R. Rustin (Ed.), Algorithmics Press, New
York, 1973.
4. Grishman, R. Implementation of the string parser of English.
In Natural Language Processing, R. Rustin (Ed.), Algorithmics
Press, New York, 1973.
5. Grishman, R., Sager, N., Raze, C., and Bookchin, B. The
linguistic string parser. Proc. NCC, AFIPS Press, Montvale, N.J.,
1973.
6. Harris, Z.S. Linguistic transformations for information
retrieval. Proc. Conf. on Scientific Information, 1958, 2, NAS-
NRC, Washington, D.C., 1959.
7. Harris, Z.S. String Analysis of Sentence Structure. Mouton
and Co., The Hague, 1962.
8. Rhodes, Ida. A new approach to the mechanical syntactic
analysis of Russian. Mechanical Translation Group, U.S. Dep. of
Commerce, Applied Math. Div., Nat. Bur. Std. Rep. 6595, 1959.
9. Alt, F.L., and Rhodes, Ida. The hindsight technique in ma-
chine translation of natural languages. J. Res. Bur. Std. B66, 2
(1962), 47-51.

400

10. Kuno, S., and Oettinger, A.G. Multiple-path syntactic
analyzer. In Information Processing 1962, North-Holland Pub.
Co., Amsterdam, 1963, pp. 306-312.
11. Winograd, T. Procedures as a representation for data in a
computer program for understanding natural language. MAC
TR-84, MIT Proj. MAC, Cambridge, Mass., 1971.
12. Woods, W.A. Transition network grammars for natural
language analysis. Comm. ACM 13, 10 (Oct. 1970), 591-606.
13. Sager, N., Morris, J., and Salkoff, M. First report on the
string analysis programs. Dep. of Linguistics, U. of Pennsylvania,
1965. Expanded and reissued as String Program Rep. No. 1, 1966.
14. Sager, N. A computer string grammar of English. String
Program Rep. No. 4, 1968.
15. Sager, N. A Formal Grammar t~f English and Its Computer
Applications. (To be published by Gordon and Breach in the
series Mathematics and Its Applications.)
16. Sager, N. A two-stage BNF specification of natural language.
J. of Cybernetics 2, 39 (1972).
17. Raze, Carol. A computational treatment of coordinate con-
junctions. 12th Ann. Meet. of Assoc. of Computat. Ling.,
Amherst, Mass., July 26, 1974. (To appear.)
18. Fitzpatrick, Eileen, and Sager, N. The lexical subclasses of the
linguistic string parser. Amer. J. of Computat. Ling., Microfiche 2
(1974). (Also available as String Program Rep. No. 9.)

Communications July 1975
of Volume 18
the ACM Number 7

