The linguistic string parser*

sp-9

by R. GRISHMAN, N. SAGER, C. RAZE, and B. BOOKCHIN

New York University
New York, New York

The linguistic string parser is a system for the syntactic
analysis of English scientific text. This system, now in its
third version, has been developed over the past 8 years by
the Linguistic String Project of New York University.
The structure of the system can be traced to an algorithm
for natural language parsing described in 1960.’ This
algorithm was designed to overcome certain limitations of
the first parsing program for English, which ram on the
UNIVAC 1 at the University of Pennsylvania in 1959.%
The UNIVAC program obtained one “preferred” gram-
matical reading for each sentence; the parsing program
and the grammar were not separate components in the
overall system. The 1960 algorithm obtained all valid
parses of a sentence; it was syntax-driven by a grammar
consisting of elementary linguistic strings and restrictions
on the strings (described below). Successive implementa-
tions were made in 1965, in 1967,* and in 1971.° The
system contains the largest-coverage grammar of English
among implemented natural language parsers.

Implementation of a large grammar by several people
over a period of years raises the same problems of com-
plexity and scale which affect large programming proj-
ects. The main thrust in the development of the current
version of the parser has been to use modern program-
ming techniques, ranging from higher-level languages and
subroutine structures to syntax-directed translation and
non-deterministic programming, in order to structure and
simplify the task of the grammar writer. In this paper we
shall briefly review the linguistic basis of the parser and
describe the principal features of the current implemen-
tation. We shall then consider one particularly thorny
problem of computational linguistics, that of conjunc-
tions, and indicate how various features of the parser
have simplified our approach to the problem. Readers are
referred to an earlier report® for descriptions of unusual
aspects of the parser incorporated into earlier versions of
the system. _

Our approach to the recognition of the structure of
natural language sentences is based on linguistic string
theory. This theory sets forth, in terms of particular syn-

* The work reported here was supported in part by research grants from
the National Science Foundation: GN559 and GN659 in the Office of
Science Information Services, and GS2462 and GS527925 in the Division
of Social Sciences. '

427

tactic categories (noun, tensed verb, etc.) a set of elemen-
tary strings and rules for combining the elementary
strings to form sentence strings.

The simplest sentences consist of just one elementary
string, called a center string. Examples of center strings
are noun tensed-verb, such as “Tapes stretch.” and noun
tensed-verb noun, such as “Users cause problems.” Any
sentence string may be made into a more complicated
sentence string by inserting an adjunct string to the left or
right of an element of some elementary string of the sen-
tence. For example, ‘“Programmers at our installation
write useless code.” is built up by adjoining “at our
installation” to the right of “programmers” and ‘“‘useless”
to the left of “code” in the center string ‘‘programmers
write code.” Sentences may also be augmented by the
insertion of a conjunct string, such as “and debug” in
“Programmers at our installation write and debug useless
code.” Finally, string theory allows an element of a string
to be replaced by a replacement string. One example of
this is the replacement of noun by what noun tensed-verb
to form the sentence “What linguists do is baffling.”

The status of string analysis in linguistic theory, its
empirical basis and its relation to constituent analysis on
the one hand and transformational analysis on the other,
have been discussed by Harris.” More recently, Joshi and
his coworkers have developed a formal system of gram-
mars, called string adjunct grammars, which show for-
mally the relation between the linguistic string structure
and the transformational structure of sentences.® The
string parser adds to linguistic string theory a computa-
tional form for the basic relations of string grammar. In
terms of these relations the arguments of grammatical
constraints (i.e., mutually constrained sentence words)
can always be identified in the sentence regardless of the
distance or the complexity of the relation which the words
have to each other in that sentence.’

Each word of the language is assigned one or more word
categories on the basis of its grammatical properties. For
example, “stretches” would be classed as a tensed verb
and a noun, while “tape” would be assigned the three
categories tensed verb, untensed verb, and noun. Every
sequence of words is thereby associated with one or more
sequences of word categories. Linguistic string theory
claims that each sentence of the language has at least one
sequence of word categories which is a sentence string,

428 National Computer Conference, 1973

i.e., which can be built up from a center string by adjunc-
tion, conjunction, and replacement.

However, not every combination of words drawn from
the appropriate categories and inserted into a sentence
string forms a valid sentence. Sometimes only words with
related grammatical properties are acceptable in the
same string, or in adjoined strings. For example, one of
the sequences of word categories associated with “Tape
stretch.” is noun tensed-verb, which is a sentence string;
this sentence is ungrammatical, however, because a singu-
lar noun has been combined with a plural tensed-verb. To
record these properties, we add the subcategory (or attrib-
ute) singular to the category noun in the definition of
“tape” and the subcategory plural to the category tensed-
verb in the definition of “stretch.” We then incorporate
into the grammar a restriction on the center string noun
tensed-verb, to check for number agreement between
noun and verb.

The number of such restrictions required for a gram-
mar of English is quite large. (The current grammar has
about 250 restrictions.) However, the structural relation-
ship between the elements being compared by a restric-
tion is almost always one of a few standard types. Either
the restriction operates between two elements of an ele-
mentary string, or between an element of an elementary
string and an element of an adjunct string adjoining the
first string or a replacement string inserted into the first
string, or (less often) between elements of two adjunct
strings adjoined to the same elementary string. This
property is an important benefit of the use of linguistic
string analysis; it simplifies the design of the restrictions
and plays an important role in the organization of the
grammar, as will be described later.

IMPLEMENTATION

As the preceding discussion indicates, the string gram-
mar has three components: (1) a set of elementary strings
together with rules for combining them to form sentence
strings, (2) a set of restrictions on those strings, and (3) a
word dictionary, listing the categories and subcategories
of each word. Component 1. defines a context-free lan-
guage and, for purposes of parsing, we have chosen to
rewrite it as a BNF grammar.

The approximately 200 BNF definitions in our gram-
mar can be divided into three groups. About 100 of these
are single-option string definitions; each of these corre-
sponds to one (or occasionally several) strings. For exam-
ple,

ASSERTION: : = <SA><SUBJECT > <SA> <VERB>

<SA> <OBJECT><RV><SA>

contains the required elements SUBJECT, VERB, and
OBJECT (corresponding to the three elements in such
center strings as noun tensed-verb noun and noun tensed-
verb adjective) and the optional elements SA, indicating
where an adjunct of the entire sentence may occur, and
RV, for right adjuncts of the verb appearing after the
object. SA and RV are two of the approximately 20

adjunct set definitions; these definitions group sets of
strings which may adjoin particular elements. The
remaining definitions, including those for SUBJECT,
VERB, and OBJECT, are collections of positional var-
iants; these define the possible values of the elements of
string definitions.

Once component 1. has been rewritten in this way, it is
possible to use any context-free parser as the core of the
analysis algorithm. We have employed a top-down serial
parser with automatic backup which builds a parse tree
of a sentence being analyzed and, if the sentence is
ambiguous, generates the different parse trees sequen-
tially.

The parse tree for a very simple sentence is shown in
Figure 1. A few things are worth noting about this parse
tree. Most striking is the unusual appearance of the parse
tree, as if it had grown up under a steady west wind. We
have adopted the convention of connecting the first
daughter node to its parent by a vertical line, and con-
necting the other daughter nodes to the first by a horizon-
tal line. This is really the natural convention for a string
grammar, since it emphasizes the connection between the
elements of a string definition. More interesting is the
regular appearance of “LXR” definitions: a <LNR>
below the subject, a <LTVR> below the verb, and a
<LAR> below the object. Each LXR has three elements:
one for left adjuncts, one for right adjuncts, and one in
the middle for the core word. The core of an element of a
definition is the word category corresponding to this
element in the associated elementary string in the sen-
tence; e.g. the core of SUBJECT (and of LXR) in Figure
1 is the noun “trees”; it is the one terminal node below
the element in question which is not an adjunct. In some
cases the core of an element is itself a string. LXR defini-
tions and linguistic string definitions play a distinguished
role in conjoining, as will be described later.

Each restriction in the grammar is translated into a
sequence of operations to move about the parse tree and
test various properties, including the subcategories of
words attached to the parse tree. When a portion of the
parse tree containing some restrictions has been complet-
ed, the parser invokes a “restriction interpreter” to exe-
cute those restrictions. If the restriction interpreter
returns a success signal, the parser proceeds as if nothing

SENTENCE

l“ﬂRDDUC(R CENTER IHJ-";;.
SHULL ASSERTION
08J. I

sA suBJECT SA__veRs sA
I I[JVR'TV RH__RV I
*HULL NSTG *HULL *NULL
SNULL © *RULL *mULL

LK HVAR RN

l,“ *HULL

*NULL

Figure 1—Parse tree for “Parse trees are fascinating”

The Linguistic String Parser 429

had happened; if it returns a failure signal, the parser
backs up and tries to find some alternate analysis.

The first version of the system was written in the list-
processing language IPL-V for the IBM 7094. Because
IPL-V was an interpretive system rather than a compiler,
this implementation proved to be too slow for parsing a
large corpus of sentences, and it was replaced by a system
written in assembly language for the IBM 7094 (FAP).
The speed of these systems was considerably enhanced by
a mechanism which saved the subtrees below certain
specified nodes the first time they were constructed, so
that they would not have to be repeatedly built up. If
restrictions on the saved subtrees had accessed nodes
outside the subtree, these restrictions were re-executed
when the subtree was re-used. With this saving mecha-
nism the second version of the parser was able to obtain a
first parse in a few seconds and all parses in under a
minute for most sentences.

In both systems, the entire grammar (context-free
component, restrictions, and word dictionary) was
encoded in a uniform list-structure format. This format
was easy to convert to internal list structure, but, particu-
larly for encoding the restrictions, it left something to be
desired with regard to perspicuity and brevity of expres-
sion. As the grammar was gradually refined and expand-
ed, and especially when the restrictions were modified to
handle conjunctions, these deficiencies increasingly bur-
dened the grammar writer.

Therefore, when work was begun on a new version for
the CDC 6600 in 1969 we set as our goal, in addition to
the creation of a relatively machine-independent FOR-
TRAN implementation, the development of a higher-level
language suitable for writing restrictions. Because we
realized that the language specifications would evolve
gradually as new features were added to the system, we
decided to use a syntax-directed compiler in translating
the language into the internal list structure required by
the program. This decision actually simplified the design
of the overall system, since several modules, including the
basic parser, could be used in both the compiler and the
analyzer of English.

The restriction language we have developed looks like a
subset of English but has a fairly simple syntax. The
basic statement form is subject-predicate, for example

THE OBJECT IS NOT EMPTY.

This hypothetical restriction might be “housed” in
ASSERTION (whose definition is given above); that is, it
would be executed when the parse tree below ASSER-
TION was completed, and it would begin its travels
through the parse tree at the node ASSERTION. The
restriction looks for an element of ASSERTION named
OBJECT (that is, it searches the level in the tree below
ASSERTION for the node OBJECT). When it finds it, it
verifies that the node is not empty, i.e., subsumes at least
one word of the sentence.

Nodes which are not elements of the current string (the
string in which the restriction is housed) can be refer-

enced by using one or more of a set of “tree-climbing”
routines. These routines correspond to the basic relations
of the string grammar, such as CORE, LEFT ADJUNCT,
RIGHT ADJUNCT, HOST (which goes from an adjunct
to the element it adjoins), and COELEMENT (which
goes from one element of a string definition to another).
For example, a restriction sentence starting at ASSER-
TION,

THE CORE OF THE SUBJECT IS NHUMAN.

would begin by looking for the element SUBJECT. It
would then invoke the routine CORE to descend to the
core of the SUBJECT and test whether the sentence word
corresponding to that node has the attribute NHUMAN.*

Because all grammatical restrictions test elements
bearing one of only a few structural relationships to the
current string (as described above), it is possible to for-
mulate all the restrictions in terms of a small set of about
95 such “locating routines.” The routines are coded in
terms of the basic tree operations, such as going up, down,
left, and right in the parse tree, and other operations,
such as testing the name of the node. The basic tree oper-
ations are not used directly by the restrictions. The rou-
tines correspond roughly to the low-level assembly lan-
guage routines in a large programming system. The rou-
tines not only simplify the task of writing the restrictions,
but also permit fundamental modifications to be made to
the grammar by changing the routines rather than having
to individually change each of the restrictions. One exam-
ple of this, the modification for conjunctions, will be
described later.

The restriction language contains the full range of logi-
cal connections required for combining basic subject-
predicate sentences into larger restrictions: BOTH__
AND____, EITHER OR NOT IF
THEN____, etc. For example, a very simple restriction
for subject-verb agreement in number is

IF THE CORE OF THE VERB IS SINGULAR
THEN THE CORE OF THE SUBJECT IS NOT
PLURAL.

Registers (i.e., variables) of the form Xn, n an integer,
may be used to temporarily save points in the tree. For
example, in

BOTH THE CORE X1 OF LNR IS NAME OR NSYM-
BOL

AND IN THE LEFT-ADJUNCT OF X1, NPOS IS NOT
EMPTY.

X1 is used to save the point in the tree corresponding to
“CORE OF LNR” so that it need not be recomputed for
the second half of the restriction.

* Informally speaking, the noun subclass NHUMAN refers to human
nouns. Grammatically it is any word which can be adjoined by a rela-
tive clause beginning with “who.”

430 National Computer Conference, 1973

The syntax-directed compiler has the job of translating
the restriction language statements into lists composed of
the basic operations recognized by the restriction inter-
preter. For instance, the restriction sentence given above,
“THE CORE OF THE SUBJECT IS NHUMAN.”
would be compiled into*

(EXECUTE [Y(STARTAT [(SUBJECT)])],
EXECUTE [(CORE)],
ATTRB [(NHUMAN)])

The EXECUTE operator is used to .invoke routines. The
first operation, a call on the routine STARTAT with
argument SUBJECT, searches the level below ASSER-
TION for the node SUBJECT. This is followed by a call
on the routine CORE and then by the operation ATTRB,
which checks if the word associated with the node
reached has the attribute NHUMAN.

The restriction language syntax (RLS) which guides the
compilation process is a set of BNF productions into
which have been incorporated directives for generating
the list structures. Each directive is a list of code (list
structure) generators which are to be executed when the
production is used in the analysis of the restriction lan-
guage statement.

Our first version of the RLS followed a format
described by Cocke and Schwartz.® The generators to be
invoked were simply listed between the elements of the
BNF definitions; the parser called on these generators
during the parsing of the statement. This arrangement is
described in detail in Reference 5. It is quite efficient but
has several drawbacks. First, the parser cannot back up
(since it cannot undo the action of a generator) so the
RLS must be written to allow analysis in a single left-to-
right pass. Second, if the list structure to be generated is
at all complicated, the task of creating the generator
sequences is error-prone and the resulting BNF produc-
tions do not clearly indicate what code will be generated.

We have circumvented the first problem by first pars-
ing the statement and then scanning the parse tree and
executing the generators. We have attacked the second
problem by allowing the user to write a list structure
expression as part of each production and having the
system compile this to the appropriate sequence of gener-
ator calls. In our new version of the compiler, after the
restriction statement is parsed its parse tree is scanned
from the bottom up. At each node, the sequence of gener-
ators in the corresponding production of the compiled
RLS is executed. These generators should re-create the
list structure which the user wrote as part of the (source)
RLS production. This list structure is then assigned as
the “‘value” of that node; generators on the node one level
up may use this value in building a larger list structure.
In this way, the small list structures at the bottom of the
tree are gradually combined into larger structures. The
structure assigned to the root node of the tree is the gener-

*In our list notation, square brackets enclose arguments of operators
and routines.

ated code for the statement; this code is written out as
part of the compiled grammar of English. This procedure
is similar to the compiler described by Ingermann!! and
the formalism of Lewis and Stearns,?

A simple example of an RLS statement is

<REGST>:: = <*REG>
—»(STORE[<REG>])\| <*NULL>.

This says that the symbol REGST may be either a token
of lexical type REG: (a register, Xn) or the null string. If
REGST matches a register, the code which will be gener-
ated and assigned to REGST is the operation STORE
with an argument equal to the name of the register
matched. If the null option is used in the parse tree, no
code is generated.

As a more complicated example we consider two
options of NSUBJ, the subject of a restriction statement:

<NSUBJ>:: = <*NODE>
—»(EXECUTE[(STARTAT[(<N ODE>)])] |
CORE<REGST>0F <NSUBJ >
—-<NSUBJ > :(EXECUTE[(CORE)]): <REGST> |-

The first type of subject is simply the name of a node of
the tree; the generated code is a call on the routine
STARTAT with that node as argument. The second type
is CORE OF followed by some other valid subject, with a
register name following the word CORE if the position of
the core is to be saved. The generated code here is the con-
catenation of three list structures (*:” indicates conca-
tenation). The first of these is the code generated to lo-
cate the NSUBJ following CORE OF; the second is a call
on the routine CORE; the third is the code generated to
save the present position in a register (this last structure
will be empty if no register is present).

To illustrate the combined effect of these RLS state-
ments, we present, in somewhat simplified form, the
parse tree for our restriction sentence, “THE CORE OF
THE SUBJECT IS NHUMAN.” in Figure 2. To the left
of each node appears its name; to the right, the list struc-
ture assigned to that node by the generating process.

To compile the RLS into lists of syntactic categories
and generator calls in the proper internal format, we
require one further application of the syntax-directed
compiler. This makes for a total of three uses of the par-
ser, two as a compiler and one as an analyzer of English.
The entire process which results finally in parses of Eng-

RESTSENT> ¢ (EXECUTE[(STARTAT[(SUBJECT)])],EXECUTE[(CORE)],ATTRBL (NHUMAN)])

<nsuBJ> | (EXECUTE[(STARTAT (susdzgr)])]. <PREDICATE> | (ATTRB[(NHUMAN)])

EXECUTE[(CORE)])

“CORE" <REGST> “OF" <NSUBJ> (EXECUTE “-S" <BEPRED> (ATTRB
[{STARTAI [(NHUMAN)])
(SUBJECT)])])
<*HULL> <*NODE> ¢ <*ATTRIBUTE>

“suBdecT™ “NHUMAN®

Figure 2—Parse tree for CORE OF SUBJECT IS NHUMAN

The Linguistic String Parser 431

COMPILED SYNTAX OF BNF AND LIST EXPRESSIONS

RLS I

COMPILED RLS

GRAMMAR OF ENGLISH

COMPILED GRAMMAR OF ENGLISH

ENGLISH SENTENCES

PARSES OF ENGLISH SENTENCES

Figure 3—The three uses of the parser

lish sentences is diagrammed in Figure 3. To avoid an
infinite regression, the first grammar, the compiled syn-
tax of BNF and list expressions, must be produced by
hand; fortunately, it is quite short.

CONJUNCTIONS

The problem in computing conjunctions is threefold.
(1) To provide for the richness of conjunctional construc-
tions in full-bodied English texts. This is best handled by
locally conjoining the syntactic categories as they appear
in the sentence (roun and noun, tensed-verb and tensed-
verb, etc.) (2) To recover hidden or “zeroed” material
from the sentence so that semantic and selectional con-
straints can be applied to all relevant parts of the sen-
tence. This implies an expansion of the sentence. For
example, the sentence

(a) They program and debug systems
has the expansion

the elements are pronoun tensed-verb conjunction pro-
noun tensed-verb noun. In addition, if E; is a positional
variant (such as OBJECT) representing a set of alterna-
tive values for a particular position in the string, one
value of E; may be conjoined to another. In the sentence

(c) I don’t like him and what he stands for.

two different values of object are conjoined, namely pro-
noun and the N-replacement string what ASSERTION.*

To include the conjunctional definitions explicitly in
the BNF grammar would cause the grammar to increase
enormously. Instead conjunctional strings are inserted
dynamically by a special process mechanism when a
conjunction is encountered in parsing the sentence. This
is equivalent in effect to having all possible conjunctional
definitions in the grammar before parsing begins.

The special process mechanism interrupts the parser
when an element of a definition has been completely sat-
isfied and the current sentence word to be analyzed is a
conjunction. An interrupt results in the insertion in the
tree of a special process node. For each special word there
is a corresponding definition in the grammar. This defini-
tion consists of the conjunctional word and a string which
defines the general feature of the type of special process
to be computed (conjunctional, comparative). For exam-
ple, <SP-AND>=AND<Q-CONJ>. The general con-
junctional string Q-CONJ contains a restriction which
generates a definition for Q-CONJ depending on where
the interrupt takes place. If it occurs after E; the follow-
ing definition will be generated for Q-CONJ: <E,><E;_,>
<E>|- - <Ey><E;>- -+ - <E;>. Consider the
sentence

(d) He and she like computers.
A tree of the analysis of the sentence is shown in Figure 4.

After he has been matched as a pronoun an interrupt
occurs and SP-AND is inserted after NVAR in LNR.

(a’) They program (systems) and (they) debug sys- senTence
tems.

INTRODUCER CENTER ENDMARK

SA SUBJECT SA VERB OBJECT RY SA

@]

(8) To meet our first two objectives without greatly com- - l

plicating and enlarging the grammar. This necessitated o | Bl A sT60

an addition to the parser and modifications to the restric- |

tion language routines. '""“Eiz" B
According to linguistic string theory an element or

sequence of elements of a string may be conjoined in the

following manner: If the successive syntactic elements of

*NULL *HULL
NSTG

L8 HVAR SP-AHD RN

N
*NULL B *NULL

the string are E.\E,- - - E,- - - E, then conjunction may = AR
occur after E;,, and the conjoined sequence consists of a de0
conjunction followed by E,or E,_,E;or- - -orEE,:- - -E,. =

In sentence (a), above, the syntactic categories are pro-
noun tensed-verb conjunction tensed-verb noun. In the
sentence

Figure 4—Parse tree for “He and she like computers”

* The ASSERTION string after words like “what,” “who,” etc., is
expected to occur with one noun position empty, here the object of
“stands for.”

(b) They program and we debug systems.

432 National Computer Conference, 1973

Since restrictions are the key to obtaining correct pars-
es, it is essential that they operate on conjunctional

SA SUBJECT SA VERB SP-AHD SA OBJECT

*NULL §RSTG I'"UI.L NSTGO
NSTG

LHR

R
W o o ey

D oenuee enuu ER9)

LNR

I wvar R
LN __NVAR__RN

ey

*NULL

*PRO
ThHULL *RULL

LV ATV RV

HYAR RN *HULL G I

*NULL

*PRO
*HULL *HULL

Figure 5—Parse tree for “They debug and we program systems.”

Local conjoining (i.e. conjoining within a single string-
element position such as SUBJECT) will fail however for

(e) They debug and we program systems.

The tree for this sentence is shown in Figure 5. Here, the
conjunctional string covers two string-element positions
(SUBJECT, VERB) and must be conjoined at a higher
level in the analysis tree. »

When local conjoining fails, the special process node is
detached and normal parsing continues. But an interrupt
will occur again if the conjunctional word has not alterna-
tively been analyzed as a non-special word (such as “but”
in “I will be but a minute.”). A second interrupt occurs
when the next element satisfied is NULL or the parse
moves to a higher level of the analysis. For example, in
sentence (e), “and” is still current when the VERB posi-
tion of ASSERTION is completed. Therefore an interrupt
will occur again at this higher level and the proper con-
junctional string will be inserted. After the special process
node is completed normal parsing resumes.

If the sentence contains a special process scope marker
such as both as part of a both...and sequence an addi-
tional check is made in the restriction that defines Q-
CONJ. It removes any option’that contains an element
whose corresponding element in the pre-conjunctional
string precedes the scope marker. Thus we accept “He
both debugs and programs systems,” but not “He both
debugs and we program systems.”

Although the special process mechanism can interrupt
the parser at many different points in the analysis tree,
the regularity of conjunctional strings with respect to the
rest of the string grammar enables us to confine the con-
junctional interrupt process to just two types of defini-
tions: to host-adjunct sequences (i.e., after each element
of LXR type definitions) and to linguistic strings (i.e.,
after each required element in definitions of the type
“linguistic string”). In this way numerous redundancies
caused by conjoining at intermediate nodes are elimi-
nated. In addition, confining the conjoining to these two
types of definitions simplifies the modification to the
restriction language routines which is needed for conjunc-
tions.

SENTENCE
INTRODUCER CENTER ENDMARK
ASSERTION
cHuLL]
RV___SA

*NULL *NULL

strings as well as on the ordinary strings of the grammar.
However, conjunctional strings very often contain only a
portion of the sequence to which a restriction applies,
necessitating corrections to each restriction of the gram-
mar to take account of conjunctional strings, or else a
general solution to the problem of truncated conjunc-
tional strings. The general solution employed by the cur-
rent string parser is to modify, not each restriction, but
the small number of basic routines used by all restric-
tions.*

Our solution is based on the following: If a restriction
requires a special condition for element E,; of a string S or
of a host-adjunct sequence, then that condition should
also be true for E; in the segment conjoined to S. Similar-
ly, if a restriction requires a wellformedness condition
between two elements E; and E; of S (or between host and
adjunct), then the same condition should be true for E,
and E; in the conjoined segment. If one of the elements E,;
is not present in the conjoined segment, the restriction
applies between E, in the conjoined segment and E, in S.

Certain of the basic restriction routines were modified
in accord with the above, by introducing a “stack” opera-
tion. If in the execution of a restriction a routine is called
to locate an element and this element has conjoined ele-
ments then the stack operation is executed for each of the
conjoined elements. If the restriction is successful, it is
resumed at the point in the restriction immediately fol-
lowing the routine which executed the stack operation.
But when the restriction is resumed, it is looking not at
the original element located by the routine but rather at
its conjoined element. The restriction is successful only if
it succeeds for all the conjoined elements.

Consider the operation of the selectional restriction
WSEL2. This restriction states: If the core of the subject
is a noun or pronoun and if the core C of the coelement
verb (of the subject) has a subclassification NOTNSURJ
which consists of a list of forbidden noun or pronoun
subclasses for the given verb, then the sentence word
corresponding to C should not have any of those subclas-
sifications. The verb occurs forbids as its subject a noun
having a human subclassification. Thus the sequence
programmers occur is not well formed whereas problems
occur is. For WSEL2 to test the core of the subject posi-
tion the routine CORE is called. In the sentence Problems
and difficulties occurred later the CORE routine will
stack difficulties so that the wellformedness of both prob-
lems occurred and difficulties occurred will be tested.
WSEL2 will therefore fail for the sequence Problems and
pbrogrammers occurred later. In the sentence Difficulties
and problems occurred but later disappeared WSEL2 will
be executed four times (the core value of the verb position
is conjoined also) testing the wellformedness of the
sequences difficulties occurred, problems occurred, diffi-

* In the previous implementations the restrictions were individually
modified so as to operate correctly under conjunctions. This demanding
task was carried out by Morris Salkoff.

The Linguistic String Parser 433

culties disappeared, problems disappeared. In this way
stacking has the same effect as expanding the sentence.
There are some restrictions, however, such as the ones
testing number agreement, which cannot use stacking
and which must be changed to test specifically for con-
joining. Therefore each routine that stacks has a non-
stacking counterpart which these restrictions use.

Stacking is sufficient for the bulk of conjunctional
occurrences, those whose form is described above. How-
ever, there are other types. In

(f) He debugged the parser and she the grammar.

there is zeroing in the middle position (i.e., in the verb
position between the subject and object positions) of the
assertion beginning with “she.” In

(g) He heard of and liked the new system.

the noun element following of in the prepositional string
has been zeroed. It is possible and highly desirable for the
zeroed element to be filled in during the analysis. The
program has a mechanism for these cases which is acti-
vated by a restriction routine. It temporarily delays the
execution of all those restrictions that may refer to the
zeroed element. Further on in the analysis the zeroed slot
is filled in by linking it to the subtree corresponding to
another part of the sentence. For example in sentence (g),
above, the zeroed slot for the noun-sequence after the
preposition “of”” will be linked to the subtree correspond-
ing to the new system so that in effect the zeroed informa-
tion has been restored. The sentence thus becomes

(g’) He heard of (the new system) and he liked the new
system.

After linking occurs, the delayed restrictions are exe-
cuted. From that point on any restriction that refers to
the zeroed element will automatically be switched to its
linked subtree. While backing up, a restriction may
obtain an alternative link to another subtree. In this way
all analyses via different subtree links are arrived at. In
“We chose and started to implement another algorithm,”
one analysis is “We chose (another algorithm) and started
to implement another algorithm.” Another analysis is
“We chose (to implement another algorithm) and started
to implement another algorithm.”

THE USE OF THE STRING PARSER

A practical goal for the parser is to aid in the processing
of scientific information. It is conceivable, for example,
that answers to highly specific informational queries
could be extracted from large stores of scientific literature
with the aid of natural language processing techniques.
Such an application requires that there be a close correla-
tion between the computer outputs for a text and the
information carried by the text.

An examination of the string output parses for texts in
various fields of science'® shows that the decomposition of
a sentence into its component elementary strings consti-
tutes a first breakdown of the sentence into its elementary
informational components. The correlation would be
much improved if we could (1) reduce the redundancy of
grammatical forms (redundant from the point of view of
the information carried by the sentence), i.e., arrive at a
single grammatical form for sentences or sentence parts
carrying the same information; (2) reduce ambiguity, i.e.,
arrive at the author’s intended reading from among the
syntactically valid analyses produced by the parser.

Fortunately, methods are available for attacking both
problems. Transformational refinement of the grammar
leads precisely to determining a single underlying sen-
tence in semantically related forms, such as the active
and passive, and numerous nominalization strings, e.g.
“We should reduce ambiguity,” “ambiguity should be
reduced,” “the reducing of ambiguity,” “the reduction of
ambiguity,” etc.

With regard to syntactic ambiguity, the largest number
of cases have their source in different possible groupings
of the same string components of the sentence, the deci-
sive criterion being which of the resulting word-associa-
tions is the correct one for the given area of discourse. For
example, in “changes in cells produced by digitalis,” only
one of the possible groupings (that in which digitalis
produces changes, not cells) is correct within a pharma-
cology text dealing with cellular effects of digitalis.
Recently it has been shown that it is possible to incorpo-
rate into the grammar which is used to analyze texts ina
given science subfield additional grammatical constraints
governing the wellformedness of certain word combina-
tions when they are used within that subfield.™ These
constraints have the force of grammatical rules for dis-
course within the subfield (not for English as a whole),
and have a very strong semantic effect in further infor-
mationally structuring the language material in the sub-
field, and in pointing to the correct word associations in
syntactically ambiguous sentences.

REFERENCES

1. Sager, N., “Procedure for Left-to-Right Recognition of Sentence
Structure,” Transformations and Discourse Analysis Papers, No.
27, Department of Linguistics, University of Pennsylvania, 1960.

9. Harris, Z. S., et al,, Transformations and Discourse Analysis
Papers, Nos. 15-19, University of Pennsylvania, Department of
Linguistics, 1959.

3. Sager, N., Morris, J., Salkoff, M., First Report on the String Anal-
ysis Programs, Department of Linguistics, University of Pennsyl-
vania, 1965. Expanded and reissued as String Program Reports
(henceforth SPR), No. 1, Linguistic String Project, New York
University, 1966.

4. Raze, C., “The FAP Program for String Decomposition of Sen-
tences,” SPR, No. 2, 1967.

5. Grishman, R., “Implementation of the String Parser of English,”
Presented at the Eighth Courant Computer Science Symposium,
December 20, 1971. To be published in Natural Language Process-
ing, Rustin, R., ed., Algorithmics Press, New York (in press).

434 National Computer Conference, 1973

6. Sager, N., “Syntactic Analysis of Natural Language,” Advances in 10. Cocke, J., Schwartz, J., Programming Languages and Their Com-
Computers, No. 8, Alt, F., and Rubinoff, M., (eds), Academic pilers, Courant Institute of Mathematical Science, New York
Press, New York, 1967. University, 1969.

7. Harris, Z. S., String Analysis of Sentence Structure, Mouton and 11. Ingerman, P. Z., A Syntax-Oriented Translator, Academic Press,
Co., The Hague, 1962. New York, 1966.

8. Joshi, A. K., Kosaraju, S. R., Yamada, H., “String Adjunct 12. Lewis, P. M., II, Stearns, R. E., “Syntax-Directed Transduction”
Grammars,” Parts I and II, Information and Control, No. 21, JACM, No. 15, p. 465, 1968.
September 2, 1972, pp. 93-116 and No. 3, October 3, 1972, pp. 235- 13. Bookchin, B., “Computer Outputs for Sentence Decomposition of
260. Scientific Texts,” SPR, No. 3, 1968.

9. Sager, N., “A Two-Stage BNF Specification of Natural Language,” 14. Sager, N., “Syntactic Formatting of Science Information,” Pro-

Information Sciences, (in press).

ceedings of the 1972 Fall Joint Computer Conference, Pp. 791-800.

