ERRATA LIST for BOOK:
Fundamental Problems in Algorithmic Algebra


	THIS LIST IS POSTED at /http://cs.nyu.edu/yap/book/

	YOU MAY REPORT ANY ERRORS (IN THE BOOK OR IN THIS LIST) BY CONTACTING
	THE AUTHOR AT
		"yap (at) cs.nyu.edu".
	I pay a reward of (Y-1900) cents to the first finder of each mistake of
	any kind in the book or in this list, including multiple occurrences,
	but excluding errors in indexing.  Here Y is the year of communication.
	For example, in 2013, each error is worth $2.13.

	NOTE: Some special characters do not display properly on web browsers.
	Please download this file to see the actual characters.  LaTeX is
	used in some description.

	THANKS to the following individuals for bug report: 
	Christoph Koegl, Duncan Buell, Bernard Chazelle, 
	Richard Fateman, Chen Li, Steve Fortune, Damien Stehle, Vikram Sharma,
	Zilin Du, Sung-il Pae, Abram Connelly, Edvard Fagerholm, David Teusner,
	Jason Yellick.

===============================================================================
page	line            BUG REPORT [RESPONSE]             	name	date
===============================================================================

---- FRONTISPIECE MATERIAL ----------------------------------------------------
vii	chap.2 & 2.4	Denominator => Divisor			Buell	6/1/00
xiii	para.2, l.4	\'a  => \`a				Chazelle 1/21/00
	-5		leit motif => leitmotif			Fateman	 2/17/00
	-3		elemination => elimination		Chazelle 1/21/00
	-2		Contiuned => Continued			Chazelle 1/21/00
xv	7		Algebrea => Algebra			Koegl	1/18/00
	10		Birkäuser => Birkhäuser			Koegl	1/18/00
	16		Spring-Verlag => Springer-Verlag	Koegl	1/18/00
	-7		Algebriac => Algebraic			Koegl	1/18/00
	-7		Coputing => Computing			Koegl	1/19/00
	-2		Compoutation => Computation		Koegl	1/18/00

	-0		Various people have pointed out additional
			books that ought to belong to my list. 

			MORE TEXTBOOKS:

	  		E. Bach, J. Shallit:
				Algorithmic Number Theory - 
				Volume 1, Efficient Algorithms,
	  			MIT Press, Cambridge, Mass., 1996.
	  
	  		M. Bronstein:
				Symbolic Integration I - Transcendental Functions,
				Springer-Verlag, Berlin, 1997.
	  
	  		P. Bürgisser, M. Clausen, M. A. Shokrollahi:
				Algebraic Complexity Theory,
	  			Springer-Verlag, Berlin, 1997.
	  
	  		J. von zur Gathen, J. Gerhard:
				Modern Computer Algebra,
				Cambridge University Press, 1999.
	  
	  		M. Pohst, H. Zassenhaus:
				Algorithmic Algebraic Number Theory,
				Cambridge University Press, 1997.

			M. Mignotte, D. Stefanescu: 
				Polynomials - An Algorithmic Approach
				Springer-Verlag, Singapore, 1999.
	  
	  		W. V. Vasconcelos:
				Computational Methods in Commutative Algebra
				and Algebraic Geometry,
				Springer-Verlag, Berlin, 1998.
	  
	  		F. Winkler:
				Polynomial Algorithms in Computer Algebra,
				Springer-Verlag, Wien, 1996.
	  
			
---- CHAP 0: INTRODUCTION -----------------------------------------------------
1	2nd citation	D'Alembart => d'Alembert		Koegl	1/19/00
2	4, 6		lead(P):  "lead" should have \tt font	Buell	6/1/00
7	2 of (0.9)	Add a '.' at the end.			Koegl	1/19/00
8	26 		addresses => address 			Pae	12/12/05
9	15f.		How should the '+ 1' account for a
			"separator between the two integers"? 
			I do not see how a single bit could
			help to distinguish between the numerator
			and the denominator. 
								Koegl	1/19/00
			[FIX: I NEED log(p) additional bits,
			   not constant]	

	19f.		Same discussion applies here. For a more
			detailed account of space requirements one
			would have to discuss implementation
			issues more deeply.
								Koegl	1/19/00
			[FIX: AGAIN, I NEED
			   "+log(size(a_{ij}))" bits]

	-9		I feel that you have an unfair
			characterization that sparse representation
			increase the computational complexity
			of problems.				Fateman	2/18/00

			[FIX:  Technically, I am correct, but the
			negative connotation is unwarranted!
			Please insert the following sentences:
			"This does not mean that the sparse 
			representation is undesirable.  Indeed, in
			practice, it is often the only feasible
			representation.  Basically these complexity
			results say that the sparse representation
			can be super-polynomially more compact than the
			dense representation (assuming $NP\neq P$)." ]

	9, 15, 19	wrong font for closing quotes		Buell	6/1/00
			
15	-8		\Omega(0(g(n))+f(n)) => \Omega(O(g(n))+f(n))
								Koegl	1/19/00
19	-5		Khacian => Khachian			Koegl	1/19/00

---- CHAP 1: ARITHMETIC -------------------------------------------------------	
27	2 of Pascal	those who has => those who have		Koegl	1/19/00
	-4 of Leibniz	be repeated => by repeated		Koegl	1/19/00
32	-l		scalar => componentwise			Yap	10/17/00

---- CHAP 2: GCD --------------------------------------------------------------
43	2		DENOMINATOR => DIVISOR			Buell	6/1/00
	-6		denominator => divisor			Buell	6/1/00
45	9		arithmetic  => Arithmetic		Buell	6/1/00
48	3 lines after
	eqn.(2.3)	produces  => produce			Buell	6/1/00
52	Example 2.1	(13,8,3,-1) => (13,8,-3,-1)		Teusner	1/26/11
54	4		DENOMINATOR => DIVISOR			Buell	6/1/00
54	-11		partial quotient => partial quotient.	Pae	12/12/05
63	figure 2.1	length of D should be l-1, not l	Stehle	7/9/01
65	-6		+1 => -1				Stehle	7/9/01
65	-5		floor(m'/2)+1 => ceiling(m'/2)-1	Stehle	7/9/01
65	-4		floor(m'/2)+1 => ceiling(m'/2)-1	Stehle	7/9/01
69	Section 2.A.2	The cutoff should be 8, not 4		Stehle	7/9/01
			This means: "a<=3 should be "a<=7"
			and "a>=4" should be "a>=8".
			Changes in 3 places.
73-75	Section 2.A.4	Because of the changes in Section	Stehle	7/9/01
			2.A.2, we need to rewrite this section. 
			We will post this in the future (please
			contact the author if this is important).

===============================================================================


---- CHAP 3: SUBRESULTANTS ----------------------------------------------------
77	8		alternations => alterations		Buell	6/1/00
78	-9		hold unless => holds unless		Pae	12/12/05
79	footnote	[60] => [63]				Buell	6/1/00
80	-10		prim(Q), prim(R) belong => 
				prim(Q) and prim(R) belongs	Pae	12/12/05
82	statement of
	lemma 3.4	"\beta = lead(B). Then"  =>
			"\beta = lead(B), then we have that"	Buell	6/1/00
83	-12		multiple GCD => multiple GCDs		Buell	6/1/00
85	1		Sylvester => the Sylvester 		Buell	6/1/00
87	3		that those => than those 		Pae	12/12/05
	15		\alpha^{2^k} => \alpha^{2^{k-2}} 	Pae	12/12/05
88	12		\det M_o => \det M_0 	 		Pae	12/12/05
89	Eqn (3.13)	The correct order of computing the
			quintuple is
			(P_{i+1},\delta_i,\beta_{i+1},a_{i+1},\psi_{i+1})
								Sharma+Du 6/1/05
96	10		assertion b) => assertion (b) 		Pae	12/12/05

---- CHAP 4: MODULAR TECHNIQUES -----------------------------------------------
105	9		[105, [p.271] => [105, p.271]		Pae	12/12/05
106	12		a_i^{(j)}\in I_i => 
			  a_i^{(j)}\in I_i and a_j^{(i)}\in I_j	Pae	12/12/05
107	2		\cap_{i=1}^n I_n => \cap_{i=1}^n I_i	Pae	12/12/05
116	l.3 of proof	the 2-norm of (X-c)A(X)	should be squared
			on the left side of the equation	Yap	7/1/00
	l.-2 of proof	2-norm should be squared 		Pae 	12/12/05
117	l.-4 of proof	\prod_{i=k+1}^n => \prod_{i=k+1}^m	Li	7/5/00
118	1		"bX^i" => "b_i X^i"			Zilin	5/16/05
119	7		polynommials => polynomials 		Buell	6/1/00
120	-9		Lemma 4.12 => (Lemma 4.12)		Pae	12/12/05
123	2		S_n => S				Yap	3/19/04
123	-10		comment about sparse representation
			is confusing				Fateman	2/18/00
			[FIX: as for page 9, line -9, we
			should reword this sentence and clarify.]

	-9		we must use now => we must now		Fateman	2/18/00
	-2		several to => several ways to 		Fateman	2/18/00

---- CHAP 5: FUNDAMENTAL THEOREM ----------------------------------------------
124	-4 of Hilbert	construction => constructions		Koegl	1/19/00
	-2 of Hilbert	may always may => may always		Koegl	1/19/00
128	7 		?(E/F) => \Gamma(E/F)			Connelly 1/17/06
133	-3		the set V => consider the set V		Buell	6/1/00

---- CHAP 6: ROOTS ------------------------------------------------------------
141	4 of Viete	thus => Thus				Koegl	1/19/00
	4 of Viete	1/2  should be raised			Yap	2/22/00
	-4 of Viete	trhe => the				Koegl	1/19/00
144	9		roots A(X) => roots of A(X)		Pae	12/12/05
147	7		A(1/X^n) => A(1/X)			Pae	12/12/05
149	-1 from eqn (7)
			|A'(\beta)|\ge |A'(\alpha)|/2
			    => |A'(\beta)|\le |A'(\alpha)|/2	Yap	8/1/03
154	1		is => are				Buell	6/1/00
	-13		only divisible only => divisible only 	Pae	12/12/05
	-9		has a integral => has an integral	Pae	12/12/05
156	14		This show => This shows 		Pae	12/12/05
162	-8		\cdots e_n => \cdots \le e_n		Yap	5/5/06
163	7		\sum_{i=1}^{n_1} => \sum_{i=1}^{n}	Pae	12/12/05
164	-9		of total degree d => of weight d	Pae	12/12/05
167	8		"=" should be ":="			Fortune	11/30/00
	11		aX^2 + bx => aX^2 + bX			Pae	12/12/05
170	Thm.6.28	">" should be "\ge"			Kaltofen 3/23/05
	Proof of Thm	In the equation just preceding the line
			"where", the
			vertical \vdots should be followed
			by a newline before \beta_i^{(m-1)}	Vikram	9/12/05
171	Proof of Thm	Similarly, the last equation of the
			proof should replace ">" with "\ge"	Kaltofen 3/23/05
179	14		A[(a+b)/2] => A((a+b)/2)		Pae	12/12/05
	14		If A[(a+b)/2) => If A((a+b)/2)		Pae	12/12/05
183	6 of Proof 	"\prod_{i=1}^m" => "\prod_{i=1}^{m-1}"	Vikram	3/27/03	
	7 of Proof 	"\prod_{i=1}^m" => "\prod_{i=1}^{m-1}"	Vikram	3/27/03	
	7 of Proof	"g(X^*)"  => "f'(X^*)"			Vikram	3/27/03
	-3 of Proof	replace line by
			  "\le (m-1)^{m-1}((m+1)^{1/2} \|f\|_\infty)^{2m-4}"
			  					Yap	3/27/03

---- CHAP 7: STURM THEORY -----------------------------------------------------
187	-1		Note that ... of PRS. => Note that the
			definition of a PRS implies that
			$0 = \alpha_i A_{h-1}+Q_h A_h$ for some
			$\alpha_h, Q_h$.			Yap	3/1/00
192	12		A(X) and B(X) are both => B(X) is	Yap	9/27/01
195	Exer.7.2.2	dominats => dominates			Fortune	11/30/00
197	2		Omit "A(X) is square free and"		Yap	9/27/01
197	9		Wrong bracket				Yap	9/27/01
199	7		problem A => problem in Section 7.3.1	Yap	3/1/00
	15		problem A => Section 7.3.1		Yap	3/1/00
202	8		integer polynomial =>
			   integer multivariate polynomial	Fortune	11/30/00
212	lemma 7.14	roots of A =>
			   roots of A in [\alpha,\beta]		Fortune 11/30/00
215	-1		W^{\epsilon\cdot\epsilon} =>	
			   W^{\epsilon\cdot\epsilon'} 		Fortune 11/30/00
232	-3		see. for example => see, for example 	Pae	12/12/05

---- CHAP 8: LATTICES ---------------------------------------------------------
219	3 of Minkowski	(Leipzig,) => (Leipzig,			Koegl	1/19/00
	-9		two-dimensions => two dimensions	Buell	6/1/00
220	7		delete "or even infinite"		Buell	6/1/00
222	line 3 of 8.1.1	Scalar => The scalar			Buell	6/1/00

---- CHAP 9: LATTICE REDUCTION ------------------------------------------------
234	5 of Weyl	gentlemen => gentleman			Koegl	1/19/00
235	-8		LLL algoritmn => LLL algorithm		Fateman	2/17/00
	-7		Sch\"onlage => Sch\"onhage		Fateman	2/17/00
243	12		so => , and so				Yap	4/4/00
245	-4		b^*j = c^*j => b^*_j = c^*_j 		Fagerholm 5/24/06
245	-3		i=1 => i-1 				Fagerholm 5/24/06
247	2		"entries of B then" => "entries of
			   B then $\log d=O(mns)$ and"		Fagerholm 6/4/06
	6, equation	"\log_{\sqrt{3}/2}" =>
			"\log_{2/\sqrt{3}}" 			Fagerholm 7/6/06
	6, equation	"s + log n" => "log d + s + log n"	Fagerholm 6/4/06
	10, Theorem 9.9	"O[m^4n(s + log n)]" =>
			"O[m^4n(log d + s + log n)]=O(m^5n^2s)"
			  					Fagerholm 6/4/06
	Exer.9.4.2	Bit estimates change accordingly	Fagerholm 6/4/06
	Exer.9.4.3	Bit estimates change accordingly	Fagerholm 6/4/06
250	line after 
	theorem 9.13	involve => involves			Buell	6/1/00

---- CHAP 10: LINEAR SYSTEMS --------------------------------------------------
264	-7, after eqn(10.8):
		 	(M)_{i,m} => (M)_{i,j}			Yap	6/1/10
		 	(M)_{k,m} => (M)_{k,j}			Yap	6/1/10
265	6, after item (iii):
			"[For s=1, the" => "[For s=0, the"	Yap	6/1/10
271	-3		r = 1,...,n  => r \in \{1,...,n\}	Buell	6/1/00
277	6 after Cor.10.12.  c' := GCD... ==> c := GCD..."	Connelly 12/12/11
	7 after Cor.10.12.  summation is from i=0, not i=1.	Connelly 12/12/11
278	-6		relative  => relatively			Buell	6/1/00
285	3		c_i \in |R => c_i \in {\mathbb R}	Pae	12/12/05
	-13		((10.27)) => (10.27)			Pae	12/12/05
286	3, 4		Bachem and Kannan => Kannan and Bachem	Buell	6/1/00
292	11, 14, -5	Bachem and Kannan => Kannan and Bachem	Buell	6/1/00
	

---- CHAP 11 ELIMINATION ------------------------------------------------------
300	1 of Noether	years , => years,			Koegl	1/19/00
	-7 of Artin	littler => little			Buell	6/1/00
	-6 of Artin	the => The				Koegl	1/19/00
	-2 of Artin	husbanc's => husband's			Koegl	1/19/00
351	before Lem11.46	[125] => [126]				Yap	4/18/08
	Lemma 11.46	Wrong as stated. The (non-trivial)	Yellick	2/22/13
			fix is in the this pdf file:
			Lemma11-46.pdf.
361	-3		equation not aligned			Yap 	5/12/04
362	-9 (equation)	"d_n - \frac{q^n}{n} - o ..."  =>	Yap	5/12/04
			"d_n - \frac{q^n}{n} = o ..."

---- CHAP 12 GROEBNER BASES ---------------------------------------------------
370	-4		a => an 				Buell	6/1/00
371	Ex. 12.1.4	Dixon's => Dickson's [three times]	Koegl	1/19/00
383	Ex. 12.4.3	on Sparc a => on a Sparc		Koegl	1/19/00
			coefficients up => coefficients of up	Koegl	1/19/00
	Ex. 12.4.4	Show the => Show that			Koegl	1/19/00
			fm => f_m				Koegl	1/19/00
			Ideal(f_1,...,fm1-Zp) =>
				Ideal(f_1,...,f_m,1-Zp)		Koegl	1/19/00
390	Ex. 12.6.7	\overbar{K}_n => \overbar{K}^n		Koegl	1/19/00
			\overbar{K}[X_1,...,Xn]
				=> \overbar{K}[X_1,...,X_n]	Koegl	1/19/00
393	10		a => an 				Buell	6/1/00
---- CHAP 13: BOUNDS ----------------------------------------------------------
398	4 of Mac Lane	Neother => Noether			Koegl	1/19/00
401	-2,-3		I => M					Yap	6/4/11
442	-15		13.A:.1 => 13.A.1			Koegl	1/19/00
445	6		13.A:.2 => 13.A.2			Koegl	1/19/00

---- CHAP 14: CONTINUED FRACTIONS ---------------------------------------------
446	line 1 in quote
	of Minkowski 	investigation, => investigation		Buell	6/1/00
450	line 2 of 14.2.1 "whee" => "where"			Connelly 1/17/06
452	footnote	delete the word "also"			Buell	6/1/00
462	line 15		matrix [0     1]  => [0  p_i]
                               [p_i q_i]     [1  q_i]		Yap	9/26/02
	eqn (14.24)	matrices [0     1]  => [0  p_j]
                                 [p_j q_j]     [1  q_j]		
			(for j=1, 2, i)				Yap	9/26/02
463	eqn (14.29)	x_i => x_{i+1}				Sharma	12/24/02
	-4		x_i => x_{i+1}				Sharma	12/24/02
470	line -2		Replace "By binary search," with the	Yap	4/28/04
			following text:
			"If $\floor{s_0}\le r_0$ or
			$A_0(\floor{s_0})A_0(s_0)\le 0$, then
			$a_0 = \floor{s_0}$.  If $\ceil{r_0}\le 0_0$ or
			$A_0(\ceil{r_0})A_0(r_0)\le 0$, then
			$a_0 = \ceil{r_0}-1$. Otherwise, by a
			binary search,"
477	line after 
	eqn(14.50)	\sqrt{5}-1 => \sqrt{5}+1		Sharma	6/30/06

---- REFERENCES ---------------------------------------------------------------
485	[7]		Bachem and Kannan => Kannan and Bachem	Buell	6/1/00
486	[45]		Year of publication is 1973, not 1975	Pae 	12/12/05
487	[55]		Dixon => Dickson			Yap	2/23/00

---- INDEX --------------------------------------------------------------------
498	line -18,
	column 1	136 => 136, 173e			Yap	4/29/04	
        (Eisenstein's crit.)

---- SYMBOLS ------------------------------------------------------------------
510	-9 (column 2)	\sigma should appear above arrow	Yap	5/18/00
510	-10 (column 2)	\sigma should appear above arrow	Yap	5/18/00

---- BACK COVER ---------------------------------------------------------------
	-1		SIAM Journal of Computing
			   => SIAM Journal on Computing 	Pae	12/12/05
===============================================================================
--Chee Yap
File Created: Sep 1999.