-36-

5, THE RESTRICTIONS: WHAT THEY LOOK AT

Each restriction states a condition on the parse tree and
the words of the sentence and their attributes which must be
met before the tree is accepted as an analysis of the sentence.
These restrictions must be written in a special restriction
language which will be described in the followina sections.

The restriction lanauage differs in several respects from
most other proagramming languages with which the reader may be
familiar. Most strikingly, the external form of this language
is declarative ratber than procedural. That is, the restric-
tion states a condition, rather than explicitly indicating the
sequence of operations which must he performed to determine if
the condition is true. This distinction, however, is more one
of form than of substance. The grammar compiler translates tﬁé
declarative statement into a sequence of operations which test
the parse tree and the attributes of words, and the grammar
writer should in general be aware of.the order in which these
operations are performed. Nonetheless, we believe that the
declarative format of the restrictions does make them easier
to write and read.

A more fundamental difference of the restriction language

lies in the types of data objects it uses. Most programming

languages work with numbers and character strinas; programs in
these lancuages are able to build up and manipulate arrays and
lists of such items. In contrast, restrictions don't build up
anything. All the data structures--the parse tree, the sen-

tence words and their trees of categories and attributes--are

-37-

already there when the restriction begins to execute. The
restrictions are able only to move around and test these trees.
More formally, we might say that the only objects the restric-
tion language can manipulate are pointers to the parse tree,
sentence, and attribute lists.

Most of the operations performed in the execution of a
restriction operate on one distinquished pointer, moving it
around the parse tree, from the parse tree to the sentence
words and their attributes, and around on the attribute trees.
Since we intend to become on familiar terms with the restric-
tions, we can't keep on sayinag that "the restriction pointer
is now pointing to... ." We shall simply say instead that the
restriction "is looking at..."'or "ig at..." or, when we really
get into the spirit of the thing, that we are looking at... or..
are at... .

We may consider the forest within which the restriction
moves as consisting of only two trees: a parse tree and a
sentence tree (see Fig. 2). The form of the parse tree was
described above (in § 3.). In the sentence tree the elements
on the level immediately helow the root node are the words of
the sentence. Below each word is the l1ist of its word categories
(the last word, the period, has no cateagories). Hanging below
each word category is the subtree of its attributes, whose struc-
ture was described in § 4.

The restriction lancuage includes a number of operations
for moving about the parse and sentence trees. In addition, it
provides a few operations for going from points in the parse

tree to points in the sentence tree. MODE-START WORD and

-38-

Fig. 2
WSENTENCE

CENTER Lt

1

ASSERTION \‘

\

y lsa__ suBgecT SA VERB SA OBJECT SA 1
/ \
“’ Inunn wsre INULL LTVR INULL NSTG \
1

! “ loue LV TV RV LNR \
\ ' 7: | \
: \\ LN N izN NULL/' : NULL LLN N_ RN \\

) .]

TPOS APOS | NULL ! TPOS__APOS]NULL\
| \\ ! / : I 3 : '
] N ‘wurn hwuin | /' NULL NULL \
| N) eat fisn] [

RN
[~ /
| S~)
| wopC- T~ /
| START T~
\ WORD arTrIBUTE /S~ NODE-END WORD
T~
. -
\\ / \\\\ ‘
& cats eat N w fish — 't
i v { TV NV TV

PLURAL OBJLIST JELURAL OBJLIST OBJLIST OBJLIST

NSTG NULLOBJ NSTG NULLOBJ NSTG NULLOBJ (NSTG NULLOB

-39-

NODE-END WORD go from a node in the parse tree to the first and
last words below that node in the parse tree, respectively. For
instance, in Figure 2, starting from the node ASSERTION, these
two operations would go to the words "cats" and "fish". The

[IAS ATTRIBUTE operation, which is valid only if the restric-
tion is lookina at a non-null atomic node, goes to an attribute
of the word category matched by that node. For example, starting
from the TV node on the parse tree, the phrase "HAS ATTRIBUTE
ORJLIST" would cause the restriction to look at the ORJLIST
below TV in the subtree for "eat". RAll these operations will

he discussed in detail later in this volume.

In general, it would be possible to execute all restric-
tions after each (context-free) parse tree of the sentence had
been generated by the parser (as described in § 3). It is,
however, much more efficient to execute each restriction as
early in the parsing process as possible, so that many fruitless
parse trees need not be completed. The grammar writer is there-
fore allowed to specify, through a phrase called the housing at
the beginnina of the restriction, the time when a restriction
is to be executed.

This phrase names the BNF definition (or definitions) in
which the restriction is to be "housed". If the definition has
several options, it indicates whether the restriction is to
apply to one or all the options. In addition, the housing may
specify the point in time during the buildina of the subtree for
this definition that the restriction is to be executed. The

restriction may be executed before any elements of the definition

-40-

have been attached to the tree (this is called a "disqualify"
restriction) or after some or all of the elements have been
completed (this is called a "well formedness" restriction).

For example, the restriction for subject-verb number agree-
ment in ASSERTION could be executed as soon as the VERB posi-
tion was completed, so its housing would be

IN ASSERTION AFTER VERB
In contrast, the restrictions correlating the verb and its
object could not be executed until the OBJECT position was
completed, so their housina would bhe

IN ASSERTION AFTER OBJECT
Disqualify restrictions are used most frequently to look ahead
in a sentence and see whether an option is worth trying at all.
For instance, there is a restriction on the QUESTION option of-
CENTER (which is not included in our small grammar) which checks
whether the sentence endmark is indeed a question mark. To
avoid needless complications at a time when we are trying to
grasp the basics of the restriction language, we shall make
all of our restrictions wellformedness restrictions to be exe-
cuted when all the elements of the definition have been com-
pleted. The refinements of housing will be left for a later
section of this volume.

We indicate by the first letter of the name of the restric-
tion whether it is to be a disqualify or wellformedness restric-
tion; D for disqualify and W for wellformedness. Except for
this rule, the restriction name is entirely arbitrary. It may

consist of a W or D followed by up to 19 letters or digits. We

41~

shall normally try to use names of some mnemonic value, but you

are free

to use any name that meets your fancy for the restric-

tions you write.

By default (i.e., unless explicitly stated otherwise) the

wellformedness restriction is executed after all elements of the

definition in which it is housed have been completed. If a

definition has several options, one option can be specified by

adding AFTER OPTION to the housing. For example, a restric-

tion beginning

would be

WNULLO = IN OBJECT AFTER OPTION NULLOBJ:

executed after NULLOBJ has been attached below OBJECT.

If no option were specified

WOBJ = IN OBJECT:

the restriction would be executed when OBJECT was completed, -

regardless of its value.

As these examples indicate, the format of a restriction is

restriction-name = housinc : body-of-restriction.

We shall

now turn our attention to the body of the restriction.

6. THE RESTRICTIONS: BASIC STATEMENT FORMS

The
lowed by
WT1

WT 1A

basic restriction statement consists of a subject fol-

a predicate:

IN ASSERTION: OBJECT 15 EMPTY.

IN ASSERTION: OBJECT, HAS VALUE NULLOBJ,
) N ~—r—

subject predicate

49~

When the restriction is executed, it first locates the subject
and then tests whether or not the prediéate is true. If it is
true, the restriction succeeds and the parse continues as 1if
the restriction had not been there. If the predicate is false,
the restriction fails and the parser is forced to back up and
try to find some alternate analysis for ASSERTION.
The simplest type of subject is just the name of a node.
When a restriction begins, it is looking at the node in which
it is housed (at ASSERTION in the above gxamples). The subject
may name either the stagtinq node or any node on the level immedi tely
below. Thus, a restriction housed in ASSERTION may have as its
LVASSERTION subiject, either ASSERTION,

*EA SUBJECT SA VERB FA OBJECT FA SA, SUBJECT, VERB, or

OBJECT (the level below

the starting node is searched from left to richt, so the subject
SA would bfing vou to the leftmost SA).

The predicate IS EMPTY checks that the current node (the
node specified by the subject of the restriction) dces not sub-
sume any words of the sentence. In other words, a node IS EMPTY
if and only if all the terminal nodes below it in the tree are
null atomics (either NULL or NULLOBJ in our grammar).

Put a simple subject together with this predicate and we
get a restriction like WT1l (above). This is clearly a rather
silly restriction. Neither NSTG nor THATS can be empty, so they
are in effect ruled out as oétions of OBJECT, and we are left
with only the option NULLOBJ. If that is what we wanted, we
could have written

<OBJECT> ::= <NULLOBJ>

-43-

in the first place. Until we develop a larger restriction lang-
uage vocabulary, we must ask the reader to bear with us in our
linguistically useless examples.

Most restrictions, and particularly useless ones, can be
written in more than one way. The restriction WT1lA (above) is
equivalent to Wrl for our small grammar. The VALUE of a given
node is the node immediately below the given node. Thus the

predicate HAS VALUE NULLOBJ checks whether the node immediately

ASSERTION below the current
SA SUBJECT SA VERB SA OBJECT ~SA node is named NULLOBJ.
LR 1 1 1 (§

value®t NULLOBJ This restriction

therefore rules out options NSTG and THATS of OBJECT, just like

WTLl.
While we're at it, we could also rewrite WT1l as -
WT1B = IN OBJECT: OBJECT IS EMPTY
or WrlCc = IN OBJECT: OBJECT HAS VALUE NULLOBJ.

These restrictions would be executed somewhat earlier in the
parsing process than the two mentioned before, namely, as soon
as the OBJECT node was completed. They would also be slightly
faster, since the node specified as the subject is the node at
which the restriction begins -- the restriction does not have
to search one level below the starting node. Note, however,
that these two restrictions are equivalent to our first two
only because OBJECT is used only in ASSERTION in our small
grammar. In the full grammar OBJECT is used in several string
definitions, so WT1lB and WT1C would restrict OBJECT wherever
it was used whereas WITl and WT1A would onlv restrict OBJECT

when it appears in ASSERTION.

Ll

Tn an effort to exhaust the subject (and perhaps the reader)
we shall consider one more variant:

Wr1lX = IN ASSERTION: VALUE OF OBJECT IS NULLOBJ.
In terms of the operations which will be performed when the re-
striction is executed, this restriction is identical to WT1lA.
What we have done is simply to shift the task of finding the
VALUE from the predicate to the subject of the restriction sen-
tence. 1In doing so we have introduced a new subject form,
VALUE OF node, which first finds node (which, as before, must
either be the starting node or on the level immediately below)
and then goes to the node immediately below, and a new predicate
form, IS node, which tests whether the current node is named
node.

As we already see, most restrictions are of the form ‘go -
somewhere on the tree and make a test.' The restriction will
fail not only if the test fails but also if it is not possible
to go where the restriction asks. For instance,

WILLFAILl = IN ASSERTION: NULLOBJ IS EMPTY.
will always fail, even if there is a NULLOBJ on the tree, because
it will not be on the level immediately below ASSERTION. Or,
WILLFAIL2 = IN LNR: VALUE OF N IS SENTENCE.
will fail because N is an atomic node and hence has no value
(there is nothing below it on the tree).

Although we can't take the VALUE of an atomic node, there

are a few interesting things we can find out about it. For one

PN thing, we can test for the actual word in the

{p NSTG sentence which has been matched. Thus
lto' Wwr2 = I PN: P IS 'TO'.

-45-

restricts us to prepositional phrases beginning with the word
TO. We can also test if the matched word has a particular at-
tribute:

WT3 = IN LTVR: TV HAS ATTRIBUTE PLURAL.
This restriction verifies that, in the sentence word matching
the atomic TV, one of the attributes on the level immediately
below the category TV is PLUBAL. The HAS ATTRIBUTE operation
will not search more than one level.of the attribute tree of
its own accord; for example,

Wr4x = IN LTVR: TV HAS ATTRIBUTE NSTG.

will fail for the tree shown at right, even though NSTG is in

the attribute subtree of LTVR
TV. We are obliged to LV TV RV
.~ ©

specify which attribute - -

/'/ eat
the restriction should ! 1

. { vV

look for on each level \

5 JPLURAL OBJLIST

of the tree. In the ex-
NSTG NULLOBJ

ample just cited, we
would have to tell the restriction first to look for the attri-
bute OBJLIST on the level below TV and then to look for NSTG
pelow OBJLIST. We indicate this in restriction language by
writing the successive elements to be looked for one after the
other, separated by colons, thus:

WT4 = IN LTVR: TV HAS ATTRIBUTE OBJLIST: NSTG.

On the principle that there should he at least two ways of
sayinag anything, the restriction language allows "HAS ATTRIBUTE"

to be replaced by "IS". Thus we could rephrase WT3 as

WP3REPHRASED = IN LTVR: TV IS PLURAL.

46~

and, though it may sound less "natural,"

WT4REPHRASED = IN LTVR: TV IS OBJLIST: NSTG.

One final note for this chapter: the test made by any
predicate may be inverted by changing IS to IS NOT and HAS to
DOES NOT HAVE; e.d.,

WT1N

IN ASSERTION: OBJECT DOES NOT HAVE VALUE NULLOBJ.

WI4N = IN LTVR: TV IS NOT OBJLIST: NSTG.

The last restriction will succeed if either the category TV of
the word does not have the attribute OBJLIST ox OBJLIST does not
have the attribute NSTG. A restriction with NOT will succeed
if the predicate of the restriction without MOT would fail for
any reason. This leads to the seemingly odd but perfectly
logical situation where

WODD1 = IN LNR: VALUE OF N IS NOT SENTENCE. -
will fail because the operation in the subject (taking the value
of an atomic) fails, whereas

WODD2 = IN‘LNR: N DOES NOT HAVE VALUE SUBJECT.
will succeed, because the operation in the predicate of computing
the value fails. This is an indication that, while the restric-
tion language is desianed to make the meaning of "reasonable"
restrictions quite transparent, the freedom of expression it
provides canrbe perverted in the cause of deception and confusion.

Let us close this chapter by listing the subjects and pre-

dicates we have introduced so far:

-47-

SUBJECT PREDICATE
node Is EMPTY
VALUE OF node IS NOT node

text (word in quotes)
ATTRIBUTE [:attributel...
HAS VALUE node
DOES NOT HAVE ATTRIRUTE [sattribute]...
Items written one above the other and grouped together with
braces are alternative forms for a component (subject or predi- -

cate) of a restriction language statement.

7. THE RESTRICTIONS: THE STRING RELATIONS

The trouble with rewriting the string grammar in BNF is
that simple relations between strings in a sentence may turn
into rather complicated relationships among nodes in the parse
tree. A major objective of the restriction lanquage is to
obviate this difficulty by including as a basic part of the
language those operations on the parse tree which correspond
to string relations. In contrast to the primitives introduced
in the previous chapter, VALUE and HAS ATTRIBUTE, these opera-
tions may search through several levels of the parse tree.

Consider for example the restriction on subject-verb number
agreement in its simplest form, as a check on the SINGULAR or
PLURAL attributes of the noun or pronoun and the tensed verb.

In string theory these are attributes of two successive categories

in a center string. In our parse tree, however, these attributes

