A Computational Treatment of Coordinate Conjunctions

Carol Raze

Linguistic String Project

New York Uniwversity

It

w

ABSTRACT

This paper reports on the implementation of a general method for recognizing
conjunctional strings in text sentences and for applying detailed welformed-
mess constraints to conjunctional strings with ellipsis. In particular, we
describe the conjunction algorithm of the most recent implementation of the
New York University Linguistic String Parser (LSP). The algorithm provides
for dynamic generation of definitions which cover a rich variety of con-
joined word classes or word class sequences encountered in sentences, The
algorithm also locates the "zeroed", or implicit, elements which are found
in many conjunctional occurrences. This enables the Parser to execute re-
strictions on structures with ellipsis as though they were complete. It
also provides the basis for the transformational expansion of conjunction
strings into complete assertions. The expansion transformation is currently
operative and will be described in a later paper.

TABLE OF CONTENTS

page
1. The Parsing System . 6
2. Basic Routines of the Grammar 11
CORE n
ELEMENT 12
COELEMENT 13
RIGHT-ADJUNCT 14
LEFT-ADJUNCT ' 15
HOST 15
STARTAT) 18
3. The Definition of Conjunction Strings 18
4. Restrictions under Conjunctions 20
5. Conju’nction Routines
STACK-TEST 30
STACK-FOR-LEFT-TO-X 31
STACK-FOR-RGHT-TO-X | 31
TO-PRECONJUNCTION-Y 33
UP-THROUGH-Q - 34

PRE-POST-CONJELEM - . 35

FIGURES
1.
2.
3.
4,
5-7.
8.

10.
11.
12.:
13,
14.
15.

Computer Output Parse

Parse tree

String Relations

Parse tree showing String Segment
Parse trees showing RV positions
N Adjunct at a distance

Parse tree with conjunction
Parse tree with conjunction
Parse tree with conjunction
Parse tree with conjunction
Parse tree with conjunction
Parse tree with conjunction

Parse tree with conjunction

3A

page

10
13
17
18

20
21
25
26
27
33
37

A COMPUTATIONAL TREATMENT OF COORDINATE CONJUNCTIONS
Carol Raze

One particularly intricate problem in the computer parsing of natufal
language texts is the complexity introduced int§ the parsing system by con-
junctions. This complexity is due to the richness of conjunctional construc-
tions and to the material implicit in sentences containing conjunctions. This
article describes the current treatment of conjunctions in the New York Uni-
versity Linguistic String Parser (LSP)1 and how our generalized approach en-
ables the system to handle a very broad range of éonjoined structures without
adding unduly to the size of the grammar. Tﬁe conjunction algorithm provides
a mechanism for the dynamic generation of the appropriate copjunctional struc-
‘ture whenever a conjunction is encountered in parsing a sentence. Another
mechanism locates the "zeroed" or implicit elements which are found in con-
junctional occurrences involving ellipsis. This is accomplished by modifying
a smaii number of basic routines used throughout'the gramm%r. The recovery
of thg zeroed material from the sentence is crucial so that the grammatical
and séﬁantic constraints which are the key to obtaining a correct analysis
can be applied to all relevant parts of the sentence. The recovery of the‘

" zeroed material is also the first step in transformational analysis.

Tables 1 and 2 below give examples of the types of structures which are
héndled by the conjunction algorithm and others which are still being worked
on. This article is divided into five main sections: 1. The Parsing
System, 2. Basic Routines of the Grammar, 3. The Definition of Conjunction
Strings, 4. Restrictions under Conjunctions, and 5. Conjunction Routines.

Sections 2 and 5 are very detailed and can be omitted by the general reader.

1 The LSP system has been operative since 1966 in several programmed versions.

The main documentation can be found in Refs. 1-5.

TABLE 1

Examples of Structures Handled by the Conjunction Algorithm

Type of Conjoined Structure

Example Sentence

Conjunct is word category

Conjunct-is word category +

Adjuncts

Conjunct is complete string

Conjunct is segment of

string

We ate fruit, vegetables, and meat.

Lead comes from the solder or other metal in

the can. (2 syntactic parses)

He is not getting all the news but he does not

care.

He read the questions and discussed the answers.

The canned baby and infant foods were inspected.

(2 syntactic parses; a third not included as too rare)

Ellipsis--Middle part of
sentence under conjunc-—

tion is missing

Ellipsis--complete sentence
is missing
Ellipsis in nested struc-

tures

" Ellipsis with reference to

a nested structure

He ate cake and she did also.

He ate cake and she cookies.

Lactones inhibit ion transfer but only at high

concentrations.

He understood our demands but his advisers did

not try to.

He tried to understand our demands but his

advisers did not. (2 transformational expansions)

TABLE 2

Examples of Structures Which Are Still Being Worked On

Type of Conjoined Structure

Example Sentence

Ellipsis before conjunction

in asymmetrical conjoining

We talked about and admired the candidate.
They did not want to but finally accepted our

demands.

l. THE PARSING SYSTEM

Before going into the details of the treatment of conjunctions we must
review the general features of the parsing system in which the conjunction
algorithm is incorporated. The parser obtains a surface structure analysis
in the form of a string decomposition of a sentence. In accordance with lin-
guistic string theory [6] each sentence is composed of elementary word
sequences of a few given types, statable as word class sequences (called
linguistic strings). Each sentence contains one center string (an elementary
sentence) and zero or more adjunct strings, adjoined to the left or right of
elements of the center string or of other adjuncts. In addition, string oc-
currences may be restricted with regard to the subclasses of words that can
co-occur in the same string or in adjoined strings. A string as a whole may
also have adjunct strings (called sentence adjuncts) which occur at stated
points in the string.

Figure 1 is an example of the computer output of the string decomposi-

tion of One rumor hastily printed can ruin careers. Line 2 in Fig. 1 shows

that rumor can ruin careers is the center string which has the form of an

assertion. Rumor has a left adjunct string LN whose decomposition is shown
on line 3 and a right adjunct string RN whose decomposition is shown on line 4.
LN consists of the quantifier one. RN is the passive string called VENPASS
which consists of the past participle printed preceded by the adjunct hastily.
In this example the object position (PASSOBJ) after the verb is null.

To produce syntactic analyses of natural language sentences the computer
program uses two components: a word dictionary [7] and an English grammar [81,
both of which are geared to handle English scientific texts. The word dic-
tionary assigns to each word its major syntactic categories, e.g., noun, verb,

adjective, etc., which may in turn have subcategories. The grammar consists

FIGURE 1
Computer Output of the String Decomposition of

One rumor hastily printed can ruin careers.

‘a

1. SENTENCE = INTRODUCER CENTER ENDMARK
2.

2. ASSERTION = SA SUBJECT SA TENSE SA VERB SA OBJECT RV SA

3. rumor 4. can ruin careers

3. LN = TPOS QPOS APOS NSPOS NPOS
one
4. VENPASS = LVSA VENPASS SA PASSOBJ RV SA

4, printed

5. DSTG =D
- hastily

of two parts: a contéxtefree component and a set of restrictions. The con-
text-free component defines the sets of center and adjunct strings of the
grammar. The definitions are Qritten in Backus Normal Form, An examplé of
a string definition is:

<ASSERTION> ::= <SA><SUBJECT><SA><TENSE><SA><VERB><SA><OBJECT><RV><SA>,
Each of the elements of ASSERTION is also defined in the grammar. In the
above example, SA (sentence adjunct) and RV (post-object right adjunctof verb)
are adjunct sets; therefore thei; occurrence in a. sentence is optional.
SUBJECT, TENSE, VERB, and OBJECT are positions correspohding to required ele-
ments of the string. Each position maythave alternate values in different
sentences.

The parser analyzes a sentence by building a parse tree for the sentence.
The tree represents the particular combination of strings and adjuncts whose

terminal nodes combine to produce a well-formed sentence, or more exactly a

8

well-formed sequence of word categories which match those of the sentence

words. A parse tree of ASSERTION for One rumor hastily printed can ruin

careers is shown in Fig. 2. The‘computer output in Fig. 1 is a compressed
version of the parse tree in Fig. 2. 1In this parse tree the elements of a
string are shown as a sequence of connected sibling nodes. Thus the ele-
ments of ASSERTION are shown one level below the ASSERTION node, in the
order in which they appear in the definition of ASSERTION. The terminal
nodes of the tree are either word class symbols which correspond to sentence
words (*N = rumors) or are null nodes. The null nodes are automatically
satisfied without subsuming sentence words. In adjunct set positions they
represent the fact that adjunct occurrences are optional. (In the parse
tree diagrams the null nodes are omitted.)

A standard type of structure that is frequently seen in the tree is
called the‘"LXR" node. An example is the LNR node in Fig. 2. An LXR defi-
nition consists of three elements: a position for the left adjuncts of X, a
core position for thg word class X, and a position for the right adjuncts of
X. The core position as a rule subsumes a sentence word of class X. For
example, in Fig. 2, in the SUBJECT of ASSERTION, NVAR is the core position
- of INR and has the value N corresponding to rumor. NVAR (Noun Variants) will
have one of several alternate values, namely noun, pronoun, Ving, etc. The
"ILXR" type structure is important in that both the restrictions and the con-
junction mechanism depeﬁd on this regularized representation of an element
and its adjuncts.

The restrictions are a set of detailed well-formedness rules which must
be satisfied before an analysis is accepted. Thé restrictions may be strictly
grammatical, such as one governing the case of a pronoun. Such a restriction

will succeed for They ruined careers but not for Them ruined careers. Or the

FIGURE 2

Parse tree* of One rumor hastily printed can ruin careers.

ASSERTION

ISA SUBJECT v SA TENSE SA VERB SA OBJECT RV SA
NSTG LW *W RW LV VVAR RV NSTGO
LNR [*V NSTG
can
IN NVAR i INR
_ RN ruin
ohe l*N VENPASS LN 'TVAR RN
1%
rumor LVSA LVENR SA PASSOBJ RV SA N
- careers

' LV *VEN RV

hastily

printed

*The terminal nodes which are null are not shown in the parse tree diagrams.
In order to keep the tree diagrams as uncluttered as possible the details of
ceftain sﬁbstructures have been omitted but the sentence word(s) subsumed by
those substructures are shown. Three vertical dots below which are sentence

words signifies such an omission.

restrictions may express selectional constraints; these will succeed for se-
quences that are considered possible within a given area of discourse. E.g.,

in normal discourse one can say They printed rumors but not They printed

critics. Each restriction is compiled into a series of basic operations and
tests which are performed on the parse tree while parsing a sentence. The
restrictions mainly test conditions between two elements of a string or be-
tween a string element and its adjunct.

Figure 3 illustrates two of the relations used by restrictions. For the

Verb-Object selectional restriction of the grammar to operate on They printed

rumors, the coelement relation is used to test whether the co-occurrence of
the object (rumors) and the verb (printed) is well-formed. On the other hand, in

Rumors hastily printed can ruin careers the host-adjunct relation is used to

test the noun rumors and the verb printed since the verb here appears in the

10

right adjunct string §f rumors. Because the restrictions use these basic
string relations (coelement, left-adjunct, right-adjunct) so often to test
for well-formed seguences, these relations are encodéd into basic routines
(COELEMENT, LEFT-ADJUNCT, RIGHT-ADJUNCT, etc.), which in turn use basic tree
operations (up, down, left, right, test for x, etc.) [9]. For example, in

the LNR sequence subsuming one rumor hastily printed, shown in Fig. 2, the

routine RIGHT-ADJUNCT goes from the core noun rumor to its right-adjunct

string hastily printed.

FIGURE 3
Restrictions Use String Relations

SUBJECT VERB ' OBJECT

- they printed coelement rumors

NVAR RN
rumors host-adjunct astily printed

The use of the basic routines by the restrictions greatly facilitates
the formulation of the restrictions. One routine contains many tree opera-
tions. The use of these routines also facilitates modification of the gram-
mar. If there is a basic change in the grammar, the affected routines are.

' changed but the restrictions themselves do not have to be. The extensive use
of routines by the restrictions plays a significant role in the treatment of
conjunctions, as will be described later.

Both the restrictions and the routines are written in a programming
language developed for the LSP [10]. The syntax of the restriction language
includes three main statement types. One part of the language is similar to
a subset of English in that the statements consist of a subject followed by
a predicate. For example, THE CORE OF THE SUBJECT IS PRONOUN. Another part

of the restriction language consists of logical connectives, such as

11

IF THEN , EITHER OR , BOTH AND , which permit the logical combina-

tion of restriction statements. For example,

IF THE CORE OF THE SUBJECT IS PRONOUN X1
THEN X1 IS NOT ACCUSATIVE.

Another type of restriction language statement consists of a series of com-
mands which are used mainly for writing the routines. A command may consist
of a basic tree operation such as GO UP, or a call to execute a restriction
routine, such as DO ELEMENT(X), or a call to execute another restriction
statement, such as DO $1. There are provisions for saving a node in a regis-
ter and for restoring a node from a register. For example, STORE IN X1,

GO TO X1. The commands may also be logically combined.

2. BASIC ROUTINES OF THE GRAMMAR2

There are about thifty basic routines in the grammar. Described here
in detail are the ones which represent the major grammatical relations among
words in a sentence and are important in the treatment of conjunctions.

CORE ROUTINE
ROUTINE CORE
$CORE-PATH
$AT-ATOM
$DESCEND~-TO-ATOM
$DESCEND-TO-STRING

]

DO $CORE-PATH. '

ONE OF $AT-ATOM, S$DESCEND-TO-ATOM, S$DESCEND-TO-STRING.
TEST FOR ATOM.

DESCEND TO ATOM NOT‘PASSING THROUGH ADJSET1.

DESCEND TO STRING NOT PASSING THROUGH ADJSETI.

The CORE routine locates the sentence word corresponding to a higher
level grammatical element E by descending to a terminal node ("atom") from E.
This is done by $DESCEND-TO-ATOM. When CORE descends from E it does not look
at structures which are adjuncts, i.e., on list ADJSET1. -Thus for One rumox

hastily printed can ruin careers shown in Fig. 2, above, the routine CORE,

2A listing of the routines appearsas part of the LSP grammar of English in Ref, 8.

12
starting at SUBJECT, will not search below the left-adjunct node LN (arriving
mistakenly at one) and will arrive at N (the noun rumor). Sometimes the
starting location of CORE will be an atomic node. This is provided for by
$AT-ATOM, which tests whether the current node is an atomic node, i.e., on
list ATOM. Sometimes a string occurs in a particular sentence in place of a

noun. In His printing rumors ruined careers, shown in Fig. 4, the string

NSVINGO satisfies the SUBJECT OF ASSERTION. This situation is provided for

by $DESCEND-TO-STRING. Thus CORE starting at SUBJECT in Fig. 4, will 1§cate

the string NSVINGO.

ELEMENT ROUTINE
ROUTINE ELEMENT (X)

EITHER DO DOWNL (X)
OR $STRING-SEGMENT.

$STRING-SEGMENT DO DOWN1 (STGSEG) ;
DO DOWN1 (X) .
GO DOWN; ITERATET GO RIGHT

UNTIL TEST FOR X SUCCEEDS.

ROUTINE DOWNI (X)

It is assumed that ELEMENT starts at node Y and that X is an element of
the string corresponding to Y. Thus ELEMENT locates X by searching the level
below Y. This is done by routine DOWN1 (X) which first goes to the level below
Y by executing the command GO DOWN and then searches the nodes on that level
until it finds X. The latter step is accomplished by an iterate command:
ITERATET GO RIGHT UNTIL TEST FOR X SUCCEEDS. In Fig. 2 the execution of
ELEMENT (SUBJECT), starting at the string node ASSERTION, will locate the node
SUBJECT. Sometimes it is more convenient to define a string Y by using the
name of another string X in the definition of Y instead of naming all the ele-
ments of X. This is the case in Fig. 4 where VINGO, a defined string of the
grammar appears as a string segment of NSVINGO. 1In this situation not all

the elements of NSVINGO are on one level below NSVINGO but some are one level

13-

FIGURE 4

Parse tree of His printing rumors ruined careers.

 ASSERTION
lSA SUBJECT ‘ SA TENSE SA VERB SA OBJECT RV SA
a3 T 1 4
§ H []
VINGSTG ruined careers
NSVINGO
TPOS VINGO
INSR LVSA LVINGR SA OBJECT
iy *ns LV *VING RV NSTGO
his : . NSTG
printing
LNR
4
rimors

below the string segﬁent VINGO of NSVINGO. $STRING-SEGMENT, therefore,
searches one level below Y fér a node on the string segment list STGSEG and
if it finds one, it searches for X one level below the string segment. In
Fig. 4, ELEMENT (OBJECT) , starting at NSVINGO, first locates VINGO by exe-
cuting DOWN1 (STGSEG) and then locates OBJECT by executing DOWN1 (OBJECT).
COELEMENT ROUTINE

ROUTINE COELEMENT (X) = ONE OF $SAME-LEVEL, $X-IN-SEGMENT, $Y-IN-SEGMENT.
$SAME-LEVEL = DO COELL (X). '

$X-IN-SEGMENT = DO COEL1 (STGSEG) ;
DO ELEMENT (X) .
$Y-IN-SEGMENT = GO UP;

TEST FOR STGSEG;

DO COEL1 (X).
ROUTINE COELL (X) = EITHER DO LEFTR(X)

OR DO RIGHTR(X) .
ROUTINE LEFTR(X) = ITERATE GO LEFT UNTIL TEST FOR X SUCCEEDS.
ROUTINE RIGHTR(X) ITERATE GO RIGHT UNTIL TEST FOR X SUCCEEDS.

Given that X and Y are elements of some string, COELEMENT starts at Y and goes

to X. COELEMENT uses several other basic routines: ROUTINE LEFTR(X) goes

14

leét from Y until it locates X; ROUTINE RIGHTR(X) searches to the right of
Y to locate X; and combining the two, ROUTINE COEL1 (X) searches both sides of
Y to find X. 1In Fiqg. 4, COELEMENT(SUBJECT), starting at VERB in ASSERTION,
locates SUBJECT by executing $SAME-LEVEL. ROUTINE LEFTR (SUBJECT) success-
fully locates SUBJECT, which is to the left of VERB; this satisfies

COELL (SUBJECT), which satisfies $SAME-LEVEL. If X is in a string segment,
COELEMENT will locate it by executing $X-IN-SEGMENT. In Fig. 4,

COELEMENT (OBJECT), starting at TPOS, first locates VINGO by executing
COELl(STGSEG). It then locates OBJECT by calling routine ELEMENT (OBJECT).
A different situation occurs when COELEMENT (TPOS) starts at OBJECT. This
situation is handled by $Y-IN-SEGMENT. First, the string segment VINGO is
located by the sequence GO UP; TEST FOR STGSEG. Then TPOS is located by

routine COEL1l(TPOS), which searches the same level as VINGO to. £ind TPOS.

RIGHT-ADJUNCT ROUTINE

ROUTINE RIGHT-ADJUNCT DO RIGHT-ADJUNCT-POS;

DO CORE.

ROUTINE RIGHT-ADJUNCT-POS = EITHER $ASCNT OR TRUE;
DO RIGHTR (RADJSET) .

$ASCNT ASCEND TO AVAR OR NVAR OR QVAR OR VVAR.

It is assumed that RIGHT-ADJUNCT starts at the core of an LXR type node. It
goes to the core of the right-adjunct position in the LXR sequence, For

example, in the LXR sequence LN NVAR RN (one rumor hastily printed), shown in

Fig. 2, the routine RIGHT-ADJUNCT-POS, starting at N (rumors) ascends to NVAR
by executing $ASCNT and then goes to RN by executing the routine
RIGHTR (RADJSET). RIGHT-ADJUNCT goes to VENPASS by executing the CORE routine.

Thus the passive string VENPASS (hastily printed) is located as the right

adjunct of the noun rumor.

15

LEFT-ADJUNCT ROUTINE
ROUTINE LEFT-ADJUNCT = DO LEFT-ADJUNCT-POS;
EITHER TEST FOR LN
OR DO CORE.
ROUTINE LEFT-ADJUNCT-POS = EITHER $ASCNT OR TRUE;
DO LEFTR(LADJSET).

LEFT-ADJUNCT is similar to RIGHT-ADJUNCT except it goes to the core of the
left-adjunct position of an LXR sequence. If the left-adjunct position is

LN, however, the routine stops there since it is assuﬁed that further opera-
ti§ns will be specified to locate a particular left adjunct of the noun, e.g.,

a quantifier or an adjective.

HOST ROUTINME
ROUTINE HOST = CORE OF THE HOST-ELEMENT EXISTS.
ROUTINE HOST-ELEMENT = ONE OF $AT-LADJ, $AT-RADJ, $AT-RNSUBJ IS TRUE.

$AT-LADJ = EITHER TEST FOR LADJSET
OR ASCEND TO LADJSET;
GO RIGHT.

$SAT-RADJ = EITHER TEST FOR RADJSET

OR ASCEND TO RADJSET;
EITHER $RV-IN-STRING
" OR GO LEFT.

$RV-IN-STRING = TEST FOR RV;

A STORE IN X100;

GO UP;

TEST FOR TYPE STRING:

EITHER $RV-IN-OBJECT OR $RV-IN-CENTER.

TEST FOR NTOVO OR NTHATS OR NSNWH OR PNTHATS OR PNTHATSVO

$RV-IN-OBJECT

OR PNSNWH;
ASCEND TO OBJECT;
DO VERB-COELEMENT.
$RV-IN-CENTER = GO TO X100;
DO VERB-COELEMENT.

16

SAT-RNSUBJ = EITHER TEST FOR RNSUBJ

OR ASCEND TO RNSUBJ;

ASCEND TO SA;

DO COELEMENT (SUBJECT) .
It is assumed that the routine HOST-ELEMENT starts at node Y, which is in
or at an adjunct position in an LXR structure. It goes from the adjunct posi-
tion to the core position of the LXR structure. HOST then goes to the CORE of
the node located by HOST-ELEMENT. For example, consider the operation of the

HOST routine on the parse tree shown in Fig. 2 where HOST starts at the right-

adjunct string VENPASS = hastily printed. $AT-LADJ fails but $AT-RADJ ascends

to RN by executing ASCEND TO RADJSET and goes left to NVAR. The CORE routine
then locates N (rumors). A similar situation occurs when HOST starts at LN.
TEST FOR LADJSET succeeds ana HOST-ELEMENT goes one node to the right to NVAR.
HOST calls the CORE routine which locates N (rumors).

'If the HOST routine starts in or at RV (right adjuncts of verb), extra
maneuvering is necessary to locate the verb. There are three possibilities.

RV may immediately follow the verb as in He ran quickly, shown in Fig. 5. 1In

this case, $RV-IN-STRING fails because the node above RV (i.e., VERB) is not
on the string list. HOST-ELEMENT therefore goes left to VVAR, whose core is

ran. In some cases, RV follows the object of the verb as in He ran to school

quickly, shown in Fig. 6. 1In this case, $RV-IN-STRING succeeds. The node
above RV is the string ASSERTION. $RV-IN-CENTER locates the verbal element
VERB (EEE) of ASSERTION by calling routine VERB-COELEMENT (a generalized rou-
tine for finding a verbal coelement). In othér sentences, RV is situated in

the middle of an object string. In She told him quickly that he had to leave,

shown in Fig. 7, RV is situated after NSTGO (him) in the object NTHATS of the
verb told. In this situation $RV-IN-OBJECT locates the verbal element of

ASSERTION by ascending to OBJECT and calling routine VERB-COELEMENT.

17

FIGURE 5

Parse tree of He ran quickly.

ASSERTION A ,
[SA SUBJECT SA TENSE SA VERB §A QBJECT RV SA
‘ hi) LV VAR RV
l*tv DSTG
ran *D
‘quickly
FIGURE 6 ‘
Parse tree of He ran to school quickly.
ASSERTION
SA SUBJECT SA TENSE SA VERB SA QBJECT RV §A
| h; W Vvwer R !PN DSTG
]*tv to échool *D
ran quickly

FIGURE 7
Parse tree of She told him quickly that he had to leave.

ASSERTION

SA SUBJECT SA TENSE SA VERB sA OBJECT
y 1 »- a2 L4 v
' LV VVAR RV
€ .
she ¢ . .NTHATS
l*tv . NSTGO RV SA THATS
) H '
told him DSTG that he
*D had to
leave
quickly

A similar situation arises in sentences where the right adjunct of the
subject noun does not immediately follow the noun. 1In the grammar these oc-
currences are covered by RNSUBJ in the post-OBJECT sentence adjunct position

SA, as shown in Fig. 8. 1In All the guests came who were expected (Fig. 8),

18

FIGURE 8
Parse tree of

All the guests came who were expected.

ASSERTION

lSA SUBJECT SA TENSE SA VERB sa OBJECT RV SA

{NSTG came RNSUBJ

LNR : RNWH

LN NVAR RN lms-x

’ .

' I*N who were expected
4

All the guests

the right adjunct of guests is WHS-N (who were expected). S$AT-RNSUBJ

locates the position SUBJECT by ascending to SA from RNSUBJ and by calling

COELEMENT (SUBJECT) from SA. The HOST routine uses CORE to locate N (guests).

STARTAT ROUTINE

When a node name appearsAalone (without any routine name) as the sub-
ject of a restrictioﬁ statement, e.g., OBJECT in the restriction statement
OBJECT IS EMPTY, the routiné STARTAT is invoked, with the node name as argu-
 ment, e.g., STARTAT (OBJECT).

ROUTINE STARTAT (X) EITHER DO DOWN1(X) OR TEST FOR X.

It is assumed that X is one level below the current node in which case DOWN1 (X)

locates'x, or that X is the current node in which case TEST FOR X is suc-

cessful.

3. THE DEFINITION OF CONJUNCTION STRINGS
Linguistic string theory provides a concise description of all conjunc-
tional occurrences. BAn element or a sequence of elements in a string may be

conjoined by a conjunctional string which consists of the conjunction followed

19

by another occurrence of the same type of string element (or elements) that

precedes the conjunction. In Hearsay and rumors can ruin careers we have and

rumors (AND + SUBJECT = N) conjoined to Hearsay (SUBJECT = N). And in

Rumors can ruin careers and can cause much hardship we have and can cause much

hardship (AND + TENSE + VERB + OBJECT) conjoined after Rumors can ruin careers

(SUBJECT + TENSE + VERB + OBJECT).

Considering that the grammar has over 100 strings and each string has
several elements, to include all the conjunctional combinations in the gram-
mar definitions would be to coﬁplicate the grammar and to make it immense.

Instead an interrupt mechanism is used to achieve the same result.3 An inter-

ruption occurs when a conjunction is reached while parsing a sentence. When
an interruption occurs, a conjunctional node is attached to the part of the

tree being built. To illustrate, a tree of the noun phrase Hearsay and rumors

hastily printed is shown in Fig. 9. After hearsay is matched as a noun an

interruption occurs and the special process node ANDSTG is attached to the
right of hearsay. However, a restriction limits the insertion of a special
process node to occur only in LXR type sequences or in strings, and therefore
ANDSTG is rejected in the lowest level. This restriction avoids various re-
dundancies created by conjoining at intermediate levels and regularizes the
points of conjunction in the parse tree. When insertion fails, the parser de-

taches the special process node and continues parsing as if no interruption

3The mechanism described here for generating conjunction striﬁgs was first
programmed by James Morris for the 1966 IPL versionof the LSP (Ref.l, SPR 1).
It was expanded in the FAP version of the LSP, programmed by the author
(Ref. 1, SPR 2), and is also part of the current FORTRAN implementation by
Ralph Grishman (Ref. 4). What is new and is described in this paper is a
‘general method for applying restrictions to conjunctional strings, and over-

coming the effects of ellipsis.

20

FIGURE 9

Parse tree of noun phrase: Hearsay and rumors hastily printed

INR
lLN NVAR ANDSTG RN

l*N AND Q-CONJ {VENPASS

[
Hearsay and lNVAR LVSA LVENR SA PASSOBJ RV SA
*N {DSTG LV *VEN RV
rumors *D printed
hastily

had occurred. Another interruption may éccur, however, after the next ele-
ment in the tree has been satisfied. Thus for the noun phrase in Fig. 9 an
interruption occurs after NVAR is satisfied and ANDSTG is attached to the
right of NVAR. ANDSTG consists of and followed by the general conjunctional
string Q-CONJ. Q-CONJ contains a restriction which generates a definition for
Q-CONJ. Its definition consists of a setvof alternate values: the first
value is the element to the left of the inserted node, the second consists of
the two elements to £he left of the inserted node, etc. Thus in Fig. 9 Q-CONJ
is NVAR (rumors). The parser resumes by constructing element RN of LNR. Here

the right adjunct hastily printed adjoins the conjunction of hearsay and

rumors. Another analysis for the noun phrase hearsay and rumors hastily

printed is shown in Fig. 10. 1In this case hearsay has no right adjunct and

Q-CONJ consists of the elements NVAR and RN (rumors hastily printed). The

difference in these two trees shows the ambiguity in the given sentence.

4, RESTRICTIONS UNDER CONJUNCTIONS
A sentence with a conjunction presents a problem for the execution of
the restrictions. The tree structure will be different from that assumed by

the restriction; conjunctional strings will have been inserted and the

21

FIGURE 10
Another parse tree of noun phrase:

Hearsay and rumors hastily printed

LNR

[LN NVAR RN ANDSTG

' l*N AND Q-CONJ

Hearsay and |NVAR RN
o *N VENPASS
rumors LVSA .LVENR SA PASSOBJ RV (57

DSTG |V *VEN RV '
*D printed
hastily

conjunctional strings themselves ma& be truncated versions of defined strings.
To appreciate what this problém means, one must keep in mind that a grammar
like that of the LSP for'processing English text sentences is Qeiy large by
compafison with grammars used in most other natural language processing sys-
tems, which are directed to particular subsets of English. The LSP grammar
consists of approximately 3500 lines. The restrictions comprise by far the
largest part of the grammar, and without them, text parsing is out of the ques-
tion. In addition, we have found that roughly‘one third of all text sentences
contain coordinate or comparative conjunctions, many times in complicated in-
terrelation. It is therefore essential that there be a means for executing
restrictions on sentences containing conjunctions.

One solution to this problem is to rewrite all the restrictions so that
they test for conjunctions and accomodate truﬁcated segments. This was done
in earlier versions of the parser but that involved a treﬁéndous amount of
detail and both increased and complicated the grammar enormously. As an alter-
native, in some cases the sentence can be expahded so that the restrictions

operate on complete strings. But in other cases this is not possible because

22
the expansion necessitates the introduction of certain transformétions which
should be done later. In the present system we therefore use a general solu-
tion whereby restrictions are re-executed automatically for conjunctional

occurrences. Thus, in the analysis shown in Fig. 9 of Hearsay and rumors

hastily printed the selectional restriction will be executed automatically

for the sequences hearsay printed and rumors printed. This is equivalent to

éxpanding the sentence into two assertions, namely, (Someone) printed hearsay

and (Someone) printed rumors. The actual expansion is performed in the trans-

forﬁational phase which takes place after the surface analysis is obtained.
However, for the correct surface analysis it is crucial that the restrictions
operate on expanded or complete strinés. Thus(the conjunction computation
peiforms some of the function of expansion prior to the transformational
phase. |

To apply regtrictions to sentences containing conjunctions, a non-
deterministic programming mechanism, which we call the stacking mechanism,
was incorporated into the parser. This mechanism saves the conjoined struc-
ture. so that the restriction cén be re-executed for the conjoined structure.
Because the restrictions depend on the use of routines, this solution neces-
sitated a change mainly in the routines rather than in the restrictions.
The routines which were modified are those which locate a basic type of
structure in the parse tree, such as the routines CORE, HOST, ELEMENT, LEFT-
ADJUNCT, etc. In addition to locating structures the modified routines also
test whether or not the structures are conjoined. When a restriction calls
a routine which locates a conjoined structure, that routine in turn calls
an operator which saves the conjoined structure (s) aléng with the place of
the routine within the sequence of operationS'being executed in the restric-

tion. The operator puts this information on a re-execution stack. The

23

routine returns to the original structure located and the restriction inter-
preter executes the rest of the restriction, At this point the restriction
interpreter is "looking at" the original structure located by the routine.
When a restriction is successfui the restriction interpreter uses the infor-
mation on the re-execution stack to resume execution of that restriction,

The restriction is resumed at the point immediately after the call to the
routine so that the routine itself is not called égain. Instead however, the
restriction interpreter will "look at" the conjoined structure previously

located and saved by the routine. For example, when the verb-object selection

restriction WSELl is executed on the sentence They printed hearsay and rumors,
it calls the CORE routine to obtain the core of the object. The CORE routine
will go to hearsay, locate and stack rumors, and return to hearsay, WSELL will

be successful for printed hearsay. WSELl will be resumed therefore at the

point after the call to the CORE routine and rumors, which was saved by the
CORE routine, will be plugged in as though it was just obtained by the CORE.

routine. WSELl will be successful for printed rumors.

In addition to locating conjoined values, the routines also were modi-
fied to function properly in the non-conjunctional grammar for new situations
due to conjunctions; the routine may be opgrating in a structure into which
conjunctional strings have been inserted or the routine may be operating in
a truncated version of a defined string or host-adjunct sequence. For example,
the RIGHT-ADJUNCT routine is assumed to start at a node X in an LXR type node.
Without conjunctions the RIGHT-ADJUNCT routine goes one node to the right from
X to arrive at the right adjunct of X. In Fig, 2, for the noun

phrase rumors hastily printed, RIGHT-ADJUNCT, starting at the core position

NVAR subsuming rumors, goes one node to the right to arrive at its right

adjunct RN (hastily printed). However, with conjunctions the routine must go

24

right until it lands at a non-conjunctional node. Thus, in Fig. 9, for the

noun phrase hearsay and rumors hastily printed, RIGHT-ADJUNCT goes from NVAR

(hearsay) past the conjunction string (and rumors) to RN. When RIGHT-ADJUNCT
starts in the conjunctional string at NVAR (rumors), RN is not to its right.
To go to RN, the routine locates the corresponding preconjunction element
NVAR (hearsay) and goes to RN from there.

Tovillusﬁrate how the stacking mechanism works we will explain in detail
how restriction WSELl is executed for several sentences with conjunctions.
WSELl is housed in the center string ASSERTION4: |

WSEL1 = IN ASSERTION: IF ALL OF $OBJECT-NOUN,
| $GOVERNING-VERB,
$FORBIDDEN-NOUN-LIST
ARE TRUE '
THEN $NOCOMMON.
$OBJECT-NOUN = THE CORE X1 OF THE OBJECT
X10 IS N OR PRO.
" $GOVERNING-VERB = AT X10, COELEMENT VERB X4 EXISTS.
.$FORBIDDEN-NOUN-LIST = THE CORE OF X4
HAS ATTRIBUTE NOTNOBJ X5.

The above restriction statements have the following functions: $OBJECT-NOUN
checks that the core of the object position is a noun or pronoun; S$GOVERNING-
VERB tests that a verb coelement exists; and $FORBIDDEN-NOUN-LIST checks that

the given verb has an attribute NOTNOBJ.5 If all these conditions are

4WSELl is also housed in other strings containing object and verb elements,

but for our example we will only consider the string ASSERTION. In the state-
ment $GOVERNING-VERB we can therefore use the routine COELEMENT with argument
VERB. In the actual restriction a more general routine VERB-COELEMENT is used.
This restriction was described in full, without reference to its operation on

conjunction sentences, in Ref. 10.

5 . . : —_ e : i
NOTNOBJ is assigned in the word dictionary to transitive verbs; its attri-

butes for a given verb are those noun subclasses of the grammar which are

25

satisfied the salection check $NOCOMMON is made.
$NOCOMMON = LISTS X1 AND X5 HAVE NO COMMON ATTRIBUTE.
If the noun does have a subcategory that is on the subcategory list of NOTNOBJ,
then $NOCOMMON fails and that noun is not accepted as the object of the given verb.
Consider the parse tree for the sentenée shown in Fig. 11, They spread

rumors and they print hearsay. In $OBJECT-NOUN, in order to go to the core

of the OBJECT, OBJECT must first be located. This is accomplished by the
routine STARTAT (OBJECT). STARTAT both locates OBJECT and calls the stack
operator for each conjoined OBJECT. Thus for the sentence in Fig. 11, STARTAT
will go to the first OBJECT (subsuming rumors) and will save the second OBJECT
(hearsay). When STARTAT is completed the CORE routine is called to locate the
c;re of OBJECT. In this example it locates the noun rumors.

S$GOVERNING-VERB goes to VERB, which is a coelement of OBJECT. It does
this by first locating OBJECT (which was saved in register X10 by $OBJECT-NOUN
and by calling the COELEMENT routine. Thus in Fig. 11, COELEMENT (VERB) goes

from the first OBJECT to its coelement VERB (spread). It locates all

FIGURE 11
v Parse tree of

They spread rumors and they print hearsay.

ASSERTION)
,15A SUBJECT SA TENSE SA VERB SA OBJECT ANDSTG RV SA

i v .
They spfead rumors I

[

8
lAND SA Q-CONJ
SUBJECT SA TENSE SA VERB SA OBJECT

)]

tﬁey print heérsay

not appropriate noun objects of the given verb (in scientific writing).

26

conjuncts of this VERB and determines whether.or not to call the stack opera-
tor, VERB (spread) has a conjunct but in this case COELEMENT (VERB) will not
stack the conjoined VERB (print) because this VERB has its own coelement
OBJECT. When COELEMENT returns, the restriction interpreter is looking at

the first VERB. WSELl is successful for spread rumors. Since there is some-

thing on the re-execution stack, the execution of WSELl is resumed. It is
resumed in $OBJECT-NOUN at the point immediately after the call to STARTAT
(OBJECT). However, this time the restriction interpreter is located at the
second OBJECT. The core (hearsay) of the second OBJECT is obtained and the
rest of the restriction is executed for the second time. In particular,
COELEMENT (VERB) goes to the second VERB (print) from the second OBJECT and

WSELl is successful for print hearsay.

For the sentence shown in Fig. 12, They may spread-but not print the

rumors, the execution of WSEL1l is different. The OBJECT (the rumors) has no
conjunct but the VERB does. In this case the COELEMENT (VERB) routine goes to
.the first VERB (spread) from OBJECT and saves the second VERB (print) on the

re-execution stack. WSELl is successful for spread rumors. Its execution is

i

FIGURE 12
Parse tree of

They may spread but not print the rumors,

ASSERTION
SA SUBJECT SA TENSE SA VERB BUTSTG SA OBJECT RV SA

T Y T ¥
L} »

They may spread the rumors

BUT NOT SA . Q-CONJ

but not !VERB

print

27
therefore resumed in $GOVERNING-VERB at the point just after the call to
COELEMENT (VERB) . However, this time the restriction interpreter is looking

at the second VERB (print). Therefore the well-formedness of print rumors is

also checked.

For the sentence shown in Figure 13, They heard and printed facts and

rumors, the execution of WSELl is again different from the previous examples.

FIGURE 13
Parse tree of

They heard and printed facts and rumors.

ASSERTION
:SA SUBJECT SA TENSE SA VERB SA OBJECT RV SA
' Théy ‘ IV VVAR ANDSTG RV 1!
*tv AND SA Q—CONJ
. heard and 'VVAR'
| *tv
printed
&
NSTGO
NSTG
LNR
LN NVAR ANDSTG RN
- j*N AND SA Q-CONJ
| facts and NVAR
. _ _ l*N

rumors

OBJECT itself has no conjunct but the core of OBJECT does. Thus, when CORE
is called in $OBJECT-NOUN, the CORE routine will locate N ‘(facts) and will
place the second N (rumors) on the re-execution stack. Likewise, the
COELEMENT (VERB) routine will not find a conjunct for the VERB position itself.

However, the core of the VERB has a conjunct. When CORE is called in

28
$FORBIDDEN-NOUN-LIST, it will locate tv (heard) and will place the second tv
(printed) on the re-execution stack. This will result in WSELl being executed

for all four verb + object noun sequences: heard facts, heard rumors, printed

facts, printed rumors.

The following is an example of how the stacking mechanism helps to re-

solve syntactic ambiguity. In the sentence He printed rumors and his friend

also, there are two possible parses. In one analysis the object of printed

consists of the conjoined nouns rumors and friend. This analysis is rejected

by WSEL1 in the following manner. When the CORE routine is called in
$OBJECT-NOUN, the noun rumors is located and the conjoined noun friend is
placed on the re-execution stack. Printed is located by $GOVERNING-VERB.

Printed rumors is successful and WSELl is re-executed for printed friend.

However, printed has NHUMAN on its NOTNOBJ list and friend has a noun sub-
category'NHUMAN. Thus $NOCOMMON fails and this analysis is rejected.
Another analysis of this sentence contains a second (implicit) occur-

rence of printed rumors: He printed rumors and his friend also (printed

rumors). The conjoined string consists of SUBJECT (his friend) followed by
VERB and OBJECT, which both are assigned the values NULLC. The NULLC values
are not filled in until the transformational phase. When they are filled in,
WSELl1 along with the other selectional restrictions is applied to the string

his friend printed rumors also.

Although the changes for CONJUNCTIONS involve some of the basic routines
only, the restrictions use these routines so often so that the changes have
to be as efficient as possibie. Otherwise the execution time of a restriction
would be greatly increased.

To save much repetitious moving around the tree, pointers are attached

to the appropriate nodes of the tree via a node attribute mechanism, which is

29

described in Ref. 10. Each element E_ in a conjunctional string of the form

2

E, CONJ E, is assigned a node attribute called PRECONJELEM which points to the

corresponding element E. in the string prior to conjunction. Likewise each

i

El is assigned a node attribute called POSTCONJELEM which points to the cor-

responding element E_ in the post-conjunctional string. The node attribute

2
assignments are done by a well-formedness restriction housed on the conjunc-
tional string. Once the node attributes are assigned, the routines can
quickly obtain (or check for) conjoined values of a node by using its node
attribute POSTCONJELEM. And when a routinevis called from inside a truncated
string segment, it can quickly move to the corresponding pre-conjunction ele-
ment by obtaining the node attribute PRECONJELEM. From that point the rou-
tine can then locate the appropriate element. For example in Fig. 9, the
second NVAR (rumors) has been assigned node attribute PRECONJELEM pointing to
a NVAR (hearsay). Using the node attribute PRECONJELEM of the second NVAR,

RIGHT-ADJUNCT goes to the first NVAR and then goes two nodes to the right to

RN.

5. CONJUNCTION ROUTINES

The basic routines of the grammar were modified to handle conjunctions.
They were modified to locate the appropriate conjoined structure(s) and call
an operator which saves those structure(s). In addition, the routines were
modified to function properly in the non-conjunctional grammar for the new
situations which occur when conjunctions are present. We will now go into
the details of those routines that were modified for conjunctions. The ex-
planations here will be concernéd with the modifications only.

Most of the basic routines fall into three categories: 1) those'which
begin at X or go down to X. STARTAT(X), ELEMENT(X), LAST-ELEMENT and

6 . . .
NELEMRT are in this category. These routines concern only one element of a

“30

string or sequence. 2) The routines which go right or left to X. HOST, RIGHT-
ADJUNCT, LEFT-ADJUNCT, NEXT—ELEMENT, PREVIOUS-ELEMENT and COELEMENT (X) are in
this category. These routines involve two elements of a string or sequence.
3) The routines which start at or go up to X. IMMEDIATE(X), STARTAT (X),
PRESENT-ELEMENT, IT, PRESENT-STRING, IMMEDIATE-NODE are in this category.
Because the conjunction modification can be generalized depending on which
category a routine is in, only several routines are needed to handle various
conjunction operations. The actual modification to many of the routines
therefore consists of adding a call to oﬁe of-the few routines which handle
conjunctional operations.

The routine that handles stacking for routines of category (15 above

7 A

is called $STACK-TEST:

$STACK-TEST = IF $POSTCONJ THEN $STACK-CONJUNCTS.
$POSTCONJ = THE PRESENT~ELEMENT HAS NODE ATTRIBUTE POSTCONJELEM

(GLOBAL)
It is assumed that the restriction interpreter is "looking at" X when S$STACK-

TEST is called. If an element E1 has a corresponding element E2 in a con-

junctional string El will have the node attribute POSTCONJELEM. This pro-

vides a quick test to determine whether or not a node has a conjunct. If El
does not have the node attribute POSTCONJELEM, $POSTCONJ fails and $STACK-

TEST is finished; if E, has the node attribute POSTCONJELEM, the attribute

1

POSTCONJELEM has a value, namely E When $POSTCONJ is finished the restric-

2-

tion interpreter will be "looking at" E2'

6CORE is also in this category, however, this routine needs to perform some

extra operations to get to the conjoined core word.

7In our system $STACK-TEST is actually a global address instead of a rou-
tine. This was done because it is faster to execute an address than a

routine.

31
$STACK~-CONJUNCTS = VERIFY ITERATE $STACK-X.

$STACK- X = DO $POSTCONJ; STACK.

$STACK-CONJUNCTS locates all the conjuncts of the node by iterating
$STACK-X. It then returns to the starting node. $STACK-X goes to each con-
junct by first executing $POSTCONJ and then calling STACK, the operator which
puts the conjunct on the fe-execution stack. In Fig. 11, starting at the
first OBJECT, $STACK-TEST will call STACK for the .second OBJECT. It will
return to the first OBJECT, before exiting.

The routines that handle stacking for those routines in category 2 above
are called $STACK-FOR-LEFT-TO-X and $STACK-FOR-RGHT-TO-X respectively. We
will only go into the details of $STACK~FOR-LEFT-TO-X since S$STACK-FOR-RGHT-
TO-X is similar. When $STACK-FOR-LEFT-TO-X is called, the restriction inter-
preter is assumed to be at X. It is also assumed that the routine-which
called $STACK-FOR-LEFT-TO-X started at some node Y, saved Y in régister X200
and went from Y left one or more nodes to arrive at X. For instance, this
occurs when the routine COELEMENT (VERB) is called from OBJECT in Fig. 1ll,

$STACK~-FOR-LEFT-TO-X = IF $POSTCONJ
THEN VERIFY $STACK-IF-NO-Y-RGHT. (GLOBAL)

If X has a corresponding element in a conjunctional string it will have the
node attribute POSTCONJELEM. If X does not have the node attribute
POSTCONJELEM, $STACK-FOR-LEFT-TO-X is finished., If it does have node attri-
bute POSTCONJELEM, S$STACK-IF-NO-Y-LEFT is executed to determine whether or not
to stack the conjunct(s):

$STACK-IF-NO~-Y-RGHT = IF $POSTCONJ
THEN EITHER ALL OF $NO-Y-TO-RIGHT,
$DO-STACK,
$STACK-IF-NO-Y-RGHT
OR TRUE.
$NO-Y-TO-RIGHT = NOT ITERATE GO RIGHT UNTIL TEST FOR X200 SUCCEEDS.

32
$DO-STACK = STACK.

Looking at Fig. 11 assumé COELEMENT (VERB) is called when the restriction
interpreter is at OBJECT (rumors). The COELEMENT routine locates the first
VERB (spread). The premise of $STACK-FOR-LEFT-TO-X is successful because this
VERB has a conjunct and $STACK-IF-NO-Y-RGHT is executed. The premise of
$STACK—IF-NO—Y-kGHT is successful: a conjunction is found, in this case the
second VERB (print). The restriction interpreter remains at the second VERB
while the rest of the implication is executed. In this example, there is
OBJECT (hearsay) to the right of the second VERB; therefore $NO-Y-TO-RGHT
fails. As a result VERB (print) isnot stacked. InFig. 12, if COELEMENT (VERB)
is called when the restriction interpreter is at OBJECT (the rumors) the VERB
(spread) is located. It has a conjunct, which is stacked. 1In this case
$NO~-Y-TO-RGHT is successful since thére is no OBJECT to the right of the
second VERB.

$STACK-IF-NO-Y-RGHT is recursive so that all the conjoined structures
are located and tested. 1In the above examples if $POSTCONJ is true starting
at the second VERB then $STACK-IF-NO-Y-RGHT goes to the next corresponding
post-conjunctional VERB and determines whether or not to stack it. In Fig. 14,
after exeéuting the premise of $STACK-IF-NO-Y-RGHT the restriction interpreter
is at the second VERB. $NO-Y-TO-RIGHT is true and $DO-STACK is executed. It
will stack the second VERB. $STACK-IF-NO-Y-RGHT is called recursively and the
restriction interpreter is at the third VERB. Héwever, OBJECT (them) is
present; therefore $NO-Y-TO-RIGHT will fail and the third VERB (ignored) will
not be stacked. Routines COELEMENT, HOST, LEFT-ADJUNCT and PREVIOUS-ELEMENT
use $STACK-FOR-LEFT-TO-X. Routines COELEMENT, HOST, RIGHT-ADJUNCT and

FOLLOWING-ELEMENT use $STACK-FOR-RGHT-TO-X.

33

FIGURE 14

Parse tree of

They heard and did print the rumors but we ignored them.

ASSERTION -
SUBJECT SA TENSE SA VERB ANDSTG SA OBJECT BUTSTG RV SA
13 L 4 k]
éhey ‘ héard AND SA Q-CONJ theiumors }
and TENSE SA VERB
13
did péint

BUTSTG
)
BUT SA Q-CONJ
but ‘ SUBJECT SA TENSE SA VERB SA OBJECT
we . ' ignored them

The routines in category 2 were also modified to operate properly if
they start in ahtruncated segment of a defined string or host adjunct sequence.
For example, if COELEMENT (OBJECT) is called from the second VERB in Figure 12,
the COELEMENT routiné will not be able to go left or right to OBJECT. It must
first go to the corresponding pre-conjunctional element and then try to go
left or right to X from there. This is accompliéhed by $TO-PRECONJUNCTION-Y.

$TO-PRECONJUNCTION-Y = EITHER $PRECONJ OR
$ASSIGN-PRECONJELEM (GLOBAL)
$PRECONJ = THE PRESENT-ELEMENT- HAS NODE ATTRIBUTE PRECONJELEM.

If the starting node has node attribute PRECONJELEM, $PRECONJ will go to the
corresponding pre-conjunctional node; otherwise the node attributes
PRECONJELEM and POSTCONJELEM have to be assigned. This is accomplished by
SASSIGN-PRECONJELEM:

$ASSIGN-PRECONJELEM = VERIFY S$LOCATE-CONJNODE;
VERIFY SASSIGN-PRE-AND-POST;
DO $PRECONJ.

34

$LOCAfE—CONJNODE = ASCEND TO Q-CONJ; GO UP; STORE IN X100.

$ASSIGN-PRE-AND-P@GST assigns the node attribute PRECONJELEM to the cur-
rent node. SASSIGN-PRE-AND-POST is defined in routine PRE-POST-CONJELEM which
will be described later. After the node attribute PRECONJELEM is assigned,
$ASSIGN-PRECONJELEM goes to the corresponding pre-conjunctional node by exe-
cuting $PRECONJ. For example in Fig. 12, if COELEMENT (OBJECT) is called frém
the second VERB, COELEMENT will call $TO-PRECONJUNCTION-Y to go to the first
VERB; then it will try #o go left or right to locate OBJECT. .

Another type of adjustment is needed for restriction rouﬁines in cate-
gory 3 above. The problem occurs when a restriction is executed starting at
the conjunctional strimg Q-CONJ. When the definition for Q-CONJ is generated
from the elements of a string, the well-formedness restrictions housed in the
elements are transmitfed along with the elements. The restrictions on those
elements, therefore, were written with the assumption that the starting point
is the string that the restrictions were originally housed in--i.e., two nodes
up from Q-CONJ. For example in Fig. 12, all restrictions in ASSERTION assume
to start at ASSERTION. Thus, the same restriction, starting at Q-CONJ would
fail if, for example, we were to test whether the immediate-node of the second
VERB is ASSERTION. Thexefore, the routines in category 3 execute $UP-THROUGH-Q
initially:

$UP-THROUGH-Q = T¥ERATET $GO-UP-TWICE UNTIL TEST FOR Q-CONJ
FAILS. '
$GO-UP-TWICE = GO UP; GO UP.

$UP-THROUGH-Q goes to the node which is two nodes up from the top of a
nest of Q-CONJ's.
Routine PRE-POST-{CONJELEM assigns the node attribute PRECONJELEM to the

elements of Q-CONJ. It is assumed that the starting node is the node above

-~

35

Q-CONJ. To each element of Q-CONJ that is not on the C-NODE list (ANDSTG,

ORSTG, BUTSTG, etc.), it assigﬁs the node attribute PRECONJELEM. Likewise

the corrésponding pre-conjunction elements will be assigned the node attri-
bute POSTCONJELEM.

ROUTINE PRE-POST-CONJELEM = STORE IN X100;
' DO ELEMENT- (Q-CONJ);
DO LAST-ELEMENT-;
ITERATE VERIFY $ASSIGN-TEST UNTIL GO LEFT FAILS
‘$ASSIGN-TEST = EITHER TEST FOR C-NODE OR EITHER $PRECONJ
[COEL1-] OR $ASSIGN-PRE-AND-POST.

The routine PRE-POST-CONJELEM saves the starting point in register X100. It
then uses the non-stacking routines8 to go to the last element of Q-CONJ. The
node attribute assignments start from the rightmost node of Q-CONJ and pro- |
ceed left. $ASSIGN-TEST determines whether or not a node attribute should be
assigned to a particular node. An assignment is not necessary if the node is
on the C-NODE list or if the assignment was already made for the node. If an
assignment dogs not have to be made $ASSIGN-TEST is finished; if one has to
be made $ASSIGN-PRE-AND-POST is executed:

$ASSIGN- PRE-AND-POST = STORE IN X500;

) STORE IN XO;
GO TO X100; ;
ITERATE $GO-LEFT UNTIL TEST FOR X500 SUCCEEDS;
EITHER ITERATE $POSTCONJ [STARTAT]
OR TRUE;
DO $ASSIGN-POSTCONJELEM;
STORE IN XO;
GO TO X500;
DO $ASSIGN-PRECONJELEM.

8 . . .
For each routine that stacks, there is a nonstacking counterpart, The non-
stacking routines are used for restrictions where stacking is not desired--

such as the number agreement restrictions.

36

$GO-LEFT = ITERATET $UPCONJ UNTIL GO LEFT SUCCEEDS; STORE IN X100.
SUPCONJ = GO UP; TEST FOR Q-CONJ; GO UP.

$ASSIGN-PRE-AND-POST saves the node to be assigned in registers X500 and XO.
It then goes to the node saved in X100 (which is initially the starting C-NODE)
and locates the correspcnding pre-conjunctional element by executing $GO-
LEFT until it finds a node which has the same name as that in register X500.
That node is saved in X100 so that the search starts there for the next node
to be assigned. $ASSIGN-POSTCONJELEM and $ASSIGN-PRECONJELEM assign the
node attributes.

We will consider the case where the second OBJECT in Fig. 14 is being
assigned node attribute PRECONJELEM. BUTSTG is saved in register X100.
$ASSIGN-PRE-AND-POST saves the second OBJECT in registers X0 and X500. It
then searches for the corresponding pte—conjunctional element by going left
from BUTSTG. The first OBJECT is found. $POSTCONJ fails at the first
OBJECT and $ASSIGN-PRE-AND-POST remains there. Node attribute POSTCONJELEM
Vis assigned to the first OBJECT by S$ASSIGN-POSTCONJELEM:

$ASSIGﬁ—POSTCONJELEM = ASSIGN THE PRESENT ELEMENT NODE
- ATTRIBUTE POSTCONJELEM.
$ASSIGN-PRECONJELEM = ASSIGN THE PRESENT ELEMENT NODE
ATTRIBUTE PRECONJELEM.

When node attribute POSTCONJELEM is assigned, if there is a node saved in
registgr X0, that node will automatically be assigned as the value of attribute
POSTCONJELEM by the node attribute assignment operator. In this case the second
OBJECT is in register X0. Therefore the first OBJECT is assigned node attri-
bute POSTCONJELEM with the second OBJECT as its value. After a node attri-
bute assignment is made, register XO is automatiéally cleared by the program.
This prevents accidental value assignments from.occurring in case the grammar

writer forgets to clear the register. In the above example, after node

37

attribute POSTCONJELEM is assigned to the first OBJECT, the first OBJECT is

saved in register X0 by $ASSIGﬁ-PRE-AND—POST and the second OBJECT saved in

X500 is assigned the node attribute PRECONJELEM with the first OBJECT as its
value.

Sometimes a routine starts in a nest of Q-CONJ nodes; the corresponding
pre-conjunctional element is not necessarily located on the next higher
level. 1In Fig. 15 when the second LN (a_few) is being assigned node attri-
bute PRECONJELEM, PRE-POST-CONJELEM has to go up two Q-CONJ levels to find
the corresponding IN. In $GO-LEFT, if the corresponding node is not on the
level being searched, $UPCONJ is executed té locate the next level. In the
above example, when $GO-LEFT cannot go left from the second NVAR (women) ,
$UP-CONJ goes up to the next higher Q-CONJ and then goes.up to the'next Cc-

NODE where the search for a corresponding node resumes. Thus LN (a_few) is

assigned node attribute PRECONJELEM with LN (all the) as its value.
FIGURE 15

Parse tree of All the men and women and a few children were hurt.

ASSERTION
SUBJECT SA TENSE SA VERB SA OBJECT RV SA
r '

NSTG were hirt:

LNR

LN gVAR ANDSTG RN

N 1
illthe &en. AND SA Q-CONJ

and NVAR ANDSTG
woﬂén ~ |AND SA Q-CON&
and LN NVAR

b a——

a féw children

- 38

In Fig. 14, when the third verb (ignored) is being assigned node attri-
butes by $ASSIGN-PRE-AND-POST, the restriction interpreter goes left from
BUTSTG and arrives at the first VERB. Thenode?ttributesarechained. There-
fore, node attribute POSTCONJELEM of the first VERB should have the second
VERB as its value and node attribute POSTCONJELEM of the second VERB should
have the third VERB.as its value. $ASSIGN-PRE-AND-POST gets the last node
of thechain after it arrives at the first VERB. This is done by the section
of code . . .; EITHER ITERATE $POSTCONJ [STARTAT] OR TRUE;. . . . 1In this
case VERB (ignored) is assigned node attribute PRECONJELEM with value VERB
{print).

Not all restrictions may be re-executed for sentences containing con-
junctional occurrences. For example, those restrictions testing number
agreement have to be changed to exglicitly test for the occurrence of a con-
junction. Therefore, those restrictions must use routines that do not stack.
‘Each routine that calls the stack operator has a counterpart which does‘not.
For example CORE calls the stack operator but CORE- does not.

The general conjunction solution épplies to the main bulk of sentences

containing conjunctions. However, there are some sentences for which the

solutiqn does not apbly. In He prints rumors and she facts there is zeroing
in the middle verb position between the sﬁbject.and object positions, In
this situaﬁion the verb is assigned the value NULLC. The filling in of the
NULLC values is done in the transformational phase along with the execution
of the appropriate well-formedness restrictions.

Because of this general solution only several conjunctional routines
had to be written and twenty basic routines had fo be changed. This allowed
about 200 restrictions to operate on conjunctiops without taking explicit

account of conjunctions. Since there are about 1000 occurrences of these

39

routine calls, the economy is significant. And by enabling the restrictions

to operate on sentences with conjunctions, this solution reduced the expan-

sion of conjunctional constructions in the transformational phase to a rela-

tively straightforward exercise. In laying the groundwork for this conjunc-

tional solution we have arrived at a concise, formal, and computable descrip-

tion of conjunctional occurrences in the language.

REFERENCES

1.

1o0.

String Program Repdrts (S.P.R.) Nos. 1-5, New York University Linguistic
String Project (1966-1969).

Sager, N., Syntactic Analysis of Natural Language. Advances in Computers,

vol. 8, 153-158, Academic Press, Inc., New York, 1967.
Sager, N., The String Parser for Scientific Literature. In Natural

Language Processing, R. Rustin, ed., Algorithmics Press, New York, 1973.

Grishman, R., The Implementation of the String Parser of English. 1In
Natural Language Processing, R. Rustin, ed., Algorithmics Press, New

York, 1973.

Grishman, R., N. Sager, C. Raze, and B. Bookchin, The Linguistic String
Parser. Proceedings of the 1973 National Computer Conference, 427-434,
AFIPS Press, 1973. '

Harris, Z.S., String Analysis of’Sentence Structure, Mouton & Co., The
Hague, 1962.

Fitzpatrick, E. and N. Sager, The Lexical Subclasses of the Linguistic
String Parser, American Journal of Computational Linguistics; micro-
fiche 2, 1964.

Sager, N., A Computer Grammar of English and Its Applications, to be

published by Gordon & Breach in the series Mathematics and Its
Applications. Revised from SPR 4 (1968).

Sager, N., A Two-stage BNF Specification of Natural Language. Journal
of Cybernetics, 2, 39-50, 1972.

Sager, N. and Ralph Grishman, The Restriction Language for Computer
Grammars of Natural Language. Communications of the ACM, 18, 390-400,
1975,

ACKNOWLEDGEMENT

This work was supported in part by Research Grants GS2462
and GS27925 from the National Science Foundation, Division of
Social Sciences, and in part by Research Grant GN39879 from the

Office of Science Information Service of the National Science

Foundation.

40

