Lecture IV Page 1

“Liesez Euler, liesez Euler, c’est notre fiv@ a tous”

(Read Euler, read Euler, he is our master in everything)
— Pierre-Simon Laplace (1749-1827)

Lecture IV
PURE GRAPH ALGORITHMS

Graph Theory is said to have originated with Euler (1707-278The citizens of the cityof
Kdnigsberg asked him to resolve their favorite pastimestjae: is it possible to traverse all the 7
bridges joining two islands in the River Pregel and the maia, without retracing any pathSee
Figure 1(a) for a schematic layout of these bridges. Euler recoghiirethis problem the essence of
Leibnitz’s earlier interest in founding a new kind of mathegios called “analysis situs”. This can be
interpreted as topological or combinatorial analysis irdera language. A graph corresponding to the 7
bridges and their interconnections is shown in Figl(l®. Computational graph theory has a relatively
recent history. Among the earliest papers on graph algostare Boruvka’s (1926) and Jarnik (1930)
minimum spanning tree algorithm, and Dijkstra’s shorteghmlgorithm (1959). Tarjar’] was one of
the first to systematically study the DFS algorithm and itgli@ations. A lucid account of basic graph
theory is Bondy and Murtyd]; for algorithmic treatments, see Eves] pnd Sedgewickd].

The real bridge
Credit: wikipedia

@ (b)

Figure 1: The 7 Bridges of Konigsberg

Graphs are useful for modeling abstract mathematicalioalsiin computer science as well as in
many other disciplines. Here are some examples of graphs:

Adjacency between CountriesFigure2(a) shows a political map df countries. Figur@(b) shows a
graph with vertex set’ = {1, 2, ..., 7} representing these countries. An edgg represents the

1 This former Prussian city is now in Russia, called Kanindg@ee article by Walter Gautschi (SIAM Review, Vol.50, No.1
2008, pp.3-33) on the occasion of the 300th Anniversary ¢éubirth.

2 His paper was entitled “Solutio problematis ad geometritms pertinentis” (The solution of a problem relating to the
geometry of position).

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§1. VARIETIES OF GRAPHS Lecture IV Page 2

relationship between countriésindj that share a continuous (i.e., connected) common border.
Thus the graph is an abstraction of the map. Note that cesrand3 share two continuous
common borders, and so we have two copies of the @dge

Flight Connections A graph can represent the flight connections of a particutéine, with the set
V representing the airports and the &etepresenting the flight segments that connect pairs of
airports. Each edge will typically have auxiliary data asated with it. For example, the data
may be numbers representing flying time of that flight segment

Hypertext Links In hypertext documents on the world wide web, a documentgeitierally have links
(“hyper-references”) to other documents. We can repretbase linkages by a graph whose
verticesV represent individual documents, and each gdge) € V' x V indicates that there is
a link from document; to document.

@ (b)

Figure 2: (a) Political map of countries (b) Their adjacency relationship

A graph is fundamentally a set of mathematical relationddancidence relations) connecting two
sets, a vertex séf and an edge séi. In Figurel(b), the vertex seti¥ = { A, B, C, D} and the edges
are the7 arcs connecting pairs of vertices. A simple notion of an edge £ is wheree is a pair of
verticesu, v € V. The pair can be ordered= (u,v) or unordere@ = {u, v}, leading to two different
kinds of graphs. We shall dendtsuch a pair by #—v", and rely on context to determine whether an
ordered or unordered edge is meant. For unordered edgeswse-hv = v—u; but for ordered edges,
u—v # v—u unlessu = v. Note that this simple model of edges (as ordered or unoddea@s) is
unable to model the Konigsberg graph Figli(e) since it has two copies of the edge betweeand B.
Such multiple copies of edges requires the general formonlaf graphs as a relationship between two
independent sefs and E.

In many applications, our graphs have associated data suamaerical values (“weights”) attached
to the edges and vertices. These are calledjhted graphs The flight connection graph above is an
example of this. Graphs without such numerical values alleccaure graphs. In this chapter,
we restrict attention to pure graph problems; weighted lygsagill be treated in later chapters. Many
algorithmic issues of pure graphs relate to the conceptsfiectivity and paths. Many of these al-
gorithms can be embedded in one of two graph traversal gieastealled depth-first search (DFS) and
breadth-first search (BFS).

What could be impure
of graphs?

shell programming
again!

Some other important problems of pure graphs are: testiagifiph is planar, finding a maximum
matching in a graph, and testing isomorphism of graphs.

1. Varieties of Graphs

3 We have taken this highly suggestive notation from Seddesviiook [3].

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§1. VARIETIES OF GRAPHS Lecture IV Page 3

In this book, “graphs” refer to either directed graphs (fdighs”) or undis
rected graphs (“bigraphs”). Additional graph terminolaggollected in Lect
ture | (Appendix A) for reference.

91. Set-Theoretic Notations for Simple Graphs. Although there are many varieties of graph con-
cepts studied in the literature, two main ones are emphasizihis book. These correspond to graphs
whose edges—v aredirected or undirected. Graphs with directed edges are caltbcbcted graphs

or simply,digraphs. Undirected edges are also said todidirectional, and the corresponding graphs
will be calledbigraphs. Bigraphs are more commonly knownasdirected graphs

A graphG is basically given by two setd/ and E. These are called theertex setandedge set
respectively. We focus on the “simple” versions of threemadrieties of graphs. The terminology
“simple” will become clear below.

For any sel” and integek > 0, let

1%
vk 2V, (k) (1)

denote, respectively, thiefold Cartesian product of V, power setof V' and theset of k-subsetsof
V. The first two notationsi(* and2") are standard notations; the last one is less so. Theséamstat
are natural because they satisfy a certain “umbral propegtyen by the following equations on set

cardinality:
vr=wr =2 |G = (V) @

For example, leV = {a,b}. Then
V= {(00).(00). 0.0 0.0} 2 = (0. (ah. 0} (e, () = Cethy.

So|V? =[2Y]| =22 =4 and’(‘;)‘ = [(3)| = 1. We can define our 3 varieties of (simple) graphs as
follows:

e A hypergraph is a pairG = (V, E) whereE C 2V,
e A directed graph (or simply,digraph) is a pairG = (V, E) whereE C V2.
e A undirected graph (or* simply, bigraph) is a pairG = (V, E) whereE C (}).

In all three cases, the elementslofare calledvertices. Elements ofF are calleddirected edgesfor
digraphs,undirected edgedor bigraphs, andyperedgesfor hypergraphs. Formally, a directed edge
is an ordered paifu, v), and an undirected edge is a $et v}. But we shall also use the notatiop-v

to represent andgewhich can be directed or undirected, depending on the confxs convention is
useful because many of our definitions cover both digraptidagraphs. Similarly, the terigraph will
cover both digraphs and bigraphs. Hypergraphs are songetaikedset systemgsee matroid theory
in Chapter 5). Bergel] or Bollobas [] is a basic reference on hypergraphs.

An edgeu—u is said to bancident on« andv; conversely, we say andv boundsthe edge{u, v}.

This terminology comes from the geometric interpretatibedges as a curve segment whose endpoints

are vertices. In case—v is directed, we call: thestart vertex andv the stop vertex

4 While the digraph terminology is fairly common, the bigraighminology is peculiar to this book, but we think it merits
wider adoption. Students sometimes confuse “bigraph” ttitpartite graph” which is of course something else.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

umbra = shade or
shadow (Latin)

Sou—v can mean
(u,v)or {u,v}!

§1. VARIETIES OF GRAPHS Lecture IV Page 4

If G = (V,E)andG" = (V’, E’) are graphs such thdf C V' andE C E’ then we callG a
subgraphof G’. WhenE = E' N (‘2/) we callG the subgraph of’ that isinduced by V.

92. Graphical Representation of Graphs. Bigraphs and digraphs are “linear graphs” in which each
edge is incident on one or two vertices. Such graphs havealartaphical (i.e., pictorial) represen-
tation: elements of are represented by points (small circles, etc) in the pladestements o2 are
represented by finite curve segments connecting thesespoint

AU

(a) bigraph (b) digraph (c) hypergraph

Figure 3: Three varieties of graphs

In Figure 3(a), we display a bigraph(V,E) where V' = {a,b,¢,d,e} and E =
{a—b,b—c,c—d,d—a,c—e, b—d}. In Figure3(b), we display a digrapti’, £) whereV = {1,2,...,6}
andE = {1-5,5—4,4-3,3-2,2—1,1-6,2—6,3—6,4—6,5—6,5—2,5—3,2—3}. We display a di-
graph edge:—v by drawing an arrow from the start vertexo the stop vertex. E.g., in Figure3(b),
vertex6 is the stop vertex of each of the edges that it is incident analBthese edges are “directed”
towards vertex. In contrast, the curve segments in bigraphs are undir¢otda-directional). In Fig-
ure 3(c) we have a hypergraph dn = {a, b, ¢, 1,2, 3} with four hyperedge$a} , {1, 2}, {b,2,3} and
{b,¢,3}.

93. Non-Simple Graphs. Our definition of bigraphs, digraphs and hypergraphs is imetnly rea-
sonable one, obviously. To distinguish them from other ipdsspproaches, we call the graphs of our
definition “simple graphs”. Let us see how some non-simpéphgs might look like. An edge of the
form u—u is called aloop. For bigraphs, a loop would correspond to a&etu} = {u}. But such
edges are excluded by definition. If we want to allow loopsmusst defineZ as a subset ;) U (V).
Note that our digraphs may have loops, which is at variandk 8ome other definitions of “simple
digraphs”. In Figured(b) and in2(b), we see the phenomenonmtilti-edges(also known aparallel
edge3. These are edges that can occur more than once in the graph.

More generally, we viewr as a multiset. Anultiset S is an ordinary sef together with a function
u: S — N. We call S theunderlying set of S and u(«) is the multiplicity of z € S. E.g., if
S ={a,b,c} andu(a) = 1, u(b) = 2, u(c) = 1, then we could displag as{a, b, b, ¢}, and this is not
the same as the multisgt, b, b, b, ¢}, for instance.

94. Special Classes of Graphs. In Appendix (Lecture 1), we defined special graphs such aslacy
graphs and trees. We mention note some additional classgapiis here.

First consider bigraphs. The complete grdph and the complete bipartite grapgty,, ,, were also
defined in Lecture | Appendix. See Figuia,b) for the cases ak'; and K3 3. In general pipartite
graphsare those whose vertex sétcan be partitioned in two disjoint setsw B = V' such that each

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§1. VARIETIES OF GRAPHS Lecture IV Page 5

edge is incident on some vertex4hand on some vertex iB. Instead of writingG = (V, E), we may
write G = (A, B, E) for such a bipartite graph witft C A x B. Bipartite graphs are important in
practice because they model relations between two setgitiésriman versus woman, students versus
courses, etc).

@) @) (b)

O—0——~CG—~0
(

c)

Figure 4: (a)Ks, (&) K5, (b) K33, (C) L4, (d)Cy

Planar graphs are those bigraphs which can be embedded in the Euclideae piech that no two
edges cross. Informally, it means that we draw them on a giEpaper so that the curves representing
edges do not intersect. Planar graphs have many specia@rtiesp for instance, a planar graph with
vertices has at mostn — 6 edges. The two smallest examples of non-planar graphs arsotlealled
Kuratowski graphd<s and K3 3 in Figure4(a,b). We have re-drawf’s in Figure4(a’), this time to
minimize the number of edge crossings. The grapty is also known as the “utilities graph”. The Why isK33 3 so called?
proof that these two graphs are nonplanar are found in Eses¢in this section, and also in Appendix
of Chap. 1).

We can also define thiéne graphs L,, whose nodes arél, ..., n}, with edgesi—i + 1 for i =
1,...,n — 1. Closely related is theyclic graphs C,, which is obtained fron1.,, by adding the extra
edgen—1. These are illustrated in Figuséc,d).

These graphs<,,, K., », L., C,, are usually viewed as bigraphs, but there are obvious digrap
versions of these.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§1. VARIETIES OF GRAPHS Lecture IV Page 6

Graph Isomorphism. The concept of graph isomorphism (see Appendix,
Lecture I) is important to understand. It is implicit in maofyour discussion
that we are only interested in grapis to isomorphismFor instance, we de
fined K, (n € N) as “the complete graphs envertices” (Appendix, Lecturg
1). But we never specified the vertex setldf,. This is becausé’, is really
an isomorphism class. For instance= (V, E) whereV = {a,b, ¢, d} and
E = (%) andG’ = (V', E') whereV’ = {1,2,3,4} andE’ = (") are iso]
morphic to each other. Both belong to the isomorphism déssAnother ex-
ample of two isomorphic graphs is the Kuratowski grdph but represente]
differently as in Figurel(a) and Figurel(a’). We could sometimes avoid isp-
morphism classes by picking a canonical representative fhe class. In the
case ofK,,, we can just view it as a bigraph whose vertex set is a paaticul
set,V,, = {1,2,...,n}. Then the edge set (in case &f,) is completely det
termined. Likewise, we defing,, andC,, above as graphs on the vertex|set
{1,2,...,n} with edgesi—(i + 1) fori = 1,...,n — 1 (andn—1 for C,,).
Nevertheless, it should be understood that we intend to YigwndC,, as an
isomorphism class.

2]

o

95. Auxiliary Data Convention. We may want to associate some additional data with a gragh. Su
pose we associate a real numbE(e) for eache € E. Then grapiG = (V, E; W) is calledweighted
graph with weight functioniV : £ — R. Again, suppose we want to designate two verticésc V' as
the sourceanddestination, respectively. We may write this graph@s= (V, E; s, t). In general, aux-
iliary data such a#V, s, t will be separated from the pure graph data by a semi-calos, (V, E; - - -).
Alternatively,G is a graph, and we want to add some additional data we may also writéG; d, d’),
etc.

EXERCISES

Exercise 1.1: (Euler) Convince the citizens of Kdnigsberg that theredsway to traverse all seven
bridges in Figurel(a) without going over any bridge twice. &

Exercise 1.2: Suppose we have a political map as in Figd¢a), and its corresponding adjacency
rela‘t/ion is a multigraptG = (V, E) whereE is a multiset whose underlying set is a subset
of .
(a)(észpose vertex has the property that there is a unique vertesuch thatu—v is an edge.
What can you say about the country correspondingo
(b) Suppose:—v has multiplicity> 2. Considerthe sé’ = {w € V : w—v € E,w—u € E}.
What can you say about the 3ét? &

Exercise 1.3: Prove or disprove: there exists a bigragh= (V, E) where|V| is odd and the degree of
each vertex is odd. &

Exercise 1.4:
(i) How many bigraphs, digraphs, hypergraphs are there wertices?
(i) How many non-isomorphic bigraphs, digraphs, hypepiisaare there on vertices? Give
exact values fon < 5. Give upper and lower bounds for genetal &

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§2. PaTH CONCEPTS Lecture IV Page 7

Exercise 1.5:Let G = (V, E) be a hypergraph wheie N ¢’| = 1 for any two distinct hyperedges
e,/ € E. Also, the intersection of all the hyperedgeshhis empty,NnE = (). Show that
[El < V], ¢

Exercise 1.6: A hypergraphG = (V, E) is connectedif it can be written as a union to two non-empty
hypergraphs(G = Gy W G1 where the vertex sets @¥,, G, are disjoint. Acyclein G is a
sequenceug, eq, u1, €2, usa, - . ., uk—1, €] Of alternating vertices,; and hyperedges, such that
u; € e; Neipq (@ssumey = eg). If G is connected, the@ has no cycles iff

Y el -1 =[V|-1.

eckE

%

Exercise 1.7: Consider the decomposition 81" into symmetric chainsE, ¢ E,.1 C --- C E,_,
where eactE, is a subset of of sizek, and|V| = n. For instance, iV = {1, 2,3}, then2" is
decomposed into these 3 symmetric chains:

0 c{3}c{2,3}c{1,2,3}, {2}c{1,2}, {1}c{1,3}.

(a) Please give the decomposition Tor= {1, 2, 3,4}.
(b) Show that such a decomposition always exists. Use if@uonn.
(c) How many symmetric chains are there in the decompoéition &

Exercise 1.8: (Sperner) Letz = (V, E) be a hypergraph with = |V| vertices. Clearly|E| < 2" and
the upper bound is achievable. But suppose we require thayperedge is properly contained
in another (we then sa¥ is Sperner).

(a) Prove an upper bound g#&| as a function ofn in a Sperner hypergraph. HINT: & =
(Ln‘;%)’ then(V, E) is Sperner andE| = (Ln72j)' Try to use the symmetric decomposition in
the previous Exercise.

(b) Characterize those graphs which attain your upper bound &

Exercise 1.9: A “trigraph” G = (V, E) is a hypergraph wher& C (‘g) These are also callegt

uniform hypergraphs. Each hyperedfje E may also be called face A pair {u,v} € (‘2/) is
called aredgeprovided{u, v} C f for some face; in this case, we say is incident one, ande
bound f. We say the trigraplif is planar if we can embed its vertices in the plane such that each
face{a, b, c} is represented by a simply region in the plane bounded by tres connecting the
edgesu—b, b—c andc—a. Show thatG is planar iff its underlying bigraph is planar in the usual
sense. &

END EXERCISES

52. Path Concepts

We now go into some of these concepts in slightly more ddtédilst basic concepts of pure graphs
revolve around the notion of a path.

LetG = (V, E) be a graphi(e., digraph or bigraph). l.—v is an edge, we say thatis adjacent
to u, and alsau is adjacent from v. The typical usage of this definition of adjacency is in a pang
loop:

Adjacency ishot
always symmetric!

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§2. PaTH CONCEPTS Lecture IV Page 8

for each v adjacent ta,

do “...v..”
Letp = (vg,v1,,...,v;), (k > 0) be a sequence of vertices. We gak path if v; is adjacent to
vi—q foralli =1,2,..., k. Inthis case, we can denqgiéy (vg—vy— - - - —vg).

Thelengthof p is k (notk + 1). The path igrivial if it has length0: p = (vy). Call vy is thesource
andvy, thetarget of p. Bothvg andv, areendpointsof p. We also say is a pathfrom v, to v, The
pathp is closedif vy = v, and it issimpleif all its vertices, with the possible exceptionaf = vy, are
distinct. Note that a trivial path is closed and simple. Téerseof p = (vo—v1— - - - —vy) is the path
R::(

pi=(Ug—vK—1— " —vo).

In a bigraphyp is a path iffp’ is a path.

96. The Link Distance Metric. Definedg(u,v), or simplyd(u, v), to be the minimum length of a
path fromu to v. If there is no path from: to v, thend(u,v) = co. We also callo(u, v) the link
distance from u to v; this terminology will be useful when(u,v) is later generalized to weighted
graphs, and when we still need to refer to the un-generatiaadept. The following is easy to see:

distance notation
0(u,v)

e (Non-negativity)y(u,v) > 0, with equality iffu = v.
e (Triangular Inequalityy (u, v) < §(u,w) + 6(w,v).
e (Symmetry) Wher@ is a bigraph, thed(u, v) = (v, u).

These three properties amount to saying @{at v) is ametric on V' in the case of a bigraph. If
d(u,v) < oo, we sayv is reachable fromu.

Suppos€vy—v1— - - - —vg) IS aminimum link path (sometimes called “shortest path”) between
vo andwvy. Thus,d(vg,vx) = k. Then we have the following basic property: forak= 0,1,...,k,
d(vo,v;) = i. Thisis also called the “dynamic programming principlef foinimum link paths (we
will study dynamic programming in Lecture 7).

q7. Subpaths. Letp andq be two paths:
p:(UO_Ul_"-—Uk), q:(uO_ul_"'_UZ)-

If the target ofp equals the source af, i.e., v, = ug, then the operation afoncatenationis well-
defined. The concatenation pfindq gives a new path, written

D3 @:=(Vo—V1— "+ —Vp—1—Vgp—UL—Uz— " —Up).

Note that the common vertex andug are “merged” inp; ¢q. Clearly concatenation of paths is associa-
tive: (p;q);r = p; (g;r), which we may simply write ag; ¢; ». We say that a path containsq as a
subpathif p = p’; q; p”’ for somep’, p”. If in addition, ¢ is a closed path, we caxciseq from p to
obtain the path’; p”. E.g., ifp = (1-2—a—b—c—2—-3—2—y—3—1) and

p=(1-2), q¢=2-a-b—c-2), p’'=(2-3—z—y—3-1).

then we can excise to obtainp’; p” = (1-2—3—x—y—3-1). Whenever we write a concatenation

expression such ap!q”, it is assume that the operation is well-defined.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§2. PaTH CONCEPTS Lecture IV Page 9

98. Cycles. Two pathsp, g arecyclic equivalentif there exists paths, ' such that
p=mr’, g=1"r

We writep = ¢ in this case.

For instance, the following four closed paths are cycliciegjent:
(1-2—3—4-1) = (2-3—4—1-2) = (3—4—1-2-3) = (4—1—-2-3—4).
The first and the third closed paths are cyclic equivalenabse of the following decomposition:

(1-2-3-4-1) = (1-2-3); (3—4—1), (3—4—1-2-3) = (3—4—1); (1-2-3).

If p=r;r" andr’;r is defined, them must be a closed path because the soureeanfd the target
of 7/ must be the same, and so the source and targetoé identical. Similarlyg must be a closed
path.

It is easily checked that cyclic equivalence is a matherahgquivalence relation. We define a
cycleas an equivalence class of closed paths. If the equivaldass aofp is the cycleZ, we callp a
representativeof Z; if p = (vg, v1, ..., v) then we writeZ using square brackets -] in one of the
forms:

Z = [p| = [vi—va— - —vg| = [va—v3— - - —vp—v1].

Note that ifp hask + 1 vertices, then when we explicitly list the verticesofn the cycle notation
[p], we only listk vertices since the last vertex may be omitted. The Exercibexplore the problem
of detecting if two given pathg, ¢ are cyclic equivalentlp] = [¢]. In case of digraphs, we can have
self-loops of the formu—u andp = (u,u) is a closed path. The corresponding cycl@is However,
the trivial pathp = (vg) gives rise to the cycle which is an empty sequefice: |]. We call this the
trivial cycle. Thus, there is only one trivial cycle, independent of angicé of vertexy.

Path concepts that are invariant under cyclic equivalenn&lde “transferred” to cycles automati-
cally. Here are some examples: let= [p| be a cycle.

Thelength of Z is the length of.

SayZ is simpleif p is simple.

We may speak of subcycles gt if we excise zero or more closed subpaths from a closed;path
we obtain a closed subpaghcall [¢] asubcycleof [p]. In particular, the trivial cycle is a subcycle
of Z. For instance|l —2—3] is a subcycle of

[1-2—a—b—c—2—-3—z—y-3|.

Thereverseof Z is the cycle which has the reversepoés representative.

Acycle Z = [p] is trivial if p is a trivial path. So a trivial cycle is writtelfvg)] = [].

We now define the notion of a “cyclic graph”. For a digraphwe say it iscyclic if it contains any
nontrivial cycle. But for bigraphs, this simple definitiorilwnot do. To see why, we note that every
edgeu—v in a bigraph gives rise to the nontrivial cydle, v]. Hence, to define cyclic bigraphs, we
proceed as follows: first, define a closed pate (vog—v1— - —vg—_1,v0) to bereducible if £ > 2
and forsome =1, ...k,

Vi—1 = Vi41

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§2. PaTH CONCEPTS Lecture IV Page 10

where subscript arithmetic are moduto(so v, = vp andwvi;1 = wv1). Otherwisep is said to be
irreducible. A cycle Z = [p] is reducible iff any of its representatiyas reducible. Finally, a bigraph
is said to becyclic if it contains some irreducible non-trivial cycle.

Let us explore some consequences of these definitions oapbigr by definition, the trivial path
(vp) is irreducible. Hence the trivial cycle] is irreducible. There are no cycles of lengthand any
cycle[u, v] of length2 is always reducible. Hence, irreducible non-trivial cycleave length at least
If a closed pathvy, . .., vk—1,vp) is reducible and > 3, then it is a non-simple path.

99. Strong Connectivity. LetG = (V, E) be a graph (either di- or bigraph). Two vertices in

G areconnectedif there is a cycle containing bothandv. Equivalently,d(u, v) andd(v, u) are both
finite. It is not hard to see that strong connectedness is aivadgnce relation of. A subsetC of V'

is aconnected componendf G if it is an equivalence class of this relation. For short, waeyrsimply

call C acomponentof G. ThusV is partitioned into disjoint components.d@ has only one connected

component, itis said to b@nnected By definition,u andv are connected means there is a cytlhat \
contains both of them. But we stress tiiaheed not be a simple cycle. Forinstance, the digraphin t o

margin is connected because every two vertices are corthéttevever, any cycle that contains both
1 and2 is non-simple £ must re-use verte®). The subgraph aff induced byC' is called acomponent
graph of G.

connected digraph

Note that in some literature, it is customary to add the djealistrong” when discussing compo-
nents of digraphs; in that case “component” is reserved folpigraphs. However, our definition of
“component” covers both bi- and digraphs. Neverthelessmight still usestrong componentsfor
emphasis.

(@) (b) (c)
Figure 5: (a) Digraplt7s, (b) Component graph af' = {2, 3,5}, (c) Reduced grap&’;

For example, the grapf; in Figure5(a) hasC' = {2, 3,5} as a component. The component graph
corresponding t@' is shown in Figuré(b). The other components 6fare{1}, {4}, {6}, all trivial.

Given G, we define theeduced graphG¢ = (V¢, E€) whose vertices comprise the components
of G, and whose edge€’, C’) € E° are such that there exists an edge from some verté€xtmsome
vertexinC’. This is illustrated in Figuré(c).

CLAIM: G€is acyclic. In proof, suppose there is a non-trivial cygtein G¢. This translates into a
cycleZ in G that involves at least two componeiitsC’. The existence of contradicts the assumption
thatC, C’ are distinct components.

Although the concept of connected components is meanifgflligraphs and digraphs, the concept

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§3. GRAPH REPRESENTATION Lecture IV Page 11

of reduced graph is trivial for bigraphs: this is becausedfaee no edges i whend is a bigraph.
Hence the concept of reduced graphs will be reserved foagligr only. For bigraphs, we will intro-
duce another concept callbéiconnected componentdelow. WhenG' is a bigraph, the notatio“
will be re-interpreted using biconnectivity.

910. DAGs and Trees. We have defined cyclic bigraphs and digraphs. A gra@tiglicif it is not
cyclic. The common acronym fordirected acyclic graphis DAG. A tree is a DAG in which there is
a vertexu called theroot such that there exists a unique path frogito any other vertex. Clearly, the
root is unique. Trees, as noted in Lecture Ill, are ubiquitoucomputer science.

A free treeis a connected acyclic bigraph. Such a tree it has ex#@tly- 1 edges and for every
pair of vertices, there is a unique path connecting thems@&wwo properties could also be used as the
definition of a free tree. Aooted treeis a free tree together with a distinguished vertex calleddbt.

We can convert a rooted tree into a directed graph in two wayslirecting each of its edges away from
the root (so the edges are child pointers), or by directira ezlge towards the root (so the edges are
parent pointers).

EXERCISES
Exercise 2.1: Letu be a vertex in a grap8.
(a) Canu be adjacent to itself if7 is a bigraph?
(b) Canu be adjacent to itself if7 is a digraph?
(c) Letp = (vg,v1,v2,vp) be a closed path in a bigraph. Cabe non-simple? &

Exercise 2.2: Let G be a bigraph. A Hamilton path @F is a simple path that passes through every
vertex of G. A Hamilton circuit is a simple cycle that passes throughewertex of G. Show
that K3 5 has no Hamilton path or Hamilton circuit O

Exercise 2.3: Define N (m) to be the largest value of such that there is aonnectedigraphG =
(V, E) with m = |F| edges andh = |V| vertices. For instancéy (1) = 2 since with one edge,
you can have at mo&tnodes in the connected graph We also see tha¥ (0) = 1. What is
N (2)? Prove a general formula fa¥ (m). &

Exercise 2.4: Give an algorithm which, given two cyclgs= [v;—--- —v;] andq = [u1— -+ —uy),
determine whether they represent the same cycle. E.&.,[1,2,3,4,5] andq = [3,4,5,1,2]
are equivalent simple cycles, bpandq¢’ = [3,4,5,2,1] are not. Againp = [1,2,1,3,4,5] and
q =[1,3,4,5,1,2] are equivalent non-simple cycles. The complexity of yogoathm may be
O(k?) in general, but should b@ (k) whenq is a simple cycle. Note: Assume that vertices are
integers, and the cycle= [v;— - - - —vg] is represented by an array bintegers. &

END EXERCISES

3. Graph Representation

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

Motto: “know thy
tree”

§3. GRAPH REPRESENTATION Lecture IV Page 12

The representation of graphs in computers is relativegigiitforward if we assume array capabili-
ties or pointer structures. The three main representatioss

e Edge List: this consists of a list of the vertices 6f and a list of the edges @f. The lists may
be singly- or doubly-linked. If there are no isolated vesicwe may omit the vertex list. E.g.,
the edge list representations of the two graphs in FiGweuld be

{a—b,b—c,c—d,d—a,d—b,c—e}

and
{1-6,2—1,2-3,2-6,3-2,3—6,4—3,4—6,5-2,5—3,5—6}.

e Adjacency List: a list of the vertices ofs and for each vertex, we store the list of vertices that
are adjacent to. If the vertices adjacent toarevy, vs, . . ., v.,,, We may denote an adjacency list
foru by (u : vi,ve,...,v,). E.g., the adjacency list representation of the graphsgareB are

{(a:b,d),(b:a,d,c),(c:b,d,e),(d:ab,c)(e:c)}

and
{(1:5,6),(2:1,3,6),(3:2,6),(4:3,6),(5:2,3,4,6),(6:)}

This is supposes to be tlist-of-lists form of adjacency lists. Another variant where we assume
the vertex setig1,...,n} and we have an array[1..n] where A[i] points to the adjacency list
of vertexi. This is thearray-of-lists form. In practice, it is much easier to program the array-
of-lists form. Most of our examples will use this form of acgmcy lists. But the two forms are
inter-convertible inD(n + m) time (Exercise).

e Adjacency Matrix: this is an x n Boolean matrix where thg, j)-th entry is1 iff vertex j is
adjacent to vertex E.g., the adjacency matrix representation of the grapkgjure3 are

1 00001 1

a 01010
2 10100 1

b 10110
3 010001

c 0101 1
, 4 001001

d 11100
. 00100 5 011101
b e d e 6 000000
1 23 45 6

Note that the matrix for bigraphs are symmetric. The adjagematrix can be generalized to store
arbitrary values to represent weighted graphs.

911. Size Parameters. Two size parameters are used in measuring the input complekgraph
problems: |V| and |E|. These are typically denoted byandm. Thus the running time of graph
algorithms are typically denoted by a function of the fdfifn, m). A linear time algorithm would have
T(n,m) = O(m + n). Itis clear that», m are not independent, but satisfy the boufids m < n?.
Thus, the edge list and adjacency list methods of represegtaphs us®(m + n) space while the last
method use®)(n?) space.

TheO(m + n) time

bound is the “gold
standard” for pure

graph algorithms: try

to achieve this bound

If m = o(n?) for graphs in a family, we sayg is asparsefamily of graphs; otherwise the family is
dense Thus the adjacency matrix representation is not a spdicéeet way to represent sparse graphs.
Some algorithms can exploit sparsity of input graphs. Fangle, the familyG of planar bigraphs is
sparse because (as noted earlierk 3n — 6 in such graphs (Exercise). Planar graphs are those that
can be drawn on the plane without any crossing edges.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

whenever possible.

§3. GRAPH REPRESENTATION Lecture IV Page 13

912. Arrays and Attributes. If Ais an array, and < j are integers, we writél[:..j] to indicate that
the arrayA hasj — i + 1 elements which are indexed froio j. ThusA contains the set of elements
{Al, Ali +1],...., Alf]}

In description of graph algorithms, it is convenient to assuthat the vertex set of a graphlis=
{1,2,...,n}. The list structures can now be replaced by arrays indexetidyertex set, affording
great simplification in our descriptions. Of course, arralg® has more efficient access and use less
space than linked lists. For instance, arrays allows usetatié over all the vertices using an integer
variable.

Often, we want to compute and store a particakaribute (or property) with each vertices. We can
use an arrayl[1..n] whereA[i] is the value of thed-attribute of vertex. For instance, if the attribute
values are real numbers, we often céli] the “weight” of vertex:. If the attribute values are elements
of some finite set, we may call[i] the “color” of vertexi.

913. Coloring Scheme. In many graph algorithms we need to keep track of the procgssatus of
vertices. Initially, the vertices are unprocessed, andlfirlaey are processed. We may need to indi-
cate some intermediate status as well. Viewing the statoslass, we then have a three-color scheme:
whi t e orgr ay orbl ack. They correspond to unprocessed, partially processed@ngletely pro-
cessed statuses. Alternatively, the three colors may bedoahseen, seen anddone (resp.), or
0,1, 2. Initially, all vertices are unseen or white @r The color transitions of each vertex are always in

this order:
white = gray = bl ack,

unseen = seen = done 3)
0 =1=2

For instance, let the color status be represented by thgenseraycol or [1..n], with the convention
thatwhi t e/unseenis0, gr ay/seenis 1 andbl ack/done is 2. Then color transition for vertexis
achieved by the increment operatioslor[i]++. Sometimes, a two-color scheme is sufficient: in this
case we omit thgr ay color or thedone status.

EXERCISES

Exercise 3.1: The following is a basic operation for many algorithms: giedigraphG represented
by adjacency lists, compute the reverse digraghi’ in time O(m + n). Recall (Lecture 1,
Appendix) thatu—wv is an edge ofG iff v—u is an edge oiG"*”. You must show that your
algorithm has the stated running time.

PROBLEM REQUIREMENT: your algorithm should directly mogifr into its reverse. We want
you to solve two versions of this problem:

(a) Assume an array representation of the adjacency linistdile., the vertices i3/ =
{1,2,...,n} and you have a array of linked list.

(b) Assume a linked-list-of-linked-lists representation &

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 14

Q: In the above algorithm with an input graph which is better: (i) an algq
rithm to directly modify the graplds into its reverse, or (ii) an algorithm that
preserves and create a new graph to repres@eft

A: Of course, in the above question, we asked you to do thedorikiore]
generally, is it better to have (i) a destructive algoritton (ii) a conservar
tive algorithm? Note that i€++, you indicate that an argument is conseryed
by tagging the argument withonst . The answer may depend on the ap-
plication. But generally, | feel the destructive versiomisre useful. You
might object, saying you want to keep the original graph. Elsponse is that
you can first create a copy before calling the algorithm. Gndtiner hand,
if you do not care to keep the original input, then the coresre algorithrm
wastefully creates a new graph, forcing us to explicitlyetiethe old graph.

Exercise 3.2: Let GG is a connected planar bigraph. LE{G) be any embedding aF in the plane, but
in such a way that the curves (representing edges) are gaidigjoint. The plane is divided by
these curves into connected regions called “faces” by thigdi. Note that exactly one of these
faces is an infinite face. For instance, the graph embeddifigure3(a) has3 faces, while the
embedding in Figuré(b) (viewed as a bigraph for our purposes) hdaces.

(a) Show that if an embedding ¢f has f faces,v = |V| vertices and: = |E| edges then the
formulav — e + f = 2 holds. E.g., in Figur&(a) (resp., Figur&b))v —e+ f=5—-6+3 =2
(resp.y—e+ f = 6—-13+9 = 2). This proves thaf is independent of the choice of embedding.
HINT: use induction ore. SinceG is connecteds > v — 1.

(b) Show thatze > 3f. HINT: Count the number of (edge-face) incidences in two svalyy
summing over all edges, and by summing over all faces.

(c) Conclude that < 3v — 6. When is equality attained? &

Exercise 3.3: The average degree of vertices in a planar bigraph is leastiahow this. &

Exercise 3.4: Let G be a planar bigraph with0 vertices. What is the maximum number of edges it
may have? &

Exercise 3.5: Prove thatk(s 5 is nonplanar. HINT: Use the fact that every face of an embegidf
K3 3 isincident on at least 4 edges. Then counting the numbgidat, face) incidences in two
ways, from the viewpoint of edges, and from the viewpointaafes. From this, obtain an upper
bound on the number of faces, which should contradictioeEformulav — e + f = 2. O

Exercise 3.6: Give anO(m + n) time algorithms to inter-convert between an array-ofligrsion and
a list-of-lists version of the Adjacency Graph represeatat &

END EXERCISES

4. Breadth First Search

Hey, haven't we seen

A graph traversal is a systematic method to “visit” each vertex and each edgegséph. In this this before in trees?

section, we study two main traversal methods, known as Bnelidst Search (BFS) and Depth First
Search (DFS). The graph traversal problem may be tracedtbdle& Greek mythology about threading
through mazes (Theseus and the Minotaur legend), and toalngs cave exploration algorithm in the
19th Century (se€] 6]). Such explorations is still the basis for some popular potar games.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 15

914. Generic Graph Traversal. The idea is to mark the vertices with two “colors”, intuitiyealled
unseen andseen:

GENERIC GRAPH TRAVERSAL:
Input: G = (V, E; s9) wheres is any source node
Color all vertices as initiallynseen.
Mark sg asseen, and insert into a container ADJ)
While @ is non-empty
u + Q.Remove()
For each vertex adjacent ta:
If visunseen,
color it asseen
Q.insert (v)

This algorithm will reach all nodes that are reachable fromgources. To visit all nodes, not just
those reachable from a single sousgewe can use another driver routine which invokes this tisaler
routine with different choices for source nodes (see beldlg set is represented by some container
data-structure. There are two standard containers: atljeeue or a stack. These two data structures
give rise to the two algorithms for graph traverdaleadth First Search (BFS) andDepth First Search
(DFS), respectively. These two algorithms are the maindaduhis chapter.

Both traversal methods apply to digraphs and bigraphs. Mew®&FS is typically described for
bigraphs only and DFS for digraphs only. We generally foltbig tradition unless otherwise noted. In
both algorithms, the input graghl = (V, E; s¢) is represented by adjacency lists, ands V' is called
thesourcefor the search.

The idea of BFS is to systematically visit vertices that a¥arer tos, before visiting those vertices
that are further away. For example, suppose we start searéfum vertexs, = « in the bigraph of
Figure3(a). From vertex:, we first visit the vertices andd which are distancé from vertexa. Next,
from vertexb, we find vertices andd that are distancé away; but we only visit vertex but not vertex
d (which had already been visited). And so on. The trace ofgb@éch can be represented by a tree as
shown in Figures(a). It is called the “BFS tree”.

©O—E

@) (b)

Figure 6: (a) BFS tree. (b) Non-tree edges.

More precisely, recall that(«, v) denote the (link) distance fromto v in a graph. The characteristic
property of the BFS algorithm is that we will visitbeforev whenever

0(s0,u) < 0(s0,v) < co. (4)

If §(s0,u) = oo, thenu will not be visited froms,. The BFS algorithm does not explicitly compute the
relation @) to decide the next node to visit: below, we will prove thastls a consequence of using the

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. BREADTH FIRST SEARCH Lecture IV

Page 16

queue data structure.

915. The BFS Shell. The key to the BFS algorithm is tlopieuedata structure. This is an ADT that

supports the insertion and deletion of items following thvstHn First-Out (FIFO) discipline. If) is a
gueue, we denote the insert and delete of a nollg

Q.enqueue(u), wu <+ Q.dequeue(),

respectively. To keep track of the status of vertices we usk the color schem@&)(in the previous
section. We could use three colors, but for our current psgpptwo sufficeunseen/seen. Here is
the BFS algorithm formulated as a shell program:

N b O

© 0o N O W

10
11

BFS $HELL

Input: G = (V, E; so) agraph (bi- or di-).
Output: This is application specific.
> Initialization:

INIT(G, sg)| <« Ifthisis standalone, then color all vertices excepasunseen

Initialize the queué) to contain justs.

VISIT(sg,ni l)| < Visits, asroot

> Main Loop:
while Q # () do
u + @Q.dequeue(). < Begin processing
for each v adjacenttax do < Process edge—uv
|PREVISIT@,u)| < Previsity fromu
if visunseen then
Colorv seen

VISIT(v,u)| < Visitv fromu

@.enqueue(v).

POSTVISIT()
CLEANUP(@G)

This BFS shell program contains the following shell macros

INIT, PREVISIT, VISIT, POSTVISIT, CLEANUP

(%)

which will be application-specific. These macros may be mssbi to be null operations unless other-,
wise specified. The term “macro” also suggests only shaaitl local (i.e.O(1) time) modifications.

An application of BFS will amount to filling these shell maswith actual code. We can usually omit

the PREVISIT step, but s&® for an example of using this macro.

Note that VISIT,u) represents visitingv from w;

a similar interpretation holds for

PREVISIT@,u). We setu = ni | in casev is the root of a BFS tree. If this BFS algorithm is a
standalone code, then INIE(sg) may be expected to initialize the color of all verticesutoseen,
andsg has colorseen. Otherwise, the initial coloring of vertices must be dontbecalling BFS.

n computing, macro =
small?

5 Alternatively, we could fold the coloring steps into thesaams, so that they may be non-null. But our BFS shell has
designed to expose these coloring steps.
6 Below, the Recursive DFS Shell will allow an exception.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version

©tober 31, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 17

There is an underlying tree structure in each BFS compunatiee root issg. If v is seen fromu
(see Line 6 in the BFS Algorithm), then the edgew is an edge in this tree. This tree is called the
BFS tree(see Figures(a)). ABFS listing at s is a list of all the vertices which are VISITed if we run
the BFS algorithm oriG; s¢), and the vertices are printed in the order they are visited., EtG be
the bigraph in Figur&(a) ands is vertexa. Then two possible BFS listing atare

(a,b,d,c,e) and (a,d,b,c,e). (6)

The particular BFS listing depends on how the adjacencwyfisaich node is ordered. We can produce
such a listing just by enumerating the vertices of the BF&imméhe order they are visited.

916. Applications of BFS. We now show how to program the shell macros in BFS to solveiatyar
of problems:

e Suppose you wish to print a list of all the vertices reach&ole s,. You can make VISITv, u)
print some identifier (key, name, etc) associated witfihis would produce the BFS orderst
Alternatively, you can make POSTVISHI) print the identifier associated with

Other macros can remain null operations. Intuitively, énego orderings correspond to preorder
and postorder traversal of trees.

e Suppose you wish to compute the BFS tiiéelf we view T" as a set of edges, then INIF(sq)
could initialize the sef” to be empty. In VISIT(,), we add the edge—v to T'.

e Suppose you wish to determine the degfth| of each vertex: in the BFS tree. (As we will see,
this depth has intrinsic meaning for the graph.) Then IMIT{,) could initialize

d[u]:{ 0o if u so,

0 if u=so.

and in VISIT@, u), we setd[v] = 1 + d[u]. Also, the coloring scheme (unseen/seen) could
be implemented using the arradyl..n] instead of having a separate array. More precisely, we
interpret a node to be unseen iffl[u] = cc.

e Suppose you wish to detect cycles in an bigraph. Let us asswriaput graph is connected. In
PREVISIT(v, u), if v is seen, then you have detected a cycle, and you can immigdiatern
"CYCLIC".

You will only reach the final CLEANURG) (Step 11) if you did not return earlier through PRE-
VISIT. So, CLEANUP simply returns "ACYCLIC".

917. BFS Analysis. We shall derive basic properties of the BFS algorithm. Thiesalts will apply
to both bigraphs and digraphs unless otherwise noted. Tloevfog two properties are often taken for
granted:

LEMMA 1.
(i) The BFS algorithms terminates.
(i) Starting from sources, the BFS algorithm visits every node reachable frgm

We leave its proof for an Exercise. For instance, this assusehat each vertex of the BFS tree will
eventually become the front element of the queue.

Let§(v) > 0 denote thalepth of a vertexv in the BFS tree. This notation will be justified shortly
when we related(v) to link distance; but for now, it is just depth in the BFS trééote that ifv is
visited fromu, thend(v) = o(u) + 1. We prove a key property of BFS:

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 18

LEMMA 2 (Monotone0 — 1 Property). Let the vertices in the queu®@ at some time instant be
(u1,us,...,ux) for somek > 1, with u; the earliest enqueued vertex angthe last enqueued vertex.
The following invariant holds:

O(ur) < o(ug) < -+ < 6(ug) < 1+ 0(ur). 7)

Proof. The result is clearly true whefn = 1. Suppos€uy,...,uy) is the state of the queue at the
beginning of the while-loop, and’(holds. In Line 3, we removed; and assign it to the variabte
Now the queue contain(., . .., uy) and clearly, it satisfies the corresponding inequality

8(uz) < 8(us) < -+ < 8(ux) < 1+ 6(ua).
Suppose in the for-loop, in Line 9, we enqueued a notleat is adjacent ta = u;. Then@ contains
(ua,...,uk,v) and we see that
d(u2) < d(ug) < -+ < o(uk) <0(v) <1+6d(u2)

holds becaus&(v) = 1+4d(u1) < 1+d(uz). In fact, every vertex enqueued in this for-loop preserves
this property. This proves the invariarm)(Q.E.D.

This lemma shows thal(u;) is monotone non-decreasing with increasing indeindeed,d(u;)
will remain constant throughout the list, except possilollyd single jump to the next integer. Thus, it
has this O — 1 property”, that;:=d(u;j41) —d(u;) = 0orlforall j =i,..., k—1. Moreover, there is
at most ong such that; = 1. From this lemma, we deduce the first property about the B&&ithm:

LEmMMA 3. The depthd(u) of a vertexu in the BFS tree is equal to the link distance fregito u, i.e.,

d(u) = 0(so,u),

Proof.Let 7 : (up—uq—u2— - - - —uy) be a shortest path fromy = s to ux, = u of lengthk > 1.
It is sufficient to prove thaf(uy) = k. Fori > 1, lemmaz2 tells us thatj(u;) < é(u;—1) + 1. By
telescopy, we gef(ux) < k + d(ug) = k. On the other hand, the inequalifyu;) > k is immediate
becausej(sg, ur) = k by our choice ofr, andd(ur) > d(so, ur) because there is a path of length
d(uy) from sg to uy, in the BFS tree. Q.E.D.

As corollary, if we print the vertices, us, .. ., u; of the BFS tree, in the order that they are en-
queued, this has the property that,;) < 6(u;) foralli < j.
Another basic property is:

LEMMA 4. If §(u) < d(v) thenw is VISITed before is VISITed, and: is POSTVISITed beforeis
POSTVISITed.

918. Classifying Bigraph Edges. Let us now consider the case of a bigraphThe edges of+ can
be classified into the following types by the BFS Algorithrh eigure6(b)):

e Tree edgesthese are the edges of the BFS tree.

e Level edgesthese are edges between vertices in the same level of théerB&SE.g., edgé—d
in Figure6(b).

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 19

e Cross-Level edgesthese are non-tree edges that connect vertices in twaelifféevels. But
note that the two levels differ by exactly one. E.g., edgé in Figure6(b).

e Unseen edgegshese are edges that are not used during the computatioh.e8iges involve only
vertices not reachable frogg.

Each of these four types of edges can arise (see Fig(b)efor tree, level and cross-level edges).
But is the classification complete (i.e., exhaustive)?, lbecause any other kind of edges must connect
vertices at non-adjacent levels of the BFS tree, and thrmdden by Lemm&. Hence we have:

THEOREM 5 (Classification of Bigraph Edges)t G is a bigraph, the above classification of its edges
is complete.

We will leave it as an exercise to fill in our BFS shell macropitoduce the above classification of
edges.

919. Applications of Bigraph Edge Classification. Many basic properties of link distances can be Try proving them
deduced from our classification. We illustrate this by shmytivo consequences here. without the
1. LetT be a BFS tree rooted a§. Consider the DAQ obtained fronil” by adding all the cross-level classification theorem!
edges. All the edges i@ are given a direction which is directed away frogn(so each edge goes from

some level > 0 to leveli + 1). CLAIM: Every minimum link path starting fromy appears as a path

in the DAGD. In proof, the classification theorem implies that each paifi is a minimum link path,

as there are no edges that can skip a level.

2. Consider a bigrapf¥ with n vertices and with a minimum link pagh= (vo—v1— - - - —vg). CLAIM:

If £ > n/2then there exists a vertex (i = 1, ...,k — 1) such that every path fromy, to v, must pass

throughwv;. To see this, consider the BFS tree rootedi@t This has more thamn/2 levels since

d(vo,vr) = k > mn/2. Ifthereisalevel (: = 1,...,k — 1) with exactly one vertex, then this vertex

must bew;, and thisv; will verify our claim. Otherwise, each levélhas at least two vertices for all

i=1,...,k—1. Thusthere are at lea®t = (k + 1) + (k — 1) vertices + 1 vertices are in the path

p andk — 1 additional vertices in levels, ..., k — 1) Butk > n/2 implies2k > n, contradiction.

920. Driver Program. In our BFS algorithm we are given a source vertgxc V. This guarantees
that we visit precisely those vertices reachable frgmWhat if we need to procesdl vertices, not just
those reachable from a given vertex? In this case, we writkiaer program” that repeatedly calls our
BFS algorithm. We assume a global initialization which sditsertices tounseen. Here is the driver
program:

BFS DRIVER SHELL
Input: G = (V, E) agraph.
Output: Application-dependent.
> Initialization:

1 Color all vertices asinseen.
2 | DRIVERINIT(G)]
> Main Loop:
3 for each vertexv in V do
4 if visunseen then
5 call BFS(V, E; v)).

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 20

Note that with the BFS Driver, we add another shell macraedadRIVERINIT to our collection
(5). Since each call to BFS produces a tree, the output of the®#®@r is aBFS forestof the input
graphG. ltis clear that this is a spanning forest, i.e., every ndd@ occurs in this forest.

921. Time Analysis. Letus determine the time complexity of the BFS Algorithm amelBFS Driver
program. We will discount the time for the application-gfieanacros; but as long as these macros
are O(1) time, our complexity analysis remains valid. Also, it is@sed that the Adjacency List
representation of graphs is used. The time complexity véligiven as a function ok = |V| and

m = |E|.

Here is the time bound for the BFS algorithm: the initialiaatis O(1) time and the main loop
is ©(m’) wherem’ < m is the number of edges reachable from the soupceThis giving a total
complexity of©(m/).

Next consider the BFS Driver program. The initializatiortign) and line 3 is executed times.
For each actual call tBF'S, we had shown that the time®j(m’) wherem' is the number of reachable
edges. Summing over all sueh’, we obtain a total time o®(m). Here we use the fact the sets of
reachable edges for different calls to the BFS routine aimviz® disjoint. Hence the Driver program
takes timed (n + m).

922. Application: Computing Connected Components. Suppose we wish to compute the con-
nected components of a bigragh AssumingV = {1,...,n}, we will use us encode this task as
computing an integer array/[1..n| satisfying the propert¢’'[u] = C[v] iff u,v belongs to the same

component. Intuitively('[u] is the name of the component that contains’The component number is

arbitrary.

To accomplish this task, we assume a global variable calleadnt that is initialized to0 by
DRIVERLINIT(G). Inside the BFS algorithm, the INIT{, sg) macro simply increments theount
variable. Finally, the VISIT{, «) macro is simply the assignmeri[v] + count. The correctness
of this algorithm should be clear. If we want to know the numisfecomponents in the graph, we can
output the value of ount at the end of the driver program.

923. Application: Testing Bipartiteness. A graphG = (V, E) is bipartite if V' can be partitioned
intoV = Vi W V5 such that ifu—wv is an edge then € V; iff v € V4. In the following we shall assume
G is a bigraph, although the notion of bipartiteness appbedigraphs. It is clear that all cycles in a
bipartite graphs must beven(i.e., has an even number of edges). The converse is showrErecise:

if G has noodd cyclesthend is bipartite. We use the Driver Driver to call call BES E; s) for various

s. Itis sufficient to show how to detect odd cycles in the congrdmfs. If there is a level-edgéu, v),
then we have found an odd cycle: this cycle comprises thep#efrom the root ta, the edgdu—v),
and the tree path from back to the root. In the exercise, we ask you to show that all @yatles is
represented by such level-edges. It is now a simple matteottify BFS to detect level-edges.

In implementing the Bipartite Test above, and generallyunrecursive rour
tines, it is useful to be able to jump out of nested macro abdaiine calls
For this purpose]ava’s ability to throw exceptionsand tocatch exceptions
is very useful. In our bipartite test, BFS can immediatehpthan exception
when it finds a level-edge. This exception can then be caugld BFS
Driver program.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. BREADTH FIRST SEARCH Lecture IV Page 21

EXERCISES

IMPORTANT: In this chapter, answers that that could be redito BFS (and
later, DFS) should be solved using our shell programs. lerotfords, yoy
only need to expand the various macros. The reason for tidhtjacket”
approach is pragmatic — grading your solutions would be naadier. Otht
erwise, there are many trivial variations of the BFS and DEgjams (suc
as whether you change colors before or after visiting a netdg,

=)

Exercise 4.1: Prove Lemma 1 (p. 15, Lect. 6), showing that the BFS algoritnminates, and every
vertex that is reachable frosg will be seen by BFS(). &

Exercise 4.2: Show that each node is VISITed and POSTVISITed at most orscthid true for PRE-
VISIT as well? &

Exercise 4.3: Let §(u) be the depth ofi in a BFS tree rooted a4. If u—v, show:
(@d(v) <14 65(u).
(b) In bigraphs|d(u) — 6(v)| < 1.
(c) Indigraphs, the inequality in (a) can be arbitrarily fimm an equality. &

Exercise 4.4: Reorganize the BFS algorithm so that the coloring stepsadded into the shell macros
of INIT, VISIT, etc. O

Exercise 4.5: Fill in the shell macros so that the BFS Algorithm will cortigcclassify every edge of
the input bigraph.

Exercise 4.6: (a) Give a classification of the edges of a digra@prelative to the operations of running
the BFS algorithm oG} so). We should see two new types of edges.
(b) Now turn your answer in part(a) into a “computationassification”. |.e., devise an algorithm
to classify every edge a@F according to (a). Recall that you must use shell programming <

Exercise 4.7: Let G = (V, E; \) be a connected bigraph in which each vertex V' has an associated
value\(v) € R.
(a) Give an algorithm to compute the sgm), ., A(v).
(b) Give an algorithm to label every edge= E with the value|A(u) — A(v)| wheree = u—uv.

&

Exercise 4.8: Give an algorithm that determines whether or not a bigi@ph (V, E') contains a cycle.
Your algorithm should run in timé©(|V|), independent ofE|. You must use the shell macros,
and also justify the claim that your algorithmax|V|). O

Exercise 4.9: The text sketched an algorithm for testing if a graph is higarWe verify some of the
assertions there:
(a) Prove that if a bigraph has no odd cycles, then it is hijgart

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§5. NONRECURSIVEDEPTHFIRST SEARCH Lecture IV Page 22

(b) Prove that if a connected graph has an odd cycle, then B&8lsfrom any source vertex will
detect a level-edge.

(c) Write the pseudo code for bipartite test algorithm owttl in the text. This algorithm is to
return YES or NO only. You only need to program the shell noesi

(d) Modify the algorithm in (c) so that in case of YES, it retara Boolean array3[1..n] such
thatVp = {i € V : B[i] = fal se}andV; = {i € V : B[i] = true} is a witness to the
bipartiteness of. In the case of NO, it returns an odd cycle. &

Exercise 4.10: Let GG be a digraph. Aglobal sink is a nodeu such that for every node € V, there is
path fromv to u. A global sourceis a nodeu such that for every node € V, there is path from
u towv.
(a) Assume is a DAG. Give a simple algorithm to detectdf has a global sink and a global
source. Your algorithm returns YES if both exists, and m$uXO otherwise. Make sure that
your algorithm take®)(m + n) time.
(b) Does your algorithm work i€+ is not a DAG? If not, give a counter example which makes
your algorithm fail. &

Exercise 4.11:Let k > 1 be an integer. A-coloring of a bigraphG = (V, E) is a functionc : V' —
{1,2,...,k} such that for allu—v in E, c(u) # c(v). We sayG is k-colorableif G has ak-
coloring. We say is k-chromatic if it is k-colorable but notk — 1)-colorable. Thus, a graph is
bipartite iff it is 2-colorable.

(a) How do you test the 3-colorability of bigraphs if everytex has degreg 2?

(b) What is the smallest graph which is not 3-colorable?

(c) Thesubdivision of an edgeu—w is the operation where the edge is deleted and replaced by
a pathu—w—wv of length2 andw is a new vertex. Calz' a subdivision of another graph if

G’ is obtained from be a finite sequence of edge subdivisions. Dirac (1952) shioais is
4-chromatic, then it contains a subdivision &f,. Is there a polynomial time to determine if a
given connected bigrapf contains a subdivision ok, ? &

Exercise 4.12:Let G = (V, E) be a bigraph om vertices. Suppose-+ 1 is not a multiple o8. If there
exists vertices:, v € G such that(u,v) > n/3 then there exists two vertices whose removal
will disconnectu andw, i.e.,d(u, v) will becomeoc. &

END EXERCISES

65. Nonrecursive Depth First Search

Depth First Search (DFS) turns out to be much more subtle B To appreciate the depth (no
pun intended) of DFS, we take an unusual route of first presgaton-recursive solution, based on the
generic graph traversal framework$f4. We call this formulation th&lonrecursive DFS algorithm
to distinguish it from theéstandard DFSalgorithm which is a recursive one.

Here is a general account of DFS: as in BFS, we want to vidihallertices that are reachable from
an initial sourcesy. We define @DFS treeunderlying the DFS computation — the edges of this tree are
precisely those.—v such that is seen from . Starting the search from the sourgg the idea is to
go as deeply as possible along any path without visiting @ntex twice. When it is no longer possible
to continue a path (we reached a leaf), we backup towardstivees,. We only backup enough for us
to go forward in depth again. The stack data structure tunhgodbe perfect for organizing this search.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§5. NONRECURSIVEDEPTHFIRST SEARCH Lecture IV Page 23

Inillustration, consider thedigraphG in Figure7(i) Starting from the source vertex one possible
path to a leaf if1-5—2—3—6). From the leafs, we backup to verteg, from which point we can
advance to verteX. Again we need to backup, and so on. The DFS tree is a tracesafahrch process,
and is shown in Figuré&(ii). The non-tree edges of the graph are shown in varioun$oof dashed
lines. For the same graph, if we visit adjacent vertices iiffarént order, we get a different DFS tree,
as in Figure/(iii). However, the DFS tree in Figurgii) is the “canonical solution” if we follow our
usual convention of visiting vertices with smaller indidiest.

N\, tree edge

, forward edge

~.

backward edg

D

LT

™ cross edge

(i) digraph (ii) Canonical DFS tree (i) Another DFS tree

Figure 7: Two DFS trees for digraph (i).

924. Nonrecursive DFS. We describe a version of DFS that is parallel to BM35). The key
difference is that BFS uses a queue data structure while BES aistack data structure. Recall that a
stack is an ADT that supports the insertion and deletioneshé following a Last-in First-out (LIFO)
discipline. Conceptually, we would like to derive the DF§aithm just by replacing the queue in
the BFS algorithm by a stack. Insertion and deletion fromealst is denotedS.push(u) andu «+

S.pop().

The reader who just wants to know about DFS may go directiyhéortext
section that describes the simpler, recursive formulaifddFS. One motival
tion for looking at the nonrecursive DFS is to expose thelstibs that might
otherwise be lost in the standard formulation.

It is not just a matter of “traversing all nodes”, but the d¢aterdering of VISITs, PREVISITs and
POSTVISITS to nodes. These are essential if DFS is to do ke that it is normally called upon to
solve. What does it mean to VISIT a verte® Among other (application-dependent) things, we shall
associate VISITing a node with processing its adjacency list — it is important thatqessing is done
at most once, to ensure &\(m + n) time complexity. Those vertices in the adjacency list than t
into children ofu will be pushed on the stack. We also need to POSTVIg#fter all its children have
been VISITed. It turns out that in most applications of DFfts POSTVISIT macro has a critical role.
To implement POSTVISITu) in our stack framework, we shall push a copywoin the stack so that
when it is popped, we will invoke the POSTVISIT macro. To iratee that this copy ofi in the stack
is meant for POSTVISIT (not for the usual VISIT), we will “mdru before pushing it (back) into the
stack. When we pop a vertex from the stack, we can check iféhtexis marked or not.

We now use a tricolor scheme: initially a vertex is colotatseen. After it is pushed on the
stack, they are coloresleen. Remark that it may be pushed on the stack more than oncer ifte
is VISITed they are coloredone. We remark that the “marking” of vertices is independentto$ t
coloring scheme.

7 Reproduced from Figurg(b), for convenience.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§5. NONRECURSIVEDEPTHFIRST SEARCH Lecture IV Page 24

NONRECURSIVEDFS SHELL
Input: G = (V, E; s¢) a graph (bi- or di-)
Output Application dependent
> Initialization:

0 INIT(G)| <« Ifthisis a standalone shell, then color all verticeswasseen
1 Colorsp seen, and initialize the stacl§' with just .

> Main Loop:
2 while S # () do:
3 u < S.pop()
4 if (uis“marked”)then
5
6 elif (u isseen) then
7 Coloru done, and
8
9

S.push(*marked u")
for each v adjacent ta: do:

15 CLEANUP(@G)

Like BFS, this DFS program has two main loops: an ouwtile-loop (Line 2) and an inner
for each-loop (Line 9). Note that the color changeaseen — seen — done for nodeu are
performed at the appropriate moments (when pushiogito the stack, and when VISITing. One
important point is that before we puston the stack (Line 12), we make sure thas notdone, but it
could beseen orunseen; if seen, it means that there is one or more copie® afre already on the
stack (these are now redundant). Correctness of the digoistunaffected by redundancy, but it means
that stack size is bounded by (notn). If this efficiency issue is of concern, we could introdusenart
stacks” that can remove such redundancies. The placeméma ®SIT macros is also different from
BFS: in BFS, we VISIT a vertex when it is first inserted into theeue; but in DFS, we VISIT a vertex
after it is removed from the stack.

925. DFS Driver. Finally, if we need to visit all vertices of the graph, we cae the following DFS
Driver Program that calls Nonrecursive DFS repeatedly:

DFS DRIVER
Input: G = (V, E) a graph (bi- or di-)
Output: Application-specific
| DRIVERINIT(G)]
Color each vertex i asunseen.
foreachvin V do
if visunseen then
DFSV, E;v) < Either Nonrecursive or Standard DFS

DRIVER CLEANUP(G) |

O O WN P

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

10 | PREVISIT(, u);

11 if (visnotdone)then < butv maybeseen

12 Colorv seen, andS.push(v). thev's are popped in
13 else < wisdone thereverseorder of
14 No-Op (Do nothing) their occurrence in/’s

adjacency list.

§5. NONRECURSIVEDEPTHFIRST SEARCH Lecture IV Page 25

We view these algorithms as shell programs whose complétavir depend on the specification
of the embedded shell macros, which are presumed to be rlefisiotherwise specified:

PREVISIT, VISIT, POSTVISIT, } 8)

INIT, DRIVERLINIT, CLEANUP, DRIVER CLEANUP.

926. DFS Tree. The root of the DFS tree ig), and the vertices of the tree are those vertices visited
during this DFS search (see Figufle This tree can easily be constructed by appropriate diefirsitof
INIT(G, so) and VISIT(v, u) and is left as an Exercise. We prove a basic fact about DFS:

LEMMA 6 (Unseen Path)Letu,v € V.
Thenw is a descendant af in the DFS tree if and only if at the time instant thatvas first seen, there
is® a “unseen path” fromu to v, i.e., a path(u— - - - —v) comprising only of unseen vertices.

Proof.Let ¢ty be the time when we first see

(=) We first prove the easy direction:ifis a descendant of then there is an unseen path fram
to v at timet,. For, if there is a pattiu—u,— - - - —ug—v) from u to v in the DFS tree, then eaah
must be unseen at the time we first sge; (ug = v andug 1 = v). Lett; be the time we first see;.
Then we have, < t; < --- < tx41 and thus each; was unseen at timg. Here we use the fact that
each vertex is initially unseen, and once seen, will newasrtéo unseen.

(<) We use an inductive proof. The subtlety is that the DFS digor has its own order for
visiting vertices adjacent to eaeh and your induction must account for this order. We procegd b
defining a total order on all paths fromto v: If a,b are two vertices adjacent to a vertexand
we visit o beforeb, then we say § <gfg b (relative tow)”. If p = (u—u;—ug—--- —ur—v) and
q = (u—vy—va— -+ - —vg—v) (Wherek, ¢ > 0) are two distinct paths from to v, we sayp <gfg ¢ If
there is am (1 < m < min{k, ¢}) such thatu; = v1,..., Uy = vy, @NAuy 411 <gfg Um+1 relative
to u,,. Note thatm is well-defined. Now define thBFS-distancebetweern: andv to be the length of
the <4¢4-leastunseen patfrom « to v at time we first sea. By anunseen pathfrom « to v, we mean
one

7w (u—up— - —up—v) C)]

where each vertex, . .., ux, v is unseen at time when we first seelf there are no unseen paths from
u to v, the DFS-distance from to v is infinite.

For anyk € N, let IND(k) be the statement: “If the DFS-distance franto v has lengthk + 1, and
(9) is the< 3¢ 5-least unseen path fromto v, then this path is a path in the DFS tree”. Hence our goal
is to prove the validity of INDE).

BASE CASE: Supposé = 0. The <g4fg-least unseen path fromto v is just (u—v). Sowv is
adjacent tou. Suppose/’ is a vertex such that’ <g¢g v (relative tou). Then there does not exist
an unseen path’ from v’ to v; otherwise, we get the contradiction that the path-v’); 7" is <q¢g
than than(u—wv)). Hence, when we recursively visit, we will never colorv asseen (using the easy
direction of this lemma). Hence, as we cycle through all teiges adjacent ta, we will eventually
reachv and color itseen fromw, i.e., u—uv is an edge of the DFS tree.

INDUCTIVE CASE: Supposé > 0. Letr in (9) be the<4¢4-least unseen path of length+ 1
fromu tov. As before, ifv” <4¢g w1 then we will recursively visit/, we will never color any of the

8 If we use the white-black coloring scheme, this may be calied'white path” as in4].

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§5. NONRECURSIVEDEPTHFIRST SEARCH Lecture IV Page 26

verticesuy, uo, . . ., ug, v asseen. Therefore, we will eventually visit; from v at some time; > ¢g.
Moreover, the sub path’ : (u3—u2— - - - —ugk—v) is still unseen at this time. Moreoverg’ remains
the <4sg-least unseen path from to v attimet;. By IND(k — 1), the subpathr’ is in the DFS tree.
Hence the path = (u—u,); ©’ is in the DFS tree. Q.E.D.

927. Classification of digraph edges by DFS. First consider a digrap&. Upon callingDF' S (G, so),
the edges ofs becomes classified as follows (see Figdye

e Tree edgesthese are the edges belonging to the DFS tree.

e Back edgesthese are non-tree edgesv € E wherev is an ancestor of. E.g., edge€—1 and
3—2in Figure7(iii).

e Forward edges these are non-tree edgesv € E wherev is a descendant of. E.g., edges
1—6 and5—6 in Figure7(iii).

e Cross edges these are non-tree edges-v for which v and v are not related by ances-
tor/descendant relation. E.g., edgess, 3—6 and4—3 in Figure7(iii). There are actually two
possibilities:u, v may or may not share a common ancestor. Note that in Figuse only have
the case where, v share a common ancestor, but it is easy to construct examwple® this is
not the case.

e Unseen edgesall other edges are put in this category. These are edgesn whichu is unseen
at the end of the algorithm.

Let us give a simple application of the Unseen Path Lemma:

LEMMA 7. Consider the DFS forest of a digrayght
(i) If u—wv is a back edge in this forest thénhas a unique simple cycle containingv.
(ii) If Z is a simple cycle of7 then exactly one of the edges®fs a back edge in the DFS forest.

Proof. (i) is clear: given the back edge-v, we construct the unique cycle comprising the path in
the DFS forest from to u, plusu—v. Conversely, for any simple cycl = [v, vs,...,v], in the
running of the DFS Driver program d#, there is a first instant when we see a verteXinVlog, let it
bewv;. At this instant, there is an unseen path frofto v;. By the Unseen Path Lemma, this implies
thatv, will become a descendant of in the DFS forest. Clearlyy,—v; is a back edge in the forest.

Q.E.D.

Thus detecting cycles in graphs can be reduced to detecicigddges. More generally, we will
address the computational classification of the edges ofsafbest. Before we do this in full generality,
we look at the simpler case of classifying bigraph edges.

928. Computational classification of bigraph edges by DFS.When DFS is applied to bigraphs,
we can treat the bigraph as a special type of digraph. As weeiaiew a bigraph= as a digraptt:’
whose directed edges come in paits:v andv—u, one pair for each undirected edfe, v} of G. So
the above classificatio27) is immediately applicable to these directed edges. Thissification has
special properties which are relatively easy to see (Ese)ci

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§5. NONRECURSIVEDEPTHFIRST SEARCH Lecture IV Page 27

LEMMA 8. Letu—v be an edge of+’.

(a) u—wv is never a cross edge.

(b) u—wv is a back edge if and only if its partnerw is either a tree edge or a forward edge.
(c) An edgeu—v is unseen iff its parthes—u is unseen.

We can now simplify the classification of edges by regardih@after running DFS orG) as a
“hybrid graph”, withbothdirected and undirected edges. The undirected edgé’ affe precisely the
unseen edges of. But the seen edges 6f are converted into directed edges as follows: tree edges are
directed from parent to child, and back edges. Thus, the ifirrdJiG just have three kinds of edges:

tree, back, unseen. (20)

We address the computational problem of classifying edgesrding to (0). We will encode tree
edges by introducing parent array p[v € V| wherep[v] is the parent of in the DFS tree. Thus tree
edges are precisely of the forfu]—v. The root is the unique nodewith the propertyp[v] = v.

In the shell off24, we can detect the forward/back durirEREVISIT(v, u) ‘ (Line 10). There are
two possibilities: ifv isunseen then edge:—wv is a tree edge. Otherwise, it must be a back or forward
(recall there are no cross edges). But we cannot distindngshieen back and forward edges without
more information.

The solution is to introduce “time”. We plan to record tti@e when we first see a nad&hen
in PREVISIT(v, u), assuming is seen, we know thatu—uv is a back edge if was seen before.
To implement “time”, we introduce a global countrock that is initially 0. We introduce an array,
firstTime[v:ve V]suchthafirstTinefv]issettothe value afl ock when we first see (and
the value ofcl ock will be incremented). Thus the clock is just counting the bemof “significant
events”. Later we will expand the notion of significant egenThese operations are encoded in our
macros:

This is no ordinary
clock

INIT(G, s0) |: cl ock <0

|PREVISIT(, u)|:
If visunseen,
firstTime[v] + cl ock++
plv] < u < Sou = p[v] is parent ofv, andp[v]—v is“tree-edge”
elif (fi rstTi mefu] > firstTinev])
NO-OP <« u—wv is “back edge”
else
NO-OP <« wu—wis “forward edge”

929. Biconnectivity. When we introduced reduced graph earlier, we said that @gtia mseful concept
for bigraphs. We now introduce the appropriate analogubifgraphs.

Let G = (V, E) be a bigraph. A subse&t C V is abiconnected setof G if for every pairu, v
of distinct vertices inC, there is a simple cycle of vertices @ that contains:, andv. For instance, if
there is an edge—v, then{u, v} is a biconnected set. That is because a closed path of thefeim
is considered a simple closed path; so its equivalence plass is consideretia simple cycle. Any

9 One may fee[u—v] is considered “simple” by a technicality.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§5. NONRECURSIVEDEPTHFIRST SEARCH Lecture IV Page 28

singleton{«} is also a biconnected set, for a trivial reasor'is a biconnected set that is maximal with
respect to biconnectedness, then we €all biconnected componentIf G has only one biconnected
component, theK is called abiconnected graph Biconnected components of siz€s2 aretrivial .
Trivial components are of two types: those of sizare calledsolated componentsand those of size
are calledcbridges.

O cut-vertex

O non cut-vertex

N bridge-edge

Figure 8: Graph with 3 non-trivial biconnected componenis & bridges

E.g., the bigraph in Figur&(a) has two biconnected componedis, b, ¢, d} and{c, e¢}. Moreover,
{a,b,c} is a biconnected set byu, e} is not. A more interesting graph is FiguBewhich hasl1
biconnected components, of whigkare non-trivial.

Biconnectivity is clearly a strong notion of connectivifiywvo biconnected components can share at
most one common vertex, and such vertices are calliédertices(or “articulation points”). We give
an alternative characterization using connectivity iadtef biconnectivity: vertex: is a cut-vertex iff
the removal ofu, and also all edges incident an will increase the number of connected components
of resulting bigraph. This means there exist two vertigas (both different fromu) such that all paths
from v to " must pass through. The absence of cut-verticesabnostequivalent to biconnectivity, as
seen is the following easily verified facts:

LEMMA 9.
(a) If G has a cut-vertex, then it is not biconnected.
(b) If G has no cut-vertices, and is connected, then it is bicondlecte

There is an edge analogue of cut-vertex: an adge is called abridge-edgeif the removal of this
edge will increase the number of connected components oétudting bigraph. The two endpoints of
a bridge-edge constitute a bridge (a biconnected compafieite?2). E.g., in the line grapli,, (see
Figure4(c)) with vertexseV = {1,...,n}, avertex is a cut-vertexiffl < i < n. Also, every edge of
L, is abridge. The graph in FiguBa), has one cut-vertexand one bridge—e; the graph in Figur&
has9 bridges and 0 cut-vertices.

LEMMA 10. Assumé? is connected, and’ is a DFS tree of. A vertexu in T is a cut-vertex iff one
of the following conditions hold:

(i) If u is the root ofT" and has two or more children.

(i) If w is not the root, but it has a child such that for any descendantof v, if @ is adjacent tow,
thenw is also a descendant af Note that a vertexv may be equal te.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§5. NONRECURSIVEDEPTHFIRST SEARCH Lecture IV Page 29

Proof.Condition (i) impliesu is a cut-vertex because there are no cross edges. Condijtiomlies
any path from the parent af to w must pass through, but there is no path frony to any ancestor of
u; thusu is a cut-vertex.

Conversely, supposeis a cut-vertex. Let’, C’ be two distinct biconnected components containing

u. If w is the root, then, must have a child € C and a childv’ € C’. Thusu has more than one
child, i.e., property (i) holds. Hence assumés not the root. Them has a parent’ and wlog, we
may letC’ denote the biconnected componentfAlso one of the childrem of « must belong to the
other component’. Suppose there exists a descendamif v such thatw is adjacent to some vertex
w. wherew not a descendant af. Since the BFS tree has no cross edgesjust be an ancestor of

So there is a path in the BFS tree framto w. This path, together with the edge-w forms a cycle

Z that passes throughl andv. This contradicts the assumption th@tC’ are distinct biconnected
components. Thus, property (ii) holds. Q.E.D.

cut vertexu

930. Biconnectivity Detection. We now present an algorithm to detect if a bigrd@pfs biconnected.
Our algorithm either outputs a cut-vertex@for report that7 is biconnected. It is based on detecting
any one of the two conditions in Lemnid. Detecting condition (i) is easy: we introduce a global
variablenunthi | dr en count the number of children of the root. InitiallgunChi | dren «+ 0.
and each time the root spawns a new child, we update this numb#is number exceeds, we
report the root to be a cut-vertex. To detect condition (@},nf t [u] denote the minimum value of
firstTi me[w] wherew ranges over the sé(u) of vertices for which there exists a back edge of the
formv—w andv is a descendant of. Note thatv need not be a proper descendant. @f.e., we allow

v = u). As usual, the minimum over an empty setxs sonf t [u] = oo iff B(u) is empty. We now
address three questions:

e What is the significance aff t [u]? Suppose: is not the root of the DFS tree. Claim: is a
cut-vertex iff there exists a child of « such thatnf t [v] > firstTi ne[u]. In proof, if u
is a cut-vertex, then condition (ii) provides a chilbf « such thatnf t [v] > fir st Ti mefu].
Conversely, supposef t [v] > first Ti ne[u]. Take any path fromv to p[u]. There is a first
edgew—w'’ in this path such théti r st Ti me[w] > first Ti nefu] > firstTi mefw]. We
claim thatw = u. If not, thenw is a descendant ef andw—w’ is a back edge and sd € B(v).
Thusnf t [v] <firstTime[w] <firstTime[u], contradiction. Thus every path connecting
v andp[u] must pass through, i.e.,u is a cut-vertex. This proves our claim.

e How do we maintaimf t [u]? We initializent t [u] to co whenu is first seen. We subsequently
updatent t [u] in two ways:
(i) When we detected a back edge:—v, we will update nftu] with
min {nf t [u],firstTi mefv]}.
(i) When we POSTVISITv), andp[v] = u, we can updatef t [u] to min {nf t [u], nf t [v]}.
By the time we have POSTVISIT, the value ofnf t [u] would have been correctly computed
because, inductively, it has been updated with the coritoibsi of each of its children in the DFT,
and also the contributions of each back edge originating fxo

e How do we usenft [u] computationally? We can only use it to detect cut-vertic@s:
POSTVISIT(u), we check ifif t [u] > fi r st Ti ne[p[u]], andp|[u] is not the root.

To summarize the algorithm, here are the shell macros:

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§5. NONRECURSIVEDEPTHFIRST SEARCH Lecture IV Page 30

[T)]

clock <0

plsol = so
nuntChil dren =0

| PREVISIT(,u)|:
If (visunseen),
firstTime[v] + cl ock++

plv] + u a4 (u—v) is “tree-edge”
nft[v] «+ oo
If plu] = u < w is root

If (++nunChi | dren > 1)
Return(“w is cut-vertex”)
elif (firstTime[u] >firstTi mefv]) <4 u—v is “back edge”
nf t [u] + min {nf t [u],firstTime]}

POSTVISIT@)]:

If (nf t [u] > fi r st Ti mefplul]) and(plu] # plplull)
Return(“p[u] is a cut-vertex”)

“G"is arecycled
notation for the
reduced graph of a
931. Reduced Bigraphs. Given a bigraph, we define a bigrapli® = (V¢ E¢) such that the digraphG. No
elements of/¢ are the biconnected componentgafand(C,C") € E¢ iff C N C’ is non-empty. Itis confusion need arise
easy to see that“ is acyclic. We may caliz¢ thereduced graphfor G. In the Exercise, we ask you to onced is identified as
extend the above biconnectivity detection algorithm to pate some representationGf. a digraph or a bigraph.

EXERCISES

Exercise 5.1: T or F: Let C' be a connected componefitof a bigraph. TherC' is a biconnected
component iffC' does not contain a cut-vertex or a bridge. &

Exercise 5.2:
(a) Give the appropriate definitions for INI®], VISIT((v,«)) and POSTVISIT{) so that our
DFS Algorithm computes the DFS Tree, say represented bysastiaicturel’
(b) Prove that the objedt constructed in (a) is indeed a tree, and is the DFS tree asedéfirthe
text. &

Exercise 5.3: Programming in the straightjacket of our shell macros is/earent when our format fits
the application. But the exact placement of these shell osa@nd the macro arguments, may
sometimes require some modifications.

(&) We have sometimes defined VISIT() to take two arguments. Show that we could have
defined this it as VISIT), and not lost any functionality in our shell programs. HiNake
advantage of PREVISIT v).

(b) Give an example where it is useful for the Driver to callEANUP(u) after DFS{:). &

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§5. NONRECURSIVEDEPTHFIRST SEARCH Lecture IV Page 31

Exercise 5.4: Relationship between the traversals of binary trees and DFS
(a) Why are there not two versions of DFS, corresponding e and postorder tree traversal?
What about inorder traversal?
(b) Give the analogue of DFS for binary trees. As usual, yostrptovide place holders for shell
routines. Further assume that the DFS returns some valueb wstprocessed at the appropriate

place. &

Exercise 5.5: Give an alternative proof of the Unseen Path Lemma, withaptigtly invoking the
ordering properties of 3. Also, do not invoke properties of the Full DFS (with timers{ss).

O

Exercise 5.6: Prove that our DFS classification of edges of a digraph is ¢etmpRecall that each edge
is classified as either tree, back, forward, cross, unseen. &

Exercise 5.7: Prove Lemma concerning the DFS classification of the directed edges afraph. <

Exercise 5.8: In the text, we gave an algorithm to detect if a bigraph is biwrted. Generalize this
algorithm to compute all the biconnected components of itpeaph. &

Exercise 5.9: Extend our biconnected graph detection algorithm to computepresentation of the
reduced grapl-© of a bigraphGG. How should you represent? First, we want to identify each
vertexv as a cut-vertex or not. This can be represented by a Booleap@#/'[v € V] where
CV[v] = trueiff vis a cut-vertex. Second, we want to assign to each ed@eaofinteger called
its “component number” (two edges have the same componetheuiff they belong to the same
biconnected component 6f). %

Exercise 5.10:Let G = (V, E) be a connected bigraph. For any vertex V define

radiugv, G) := max distancéu, v)
ue

where distande:, v) is the length of the shortest (link-distance) path froro v. Thecenterof

G is the vertexy, such that radiugy, G) is minimized. We call radiu®,, G) theradiusof G
and denote it by radi&). Define thediameterdiametefG) of G to be the maximum value of
distancéu, v) whereu,v € V.

(a) Prove tha - radiugG) > diametefG) > radiugG).

(b) Show that for every natural number, there are graphs:, and H, such thatn =
radiugG,) = diamete(G,,) and diametdifl,,) = n and radiusH,,) = [n/2]. This shows
that the inequalities in (a) are the best possible.

(c) Using DFS, give an efficient algorithm to compute the dééenof a undirected tree (i.e., con-
nected acyclic undirected graph). Please use shell pragiiagn Prove the correctness of your
algorithm. What is the complexity of your algorithm? HINTrite down a recursive formula for
the diameter of a tree in terms of the diametadheight of its subtrees.

(d) Same as (c), but compute the radius instead of diameter.

(e,f) Same as (c) and (d) but using BFS instead of DFS. &

Exercise 5.11:Re-do the previous question (part (c)) to compute the diambéut instead of using
DGS, use BFS. &

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§6. STANDARD DEPTHFIRST SEARCH Lecture IV Page 32

Exercise 5.12: Prove that our nonrecursive DFS algorithm is equivalenti¢orecursive version.

Exercise 5.13: Suppose we simply replace the queue data structure of BHSetstack data structure.
Do we get the DFS? Here is result, obtaimedtatis mutandisfrom BFS algorithm:

BDFS ALGORITHM
Input: G = (V, E;so) agraph.
Output: Application specific
> Initialization:
Initialize the stackS to containsg.
< If standalone, make all verticesiseen except forsg
> Main Loop:
while S # () do
u + S.pop().
for each v adjacent ta: do
| PREVISIT(, u)|
if visunseen then
colorv seen

VISIT (v, u)

S.push(v)

POSTVISIT() .

This algorithm shares properties of BFS and DFS, but isrdisfrom both. Which problems can
still be solved by BDFS? Is there any conceivable advantapB&S? &

= O

© 0O ~NOUL A~ WN

END EXERCISES

66. Standard Depth First Search

932. Recursive DFS. The Nonrecursive DFS is simplified when formulated as a ée¢ealgorithm.
The simplification comes from the fact that the explicit &té now hidden as the recursive stack.
Indeed, this is the “standard” presentation of DFS:

STANDARD DFS
Input: G = (V, E; so) a graph (bi- or di-)
The vertices irl/ are coloredinseen, seen ordone; sy isunseen.
Output Application dependent

Colorsg asseen, and VISIT (sg)
for each v adjacent tosg do
| PREVISIT(, 50) |

if (visunseen)then
Standard DFQV, F;v)) < Recursive call

Colors, done, and‘ POSTVISIT(0) ‘

CLEANUP@G) |

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

0O NOPr WN PR

§6. STANDARD DEPTHFIRST SEARCH Lecture IV Page 33

To visit every vertex of a digraph, we invoke a DFS Driver og tiraph. We can keep the DFS
Driver in 425, except that each DFS call refers to the Standard DFS.

Our placements of th(so) macro in Line 7 is intended to allow you to visit all the
vertices adjacent tey once more. This violates our normal injunction against nonstant work macros
(seeq15). Of course, this means doing another iteration of the lddgree 2. That injunction is now
modified to mean that, for eaechadjacent toso, you should da)(1) work in the POSTVISIT macro.

933. Computational classification of digraph edges by DFS. The result of calling this driver on
G is the production of a DFS forest that spaisand a classification of every edge Gf But this
classification is only conceptual so far — the purpose of #aistion is to achieve a computational
classification of these edges. Previously we have only setithis for the edges of a bigraph. Indeed,
we can extend the solution method used for bigraphs: rdwlite had time stamps and we maintained
an arrayf i r st Ti me[v € V]. We now introduce another arrdyast Ti me[v € V] to record the time
of when we finish POSTVISIT of vertices.

Assume thaf i r st Ti nefv] andl ast Ti me[v] are both initialized to-1 in DRIVER_INIT(G).
It is possible to avoid initialization of these arrays. Thiat because the color scheme
unseen/seen/done can serve to detect initialization conditions. We will diss this later.

In the Standard DFS, unlike the nonrecursive version, tisete INIT(G) step — that is because we
do not want to initialize with each recursive call! Also, werform VISIT () (Line 1) at the beginning
of the recursive call to (Line 6), but first ensuring thatisunseen. Finally, after recursively VISITing
all the children ofsy, we POSTVISIT§) (Line 7). This is done in a much smoother way than in the
Nonrecursive DFS. Here are some macro definitions:

e DRIVERLINIT(G)=cl ock « 0; (forv € V)[fi r st Ti me[v] < | ast Ti mefv] « —1].
e PREVISIT@,u)=If visunseen, firstTi me[v] « cl ock++.

e POSTVISIT@)=I ast Ti ne[v] + cl ock++.

During the computation, a node is unseen if firstTinmelv] < 0; it is seen if
firstTime[v] > | astTinmefv];itis done if firstTinme[v] < |astTinefv]. In other words,
we can avoid maintaining colors explicitly if we have theagsf i r st Ti me andl ast Ti ne.

Letact i ve(u) denote the time intervadf i r st Ti mefu|,| ast Ti me[u]], and we say is active
within this interval. It is clear from the nature of the resion that two active intervals are either
disjoint or has a containment relationship. In case of nemt&inment, we may writacti ve(v) <
active(u)if l ast Ti mefv] < firstTi me[u]. We return to the computational classification of the
edges of a digrapt¥ relative to a DFS forest ofy':

LEMMA 11. Assume that a digrapfy has been searched using the DFS Driver, resulting in a cotaple
classification of each edge 6f. Letu—v be an edge ofs.

1. u—vis aback edge ifbct i ve(u) C acti ve(v).
2. u—vis across edge ifict i ve(v) < acti ve(u).

3. u—v is a forward edge iff there exists some € V \ {u,v} such thatactive(v) C
active(w) Cactive(u).

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§6. STANDARD DEPTHFIRST SEARCH Lecture IV Page 34

4. u—vis atree edgeifacti ve(v) C acti ve(u) butitis not a forward edge.

This above classification of edges by active ranges is ilitistl in Figured.

firstTime[u |astTinme[y
M
‘ U

f time
forward/tree |
_
v 1

back :
T

_
v

I
I
I
I
I
:
cross i
I
I
I
I
|
T
I
I
I

Figure 9: Relative positions of active ranges:0b and the classification of edge—v)

These criteria can be used by the PREVISIT() macro to classify edges 6f:

| PREVISIT@,)|
> Visiting v, fromu
if (firstTimep =-1),
marku—uv as “tree edge”
elif (firstTinelv] >firstTi mefu)),
marku—uv as “forward edge”
elif (I ast Ti me[v] = —1),
marku—v as “back edge”
else
marku—uv as “cross edge”.

The correctness of this classification is a direct consecpieflLemmal 1 (cf. Figure9). If the arrays
firstTime,| ast Ti ne are notinitialized, we could replace the above code asvslionstead of the
testf i r st Ti ne[v] = —1, we could check if ¥ isunseen”. Instead of the tedtast Ti ne[v] = —1,
we could check if ¥ is seen” (thus not yetdone).

934. Application of cycle detection. Cycle detection is a basic task in many applications. In-oper
ating systems, we hay@ocessesandresources a process carequesta resource, and the operating
system carmrant that request. We also say that the processilegsiired the resource after it has been
granted. Finally, a process cegleasea resource that it has acquired.

Let P be the set of processes aidthe set of resources. We introduce a bipartite gré&ph-
(P,R,FE) whereV = P W R is the vertex setand C (P x R) U (R x P). See Figurel0 for an
example with 2 processes and 3 resources. An édge € E N P x R means that procegshas
requested resourgebut it has not yet been granted. An edgep) € E N R x P means has been
granted top (subsequent to a request). A processan also release any resourc@ has acquired.
While requests and releases are made by processes, thiagantesources to processes is made by
the operating system. It is clear from this description thatview G as a dynamic graph where edges
appear and disappear over time. Specifically, a progess create a new edge of the fofp) or

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§6. STANDARD DEPTHFIRST SEARCH Lecture IV Page 35

O

Figure 10: Process-resource Graph= {p,q}, R = {r, s, t}.

remove edges of the for(m, p); the operating system can transform an edge of the fprm) to (r, p).
In operating systems (Holt 197X}, is called aprocess-resource graph

Let us make some additional assumptions about how procepsestes. As processes are executed,
they issue requests on a set of one or more resources. Famdéesto print a file, a process may need
to acquire two resources, a file queue and a printer. We asthanhthe process will be blocked until
each one of these requests it has required each of theseaesoSometime after it has acquired all
the resources, the process will relealiehe acquired resources. The graphs thus an instantaneous
snapshot of the set of requests that are pen@ing) or grantedr’, p’). Under these assumptiorG,
represents deadlockif there is a cycldp, r1,p2, 72, - . ., pi, %) IN G (k > 2) wherep; requests; but
r; has been granted {9 ;. In particular,r; has been granted 19,1 = p;. For instance, the graph
in Figure10 has a deadlock because of the cyigler, ¢, ¢]. In this situation, the processes, .. ., px
could not make any progress. Thus our cycle detection dlgorcan be used to detect this situation.

EXERCISES

Exercise 6.1: Why does the following variation of the recursive DFS fail?

SIMPLE DFS (recursive form)
Input: G = (V, E;so) agraph.
for each v adjacent tasg do
if visunseen then

NEN)
Simple DF$(V, E; v))

| POSTVISITG) |

Colorsg asseen.

O U W NP

Exercise 6.2: In what sense is the Nonrecursive DER2{) and the Standard DFS equivalent? <

Exercise 6.3: Suppose = (V, E; \) is a strongly connected digraph in whigh: £ — Ryo. A
potential function of G is ¢ : V' — R such that for alu—v € F,

Au,v) = ¢(u) — ¢(v).

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 36

(a) Consider the cyclic graphs, (see Figurel(d)). Show that ifG = (C,,; A\) thenG does not
have a potential function.

(b) Generalize the observation in part (a) to give an easshexk property?(G) of G such that
G has a potential function iff propert)?(G) holds.

(c) Give an algorithm to compute a potential function oiff P(G) holds. You must prove that
your algorithm is correct. EXTRA: modify your algorithm taiput a “witness” in casé@(G)
does not hold. &

Exercise 6.4: Give an efficient algorithm to detect a deadlock in the pregesource graph. &

Exercise 6.5: Process-Resource Graphs. et= (Vp, Vg, E) be a process-resource graph — all the
following concepts are defined relative to such a gréphWe now model processes in some
detail. A procesp € Vp is viewed as a sequence of instructions of the f&®RQU EST (r) and
RELEASE(r) for some resource. This sequence could be finite or infinite. A procgssay
executean instruction to transfor& to another grapl?’ = (Vp, Vi, E’) as follows:

e If pis blocked (relative t@7) thenG’ = G. In the following, assume is not blocked.

e Suppose the instruction BEQU EST (r). If the outdegree of is zero or if(r,p) € E,
thenE’ = E U {(r,p)}; otherwise £’ = EU {(p,7)}.

e Suppose the instruction BELEASE(r). ThenE' = E\ {(r,p)}.

An execution sequence = p1paps . .. (p; € Vp) is just afinite or infinite sequence of processes.
The computation path of e is a sequence of process-resource grafifis, G1, G, .. .), of the
same length as, defined as follows: le€; = (Vp U Vg, E;) whereE, = () (empty set) and for
i > 1, if p; is thejth occurrence of the procepsin e, thenG; is the result ofp; executing its
jthiinstruction onGG;_. If p; has nojth instruction, we just defin€’; = G,_;. We saye (and
its associated computation path)vialid if for eachi = 1,...,m, the proces; is not blocked
relative toG,;_1, and no process occurs irmore times than the number of instructions:inA
procesg is terminated in e if p has a finite number of instructions, apdccurs ine for exactly
this many times. We say that a 9ét of processesan deadlockif some valid computation path
contains a grapty; with deadlock.

(a) Suppose each processlip has a finite number of instructions. Give an algorithm to deci
if Vp can deadlock. That is, does there exist a valid computattimhat contains a deadlock?
(b) A process igyclicif it has an infinite number of instructions and there existgdegem > 0
such that theth instruction and théi 4+ n)th instruction are identical for ail > 0. Give an
algorithm to decide it/p can deadlock wher&p consists of two cyclic processes. &

Exercise 6.6: We continue with the previous model of processes and ressuin this question, we
refine our concept of resources. With each resourcee have a positive intege¥ () which
represents the number of copiesrofSo when a process requests a resouytiee process does
not block unless the outdegree ofs equal toN(r). Redo the previous problem in this new
setting. &

END EXERCISES

7. Further Applications of Graph Traversal

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 37

In the following, assum& = (V, E) is a digraph witht” = {1,2,...,n}. Letper[l..n] be an
integer array that represents a permutatioVoh the sense tha' = {per[1], per[2],...,per[n]}.
This array can also be interpreted in other ways (e.g., amgriK the vertices).

435. Topological Sort. One motivation is the so-callédPERT graphs: in their simplest form, these
are DAG’s where vertices represent activities. An edge € E means that activity, must be per-
formed before activity. By transitivity, if there is a path from to v, thenu must be performed before
v. A topological sort of such a graph amounts to a feasiblerayflexecution of all these activities.

U

. wakeup ' -
\ ’ \; 77777777 7
 newspapef

Figure 11: PERT graph

Let
(U1,v2,...,0p) (11)

be a listing of the vertices il¥. We call it atopological sortif every edge has the formy—v; where
1 < j. In other words, each edge points to the right, no edge ptitke left. REMARK: if (v1, . . ., v,,)
is a topological sort, thefv,,, v,,—1,...,v1) is called areverse topological sort

If an edges:—v is interpreted as saying “activity must precede activity”, then a topological sort
give us one valid way for doing these activities (do act®sti;, vo, . .. in this order).

Let us say that vertex; hasrank i in the topological sort{1). Hence, topological sort amounts
to computing this rank attribute of each vertex. We intraglan arrayRank[v € V] for this purpose.
Thus the goal of topological sort amounts to a “ranking dthar” which fills in this array.

E.g., If our topological sort is the sequentes, vy, vs,vs), the corresponding rank array is
Rank[vl,vg,v3,v4] = [2,3, 1,4]

We use the DFS Driver to compute the rank attribute array. \Wstiitialize theRank array in the

DRIVERLINIT.
DRIVERINIT(G) = (for v = 1 to n, Rank[v] < —1).

Indeed, we need not use a separate color array, but simglgpnet aRank of —1 asunseen. How
can we use DFS to assign a ranks to the vertices? If we readf a & the DFS tree, then we can
clearly assign it with the largest available rank (inityathe largest available rankig. To support this,
we introduce a global countét that is initialized ton. Each time a vertex is to receive a rank, we use
the current value oR?, and then decremelft, thus:

Rank[v] « R- - . (12)

Inductively, if all the proper descendantswolfiave received ranks, we can assign a rank iball ranks
are assigned as il), then it will be clear that the rank of is less than the ranks of its descendants,
which is what we want in the topological sort. Moreover, itlisar that the rank assignme®} should

10 PERT stands for “Program Evaluation and Review Technigagiroject management technique that was developed for
the U.S. Navy's Polaris project (a submarine-launchedsiallmissile program) in the 1950's. The graphs here are eddled
networks. PERT is closely related to the CriticalPath Mdt{©PM) developed around the same time.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 38

be performed in POSTVISID). Note that the rank function is just as the ordervadccording to
| ast Ti mefv]. So we could also perforni®) when we update thieast Ti me array.

It is easy to prove the correctness of this ranking procedunavided the input graph is a DAG.
What if G is not a DAG? There are two responses.

e First, we could say that our ranking algorithm should detieetsituation when the input digraph
G is not a DAG. This amounts to detecting the existence of bages. When a back edge is
detected, we abort and output “no topological sort”.

e Second, it might turn out that the output of our ranking aildpon is still useful for a non-DAG.
Indeed, this will be the case in our strong component algoribelow. For the strong component
algorithm, it is more convenient to compute theerseof Rank, i.e., an array Rank([1..n] such
that

i Rank[i]]=v <= Rank[v] =1 (13)

Thus we just have to replac&d) by
i Rank[R- -] + wv. (14)
The topological sortX(1) is then given by
(i Rank[1],i Rank|[2],...,i Rank][n]).

936. Strong Components. Computing the components of digraphs is somewhat moreesthuh
the corresponding problem of biconnected components fimaphs. There are at least three distinct
algorithms known for this problem. Here, we will develop tregsion based on “reverse graph search”.

Recall that connected components of a digraph are alsodcaiteong components”. The strong
components forms a partition of the vertex set; this is int@st to biconnected components that may
intersect at cut-vertices.

Let G = (V, E) be a digraph wher® = {1,...,n}. LetPer [1..n] be an array that represents
some permutation of the vertices, o= {Per [1], Per [2],...,Per [n]}. Let DF'S(v) denote the DFS
algorithm starting from vertex. Consider the following method to visit every vertexGn

STRONG_.COMPONENT.DRIVER(G, Per)
INPUT: DigraphG and permutatiofer [1..n].
OuTPUT: DFS Spanning Forest @f.

> Initialization

1 Forv =1,...,n, color[v] =unseen.

> Main Loop

2 Forv=1,...,n,

3 If (color[Per [v]] =done)

4 DFSy(Per[v]) < Outputs a DFS Tree

This program is the usual DFS Driver program, except thatse®ar [¢] to determine the choice of
the next vertex to visit, and it callB F'S, a variant ofDF'S. We assume thdD 'S, (¢) will (1) change
the color of every vertex that it visits, froomseen to done, and (2) output the DFS tree rootediat
If Per is correctly chosen, we want each DFS tree that is outputti@spond to a strong component
of G.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 39

First, let us see how the above subroutine will perform ordifeaphGs in Figure5(a). Let us also
assume that the permutation is

Per[1,2,3,4,5,6] = [6,3,5,2,1,4]

= [ve,v3,05, V2,01, va]. (15)

The output of $RONG_CoMPONENT.DRIVER Will be the DFS trees for on the following sets of vertices
(in this order):
Cr={ve}, Co={vs,v2,v5}, Cs={v1}, Cy={w}.

Since these are the four strong componentsgfthe algorithmis correct. On the other hand, if we use
the "identity” permutation,
Per[1,2,3,4,5,6] =[1,2,3,4,5,6], (16)

our STRONG_.COMPONENT.DRIVER will first call to DF'S;(Per [1]). This produces a DFS tree con-
taining the verticeg1,2,3,5,6}. Only one vertext remainunseen, and so the driver will next call
DF Sy (Per [4]) which produces a DFS tree containifig}. Thus, the identity permutation does not
lead to the correct output for strong components.

Itis not not hard to see that there always exist “good pertimuts’ for which the output is correct.
Here is the formal definition of what this means:

A permutationPer [1..n] is said to begoodif, for any two strong components, C’ of G, if there
is a path fromC' to C”, then thefirst vertex ofC” is listed before the first vertex 6f.

Clearly, our Strong Component Driver will give the correatut iff the given permutation is good.
But how do we get good permutations? Roughly speaking, tbegspond to some form of “reverse
topological sort” ofGG. There are two problems: topological sortinglefs not really meaningful when
G is not a DAG. Second, good permutations requires some kidgslef the strong components which
is what we want to compute in the first place! Neverthelessidgjo ahead and run the topological sort
algorithm (not the robust version) @i We may assume that the algorithm returns an aPexy[1..n]
(the inverse of th&kank[1..n]). The next lemma shows th&er [1..n] almost has the properties we
want. For any set’ C V, we first define

Rank[C] = min{i : Per [;] € C'} = min{Rank[v] : v € C'}

LEMMA 12. LetC, C’ be two distinct strong components@f
(a) If ug € C'is the first vertex irC' that is seen, theRank [ug] = Rank[C].
(b) If there is path fronC' to C” in the reduced graph aF, thenRank[C] < Rank[C’].

Proof. (a) By the Unseen Path Lemma, every nede C will be a descendant af, in the DFS
tree. HenceRank[ug] < Rank|[v], and the result follows sindeank[C] = min{Rank|[v] : v € C'}.
(b) Letug be the first vertex i’ U C” which is seen. There are two possibilities: (1) Suppase C.
By part (a),Rank[C] = Rank]ug]. Since there is a path frof to C’, an application of the Unseen
Path Lemma says that every vertexGhwill be descendants afy. Letu; be the first vertex of” that
is seen. Since, is a descendant afy, Rank[uy] < Rank[u;]. By part(a),Rank[u;] = Rank[C’].
ThusRank[C] < Rank[C"]. (2) Suppose € C’. Since there is no path from, to C, we would have
assigned a rank ta, before any node il is seen. ThusRank|[Cy] < Rank[ug]. But Rank[ug] =
Rank[C"]. Q.E.D.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 40

Is the reverse “topological sort” ordering
[i Rank[n],i Rank[n —1],...,i Rank][1]] a7)

is a good permutation?

Suppose there is path from strong compon€ntio strong component”.
Then our lemma tells us that the rank of tiirst seen vertex of C' is lesg
than the rank of thérst seen vertex’ of C’. Sov appearsfter v’ in the list
a7).

Unfortunately, what we need for a good ordering is thatiéisé seen vertex
of C should appear after tHast seen vertex’ of C’ in (17). Why? Becaus
u (and notv) is the first vertex of” to appear in the listl(7).

1]

We use another insight: consider the reverse g@Ept (i.e., u—v is an edge of7 iff v—u is an
edge ofG"<"). It is easy to see thét is a strong component ¢¥"< iff C'is a strong component @f.
However, there is a path frofi to C” in G"¢" iff there is a path fronC” to C' in G.

LeEmMmA 13. If i Rank]1..n] is the result of running topological sort ofi"¢” theni Rank is a good
permutation forG.

Proof. Let C, C’ be two components af and there is a path frori to C’ in G. Then there is a
path fromC’ to C' in the reverse graph. According to the above, the last verttéxis listed before the
last vertex ofC” in (17). That means that the first vertex 6fis listed after the first vertex af” in the
listing [i Rank([1],i Rank][2],...,i Rank[n]]. Thisis good. Q.E.D.

We now have the complete algorithm:

STRONG.COMPONENT.ALGORITHM(G)
INPUT: DigraphG = (V. E),V ={1,2,...,n}.
OuTPUT: A list of strong components df.

1. Compute the reverse grapticv.
2. Call topological sort oK.

This returns a permutation arrayRank|[1..n)].
3. Call STRONG_.COMPONENT.DRIVER(G,i Rank)

Remarks. Tarjan/] gave the first linear time algorithm for strong componeri®s.Kosaraju and
M. Sharir independently discovered the reverse graph keaethod described here. The reverse graph
search is conceptually elegant. But since it requires twasg@mover the graph input, it is slower in
practice than the direct method of Tarjan. Yet a third metivad discovered by Gabow in 1999. For
further discussion of this problem, including history, veder to Sedgewickd].

EXERCISES

Exercise 7.1: (a) Provide a self-contained algorithm (containing all thacros filled-in) to compute
inverse Rank arrayRank|[1..n].
(b) Code up this program in your favorite programming larggia &

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 41

Exercise 7.2: Give an algorithm to compute the numhb¥fv] of distinct paths originating from each
vertexv of a DAG. ThusN [v] = 1iff v is a sink, and ifu—v is an edgeN [u] > N|v]. O

Exercise 7.3: Let G be a DAG.
(a) Prove thati has a topological ranking.
(b) If G hasn vertices, theriz has at most! topological rankings.
(c) Let G consists of 3 disjoint linear lists of vertices with, ns, n3 vertices (resp.). How many
topological rankings ofs are there? &

Exercise 7.4: Prove that a digraptv is cyclic iff every DFS search aff has a back edge. &

Exercise 7.5: Consider the following alternative algorithm for compufistrong components of a di-
graphG: what we are trying to do in this code is to avoid computingréwesrse of.

STRONG_COMPONENT.ALGORITHM(G)
INPUT: DigraphG = (V, E),V ={1,2,...,n}.
OuTPUT: A list of strong components af.

1. Call topological sort oid.
This returns a permutation arr&er [1..n].
2. Reverse the permutation:
fori =1,...,|n/2], dothe swagPer [i] +» Per [n + 1 — i].
3. Call STRONG_.COMPONENT.DRIVER(G, Per)
Either prove that this algorithm is correct or give a coueteample. &

Exercise 7.6: An edgeu—uv is inessentialif there exists av € V'\ {u, v} such that there is a path from
u to w and a path fromw to v. Otherwise, we say the edgeassential Give an algorithm to
compute the essential edges of a DAG. &

Exercise 7.7: Let Gy be a DAG withm edges. We want to construct a seque@geGs, ..., G, of
DAG's such that eaclt/; is obtained froni7;_; by reversing a single edge so that finally, is
the reverse of7y. Give anO(m + n) time algorithm to compute an orderifg, . . ., e,,) of the
edges corresponding to this sequence of DAGs.

NOTE: this problem arises in a tie breaking scheme. Melbe a triangulated mesh that represents a terrain.
Each vertexv of M has a height(v) > 0, and each pait, v of adjacent vertices ol gives rise to a
directed edge:—wv if h(u) > h(v). Note that if the heights are all distinct, the resultingpirés a DAG.

If h(u) = h(v), we can arbitrarily pick one direction for the edge, as losghe graph remain a DAG.
This is the DAGG| in our problem above. Suppose now we have two height furefigrand k., and we
want to interpolate them: for ea¢he [0, 1], let hy(v) = tho(v) + (1 — t)h1(v). We want to represent the
transformation fronho to k1 by a sequence of graphs, where each successive graph iseabbgi changing
the direction of one edge. O

Exercise 7.8: Let D[u] denote the number of descendants a DAG= (V, E). Note thatD[u] = 1 iff
u is a sink. Show how to compuf®|[u| for all w € V' by programming the shell macros. What is
the complexity of your algorithm? &

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§8. GAMES ON GRAPHS Lecture IV Page 42

Exercise 7.9: A vertexu is called abottleneck if for every other vertex € V, either there is a path
from v to u, or there is a path from to v. Give an algorithm to determine if a DAG has a
bottleneck. HINT: You should be able to do this in at mO$t(m + n)) time. &

Exercise 7.10:In the previous problem, we defined bottlenecks. Now we wamidssify these bot-
tlenecks into “real” and “apparent” bottlenecks. A botdekw is “apparent” if there exists an
ancestow (# u) and a descendant(# u) such thav—w is an edge. Such an edgew is called
a by-pass for;. Give an efficient algorithm to detect all real bottlenecka ®AG G. HINT: This
can be done i®(n + mlogn) time. O

Exercise 7.11:Given a DAGG, let D[u] denote the number of descendanta.ofCan we compute
Dlu]forallu € Vin o((m + n)n) time, i.e., faster than the obvious solution? o

END EXERCISES

68. Games on Graphs

How do we know if a computer program has a given property?daostrial-strength software, espe-
cially in mission-critical applications, we seek strong@ances of certain properties. The controller for
arocketis such a mission-critical software. The area ofmater science dealing with such questions is
calledprogram verification. We can use a graph to model salient properties of a progteaertices
represenstatesof the program, and edges represent possibiasitions between states. Properties of
the program is thereby transformed into graph propertieseldre two basic properties in verification:

e Reachability asks whether, starting from initial states from sorhewe can reach some states

in some setB. For example, ifB is the set of terminal states, this amounts to the question of

halting becomes a reachability question. Sometimes thpeptpwe seek ison-reachability:
forinstance, ifC is the set of “forbidden states”, then we want the stat&€s ia be non-reachable
from the initial states. Of course, in this simple form, DF&I&8FS can check the reachability or
non-reachability properties.

e Fairnessasks if we can reach any state in some giverisitfinitely often. Suppose the program

is an operating system. If the statesBrrepresent running a particular process, then we see why

this property is regarded as “fairness” (no process is sty the process scheduler). Again, if
stateB represents the servicing of a print job at the printer quéhe) fairness implies that the
print job will eventually complete (assuming some minimunité progress).

We introduce a new twist in the above reachability and faisnguestions by introducing two op-
posing players, let us call them Alice and Bobh. Alice représe program, and is responsible for
some transitions in the graph. Bob represents the exterflaénces (sometimes called “nature”) that
determines other transitions in the graph. For instanceuirabove example, Alice might send us into
the statey which represents the servicing of a printer queue. But #iesitions out ofy might take us to
states representing finished job, out-of-paper, paperg&mn]|t is Bob, not Alice, who determines these
transitions.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

Alice and Bob

§8. GAMES ON GRAPHS Lecture IV Page 43

437. Game Graphs. To model this, we introduce the concept ofjame graphG = (V4, Vg, E)
whereVy N Ve = () and(V4 U Vg, E) is a digraph in the usual sense. Note thais not necessarily
a bipartite graph — we do not assurheC (V4 x V) U (Vp x Vy4). The intuitive idea is that each
v € Va (v € Vp) represents a state whose next transition is determinedlibg Bob). A particu-
lar path through this grapfvi,ve, ...) represents a run of the program, with the transitipAv; 4
determined by Alice (Bob) ifi; € Vi (v; € V). We might think of the original (single player) reach-
ability/fairness problems as operating in a graph in whighis the empty set. Clearly, the introduction
of Bob captures new realities of an operating system. RédulititFairness is now defined to mean
“reachable/fair in spite of Bob”.

We next introduce a “game” oty = (Vy4, Vg, E) played by Alice and Bob (called the “play-
ers”). LetV = V4 U Vg, and forv € V, let Out(v) = {ue€V :v—u € E} and In(v) =
{u eV :u—v e E}. The elements o¥/ are also calledstates A terminal state is v such that
Out(v) = 0. There is a single token that resides at some stat€.ofAt each step, this token is
moved from its current stateto some new state € Out(v). This move is determined by Alice (Bob)
if v € Va (v € Vg). In general, the moves oA or B can be non-deterministic, but for our basic
questions, we may assume them to be deterministic. Thatdsnbves of PlayeX (X € {4, B}) is
determined by a functiony : Vx — V such thatrx (v) € Out(v) We callry thestrategy for Player
X (X-strategy for short). Typically, we let denote amA-strategy, ands denote aB-strategy. Acom-
plete strategyis a pair(«, 8), which can be succinctly represented by a single function/ — V.
From anyv; € V, the pairr = («, 8) determines a maximal pafl,, v, . ..) wherev,; = 7(v;).
This path is either finite (in which case the last state is ieafh or infinite. We may denote the path
by w(v1, a, 8) orw(vy, 7), and call it aplay. LetQ = Q(G) denote the set of all plays, ranging over
all complete strategies and all initial states. We write€' w” to meanw occurs in the playw. Also
“u €~ w"if w occurs infinitely often inv (this impliesw is infinite). We may now define:

e Intuitively, Forcduw) is the set of states from which Alice can force the
system into state. Formally:

Forcdu):={v € V : (3a)(V8)[u € w(v,, B)]} .

e Intuitively, Fair(u) is the set of states from which Alice can force the
system to enter stateinfinitely often. Formally:

Fair(u):={v € V : (3a)(Vh)[u € w(v,c, B)]}.

ForU C V, let ForcéU) = U,y Forcdu) and FaifU) = U, cyFair(u). The set FaifU) is also called
thewinning statesfor a Buichi game with Biichi objectivEé. Such games originated in mathematical
logic. We will design algorithms to compute the sets Fotbeand FaifU) in timesO(n + m) and
O(mn). The exercises will show how Fai(U) can be computed i¥(n?) time.

938. Least Fixed Points (LFP). Inherent in these concepts is the important computing quinzie
least fixed points (LFP). Let us look at the basic propertieh®set Forc@/):

e U C ForceU)
e If v € V4 andOut(v) N ForcdU) # () thenv € ForcdU).
e If v € Vg andOut(v) C ForceU) thenv € ForcgU).

11 From Krishnendu Chatterjee and Monika Henzinger (2011).

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§8. GAMES ON GRAPHS Lecture IV Page 44

Let us introduce an operator to capture these properties:
nG = ju: 2V 2V
such that forall/ C V

veU, or [BASIS]
veuU) << veVaA(Out(v)NU #0), or [INDUCT(A)] (18)
v € Vg A (Out(v) C U) [INDUCT(B)]

For anyU C V, there is a least> 0 such tha) (U) = p(+1(U); definep* (U) to bep™ (U). We
easily verify:

LEMMA 14. *(U) is theleast fixed point(LFP) of U under the operator):
e 1*(U) is afixed point ofu:

e 1*(U) is theleastfixed point ofu that containdJ:
(W2U)AW =p(W)) = p*(U)C W
LEMMA 15. ForcgU) is the least fixed point df . In other wordsForcgU) = p*(U).

Proof. Clearly, u*(U) C ForcéU). Conversely, suppose € ForcgU). By definition, there is a
strategya for Alice such that for all strategigs for Bob, if = = («, 8) then there exists & > 1 such
thatr*(u) € U. This proves that: € . (U). Q.E.D.

939. Computing ForcelU). GivenU C V4 U Vi, we now develop an algorithm to compyté&(U)

in O(m + n) time. It is assumed that the input game gr&@ph= (V4, Vs, E) has the adjacency list
representation. This implies that we can compute the re@&rs= (V4, Vg, E”) of Gintime O(m-+n),
whereE™ simply reverses the direction of each edgéinAs we shall see, it is more convenient to use
G" thanG.

The basic idea is to maintain a 9é&t. Initially, W <« U but it will grow monotonically untill¥ is
equal top*(U). For each vertex € V' \ W it is easy to use the conditions i) to check whether
v € u(W), and if so, add it td¥. So the computability of:(W) is not in question. But it may be a bit
less obvious how to do this efficiently. The critical questis —in what order should we examine the
verticesv or the edges—w?

For efficiency, we want to examine edges of the f¢imw) € W’ x W wherelV’ = V\ W. If we
redirect this edge from what is knowH/) to the unknown¥’’), we get anv—u of G". So we imagine
our algorithm as searching the edge&6f We maintain a queu@ containing thosev € W for which
the edge®ut(w) is yet unprocessed. Initiallyy = U, and at the end?) is empty.

You will see that our algorithm is reminiscent of BFS or DF&arching all graph edges under the
control of a queu&). The difference is that this queue is almost breadth-fitgthas a certain built-in
priority.

We now set up the main data structure, which is an a€tgly.n] of natural numbers. Assuming
V = {1,...,n}, we shall us&” to encode the sdi” under the interpretation ¢ W iff C[i] = 0.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§8. GAMES ON GRAPHS Lecture IV Page 45

Initially, we have

0 1€U

Clij]=4 1 ieVa . (19)
degree(i) i€ Vp

Here, the degree of vertexs the number of edges leading outwfn G; it is just the length of the

adjacency list ofi. Actually, if the degree of is 0 andi ¢ U, we should setC[;] = —1, to avoid
confusing: with an element ofV'.

Itis now clear how we to update this array when processinglge@—u) € W x W': if Clu] = 0,
there is nothing to dou(is already inW). Else, we decremerdt[u]. If C[u] becomed) as a result of
the decrement, it meansis now a member of¥’. Note that ifu € V4, then this will happen with
the very first decrement af'[u|; but if u € Vi, we need to decremenitgree(u) times. We need to
also take action in casg[u] become9 after decrement: we must now addo Q. That completes the
description of our algorithm, and it is summarized in thisymo-code:

p(U):
Input: G" = (V4, Vg, E")andU CV ={1,...,n}
Output: Array C[1..n] representing.*(U)
> Initialization
Initialize arrayC[1..n] as in (L9)
Initialize queueR < U

> Main Loop
while (Q # 0)
w < Q.pop()
for each v adjacent tav in G"
If (Clu] > 0)
Clul- -
If Clu] == 0, Q.push(u)
Return(C)

We leave the correctness of this algorithm to the reader.cohwplexity of this algorithm i€ (m +
n) because each vertexis added tay at most once, and for eache @, we process its adjacency list
in O(1) time.

940. ComputingFair(l/). We next use this as a subroutine to compute(Egir

References

[1] C. Berge.Hypergraphsvolume 445 ofMMathematical Library North Holland, 1989.
[2] B. Bollobas.Extremal Graph TheoryAcademic Press, New York, 1978.
[3] J. A. Bondy and U. S. R. MurtyGraph Theory with ApplicationdNorth Holland, New York, 1976.

[4] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stditroduction to Algorithms The MIT
Press and McGraw-Hill Book Company, Cambridge, Massadtwiaed New York, second edition,
2001.

[5] S. Even.Graph Algorithms Computer Science Press, 1979.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§8. GAMES ON GRAPHS Lecture IV Page 46

[6] R. Sedgewick. Algorithms in C: Part 5, Graph AlgorithmsAddison-Wesley, Boston, MA, 3rd
edition edition, 2002.

[7] R. E. Tarjan. Depth-first search and linear graph algong. SIAM J. Computingl(2), 1972.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

	 PURE GRAPH ALGORITHMS
	 Varieties of Graphs
	 Path Concepts
	 Graph Representation
	 Breadth First Search
	 Nonrecursive Depth First Search
	 Standard Depth First Search
	 Further Applications of Graph Traversal
	 Games on Graphs

