T~

b

ILIPLEMENTATION

OF TIE

STRIG

PARSER -

OF .
ENGLISH

Ralph Grishman

Naw York Unlvaralty:

The organization of the latest zmplomentatzon
of the string parser for sczentzfzc literature is8
described. The steps involved in compiling and
running a grammar are explained. Alternative
gchemes for increasing the speed of the parser are
considered. o

This paper describes the most recent imple-
mentation of a system developed at the Linguistic

" String Project of New York University for the anal-

ysis of English sentences. This system is based
on a string grammar of English which is described
in the previous paper of this volume [l]. The
current implementation, in FORTRAN for the Control
Data 6600, supercedes earlier implementations in

IPL-V [2] and in FAP for the IBM 7094 ([3].

The fundamental structure of the string gram-
mar —. a context-free component plus a set of re-
strictions — has remained unchanged during the
project. 1In each implementation, the context-free

productions -and restrictions have 'been encoded into

a list structure which is then used by an English

AdC T

a0 Ralph Grishman

sentence analyzer consisting of a syntax-directed
parser and an interpreter for the restrictions. In
the earlier implementations the grammar had to be
manually encoded, with only the substitution of
numbers for symbol names being performed automatic-
ally. As the grammar grew, this encoding process
became an increasingly heavy burden on the develop-
ers of the grammar. The encoded grammar was diffi-
cult to read, and any significant modification was

. a formidable task. Consequently, one of the basic
objectives in developing the current implementation
was te provide a user-oriented language, for the
grammar, which would be comparatively easy to.writa,
read, and modify,

The translation of the English grammar from the
user-oriented language to list structure is per-
formed in the current system by a syntax-directed
compiler. The compiler requires its own list-
Structured grammar, in this case the grammar of the
user-oriented language. The latter grammar may be
generated by compiling a grammar of the user-orien-
ted language written, say, in BNF. This in turn
requires a list-structured grammar of BNF; to avoid
an infinite regress, this (very small) grammar must
be manually encoded.

Thus, the system has now become a process
involving three successive stages, as shown in
Figure 1. This arrangement provides great flexibi-

lity, since the user can easily alter the specifica~

tions of his "user-oriented" language as his needs
change. So, while this paper will describe the
external format of the grammar as currently being
used by the Linguistic String Project, the system
may easily be adapted for use with an English
-grammar of very different external appearance by
changing the input to the first stage of the process.

The core of the program is a very simple top-
down parser for context-free grammars, which gener-
ates multiple parses of ambiguous sentences sequen-
tially using a back-up mechanism. This parser,
together with a table-driven lexical processor and
1 control card processor which invokes all the other

g
WoR

Implementation of the String Parser g

OBJECT GRAMMAR OF BNF

RESTRICTION
LANGUAGE SYNTAX * ~ 1

. ' OBJECT RLS °

HGLYSH GRANMAR & , 'l
"'b'grETIONhav * 2

. }

OBJECT EG & WD
ENGLISH + + + + + II1

l

SENTENCE_PARSES

Figure 1
The Three ‘Stages of the Parser

system components, is preéent in the program for
each of the three stages of the system.

As indicated in Figures 2 and 3, the parser
has "hooks" on it to permit various routines to be
invoked during the top-down parse. In the first
two stages, the parser is used as a syntax~-directe
compiler which translates the grammar of the’gramm
of English (i.e., -the grammar of the user-orlgnted
language) or the grammar of English’ from its.lnput
text form to list structure. Hence the routines
invoked by the parser in the stage I and stage II
brograms are code generators which construct the

92, . Ralph Grishma:

GENERATORS

R &

PARSER
l
‘ LEXICAL PROCESSOR

l

CONTROL CARD PROCESSOR
(LOADING, UPDATING, ETC.)

Figure 2
Organization of Stages I and II

RESTRICTIONS

PARSER
l
LEXICAL PROCESSOR
| -

CONTROL CARD PROCESSOR
(LOADING, UPDATING, ETC.)

AR)

Figure 3
Organization of Stage III

Impiementation of the String Parser 93

requisite list structure during the top-down analy-
sis (Figure 2). T

For stage III the generators are replaced by

a restriction interpreter (Figure 3). As the pre-

ceding paper described, the grammar of English
consists of a context-free component plus a set of
restrictions, each of which is associated with one

or more productions in the context-free component.
These restrictions state conditions which the parse
tree must meet if the analysis is to be accepted.
Each time a node is added to the parse tree, and

each time a level in the tree ig completed, the
parser invokes the restriction interpreter to execute
those restrictions appearing in the corresponding
production; the restriction interpreter returns a
success or failure indication to the parser. If the
restriction has succeeded, the parser continues
normally (i.e., as if there had been no restriction).
If the restriction has failed, the parser must either
try an alternate option, or, if all options in a
production have been exhausted, dismantle part of

the parse tree.

The system: has been implemented on the Control
Data 6600 at New York University. It consists of
approximately 8000 source lines in about 100 sub=-
routines, only some of which are included in the
program for any one stage of the system. It is
written almost entirely in FORTRAN, with only a few
assembly routines for manipulating part-word fields.
Each stage occupies approximately 55,000 60-bit
words (corresponding roughly to 400,000 8-bit bytes).

When operating as a compiler (in stages I and
II) the system has a throughput of about 1500 to
3000 cards per minute, depending on the complexity
of the grammar. With an English grammar of about

20,000 source lines, including the word dictionary,
-a fast compiler is clearly an asset. Still, re-

compiling the grammar for seven or eight minutes
each time a change is made is rather expensive, so
an updating system was included in the program, In
the output of stages I and IY the source text and
generated list structure are combined in a single

<

94 ' Ralph Grishman

file called an object grammar (named in analogy with
the object program produced by a compiler). Once

an object grammar has been initially created, the
user may specify modifications to it on a statement-
by-statement basis. The system will compile the

new statements and will insert, delete, or replace
the source text and corresponding list structure in
parallel.

The function of the various stages, and the
format of the source input to these stages, will
now be described.

Stage I parses the grammar of the grammar of
English, which is a set of BNF statements describing
the syntax of the four components of the English
grammar: the context-free component, the lists,
the restrictions, and the word dictionary. Of the
four components, only the restrictions are syntac-
tically complex; the BNF specification of the
restrictions requires about 250 lines, the other
components just a few lines apiece. Consequently,
the entire input to this stage, including the syntax
. of all four components, is normally referred to as
the Restriction Language Syntax, or RLS.

A small portion of the RLS is shown in Figure
4. This figure shows a few of the alternative
expansions for <STATEMENT>, which is the basic con-
struct in restrictions. A <STATEMENT> is either one
of a set of "canned phrases" called <MONOSENT>s oOr
is a restriction subject (<RSUBJ>) followed by a
<PREDICATE>. The subject can take many different
forms: it may be the name of a NODE (<*NODE>: ter-
minal symbols are indicated by an asterisk on the
left), the name of an ATTRIBUTE, the value of a node
(<VALOF>), an element of a string (<ELEMX>), the
coelement of a node (<COELX>), the CORE of a node,
_etc. The option <CORE> consists of the word CORE
optionally followed by OF <OPCORE> (square brackets
enclose optional elements). The operand of CORE
(<OPCORE>) is a non-string argument (<NONSTGARG>)
which may be either a non-string definition name
(<*NONSTGDEF>) or the value of another node, or one
of several other options. One possible form of

e . —r———— - oo e A ¢ —n—— P o 5 T 1 51 e e S SO¥ MRS

Impiementation of the String Parser 95

<STATEMENT>
<RSUBJ>

<CORE>

<OPCORE>
<NONSTGARG>

<PREDICATE>

<BEPRED>

- <ATTRB>

<PREDICATE> is IS <BEPRED> where <BEPRED> is <ATTRB>§
<ATTRB> consists of the name of an ATTRIBUTE followec

oo
1}

<MONOSENT>/<RSUBJ><PREDICATE>
<*NODE> .ROUTX.(STARTAT) /
<*ATTRIBUTE> .ROUTX.{ISIT) /
<VALOF> / <ELEMX> /

<COELX> / <CORE> / ...

CORE [OF <OPCORE>]
.ROUTE . (CORERT)

<NONSTGARG>

<*NONSTGDEF> .ROUTX.(STARTAT)
/ <VALOF> / ...

IS ((<BEPRED> / OCCURRING
<OCCPRED>) / NOT ...

<ATOMAT> / <ATTRB> / ...
<*ATTRIBUTE> .MARK
.GENSYM.(6) .ATTRBX

<ATT*> (<ATRAOR> /
. <*NULL> .UNMARK)

Figure 4
A Portion of the RLS

by zero or one or more occurrances of <ATT> (an

asterisk on the right indicates optional repetition)

specifying subsidiary attributes, followed option=-
ally by <ATRAOR>, which allows for conjoined attrie=

bute predicates, with both AND and OR.

An example

of a restriction using these constructions will be

considered shortly.

Note that the RLS'has, in addition to those
constructions normally appearing in BNF, certain .

A6 . Ralph Grishman

names, such as ROUTX and MARK, which are preceded
by periods. These are the names of code generators
which are to be invoked by the parser during the
analysis of a restriction, after the symbols they
follow have been successfully matched (the notation
used here has been adapted from Cocke and Schwartz
[4]1). Each generator name may be followed by a
single argument, which is enclosed in parentheses
and preceded by a period; for example, .ROUTX
{STARTAT) indicates that the generator ROUTX is to
be invoked with the argument ‘STARTAT'. :

Stage I parses this RLS using the hand-encoded
syntax of extended BNF and generates an object RLS.
This object RLS is then used in stage II to parse
the grammar of English (refer to Figure 1). .

As noted earlier, the grammar of English has
four components: a context-free component, a set of
lists, the restrictions, and the word dictionary.
The context-free component is a Set of BNF state-
ments; this time without any generator calls. One
example, the definition of the ASSERTION string, is
shown in Figure 5; the functions of the various
elements in this string are described in the previous
paper. The second component of the grammar is a set
of lists of symbols appearing in the BNF grammar;
these lists are referenced in the restrictions. One
such list is shown in Figure 6.

The third component is a set of restrictions
and routines. One of the simple test restrictions,
WT9, which checks for number agreement between sub-
ject and verb, is shown in Figure 7. The restric-
~tions -invoke a number of routines for moving about
the parse tree; these routines correspond to the
basic string relations described in the previous
paper. Routines are analogous to procedures in
ALGOL: routines may invoke other routines, they may
be invoked recursively, and they may be passed
arguments.

- 4

The CORE routine, CORERT, which is invoked by
restriction WT9, is shown in Figure 8. This routine
checks whether the current node is an ATOM (terminal

Implementation of the String Parser 97

<ASSERTION> ::= <SA> <SUBJECT> <CA2s>
<SA> <VERB> <CA4>
<SA> <0BJECT> <CA6>
<RV> <SA>

Figure §
A BNF- Definition from the Grammar .of English

TYPE ADJSETI = SA, LT, LN, LW, Lv, Lq,
LA, LP, LCS, LPRO, RN, RV, RQ,
RA, RAT,RD, LWR, LVSA, LCDA,
LCOVA, LCDN, MLNR1, MLNR2, MLNR3.

; : - Figure 6
5 A List from the Grammar of English

L

« WT9 = IN ASSERTION IF THE
| ‘ CORE OF THE VERB IS PLURAL,
F THEN THE CORE OF THE SUBJECT
P ‘ IS NOT SINGULAR.

. Figure 7
i Restriqtion WT9

98 ‘ . Ralph Grishman

ROUTINE CORERT=
DO EITHER $1 OR $D OR $S.
$1 = TEST FOR ATOM.
$D = DESCEND TO ATOM NOT
PASSING THROUGH ADJSETT.
$D = DESCEND TO STRING NOT
~ PASSING THROUGH ADJSET].

Figure 8
The CORE Routine

looking for a node which is either an ATOM or is on.
the STRING list. In going down the tree, the
routine will not go through any node on the list
ADJSET1 (which appeared in Figure 6).

as the routines use imperative sentences, akin to
most procedural languages, which explicitly state
the operations to be performed.

The fourth and by far the largest component
of the grammar is the word dictionary. Each word
definition is a sequence of word categories (such
as noun, tensed verb, adjective, adverb) together
- With a set of attributes (such as singular, plural,
collective, concrete) organized into a tree structure

The categories are
matched by terminal symbols in the context-free

eérence to a eaqnonieaql form, which appears in paren-
theses to the left of the word. The canonical forms
are defined at the beginning of the word dictionary

. . v e e~
- N W — <<
N —

<

©

hure

~—

(3]
non

(TVVEN)
14 =
‘4 -
(TvsI)
(ING)

(VTVPL

1
2
3 .
(TVVEN)
14

.5 =
(ING)
(TvsI)

(NSIX)

A1 =

(NPLX)
a1 =

Implementation of the String Parser

R 3,NOTNSUBJ: .2

0BJLIST: .3, : .2,

NPN: .15,PNN: .15, VINGSTGPN: .15,
NPVINGO: .15.

NTTMET1, NSENT1, NSENT2, NONHUMAN.

PVAL: (+T0+).

DEVOTED 4.
OBJLIST: .3, NOTNSUBJ: .2, POBJLIST: .4.
PN: .15, PVINGSTG: .15, PVINGO: .15.

DEVOTES 4.
DEVOTING 4.

UR.
35¥SOBJ: ~1, NOTNSUBJ: .2, OBJLIST: .3.
NTIMET. :
NTIMET1, NSENT1, NSENT2.
NSTGO.

DEVOURED +. |

NOTNOBJ: .1, NOTNSUBJ: .2, OBJLIST: .3,
POBJLIST: .5,

NULLOBJ

DEVOURING +,
DEVOURS 4.

DEXTRAN. .
COLLECTIVE, NONHUMAN, NCHEM.

DEXTRANS.
NONHUMAN, NCHEM.

Figure 9
A Fragment of the Word- Dictionary

g9

190 . Ralph Grishman

(Figure 10). As a further saving, words with
several attribute lists in common may be grouped
together; this is normally done for words with the
same stem. All words in the group except the first
are marked with an up-arrow after the word; only
those attribute lists of the following words which
differ from those of the first word need then be .
given explicitly.

(NSIX)= N: .11,SINGULAR.
(NPLX)= N: .11, PLURAL.
(NSI) = N: (SINGULAR).
(NPL) = N: (PLURAL).
(ADJE)= ADJ.

(ADJX)= ADJ: .10.

(INGSI) = VING: .12. SINGULAR.

(CHSI) = N: (SINGULAR, COLLECTIVE, NONHUMAN,
NCHEM, CONCRETE). -

(CHPL)

(NAMEX) = N: (NAME, NHUMAN, SINGULAR).

Figure 10
Some of the Canonical Form Definitions

As each statement in the English grammar is
parsed during stage II, the generators specified in
the RLS are invoked, generating the list structures
of the object grammar of English. As an example of
this process, consider the restriction WT9 (Figure
7) , for which most of the pertinent RLS is given in
Figure 4. The list structure generated for this
restriction is shown in Figure 11. The IF...THEN...
construction in the restriction is translated into
an IMPLY operation with the two statements as argu=-
ments. The first statement, THE CORE OF THE VERB
IS PLURAL, is compiled into a list of three opera-
tions; first, a call (calls on routines are per-
formed by the EXECUTE operation) on the routine
STARTAT with argument VERB, which finds the VERB

N: §PLURAL, NONHUMAN, NCHEM, CONCRETE),

Implementation of the String Parser 101

OBJECT RECORD:

(WT9 [174087,

IMPLY [((EXECUTE [(STARTAT [(VERB)])],
EXECUTE [(CORERT)],
ATTRB[(PLURAL)]),

(EXECUTE [(STARTAT [(SUBJECT)])],
EXECUTE [(CORERT)],
NOT [(ATTRB [(SINGULAR)])1))]1)

Figure 1
List Structure Generated for Restriction WT9

node in the parse tree; second, a call on the rou-
tine CORERT, which.finds the word in the sentence
which is the core of the VERB; third, the operation
ATTRB with argument PLURAL, which checks whether
the current word has the attribute PIL.URAL. The
second statement is translated similarly, with the
addition of 'a NOT operation. :

The parse tree for the first statement is shown
in Figure 12.

(The word THE is ignored in the parsing and so
does not appear on the parse tree.) The generators,
which have been copied from the RLS onto the parse
tree, are executed when the elements they follow
have been completed. Thus they are executed in the
following order: '

generator o List structure generated
~+ROUTX.(STARTAT). EXECUTE[(STARTAT[(VERB)])]
.ﬁggEE.(CORERT) . EXECUTE[(CORERT)]
.GENSYM.(6) . .ATTRB[(PLURAL)]
.ATTRBX e

UNMARK

102

Ralph Grishman

VAN
-3
[
S:“P—-'Q
ViIoa
H
2| ¢
S
2
>
g
E
&
s
X
ol
[4)]
\ =
- B
A A A
Q 5} Ei
A 5 2 &
3 a g @
g 5 0§ &
g v 3
2 [£
g &
[« 7]
v g
<
:
a
S ¥
v 4
gg .‘.
’ 8] A A Eg
M%Uh
5 v 5 3
k:
¢ =z
?Ag@ ’
Z 8
(o]
. ¢ ¥
<
[
(9]
A"

Figure 12

Parse Tree of "THE CORE OF THE VERB IS PLURAL"

Implementation of the String Parser 103

Finally, when an object grammar of English has
been generated by stage II, it may be used as input
to stage IIT to parse English sentences. During
the analysis of a sentence, various traces may
optionally be printed. One of these is a trace of
the operation of the restrictions; such a trace of
the execution of restriction WT9 appears in Figure
13. The + or - after each operation indicates
whether the operation succeeded or failed. The trace
indicates how the top-level operator, IMPLY, begins
by performing the first operation in its first argu-
ment, a call on the routine STARTAT with the argument
VERB. The trace then shows how STARTAT moves about
the tree looking for the VERB, testing each node it
comes to with the operation IS{VERB). When the VERB
has been located, CORERT is invoked to find its core
and then ATTRB(PLURAL) is executed. ATTRB returns
plus, indicating that the core of the verk is indeed
plural. Because the first argument to IMPLY com-
pleted successfully, IMPLY now transfers control to
its second argument, which proceeds similarly. The
second argument (which tests that the core of the
subject is not singular) also succeeds, so the IMPLY
operation and hence the restriction is successful,

RESTRICTION BEING EXECUTED IS WT9 IN ASSERTION

IMPLY((STARTAT(VERB): ORPTH(IS(VERB)-DOWN+
ITERT(ORPTH(IS(VERB)-NAMEX-)-RIGHT+
ORPTH(IS(VERB)-NAMEX-)-RIGHT+
ORPTH(IS(VERB)-NAMEX-)-RIGHT+
ORPTH(IS(VERB)-NAMEX-)-RIGHT+
ORPTH(IS(VERB)+)+)+)+)+

{CORERT: ORPTH(DNTRN(ATOM,0 ,ADJSETT)+)+)+
ATTRB(PLURAL)+

(STARTAT(SUBJECT): ORPTH(IS(SUBJECT)-
DOWN+ITERT(ORPTH(IS(SUBJECT)-
NAMEX~) -RIGHT+ORPTH(IS(SUBJECT)+ +)+}+)+
"(CORERT: ORPTH(DNTRN{ATOM,0 ,ADJSETT)+)+)+
NOT(ATTRB(SINGULAR)-)+)+

‘Figure 13
Trace of Restriction WTY

194 . - Ralph Grishman

Finally, after many thousands of lines of trace
(which are normally supressed), a parse is obtained,
such as the one shown in Figure 14 for the sentence *
"Digitalis acts on the heart.®

DIGITALIS ACTS ON THE HEART.
PARSE 1

1. SENTENCE
2. ASSERTION

INTRODUCER gENTER ENDMARK

. DIGITALIS ACTS 3.
3. PN = LP P NSTGO
ON 4. HEART
4. LN =

TPOS QPOS APOS NSPOS NPOS
THE

Figure 14
A Parse

The thousands of lines of trace which are pro-
duced for such a simple sentence are indicative of
a basic problem which arises with a large grammar
of English: the large number of alternative anal-
yses which must be explored before all parses of
the sentence are found. These many alternatives
arise in part because nearly every word can have
several different word categories, so that each
substring of the sentence admits of many different
analyses, few of which fit any analysis of the
entire sentence. The many different analyses are-
due in part also to the fact that in this grammar
one string can often appear as any of several ele-
ments of a containing string; in particular, that
an adjunct string can be adjoined to a host string
at any one of several different points. This causes
particular inefficiencies for a pure top-down

SA SUBJECT * SA VERB * SA OBJECT * RV SA

Implementation of the String Parser 108

parsing strategy, since the tree for the adjunct
string will be dismembered and then built up again ..
from scratch below the new element. ;

These wandering adjunct strings greatly
increase the number of parses of the sentence which
are finally obtained; these are the "permanent pre-
dictable ambiguities" discussed in the previous
baper. As a simple example, the prepositional
phrase "on the heart" in "Digitalis acts on the
heart" could enter the ASSERTION string as the
OBJECT, as the right adjunct of the verb (RV), or
as a-sentence adjunct (SA). To avoid explicitly
generating all these parses, the grammar includes
Some restrictions which check whether the parse
currently being built differs from a parse already
obtained only in that some adjunct string has been
moved from one point of adjunction to another; if
SO, the current analysis is abandoned and some
other alternative is explored. This mechanism
avoids the reconstruction of the tree for the ad-
junct string, and so significantly reduces the time
required to find all parses.

Still, such mechanisms can at best go only part

 way toward alleviating this basic problem of serial

top-down analysis, that the same subtree must be
rebuilt many times in different tree contexts.
Similar problems which arose with the Harvard Pre-
dictive Analyzer were overcome by introducing a
saving mechanism [5]. When a tree spanning a cer-
tain set of words was successfully completed for
the first time, the root symbol of the tree and the
words it spanned were recorded in a table; a differ-
ent entry was made if no tree could be built from
that symbol starting at that word. When the same
symbol was subsequently encountered while looking
at the same word (after backing up and coming
forward again) it was sufficient to consult the
table to determine whether a tree could be con-
structed from this symbol; it was never necessary
actually to construct the tree a gsecond time.

A saving mechanism on the samé basic principle
was developed independently for the first implemen-

100 + © Ralph Grishman

tation of the Linguistic String Project system [8]
and was also included in the second implementation
[2]. The mechanism is made much more complex,
however, by the presence of restrictions which move’
about the parse tree. A context-free grammar, such
as the one used in the Harvard system, allows a sub-
tree with a particular root symbol which has been
constructed in one context to be moved to any other
context beginning at the same word where that symbol
appears. The string grammar, on the other hand,
includes some of the linguistic constraints which
may make a subtree built in one context unacceptable
in another context beginning with the same word.
These constraints are implemented as restrietions
which either start in the subtree and look outside
of it, or start outside and look in; these restric-
tions must be reexecuted before one can be sure that
a subtree built in one context is valid in a new
context. Consequently, whereas the Harvard system
need only save the fact that a subtree was success-
fully built, the string parser must save the sub-
tree itself, together with a list of all restric-
tions which begin inside the subtree and look out.

Since a good deal of information must be stored
for each subtree, only a few of the subtrees built
during a parse can be saved (whereas the Harvard
system can save the success/failure datum for each
subtree). In practice, only trees dominated by a
"noun string" node were saved. These trees could
all be saved in core (on an IBM 7094), and were
sufficient for a drastic reduction in parse time
‘(better than an order of magnitude for large sen-
tences). The first parse of a sentence required
typically five seconds, with all parses found in
less than one minute. The current implementation
has about the same basic speed in building nodes
and executing restrictions; the overhead introduced
by a more flexible version written in FORTRAN
roughly compensates for the increase in speed from
an IBM 7094 to a CDC 6600. The current implementa-
tion, however, does not include a saving mechanism;

we are currently considering alternative approaches

toward speeding up the parsing process.

Implementation of the String Parser 107

Because of the cemplexity of the saving
algorithm, our recent interest has centered on the
development of an alternate parsing algorithm which .
would obtain all parses of a sentence in a single
left to right scan. One such algorithm, the ’
immediate constituent analysis (ICA) algorithm
developed by Cocke [6], has been extensively used
for natural language analysis. We are currently
investigating the nodal spans parsing algorithm
developed by Cocke and Schwartz [4], which is
essentially equivalent to the algorithm described
by Earley [7]. 1In this algorithm, a given symbol
spanning a given substring of the sentence will be
recorded only onee, even if it ig used in different
contexts in different analyses of the sentence.

From the point of view of efficiency, this is equiv=~
alent to saving all subtrees — no subtree is ever
built twice. Some preliminary experiments have

been performed in which a nodal span parser was

used to construct all analyses of a sentence
according to the context-free component of the
grammar, after which the restrictions were applied
to eliminate invalid analyses. The results of

these experiments were entirely negative: eight-
word sentences exceeded the memory capacity of the
computer. .

This is not entirely surprising, since the
restrictions are an integral part of the grammar
and a lot of spurious analyses are. produced if they
are omitted. If the nodal spans algorithm is to
have any chance at all, the restrictions must be
executed during the parsing process, so that . the
large number of spurious parses will not be stored.
For the restrictions to execute efficiently with
the new parsing algorithm, however, much of the
grammar will have to be rewritten; this is a
considerable task, on which some work is just now
beginning.

Until this task is completed — until the
grammar is rewritten, the new parser is debugged,
and some long sentences are run' — we have no vay
of knowing whether this approach-will béar fruit.
With the top-down parser with saving there is a

" A

138 Ralph Grishman

continuous space-time tradeoff: the more space it
is given, the more subtrees it can save, and the
faster it runs, but it is able to run (albeit slowly)
with any memory allocation sufficient to contain the
current parse tree. In contrast, with parsers per-
forming a single left-to-right scan, such as nodal
spans, the situation is all-or-nothing: either a
parse is rapidly obtained or memory overflows. For
example, we could conceivably end up with a parser
which will process sentences of fewer than 30 words
at impressive speed but be unable to process longer
sentences. This would be of little use in our
current project, which aims to process scientific
text (containing many long sentences), although it
may be of considerable interest to future research
in parsing algorithms. On the other hand, if our.
effort is successful, and memory requirements can

be brought within the capacity of the CDC 6600, we
should obtain a very fast parser for the string de-
composition of English sentences.

REFERENCES

(1] sSager, Naomi, "The String Parser for Scientific
Literature," this voluune

-[2]

, James Morris, Morris Salkoff, and Carol
Raze, "Report on the String Analysis Program,"
String Program Reports 1, New York University,
Linguistic String Project, 1966.

[3]' Raze, Carol, "The FAP Program for the String
Decomposition of Scientific Texts," String
Program Rports 2, 1967.

[4] Cocke, John and Schwartz, Jacob T., Programming
Languages and Their Compilers, New York Univ.

[5] Kuno, Susumo, "The Predictive Analyzer and a
Path Elimination Technique," CACM 8, 1965.

{6] Hays, David G., "Automatic Language Data
' Processing," Computer Applications in the
Behavioral Sciences, ed. H. Borko, Prentice-
Hall, 1%962.

Implementation of the String Parser ~ 109

(7] Earley, Jay, "An Efficient Context-Free Parsing
Algorithm," CACM 13, 1970.

[8] First Report on the String Analysis Program, -
Linguistic String Project, Department of
Linguistics, University of Pennsylvania, 1965.

ACKNOWLEDGMENT

This research was supported in part by Regearch
Grant No. LM00720-0l, from the Natienal Librayy of
Medieine, National Institutes of Health, DHEW, and
in part by Research Grants GS-2462 and GS-27325,

from the National Science Foundation, Division of
Social Sciences.

