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“Liesez Euler, liesez Euler, c’est notre maı̂tre á tous”

(Read Euler, read Euler, he is our master in everything)
— Pierre-Simon Laplace (1749–1827)

Lecture IV
PURE GRAPH ALGORITHMS

Graph Theory is said to have originated with Euler (1707–1783). The citizens of the city1 of
Königsberg asked him to resolve their favorite pastime question: is it possible to traverse all the 7
bridges joining two islands in the River Pregel and the mainland, without retracing any path?See
Figure1(a) for a schematic layout of these bridges. Euler recognized2 in this problem the essence of
Leibnitz’s earlier interest in founding a new kind of mathematics called “analysis situs”. This can be
interpreted as topological or combinatorial analysis in modern language. A graph corresponding to the 7
bridges and their interconnections is shown in Figure1(b). Computational graph theory has a relatively
recent history. Among the earliest papers on graph algorithms are Boruvka’s (1926) and Jarnı́k (1930)
minimum spanning tree algorithm, and Dijkstra’s shortest path algorithm (1959). Tarjan [7] was one of
the first to systematically study the DFS algorithm and its applications. A lucid account of basic graph
theory is Bondy and Murty [3]; for algorithmic treatments, see Even [5] and Sedgewick [6].
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Figure 1: The 7 Bridges of Konigsberg

The real bridge
Credit: wikipedia

Graphs are useful for modeling abstract mathematical relations in computer science as well as in
many other disciplines. Here are some examples of graphs:

Adjacency between CountriesFigure2(a) shows a political map of7 countries. Figure2(b) shows a
graph with vertex setV = {1, 2, . . . , 7} representing these countries. An edgei−j represents the

1 This former Prussian city is now in Russia, called Kaninsgrad. See article by Walter Gautschi (SIAM Review, Vol.50, No.1,
2008, pp.3-33) on the occasion of the 300th Anniversary of Euler’s birth.

2 His paper was entitled “Solutio problematis ad geometriam situs pertinentis” (The solution of a problem relating to the
geometry of position).

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011



§1. VARIETIES OFGRAPHS Lecture IV Page 2

relationship between countriesi andj that share a continuous (i.e., connected) common border.
Thus the graph is an abstraction of the map. Note that countries2 and3 share two continuous
common borders, and so we have two copies of the edge2−3.

Flight Connections A graph can represent the flight connections of a particular airline, with the set
V representing the airports and the setE representing the flight segments that connect pairs of
airports. Each edge will typically have auxiliary data associated with it. For example, the data
may be numbers representing flying time of that flight segment.

Hypertext Links In hypertext documents on the world wide web, a document willgenerally have links
(“hyper-references”) to other documents. We can representthese linkages by a graph whose
verticesV represent individual documents, and each edge(u, v) ∈ V × V indicates that there is
a link from documentu to documentv.
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Figure 2: (a) Political map of7 countries (b) Their adjacency relationship

A graph is fundamentally a set of mathematical relations (called incidence relations) connecting two
sets, a vertex setV and an edge setE. In Figure1(b), the vertex set isV = {A,B,C,D} and the edges
are the7 arcs connecting pairs of vertices. A simple notion of an edgee ∈ E is wheree is a pair of
verticesu, v ∈ V . The pair can be orderede = (u, v) or unorderede = {u, v}, leading to two different
kinds of graphs. We shall denote3 such a pair by “u−v”, and rely on context to determine whether an
ordered or unordered edge is meant. For unordered edges, we haveu−v = v−u; but for ordered edges,
u−v 6= v−u unlessu = v. Note that this simple model of edges (as ordered or unordered pairs) is
unable to model the Konigsberg graph Figure1(b) since it has two copies of the edge betweenA andB.
Such multiple copies of edges requires the general formulation of graphs as a relationship between two
independent setsV andE.

In many applications, our graphs have associated data such as numerical values (“weights”) attached
to the edges and vertices. These are calledweighted graphs. The flight connection graph above is an
example of this. Graphs without such numerical values are called pure graphs. In this chapter,

What could be impure
of graphs?

we restrict attention to pure graph problems; weighted graphs will be treated in later chapters. Many
algorithmic issues of pure graphs relate to the concepts of connectivity and paths. Many of these al-
gorithms can be embedded in one of two graph traversal strategies called depth-first search (DFS) and
breadth-first search (BFS).

shell programming
again!

Some other important problems of pure graphs are: testing ifa graph is planar, finding a maximum
matching in a graph, and testing isomorphism of graphs.

§1. Varieties of Graphs
3 We have taken this highly suggestive notation from Sedgewick’s book [6].

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011



§1. VARIETIES OFGRAPHS Lecture IV Page 3

In this book, “graphs” refer to either directed graphs (“digraphs”) or undi-
rected graphs (“bigraphs”). Additional graph terminologyis collected in Lec-
ture I (Appendix A) for reference.

¶1. Set-Theoretic Notations for Simple Graphs. Although there are many varieties of graph con-
cepts studied in the literature, two main ones are emphasized in this book. These correspond to graphs
whose edgesu−v aredirected or undirected. Graphs with directed edges are calleddirected graphs
or simply,digraphs. Undirected edges are also said to bebidirectional , and the corresponding graphs
will be calledbigraphs. Bigraphs are more commonly known asundirected graphs.

A graphG is basically given by two sets,V andE. These are called thevertex setandedge set,
respectively. We focus on the “simple” versions of three main varieties of graphs. The terminology
“simple” will become clear below.

For any setV and integerk ≥ 0, let

V k, 2V ,

(

V

k

)

(1)

denote, respectively, thek-fold Cartesian product of V , power setof V and theset ofk-subsetsof
V . The first two notations (V k and2V ) are standard notations; the last one is less so. These notations
are natural because they satisfy a certain “umbral property” given by the following equations on set

umbra = shade or
shadow (Latin)

cardinality:
∣
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∣
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∣
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∣
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∣

∣
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For example, letV = {a, b}. Then

V 2 = {(a, a), (a, b), (b, a), (b, b)} , 2V = {∅, {a} , {b} , {a, b}} ,

(

V

2

)

= {{a, b}} .

So |V 2| = |2V | = 22 = 4 and
∣

∣

∣

(

V
2

)

∣

∣

∣
=

∣

∣

(

2
2

)∣

∣ = 1. We can define our 3 varieties of (simple) graphs as

follows:

• A hypergraph is a pairG = (V,E) whereE ⊆ 2V .

• A directed graph (or simply,digraph) is a pairG = (V,E) whereE ⊆ V 2.

• A undirected graph (or4 simply,bigraph) is a pairG = (V,E) whereE ⊆
(

V
2

)

.

In all three cases, the elements ofV are calledvertices. Elements ofE are calleddirected edgesfor
digraphs,undirected edgesfor bigraphs, andhyperedgesfor hypergraphs. Formally, a directed edge
is an ordered pair(u, v), and an undirected edge is a set{u, v}. But we shall also use the notationu−v
to represent anedgewhich can be directed or undirected, depending on the context. This convention is

Sou−v can mean
(u, v) or {u, v}!

useful because many of our definitions cover both digraphs and bigraphs. Similarly, the termgraph will
cover both digraphs and bigraphs. Hypergraphs are sometimes calledset systems(see matroid theory
in Chapter 5). Berge [1] or Bollobás [2] is a basic reference on hypergraphs.

An edgeu−v is said to beincident onu andv; conversely, we sayu andv boundsthe edge{u, v}.
This terminology comes from the geometric interpretation of edges as a curve segment whose endpoints
are vertices. In caseu−v is directed, we callu thestart vertex andv thestop vertex.

4 While the digraph terminology is fairly common, the bigraphterminology is peculiar to this book, but we think it merits
wider adoption. Students sometimes confuse “bigraph” with“bipartite graph” which is of course something else.
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If G = (V,E) andG′ = (V ′, E′) are graphs such thatV ⊆ V ′ andE ⊆ E′ then we callG a
subgraphof G′. WhenE = E′ ∩

(

V
2

)

, we callG the subgraph ofG′ that isinduced byV .

¶2. Graphical Representation of Graphs. Bigraphs and digraphs are “linear graphs” in which each
edge is incident on one or two vertices. Such graphs have natural graphical (i.e., pictorial) represen-
tation: elements ofV are represented by points (small circles, etc) in the plane and elements ofE are
represented by finite curve segments connecting these points.

(a) bigraph (c) hypergraph(b) digraph
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Figure 3: Three varieties of graphs

In Figure 3(a), we display a bigraph(V,E) where V = {a, b, c, d, e} and E =
{a−b, b−c, c−d, d−a, c−e, b−d}. In Figure3(b), we display a digraph(V,E)whereV = {1, 2, . . . , 6}
andE = {1−5, 5−4, 4−3, 3−2, 2−1, 1−6, 2−6, 3−6, 4−6, 5−6, 5−2, 5−3, 2−3}. We display a di-
graph edgeu−v by drawing an arrow from the start vertexu to the stop vertexv. E.g., in Figure3(b),
vertex6 is the stop vertex of each of the edges that it is incident on. So all these edges are “directed”
towards vertex6. In contrast, the curve segments in bigraphs are undirected(or bi-directional). In Fig-
ure3(c) we have a hypergraph onV = {a, b, c, 1, 2, 3} with four hyperedges{a} , {1, 2}, {b, 2, 3} and
{b, c, 3}.

¶3. Non-Simple Graphs. Our definition of bigraphs, digraphs and hypergraphs is not the only rea-
sonable one, obviously. To distinguish them from other possible approaches, we call the graphs of our
definition “simple graphs”. Let us see how some non-simple graphs might look like. An edge of the
form u−u is called aloop. For bigraphs, a loop would correspond to a set{u, u} = {u}. But such
edges are excluded by definition. If we want to allow loops, wemust defineE as a subset of

(

V
2

)

∪
(

V
1

)

.
Note that our digraphs may have loops, which is at variance with some other definitions of “simple
digraphs”. In Figures1(b) and in2(b), we see the phenomenon ofmulti-edges(also known asparallel
edges). These are edges that can occur more than once in the graph.

More generally, we viewE as a multiset. Amultiset S is an ordinary setS together with a function
µ : S → N. We callS the underlying set of S andµ(x) is the multiplicity of x ∈ S. E.g., if
S = {a, b, c} andµ(a) = 1, µ(b) = 2, µ(c) = 1, then we could displayS as{a, b, b, c}, and this is not
the same as the multiset{a, b, b, b, c}, for instance.

¶4. Special Classes of Graphs. In Appendix (Lecture I), we defined special graphs such as acyclic
graphs and trees. We mention note some additional classes ofgraphs here.

First consider bigraphs. The complete graphKn and the complete bipartite graphKm,n were also
defined in Lecture I Appendix. See Figure4(a,b) for the cases ofK5 andK3,3. In general,bipartite
graphsare those whose vertex setV can be partitioned in two disjoint setsA ⊎B = V such that each
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edge is incident on some vertex inA and on some vertex inB. Instead of writingG = (V,E), we may
write G = (A,B,E) for such a bipartite graph withE ⊆ A × B. Bipartite graphs are important in
practice because they model relations between two sets of entities (man versus woman, students versus
courses, etc).

(d)

(b)

1 2 3 4

4

21

3

(a)

(c)

(a’)

Figure 4: (a)K5, (a’) K5, (b)K3,3, (c)L4, (d)C4

Planar graphs are those bigraphs which can be embedded in the Euclidean plane such that no two
edges cross. Informally, it means that we draw them on a pieceof paper so that the curves representing
edges do not intersect. Planar graphs have many special properties: for instance, a planar graph withn
vertices has at most3n − 6 edges. The two smallest examples of non-planar graphs are the so-called
Kuratowski graphsK5 andK3,3 in Figure4(a,b). We have re-drawnK5 in Figure4(a’), this time to
minimize the number of edge crossings. The graphK3,3 is also known as the “utilities graph”. TheWhy isK3,3 so called?
proof that these two graphs are nonplanar are found in Exercises (in this section, and also in Appendix
of Chap. 1).

We can also define theline graphs Ln whose nodes are{1, . . . , n}, with edgesi−i+ 1 for i =
1, . . . , n − 1. Closely related is thecyclic graphsCn which is obtained fromLn by adding the extra
edgen−1. These are illustrated in Figure4(c,d).

These graphsKn,Km,n, Ln, Cn are usually viewed as bigraphs, but there are obvious digraphs
versions of these.
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Graph Isomorphism. The concept of graph isomorphism (see Appendix,
Lecture I) is important to understand. It is implicit in manyof our discussions
that we are only interested in graphsup to isomorphism. For instance, we de-
finedKn (n ∈ N) as “the complete graphs onn vertices” (Appendix, Lecture
I). But we never specified the vertex set ofKn. This is becauseKn is really
an isomorphism class. For instance,G = (V,E) whereV = {a, b, c, d} and
E =

(

V
2

)

andG′ = (V ′, E′) whereV ′ = {1, 2, 3, 4} andE′ =
(

V ′

2

)

are iso-
morphic to each other. Both belong to the isomorphism classK4. Another ex-
ample of two isomorphic graphs is the Kuratowski graphK5, but represented
differently as in Figure4(a) and Figure4(a’). We could sometimes avoid iso-
morphism classes by picking a canonical representative from the class. In the
case ofKn, we can just view it as a bigraph whose vertex set is a particular
set,Vn = {1, 2, . . . , n}. Then the edge set (in case ofKn) is completely de-
termined. Likewise, we defineLn andCn above as graphs on the vertex set
{1, 2, . . . , n} with edgesi−(i + 1) for i = 1, . . . , n − 1 (andn−1 for Cn).
Nevertheless, it should be understood that we intend to viewLn andCn as an
isomorphism class.

¶5. Auxiliary Data Convention. We may want to associate some additional data with a graph. Sup-
pose we associate a real numberW (e) for eache ∈ E. Then graphG = (V,E;W ) is calledweighted
graph with weight functionW : E → R. Again, suppose we want to designate two verticess, t ∈ V as
thesourceanddestination, respectively. We may write this graph asG = (V,E; s, t). In general, aux-
iliary data such asW, s, t will be separated from the pure graph data by a semi-colon,G = (V,E; · · · ).
Alternatively,G is a graph, and we want to add some additional datad, d′, we may also write(G; d, d′),
etc.

EXERCISES

Exercise 1.1: (Euler) Convince the citizens of Königsberg that there is no way to traverse all seven
bridges in Figure1(a) without going over any bridge twice. ♦

Exercise 1.2: Suppose we have a political map as in Figure2(a), and its corresponding adjacency
relation is a multigraphG = (V,E) whereE is a multiset whose underlying set is a subset
of

(

V
2

)

.
(a) Suppose vertexu has the property that there is a unique vertexv such thatu−v is an edge.
What can you say about the country corresponding tou?
(b) Supposeu−v has multiplicity≥ 2. Consider the setW = {w ∈ V : w−v ∈ E,w−u ∈ E}.
What can you say about the setW? ♦

Exercise 1.3: Prove or disprove: there exists a bigraphG = (V,E) where|V | is odd and the degree of
each vertex is odd. ♦

Exercise 1.4:
(i) How many bigraphs, digraphs, hypergraphs are there onn vertices?
(ii) How many non-isomorphic bigraphs, digraphs, hypergraphs are there onn vertices? Give
exact values forn ≤ 5. Give upper and lower bounds for generaln. ♦
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Exercise 1.5: Let G = (V,E) be a hypergraph where|e ∩ e′| = 1 for any two distinct hyperedges
e, e′ ∈ E. Also, the intersection of all the hyperedges inE is empty,∩E = ∅. Show that
|E| ≤ |V |. ♦

Exercise 1.6: A hypergraphG = (V,E) is connectedif it can be written as a union to two non-empty
hypergraphs,G = G0 ⊎ G1 where the vertex sets ofG0, G1 are disjoint. Acycle in G is a
sequence[u0, e1, u1, e2, u2, . . . , uk−1, ek] of alternating verticesui and hyperedgesei such that
ui ∈ ei ∩ ei+1 (assumee0 = ek). If G is connected, thenG has no cycles iff

∑

e∈E

(|e| − 1) = |V | − 1.

♦

Exercise 1.7: Consider the decomposition of2V into symmetric chainsEr ⊂ Er+1 ⊂ · · · ⊂ En−r

where eachEk is a subset ofV of sizek, and|V | = n. For instance, ifV = {1, 2, 3}, then2V is
decomposed into these 3 symmetric chains:

∅ ⊂ {3} ⊂ {2, 3} ⊂ {1, 2, 3} , {2} ⊂ {1, 2} , {1} ⊂ {1, 3} .

(a) Please give the decomposition forV = {1, 2, 3, 4}.
(b) Show that such a decomposition always exists. Use induction onn.
(c) How many symmetric chains are there in the decomposition? ♦

Exercise 1.8: (Sperner) LetG = (V,E) be a hypergraph withn = |V | vertices. Clearly,|E| ≤ 2n and
the upper bound is achievable. But suppose we require that nohyperedge is properly contained
in another (we then sayG is Sperner).
(a) Prove an upper bound on|E| as a function ofn in a Sperner hypergraph. HINT: IfE =
(

V
⌊n/2⌋

)

, then(V,E) is Sperner and|E| =
(

n
⌊n/2⌋

)

. Try to use the symmetric decomposition in
the previous Exercise.
(b) Characterize those graphs which attain your upper bound. ♦

Exercise 1.9: A “trigraph” G = (V,E) is a hypergraph whereE ⊆
(

V
3

)

. These are also called3-
uniform hypergraphs. Each hyperedgef ∈ E may also be called aface. A pair {u, v} ∈

(

V
2

)

is
called anedgeprovided{u, v} ⊆ f for some facef ; in this case, we sayf is incident one, ande
bound f . We say the trigraphG is planar if we can embed its vertices in the plane such that each
face{a, b, c} is represented by a simply region in the plane bounded by three arcs connecting the
edgesa−b, b−c andc−a. Show thatG is planar iff its underlying bigraph is planar in the usual
sense. ♦

END EXERCISES

§2. Path Concepts

We now go into some of these concepts in slightly more detail.Most basic concepts of pure graphs
revolve around the notion of a path.

Let G = (V,E) be a graph (i.e., digraph or bigraph). Ifu−v is an edge, we say thatv is adjacent
to u, and alsou is adjacent from v. The typical usage of this definition of adjacency is in a program

Adjacency isnot
always symmetric!

loop:
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for each v adjacent tou,
do “ . . . v . . .”

Let p = (v0, v1, , . . . , vk), (k ≥ 0) be a sequence of vertices. We callp a path if vi is adjacent to
vi−1 for all i = 1, 2, . . . , k. In this case, we can denotep by (v0−v1− · · · −vk).

Thelength of p is k (notk+1). The path istrivial if it has length0: p = (v0). Call v0 is thesource
andvk the target of p. Bothv0 andvk areendpointsof p. We also sayp is a pathfrom v0 to vk The
pathp is closedif v0 = vk and it issimple if all its vertices, with the possible exception ofv0 = vk, are
distinct. Note that a trivial path is closed and simple. Thereverseof p = (v0−v1− · · · −vk) is the path

pR:=(vk−vk−1− · · · −v0).

In a bigraph,p is a path iffpR is a path.

¶6. The Link Distance Metric. DefineδG(u, v), or simplyδ(u, v), to be the minimum length of a
path fromu to v. If there is no path fromu to v, thenδ(u, v) = ∞. We also callδ(u, v) the link

distance notation
δ(u, v)

distance from u to v; this terminology will be useful whenδ(u, v) is later generalized to weighted
graphs, and when we still need to refer to the un-generalizedconcept. The following is easy to see:

• (Non-negativity)δ(u, v) ≥ 0, with equality iffu = v.

• (Triangular Inequality)δ(u, v) ≤ δ(u,w) + δ(w, v).

• (Symmetry) WhenG is a bigraph, thenδ(u, v) = δ(v, u).

These three properties amount to saying thatδ(u, v) is a metric on V in the case of a bigraph. If
δ(u, v) <∞, we sayv is reachable fromu.

Suppose(v0−v1− · · · −vk) is a minimum link path (sometimes called “shortest path”) between
v0 andvk. Thus,δ(v0, vk) = k. Then we have the following basic property: for alli = 0, 1, . . . , k,
δ(v0, vi) = i. This is also called the “dynamic programming principle” for minimum link paths (we
will study dynamic programming in Lecture 7).

¶7. Subpaths. Let p andq be two paths:

p = (v0−v1− · · · −vk), q = (u0−u1− · · · −uℓ).

If the target ofp equals the source ofq, i.e., vk = u0, then the operation ofconcatenationis well-
defined. The concatenation ofp andq gives a new path, written

p; q:=(v0−v1− · · · −vk−1−vk−u1−u2− · · · −uℓ).

Note that the common vertexvk andu0 are “merged” inp; q. Clearly concatenation of paths is associa-
tive: (p; q); r = p; (q; r), which we may simply write asp; q; r. We say that a pathp containsq as a
subpath if p = p′; q; p′′ for somep′, p′′. If in addition,q is a closed path, we canexciseq from p to
obtain the pathp′; p′′. E.g., ifp = (1−2−a−b−c−2−3−x−y−3−1) and

p′ = (1−2), q = (2−a−b−c−2), p′′ = (2−3−x−y−3−1).

then we can exciseq to obtainp′; p′′ = (1−2−3−x−y−3−1). Whenever we write a concatenation

x

a

b

2

c

31

y

expression such as “p; q”, it is assume that the operation is well-defined.
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¶8. Cycles. Two pathsp, q arecyclic equivalent if there exists pathsr, r′ such that

p = r; r′, q = r′; r.

We writep ≡ q in this case.

For instance, the following four closed paths are cyclic equivalent:

(1−2−3−4−1) ≡ (2−3−4−1−2) ≡ (3−4−1−2−3) ≡ (4−1−2−3−4).

The first and the third closed paths are cyclic equivalent because of the following decomposition:

(1−2−3−4−1) = (1−2−3); (3−4−1), (3−4−1−2−3) = (3−4−1); (1−2−3).

If p = r; r′ andr′; r is defined, thenp must be a closed path because the source ofr and the target
of r′ must be the same, and so the source and target ofp are identical. Similarly,q must be a closed
path.

It is easily checked that cyclic equivalence is a mathematical equivalence relation. We define a
cycleas an equivalence class of closed paths. If the equivalence class ofp is the cycleZ, we callp a
representativeof Z; if p = (v0, v1, . . . , vk) then we writeZ using square brackets[· · · ] in one of the
forms:

Z = [p] = [v1−v2− · · ·−vk] = [v2−v3− · · ·−vk−v1].

Note that ifp hask + 1 vertices, then when we explicitly list the vertices ofp in the cycle notation
[p], we only listk vertices since the last vertex may be omitted. The Exercise will explore the problem
of detecting if two given pathsp, q are cyclic equivalent,[p] = [q]. In case of digraphs, we can have
self-loops of the formu−u andp = (u, u) is a closed path. The corresponding cycle is[u]. However,
the trivial pathp = (v0) gives rise to the cycle which is an empty sequenceZ = [ ]. We call this the
trivial cycle . Thus, there is only one trivial cycle, independent of any choice of vertexv0.

Path concepts that are invariant under cyclic equivalence could be “transferred” to cycles automati-
cally. Here are some examples: letZ = [p] be a cycle.

• Thelength of Z is the length ofp.

• SayZ is simple if p is simple.

• We may speak of subcycles ofZ: if we excise zero or more closed subpaths from a closed pathp,
we obtain a closed subpathq; call [q] asubcycleof [p]. In particular, the trivial cycle is a subcycle
of Z. For instance,[1−2−3] is a subcycle of

[1−2−a−b−c−2−3−x−y−3].

• Thereverseof Z is the cycle which has the reverse ofp as representative.

• A cycleZ = [p] is trivial if p is a trivial path. So a trivial cycle is written[(v0)] = [ ].

We now define the notion of a “cyclic graph”. For a digraphG, we say it iscyclic if it contains any
nontrivial cycle. But for bigraphs, this simple definition will not do. To see why, we note that every
edgeu−v in a bigraph gives rise to the nontrivial cycle[u, v]. Hence, to define cyclic bigraphs, we
proceed as follows: first, define a closed pathp = (v0−v1− · · ·−vk−1, v0) to bereducible if k ≥ 2
and for somei = 1, . . . , k,

vi−1 = vi+1
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where subscript arithmetic are modulok (so vk = v0 andvk+1 = v1). Otherwisep is said to be
irreducible . A cycleZ = [p] is reducible iff any of its representativep is reducible. Finally, a bigraph
is said to becyclic if it contains some irreducible non-trivial cycle.

Let us explore some consequences of these definitions on bigraphs: by definition, the trivial path
(v0) is irreducible. Hence the trivial cycle[ ] is irreducible. There are no cycles of length1, and any
cycle [u, v] of length2 is always reducible. Hence, irreducible non-trivial cycles have length at least3.
If a closed path(v0, . . . , vk−1, v0) is reducible andk ≥ 3, then it is a non-simple path.

¶9. Strong Connectivity. Let G = (V,E) be a graph (either di- or bigraph). Two verticesu, v in
G areconnectedif there is a cycle containing bothu andv. Equivalently,δ(u, v) andδ(v, u) are both
finite. It is not hard to see that strong connectedness is an equivalence relation onV . A subsetC of V
is aconnected componentof G if it is an equivalence class of this relation. For short, we may simply
callC acomponentof G. ThusV is partitioned into disjoint components. IfG has only one connected
component, it is said to beconnected. By definition,u andv are connected means there is a cycleZ that
contains both of them. But we stress thatZ need not be a simple cycle. For instance, the digraph in this

5

3

1 4

6

2

connected digraph

margin is connected because every two vertices are connected. However, any cycleZ that contains both
1 and2 is non-simple (Z must re-use vertex6). The subgraph ofG induced byC is called acomponent
graph of G.

Note that in some literature, it is customary to add the qualifier “strong” when discussing compo-
nents of digraphs; in that case “component” is reserved onlyfor bigraphs. However, our definition of
“component” covers both bi- and digraphs. Nevertheless, wemight still usestrong componentsfor
emphasis.

(c)(b)(a)

6

5

3

5

3

1

2, 3, 5
1 4

6

2 2

4

Figure 5: (a) DigraphG6, (b) Component graph ofC = {2, 3, 5}, (c) Reduced graphGc
6

For example, the graphG6 in Figure5(a) hasC = {2, 3, 5} as a component. The component graph
corresponding toC is shown in Figure5(b). The other components ofG are{1}, {4}, {6}, all trivial.

GivenG, we define thereduced graphGc = (V c, Ec) whose vertices comprise the components
of G, and whose edges(C,C′) ∈ Ec are such that there exists an edge from some vertex inC to some
vertex inC′. This is illustrated in Figure5(c).

CLAIM: Gc is acyclic. In proof, suppose there is a non-trivial cycleZc in Gc. This translates into a
cycleZ in G that involves at least two componentsC,C′. The existence ofZ contradicts the assumption
thatC,C′ are distinct components.

Although the concept of connected components is meaningfulfor bigraphs and digraphs, the concept

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011



§3. GRAPH REPRESENTATION Lecture IV Page 11

of reduced graph is trivial for bigraphs: this is because there are no edges inGc whenG is a bigraph.
Hence the concept of reduced graphs will be reserved for digraphs only. For bigraphs, we will intro-
duce another concept calledbiconnected componentsbelow. WhenG is a bigraph, the notationGc

will be re-interpreted using biconnectivity.

¶10. DAGs and Trees. We have defined cyclic bigraphs and digraphs. A graph isacyclic if it is not
cyclic. The common acronym for adirected acyclic graph is DAG. A tree is a DAG in which there is
a vertexu0 called theroot such that there exists a unique path fromu0 to any other vertex. Clearly, the
root is unique. Trees, as noted in Lecture III, are ubiquitous in computer science. Motto: “know thy

tree”

A free tree is a connected acyclic bigraph. Such a tree it has exactly|V | − 1 edges and for every
pair of vertices, there is a unique path connecting them. These two properties could also be used as the
definition of a free tree. Arooted tree is a free tree together with a distinguished vertex called the root.
We can convert a rooted tree into a directed graph in two ways:by directing each of its edges away from
the root (so the edges are child pointers), or by directing each edge towards the root (so the edges are
parent pointers).

EXERCISES

Exercise 2.1: Let u be a vertex in a graphG.
(a) Canu be adjacent to itself ifG is a bigraph?
(b) Canu be adjacent to itself ifG is a digraph?
(c) Letp = (v0, v1, v2, v0) be a closed path in a bigraph. Canp be non-simple? ♦

Exercise 2.2: Let G be a bigraph. A Hamilton path ofG is a simple path that passes through every
vertex ofG. A Hamilton circuit is a simple cycle that passes through every vertex ofG. Show
thatK3,5 has no Hamilton path or Hamilton circuit ♦

Exercise 2.3: DefineN(m) to be the largest value ofn such that there is aconnectedbigraphG =
(V,E) with m = |E| edges andn = |V | vertices. For instance,N(1) = 2 since with one edge,
you can have at most2 nodes in the connected graphG. We also see thatN(0) = 1. What is
N(2)? Prove a general formula forN(m). ♦

Exercise 2.4: Give an algorithm which, given two cyclesp = [v1− · · · −vk] andq = [u1− · · · −uℓ],
determine whether they represent the same cycle. E.g.,p = [1, 2, 3, 4, 5] andq = [3, 4, 5, 1, 2]
are equivalent simple cycles, butp andq′ = [3, 4, 5, 2, 1] are not. Again,p = [1, 2, 1, 3, 4, 5] and
q = [1, 3, 4, 5, 1, 2] are equivalent non-simple cycles. The complexity of your algorithm may be
O(k2) in general, but should beO(k) whenq is a simple cycle. Note: Assume that vertices are
integers, and the cyclep = [v1− · · ·−vk] is represented by an array ofk integers. ♦

END EXERCISES

§3. Graph Representation
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The representation of graphs in computers is relatively straightforward if we assume array capabili-
ties or pointer structures. The three main representationsare:

• Edge List: this consists of a list of the vertices ofG, and a list of the edges ofG. The lists may
be singly- or doubly-linked. If there are no isolated vertices, we may omit the vertex list. E.g.,
the edge list representations of the two graphs in Figure3 would be

{a−b, b−c, c−d, d−a, d−b, c−e}

and
{1−6, 2−1, 2−3, 2−6, 3−2, 3−6, 4−3, 4−6, 5−2, 5−3, 5−6}.

• Adjacency List: a list of the vertices ofG and for each vertexv, we store the list of vertices that
are adjacent tov. If the vertices adjacent tou arev1, v2, . . . , vm, we may denote an adjacency list
for u by (u : v1, v2, . . . , vm). E.g., the adjacency list representation of the graphs in Figure3 are

{(a : b, d), (b : a, d, c), (c : b, d, e), (d : a, b, c), (e : c)}

and
{(1 : 5, 6), (2 : 1, 3, 6), (3 : 2, 6), (4 : 3, 6), (5 : 2, 3, 4, 6), (6 :)}

This is supposes to be thelist-of-lists form of adjacency lists. Another variant where we assume
the vertex set is{1, . . . , n} and we have an arrayA[1..n] whereA[i] points to the adjacency list
of vertexi. This is thearray-of-lists form . In practice, it is much easier to program the array-
of-lists form. Most of our examples will use this form of adjacency lists. But the two forms are
inter-convertible inO(n+m) time (Exercise).

• Adjacency Matrix : this is an × n Boolean matrix where the(i, j)-th entry is1 iff vertex j is
adjacent to vertexi. E.g., the adjacency matrix representation of the graphs inFigure3 are

a
b
c
d
e













0 1 0 1 0
1 0 1 1 0
0 1 0 1 1
1 1 1 0 0
0 0 1 0 0













a b c d e

,

1
2
3
4
5
6

















0 0 0 0 1 1
1 0 1 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 1 1 1 0 1
0 0 0 0 0 0

















1 2 3 4 5 6 .

Note that the matrix for bigraphs are symmetric. The adjacency matrix can be generalized to store
arbitrary values to represent weighted graphs.

¶11. Size Parameters. Two size parameters are used in measuring the input complexity of graph
problems: |V | and |E|. These are typically denoted byn andm. Thus the running time of graph
algorithms are typically denoted by a function of the formT (n,m). A linear time algorithm would have
T (n,m) = O(m + n). It is clear thatn,m are not independent, but satisfy the bounds0 ≤ m ≤ n2.
Thus, the edge list and adjacency list methods of representing graphs useO(m+n) space while the last
method usesO(n2) space.

TheO(m+ n) time
bound is the “gold
standard” for pure

graph algorithms: try
to achieve this bound

whenever possible.If m = o(n2) for graphs in a familyG, we sayG is asparsefamily of graphs; otherwise the family is
dense. Thus the adjacency matrix representation is not a space-efficient way to represent sparse graphs.
Some algorithms can exploit sparsity of input graphs. For example, the familyG of planar bigraphs is
sparse because (as noted earlier)m ≤ 3n − 6 in such graphs (Exercise). Planar graphs are those that
can be drawn on the plane without any crossing edges.
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¶12. Arrays and Attributes. If A is an array, andi ≤ j are integers, we writeA[i..j] to indicate that
the arrayA hasj − i + 1 elements which are indexed fromi to j. ThusA contains the set of elements
{A[i], A[i+ 1], . . . , A[j]}.

In description of graph algorithms, it is convenient to assume that the vertex set of a graph isV =
{1, 2, . . . , n}. The list structures can now be replaced by arrays indexed bythe vertex set, affording
great simplification in our descriptions. Of course, arraysalso has more efficient access and use less
space than linked lists. For instance, arrays allows us to iterate over all the vertices using an integer
variable.

Often, we want to compute and store a particularattribute (or property) with each vertices. We can
use an arrayA[1..n] whereA[i] is the value of theA-attribute of vertexi. For instance, if the attribute
values are real numbers, we often callA[i] the “weight” of vertexi. If the attribute values are elements
of some finite set, we may callA[i] the “color” of vertexi.

¶13. Coloring Scheme. In many graph algorithms we need to keep track of the processing status of
vertices. Initially, the vertices are unprocessed, and finally they are processed. We may need to indi-
cate some intermediate status as well. Viewing the status ascolors, we then have a three-color scheme:
white or gray or black. They correspond to unprocessed, partially processed and completely pro-
cessed statuses. Alternatively, the three colors may be called unseen, seen anddone (resp.), or
0, 1, 2. Initially, all vertices are unseen or white or0. The color transitions of each vertex are always in
this order:

white ⇒ gray ⇒ black,
unseen ⇒ seen ⇒ done
0 ⇒ 1⇒ 2.

(3)

For instance, let the color status be represented by the integer arraycolor[1..n], with the convention
thatwhite/unseen is 0, gray/seen is 1 andblack/done is 2. Then color transition for vertexi is
achieved by the increment operationcolor[i]++. Sometimes, a two-color scheme is sufficient: in this
case we omit thegray color or thedone status.

EXERCISES

Exercise 3.1: The following is a basic operation for many algorithms: given a digraphG represented
by adjacency lists, compute the reverse digraphGrev in time O(m + n). Recall (Lecture 1,
Appendix) thatu−v is an edge ofG iff v−u is an edge ofGrev. You must show that your
algorithm has the stated running time.

PROBLEM REQUIREMENT: your algorithm should directly modify G into its reverse. We want
you to solve two versions of this problem:
(a) Assume an array representation of the adjacency linked list (i.e., the vertices isV =
{1, 2, . . . , n} and you have a array of linked list.
(b) Assume a linked-list-of-linked-lists representation. ♦
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Q: In the above algorithm with an input graphG, which is better: (i) an algo-
rithm to directly modify the graphG into its reverse, or (ii) an algorithm that
preserveG and create a new graph to representG?
A: Of course, in the above question, we asked you to do the former. More
generally, is it better to have (i) a destructive algorithm,or (ii) a conserva-
tive algorithm? Note that inC++, you indicate that an argument is conserved
by tagging the argument withconst. The answer may depend on the ap-
plication. But generally, I feel the destructive version ismore useful. You
might object, saying you want to keep the original graph. My response is that
you can first create a copy before calling the algorithm. On the other hand,
if you do not care to keep the original input, then the conservative algorithm
wastefully creates a new graph, forcing us to explicitly delete the old graph.

Exercise 3.2: Let G is a connected planar bigraph. LetE(G) be any embedding ofG in the plane, but
in such a way that the curves (representing edges) are pairwise disjoint. The plane is divided by
these curves into connected regions called “faces” by this figure. Note that exactly one of these
faces is an infinite face. For instance, the graph embedding in Figure3(a) has3 faces, while the
embedding in Figure3(b) (viewed as a bigraph for our purposes) has9 faces.
(a) Show that if an embedding ofG hasf faces,v = |V | vertices ande = |E| edges then the
formulav− e+ f = 2 holds. E.g., in Figure3(a) (resp., Figure3(b)) v − e+ f = 5− 6 + 3 = 2
(resp.,v−e+f = 6−13+9 = 2). This proves thatf is independent of the choice of embedding.
HINT: use induction one. SinceG is connected,e ≥ v − 1.
(b) Show that2e ≥ 3f . HINT: Count the number of (edge-face) incidences in two ways: by
summing over all edges, and by summing over all faces.
(c) Conclude thate ≤ 3v − 6. When is equality attained? ♦

Exercise 3.3: The average degree of vertices in a planar bigraph is less than 6. Show this. ♦

Exercise 3.4: Let G be a planar bigraph with60 vertices. What is the maximum number of edges it
may have? ♦

Exercise 3.5: Prove thatK3,3 is nonplanar. HINT: Use the fact that every face of an embedding of
K3,3 is incident on at least 4 edges. Then counting the number of(edge, face) incidences in two
ways, from the viewpoint of edges, and from the viewpoint of faces. From this, obtain an upper
bound on the number of faces, which should contradiction Euler’s formulav − e+ f = 2. ♦

Exercise 3.6: Give anO(m+n) time algorithms to inter-convert between an array-of-lists version and
a list-of-lists version of the Adjacency Graph representation. ♦

END EXERCISES

§4. Breadth First Search

A graph traversal is a systematic method to “visit” each vertex and each edge ofa graph. In this
Hey, haven’t we seen
this before in trees?

section, we study two main traversal methods, known as Breadth First Search (BFS) and Depth First
Search (DFS). The graph traversal problem may be traced backto the Greek mythology about threading
through mazes (Theseus and the Minotaur legend), and to Trémaux’s cave exploration algorithm in the
19th Century (see [5, 6]). Such explorations is still the basis for some popular computer games.
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¶14. Generic Graph Traversal. The idea is to mark the vertices with two “colors”, intuitively called
unseen andseen:

GENERIC GRAPH TRAVERSAL:
Input: G = (V,E; s0) wheres0 is any source node

Color all vertices as initiallyunseen.
Mark s0 asseen, and insert into a container ADTQ
While Q is non-empty

u← Q.Remove()
For each vertexv adjacent tou

If v is unseen,
color it asseen
Q.insert(v)

This algorithm will reach all nodes that are reachable from the sources0. To visit all nodes, not just
those reachable from a single sources0, we can use another driver routine which invokes this traversal
routine with different choices for source nodes (see below). The setQ is represented by some container
data-structure. There are two standard containers: eithera queue or a stack. These two data structures
give rise to the two algorithms for graph traversal:Breadth First Search(BFS) andDepth First Search
(DFS), respectively. These two algorithms are the main focus of this chapter.

Both traversal methods apply to digraphs and bigraphs. However, BFS is typically described for
bigraphs only and DFS for digraphs only. We generally followthis tradition unless otherwise noted. In
both algorithms, the input graphG = (V,E; s0) is represented by adjacency lists, ands0 ∈ V is called
thesourcefor the search.

The idea of BFS is to systematically visit vertices that are nearer tos0 before visiting those vertices
that are further away. For example, suppose we start searching from vertexs0 = a in the bigraph of
Figure3(a). From vertexa, we first visit the verticesb andd which are distance1 from vertexa. Next,
from vertexb, we find verticesc andd that are distance1 away; but we only visit vertexc but not vertex
d (which had already been visited). And so on. The trace of thissearch can be represented by a tree as
shown in Figure6(a). It is called the “BFS tree”.

(b)

a

b d

e

c

a

b d

e

c

(a)

Figure 6: (a) BFS tree. (b) Non-tree edges.

More precisely, recall thatδ(u, v) denote the (link) distance fromu tov in a graph. The characteristic
property of the BFS algorithm is that we will visitu beforev whenever

δ(s0, u) < δ(s0, v) <∞. (4)

If δ(s0, u) =∞, thenu will not be visited froms0. The BFS algorithm does not explicitly compute the
relation (4) to decide the next node to visit: below, we will prove that this is a consequence of using the
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queue data structure.

¶15. The BFS Shell. The key to the BFS algorithm is thequeuedata structure. This is an ADT that
supports the insertion and deletion of items following the First-In First-Out (FIFO) discipline. IfQ is a
queue, we denote the insert and delete of a nodeu by

Q.enqueue(u), u← Q.dequeue(),

respectively. To keep track of the status of vertices we willuse the color scheme (3) in the previous
section. We could use three colors, but for our current purposes, two suffice:unseen/seen. Here is
the BFS algorithm formulated as a shell program:

BFS SHELL

Input: G = (V,E; s0) a graph (bi- or di-).
Output: This is application specific.
⊲ Initialization:

0 INIT(G, s0) ⊳ If this is standalone, then color all vertices excepts0 asunseen
1 Initialize the queueQ to contain justs0.
2 VISIT(s0,nil) ⊳ Visit s0 as root

⊲ Main Loop:
while Q 6= ∅ do

3 u← Q.dequeue(). ⊳ Begin processingu
4 for each v adjacent tou do ⊳ Process edgeu−v
5 PREVISIT(v, u) ⊳ Previsitv fromu

6 if v is unseen then
7 Colorv seen
8 VISIT(v, u) ⊳ Visit v fromu

9 Q.enqueue(v).
10 POSTVISIT(u)

11 CLEANUP(G)

This BFS shell program contains the following shell macros

INIT, PREVISIT, VISIT, POSTVISIT, CLEANUP (5)

which will be application-specific. These macros may be assumed5 to be null operations unless other-
wise specified. The term “macro” also suggests only small6 and local (i.e.,O(1) time) modifications. in computing, macro =

small?An application of BFS will amount to filling these shell macros with actual code. We can usually omit
the PREVISIT step, but see§6 for an example of using this macro.

Note that VISIT(v, u) represents visitingv from u; a similar interpretation holds for
PREVISIT(v, u). We setu = nil in casev is the root of a BFS tree. If this BFS algorithm is a
standalone code, then INIT(G, s0) may be expected to initialize the color of all vertices tounseen,
ands0 has colorseen. Otherwise, the initial coloring of vertices must be done before calling BFS.

5 Alternatively, we could fold the coloring steps into these macros, so that they may be non-null. But our BFS shell has
designed to expose these coloring steps.

6 Below, the Recursive DFS Shell will allow an exception.
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There is an underlying tree structure in each BFS computation: the root iss0. If v is seen from u
(see Line 6 in the BFS Algorithm), then the edgeu−v is an edge in this tree. This tree is called the
BFS tree(see Figure6(a)). A BFS listing at s0 is a list of all the vertices which are VISITed if we run
the BFS algorithm on(G; s0), and the vertices are printed in the order they are visited. E.g., letG be
the bigraph in Figure3(a) ands0 is vertexa. Then two possible BFS listing ata are

(a, b, d, c, e) and (a, d, b, c, e). (6)

The particular BFS listing depends on how the adjacency listof each node is ordered. We can produce
such a listing just by enumerating the vertices of the BFS tree in the order they are visited.

¶16. Applications of BFS. We now show how to program the shell macros in BFS to solve a variety
of problems:

• Suppose you wish to print a list of all the vertices reachablefrom s0. You can make VISIT(v, u)
print some identifier (key, name, etc) associated withv. This would produce the BFS order ats0.
Alternatively, you can make POSTVISIT(u) print the identifier associated withu.

Other macros can remain null operations. Intuitively, these two orderings correspond to preorder
and postorder traversal of trees.

• Suppose you wish to compute the BFS treeT . If we view T as a set of edges, then INIT(G, s0)
could initialize the setT to be empty. In VISIT(v, u), we add the edgeu−v to T .

• Suppose you wish to determine the depthd[u] of each vertexu in the BFS tree. (As we will see,
this depth has intrinsic meaning for the graph.) Then INIT(G, s0) could initialize

d[u] =

{

∞ if u 6= s0,
0 if u = s0.

and in VISIT(v, u), we setd[v] = 1 + d[u]. Also, the coloring scheme (unseen/seen) could
be implemented using the arrayd[1..n] instead of having a separate array. More precisely, we
interpret a nodeu to be unseen iffd[u] =∞.

• Suppose you wish to detect cycles in an bigraph. Let us assumethe input graph is connected. In
PREVISIT(v, u), if v is seen, then you have detected a cycle, and you can immediately return
”CYCLIC”.

You will only reach the final CLEANUP(G) (Step 11) if you did not return earlier through PRE-
VISIT. So, CLEANUP simply returns ”ACYCLIC”.

¶17. BFS Analysis. We shall derive basic properties of the BFS algorithm. Theseresults will apply
to both bigraphs and digraphs unless otherwise noted. The following two properties are often taken for
granted:

LEMMA 1.
(i) The BFS algorithms terminates.
(ii) Starting from sources0, the BFS algorithm visits every node reachable froms0.

We leave its proof for an Exercise. For instance, this assures us that each vertex of the BFS tree will
eventually become the front element of the queue.

Let δ(v) ≥ 0 denote thedepth of a vertexv in the BFS tree. This notation will be justified shortly
when we relatedδ(v) to link distance; but for now, it is just depth in the BFS tree.Note that ifv is
visited fromu, thenδ(v) = δ(u) + 1. We prove a key property of BFS:
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LEMMA 2 (Monotone0 − 1 Property). Let the vertices in the queueQ at some time instant be
(u1, u2, . . . , uk) for somek ≥ 1, with u1 the earliest enqueued vertex anduk the last enqueued vertex.
The following invariant holds:

δ(u1) ≤ δ(u2) ≤ · · · ≤ δ(uk) ≤ 1 + δ(u1). (7)

Proof.The result is clearly true whenk = 1. Suppose(u1, . . . , uk) is the state of the queue at the
beginning of the while-loop, and (7) holds. In Line 3, we removedu1 and assign it to the variableu.
Now the queue contains(u2, . . . , uk) and clearly, it satisfies the corresponding inequality

δ(u2) ≤ δ(u3) ≤ · · · ≤ δ(uk) ≤ 1 + δ(u2).

Suppose in the for-loop, in Line 9, we enqueued a nodev that is adjacent tou = u1. ThenQ contains
(u2, . . . , uk, v) and we see that

δ(u2) ≤ δ(u3) ≤ · · · ≤ δ(uk) ≤ δ(v) ≤ 1 + δ(u2)

holds becauseδ(v) = 1+δ(u1) ≤ 1+δ(u2). In fact, every vertexv enqueued in this for-loop preserves
this property. This proves the invariant (7). Q.E.D.

This lemma shows thatδ(ui) is monotone non-decreasing with increasing indexi. Indeed,δ(ui)
will remain constant throughout the list, except possibly for a single jump to the next integer. Thus, it
has this “0−1 property”, thatεj :=δ(uj+1)− δ(uj) = 0 or 1 for all j = i, . . . , k−1. Moreover, there is
at most onej such thatεj = 1. From this lemma, we deduce the first property about the BFS algorithm:

LEMMA 3. The depthδ(u) of a vertexu in the BFS tree is equal to the link distance froms0 to u, i.e.,

δ(u) = δ(s0, u),

Proof.Let π : (u0−u1−u2− · · · −uk) be a shortest path fromu0 = s0 to uk = u of lengthk ≥ 1.
It is sufficient to prove thatδ(uk) = k. For i ≥ 1, lemma2 tells us thatδ(ui) ≤ δ(ui−1) + 1. By
telescopy, we getδ(uk) ≤ k + δ(u0) = k. On the other hand, the inequalityδ(uk) ≥ k is immediate
because,δ(s0, uk) = k by our choice ofπ, andδ(uk) ≥ δ(s0, uk) because there is a path of length
δ(uk) from s0 to uk in the BFS tree. Q.E.D.

As corollary, if we print the verticesu1, u2, . . . , uk of the BFS tree, in the order that they are en-
queued, this has the property thatδ(ui) ≤ δ(uj) for all i < j.

Another basic property is:

LEMMA 4. If δ(u) < δ(v) thenu is VISITed beforev is VISITed, andu is POSTVISITed beforev is
POSTVISITed.

¶18. Classifying Bigraph Edges. Let us now consider the case of a bigraphG. The edges ofG can
be classified into the following types by the BFS Algorithm (cf. Figure6(b)):

• Tree edges: these are the edges of the BFS tree.

• Level edges: these are edges between vertices in the same level of the BFStree. E.g., edgeb−d
in Figure6(b).
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• Cross-Level edges: these are non-tree edges that connect vertices in two different levels. But
note that the two levels differ by exactly one. E.g., edgec−d in Figure6(b).

• Unseen edges: these are edges that are not used during the computation. Such edges involve only
vertices not reachable froms0.

Each of these four types of edges can arise (see Figure6(b) for tree, level and cross-level edges).
But is the classification complete (i.e., exhaustive)? It is, because any other kind of edges must connect
vertices at non-adjacent levels of the BFS tree, and this is forbidden by Lemma3. Hence we have:

THEOREM 5 (Classification of Bigraph Edges).If G is a bigraph, the above classification of its edges
is complete.

We will leave it as an exercise to fill in our BFS shell macros toproduce the above classification of
edges.

¶19. Applications of Bigraph Edge Classification. Many basic properties of link distances can be
deduced from our classification. We illustrate this by showing two consequences here.

Try proving them
without the

classification theorem!1. LetT be a BFS tree rooted atv0. Consider the DAGD obtained fromT by adding all the cross-level
edges. All the edges inG are given a direction which is directed away fromv0 (so each edge goes from
some leveli ≥ 0 to leveli + 1). CLAIM: Every minimum link path starting fromv0 appears as a path
in the DAGD. In proof, the classification theorem implies that each path in G is a minimum link path,
as there are no edges that can skip a level.
2. Consider a bigraphG with n vertices and with a minimum link pathp = (v0−v1− · · ·−vk). CLAIM:
If k > n/2 then there exists a vertexvi (i = 1, . . . , k − 1) such that every path fromv0 to vk must pass
through vi. To see this, consider the BFS tree rooted atv0. This has more thann/2 levels since
δ(v0, vk) = k > n/2. If there is a leveli (i = 1, . . . , k − 1) with exactly one vertex, then this vertex
must bevi, and thisvi will verify our claim. Otherwise, each leveli has at least two vertices for all
i = 1, . . . , k − 1. Thus there are at least2k = (k + 1) + (k − 1) vertices (k+ 1 vertices are in the path
p andk − 1 additional vertices in levels1, . . . , k − 1) But k > n/2 implies2k > n, contradiction.

¶20. Driver Program. In our BFS algorithm we are given a source vertexs0 ∈ V . This guarantees
that we visit precisely those vertices reachable froms0. What if we need to processall vertices, not just
those reachable from a given vertex? In this case, we write a “driver program” that repeatedly calls our
BFS algorithm. We assume a global initialization which setsall vertices tounseen. Here is the driver
program:

BFS DRIVER SHELL

Input: G = (V,E) a graph.
Output: Application-dependent.
⊲ Initialization:

1 Color all vertices asunseen.
2 DRIVER INIT(G)

⊲ Main Loop:
3 for each vertexv in V do
4 if v is unseen then
5 call BFS((V,E; v)).
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Note that with the BFS Driver, we add another shell macro called DRIVERINIT to our collection
(5). Since each call to BFS produces a tree, the output of the BFSDriver is aBFS forestof the input
graphG. It is clear that this is a spanning forest, i.e., every node of G occurs in this forest.

¶21. Time Analysis. Let us determine the time complexity of the BFS Algorithm andthe BFS Driver
program. We will discount the time for the application-specific macros; but as long as these macros
areO(1) time, our complexity analysis remains valid. Also, it is assumed that the Adjacency List
representation of graphs is used. The time complexity will be given as a function ofn = |V | and
m = |E|.

Here is the time bound for the BFS algorithm: the initialization is O(1) time and the main loop
is Θ(m′) wherem′ ≤ m is the number of edges reachable from the sources0. This giving a total
complexity ofΘ(m′).

Next consider the BFS Driver program. The initialization isΘ(n) and line 3 is executedn times.
For each actual call toBFS, we had shown that the time isΘ(m′) wherem′ is the number of reachable
edges. Summing over all suchm′, we obtain a total time ofΘ(m). Here we use the fact the sets of
reachable edges for different calls to the BFS routine are pairwise disjoint. Hence the Driver program
takes timeΘ(n+m).

¶22. Application: Computing Connected Components. Suppose we wish to compute the con-
nected components of a bigraphG. AssumingV = {1, . . . , n}, we will use us encode this task as
computing an integer arrayC[1..n] satisfying the propertyC[u] = C[v] iff u, v belongs to the same
component. Intuitively,C[u] is the name of the component that containsu. The component number is
arbitrary.

To accomplish this task, we assume a global variable calledcount that is initialized to0 by
DRIVER INIT(G). Inside the BFS algorithm, the INIT(G, s0) macro simply increments thecount
variable. Finally, the VISIT(v, u) macro is simply the assignment,C[v] ← count. The correctness
of this algorithm should be clear. If we want to know the number of components in the graph, we can
output the value ofcount at the end of the driver program.

¶23. Application: Testing Bipartiteness. A graphG = (V,E) is bipartite if V can be partitioned
into V = V1 ⊎ V2 such that ifu−v is an edge thenu ∈ V1 iff v ∈ V2. In the following we shall assume
G is a bigraph, although the notion of bipartiteness applies to digraphs. It is clear that all cycles in a
bipartite graphs must beeven(i.e., has an even number of edges). The converse is shown in an Exercise:
if G has noodd cyclesthenG is bipartite. We use the Driver Driver to call call BFS(V,E; s) for various
s. It is sufficient to show how to detect odd cycles in the component ofs. If there is a level-edge(u, v),
then we have found an odd cycle: this cycle comprises the treepath from the root tou, the edge(u−v),
and the tree path fromv back to the root. In the exercise, we ask you to show that all odd cycles is
represented by such level-edges. It is now a simple matter tomodify BFS to detect level-edges.

In implementing the Bipartite Test above, and generally in our recursive rou-
tines, it is useful to be able to jump out of nested macro and subroutine calls.
For this purpose,Java’s ability to throw exceptionsand tocatch exceptions
is very useful. In our bipartite test, BFS can immediately throw an exception
when it finds a level-edge. This exception can then be caught by the BFS
Driver program.
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EXERCISES

IMPORTANT: In this chapter, answers that that could be reduced to BFS (and
later, DFS) should be solved using our shell programs. In other words, you
only need to expand the various macros. The reason for this “straightjacket”
approach is pragmatic — grading your solutions would be mucheasier. Oth-
erwise, there are many trivial variations of the BFS and DFS programs (such
as whether you change colors before or after visiting a node,etc).

Exercise 4.1: Prove Lemma 1 (p. 15, Lect. 6), showing that the BFS algorithmterminates, and every
vertex that is reachable froms0 will be seen by BFS(s0). ♦

Exercise 4.2: Show that each node is VISITed and POSTVISITed at most once. Is this true for PRE-
VISIT as well? ♦

Exercise 4.3: Let δ(u) be the depth ofu in a BFS tree rooted ats0. If u−v, show:
(a)δ(v) ≤ 1 + δ(u).
(b) In bigraphs,|δ(u)− δ(v)| ≤ 1.
(c) In digraphs, the inequality in (a) can be arbitrarily farfrom an equality. ♦

Exercise 4.4: Reorganize the BFS algorithm so that the coloring steps are folded into the shell macros
of INIT, VISIT, etc. ♦

Exercise 4.5: Fill in the shell macros so that the BFS Algorithm will correctly classify every edge of
the input bigraph. ♦

Exercise 4.6: (a) Give a classification of the edges of a digraphG relative to the operations of running
the BFS algorithm on(G; s0). We should see two new types of edges.
(b) Now turn your answer in part(a) into a “computational classification”. I.e., devise an algorithm
to classify every edge ofG according to (a). Recall that you must use shell programming. ♦

Exercise 4.7: LetG = (V,E;λ) be a connected bigraph in which each vertexv ∈ V has an associated
valueλ(v) ∈ R.
(a) Give an algorithm to compute the sum

∑

v∈V λ(v).
(b) Give an algorithm to label every edgee ∈ E with the value|λ(u) − λ(v)| wheree = u−v.

♦

Exercise 4.8: Give an algorithm that determines whether or not a bigraphG = (V,E) contains a cycle.
Your algorithm should run in timeO(|V |), independent of|E|. You must use the shell macros,
and also justify the claim that your algorithm isO(|V |). ♦

Exercise 4.9: The text sketched an algorithm for testing if a graph is bipartite. We verify some of the
assertions there:
(a) Prove that if a bigraph has no odd cycles, then it is bipartite.
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(b) Prove that if a connected graph has an odd cycle, then BFS search from any source vertex will
detect a level-edge.
(c) Write the pseudo code for bipartite test algorithm outlined in the text. This algorithm is to
return YES or NO only. You only need to program the shell routines.
(d) Modify the algorithm in (c) so that in case of YES, it returns a Boolean arrayB[1..n] such
thatV0 = {i ∈ V : B[i] = false} andV1 = {i ∈ V : B[i] = true} is a witness to the
bipartiteness ofG. In the case of NO, it returns an odd cycle. ♦

Exercise 4.10:Let G be a digraph. Aglobal sink is a nodeu such that for every nodev ∈ V , there is
path fromv to u. A global sourceis a nodeu such that for every nodev ∈ V , there is path from
u to v.
(a) AssumeG is a DAG. Give a simple algorithm to detect ifG has a global sink and a global
source. Your algorithm returns YES if both exists, and returns NO otherwise. Make sure that
your algorithm takesO(m+ n) time.
(b) Does your algorithm work ifG is not a DAG? If not, give a counter example which makes
your algorithm fail. ♦

Exercise 4.11:Let k ≥ 1 be an integer. Ak-coloring of a bigraphG = (V,E) is a functionc : V →
{1, 2, . . . , k} such that for allu−v in E, c(u) 6= c(v). We sayG is k-colorable if G has ak-
coloring. We sayG is k-chromatic if it is k-colorable but not(k− 1)-colorable. Thus, a graph is
bipartite iff it is 2-colorable.
(a) How do you test the 3-colorability of bigraphs if every vertex has degree≤ 2?
(b) What is the smallest graph which is not 3-colorable?
(c) Thesubdivision of an edgeu−v is the operation where the edge is deleted and replaced by
a pathu−w−v of length2 andw is a new vertex. CallG′ a subdivision of another graphG if
G′ is obtained fromG be a finite sequence of edge subdivisions. Dirac (1952) showsthatG is
4-chromatic, then it contains a subdivision ofK4. Is there a polynomial time to determine if a
given connected bigraphG contains a subdivision ofK4? ♦

Exercise 4.12:LetG = (V,E) be a bigraph onn vertices. Supposen+1 is not a multiple of3. If there
exists verticesu, v ∈ G such thatδ(u, v) > n/3 then there exists two vertices whose removal
will disconnectu andv, i.e.,δ(u, v) will become∞. ♦

END EXERCISES

§5. Nonrecursive Depth First Search

Depth First Search (DFS) turns out to be much more subtle thanBFS. To appreciate the depth (no
pun intended) of DFS, we take an unusual route of first presenting a non-recursive solution, based on the
generic graph traversal framework of¶14. We call this formulation theNonrecursive DFS algorithm,
to distinguish it from theStandard DFSalgorithm which is a recursive one.

Here is a general account of DFS: as in BFS, we want to visit allthe vertices that are reachable from
an initial sources0. We define aDFS treeunderlying the DFS computation — the edges of this tree are
precisely thoseu−v such thatv is seen from u. Starting the search from the sources0, the idea is to
go as deeply as possible along any path without visiting any vertex twice. When it is no longer possible
to continue a path (we reached a leaf), we backup towards the sources0. We only backup enough for us
to go forward in depth again. The stack data structure turns out to be perfect for organizing this search.
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In illustration, consider the7 digraphG in Figure7(i) Starting from the source vertex1, one possible
path to a leaf is(1−5−2−3−6). From the leaf6, we backup to vertex2, from which point we can
advance to vertex3. Again we need to backup, and so on. The DFS tree is a trace of this search process,
and is shown in Figure7(ii). The non-tree edges of the graph are shown in various forms of dashed
lines. For the same graph, if we visit adjacent vertices in a different order, we get a different DFS tree,
as in Figure7(iii). However, the DFS tree in Figure7(ii) is the “canonical solution” if we follow our
usual convention of visiting vertices with smaller indicesfirst.

(iii) Another DFS tree

tree edge

forward edge

backward edge

cross edge

(i) digraph (ii) Canonical DFS tree

6

4

33

6

1 4

5

2

1

5

2

3

6

4

1

5

2

Figure 7: Two DFS trees for digraph (i).

¶24. Nonrecursive DFS. We describe a version of DFS that is parallel to BFS (¶15). The key
difference is that BFS uses a queue data structure while DFS uses a stack data structure. Recall that a
stack is an ADT that supports the insertion and deletion of items following a Last-in First-out (LIFO)
discipline. Conceptually, we would like to derive the DFS algorithm just by replacing the queue in
the BFS algorithm by a stack. Insertion and deletion from a stackS is denotedS.push(u) andu ←
S.pop().

The reader who just wants to know about DFS may go directly to the next
section that describes the simpler, recursive formulationof DFS. One motiva-
tion for looking at the nonrecursive DFS is to expose the subtleties that might
otherwise be lost in the standard formulation.

It is not just a matter of “traversing all nodes”, but the careful ordering of VISITs, PREVISITs and
POSTVISITS to nodes. These are essential if DFS is to do the tasks that it is normally called upon to
solve. What does it mean to VISIT a vertexu? Among other (application-dependent) things, we shall
associate VISITing a nodeu with processing its adjacency list – it is important that processing is done
at most once, to ensure anO(m + n) time complexity. Those vertices in the adjacency list that turn
into children ofu will be pushed on the stack. We also need to POSTVISITu after all its children have
been VISITed. It turns out that in most applications of DFS, this POSTVISIT macro has a critical role.
To implement POSTVISIT(u) in our stack framework, we shall push a copy ofu in the stack so that
when it is popped, we will invoke the POSTVISIT macro. To indicate that this copy ofu in the stack
is meant for POSTVISIT (not for the usual VISIT), we will “mark” u before pushing it (back) into the
stack. When we pop a vertex from the stack, we can check if the vertex is marked or not.

We now use a tricolor scheme: initially a vertex is coloredunseen. After it is pushed on the
stack, they are coloredseen. Remark that it may be pushed on the stack more than once. After it
is VISITed they are coloreddone. We remark that the “marking” of vertices is independent of this
coloring scheme.

7 Reproduced from Figure3(b), for convenience.
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NONRECURSIVEDFS SHELL

Input: G = (V,E; s0) a graph (bi- or di-)
Output Application dependent
⊲ Initialization:

0 INIT(G) ⊳ If this is a standalone shell, then color all vertices asunseen

1 Colors0 seen, and initialize the stackS with just s0.
⊲ Main Loop:

2 while S 6= ∅ do:
3 u← S.pop()
4 if (u is “marked”)then
5 POSTVISIT(u)
6 elif (u is seen) then

7 Coloru done, and VISIT(u)

8 S.push(“marked u”)
9 for each v adjacent tou do:
10 PREVISIT(v, u) ;
11 if (v is notdone) then ⊳ butv may beseen
12 Colorv seen, andS.push(v).
13 else ⊳ u is done
14 No-Op (Do nothing)
15 CLEANUP(G)

thev’s are popped in
thereverseorder of

their occurrence inu’s
adjacency list.

Like BFS, this DFS program has two main loops: an outerwhile-loop (Line 2) and an inner
for each-loop (Line 9). Note that the color changesunseen → seen → done for nodeu are
performed at the appropriate moments (when pushingu onto the stack, and when VISITingu). One
important point is that before we pushv on the stack (Line 12), we make sure thatv is notdone, but it
could beseen or unseen; if seen, it means that there is one or more copies ofv are already on the
stack (these are now redundant). Correctness of the algorithm is unaffected by redundancy, but it means
that stack size is bounded bym (notn). If this efficiency issue is of concern, we could introduce “smart
stacks” that can remove such redundancies. The placement ofthe VISIT macros is also different from
BFS: in BFS, we VISIT a vertex when it is first inserted into thequeue; but in DFS, we VISIT a vertex
after it is removed from the stack.

¶25. DFS Driver. Finally, if we need to visit all vertices of the graph, we can use the following DFS
Driver Program that calls Nonrecursive DFS repeatedly:

DFS DRIVER

Input: G = (V,E) a graph (bi- or di-)
Output: Application-specific

1 DRIVER INIT(G)
2 Color each vertex inV asunseen.
3 for each v in V do
4 if v is unseen then
5 DFS(V,E; v) ⊳ Either Nonrecursive or Standard DFS

6 DRIVER CLEANUP(G)
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We view these algorithms as shell programs whose complete behavior depend on the specification
of the embedded shell macros, which are presumed to be null unless otherwise specified:

PREVISIT, VISIT, POSTVISIT,
INIT, DRIVER INIT, CLEANUP, DRIVER CLEANUP.

}

(8)

¶26. DFS Tree. The root of the DFS tree iss0, and the vertices of the tree are those vertices visited
during this DFS search (see Figure7). This tree can easily be constructed by appropriate definitions of
INIT(G, s0) and VISIT(v, u) and is left as an Exercise. We prove a basic fact about DFS:

LEMMA 6 (Unseen Path).Letu, v ∈ V .
Thenv is a descendant ofu in the DFS tree if and only if at the time instant thatu was first seen, there
is8 a “unseen path” fromu to v, i.e., a path(u− · · · −v) comprising only of unseen vertices.

Proof.Let t0 be the time when we first seeu.

(⇒) We first prove the easy direction: ifv is a descendant ofu then there is an unseen path fromu
to v at timet0. For, if there is a path(u−u1− · · · −uk−v) from u to v in the DFS tree, then eachui

must be unseen at the time we first seeui−1 (u0 = u anduk+1 = v). Let ti be the time we first seeui.
Then we havet0 < t1 < · · · < tk+1 and thus eachui was unseen at timet0. Here we use the fact that
each vertex is initially unseen, and once seen, will never revert to unseen.

(⇐) We use an inductive proof. The subtlety is that the DFS algorithm has its own order for
visiting vertices adjacent to eachu, and your induction must account for this order. We proceed by
defining a total order on all paths fromu to v: If a, b are two vertices adjacent to a vertexu and
we visit a beforeb, then we say “a <dfs b (relative tou)”. If p = (u−u1−u2− · · · −uk−v) and
q = (u−v1−v2− · · · −vℓ−v) (wherek, ℓ ≥ 0) are two distinct paths fromu to v, we sayp <dfs q if
there is anm (1 ≤ m < min{k, ℓ}) such thatu1 = v1, . . . , um = vm andum+1 <dfs vm+1 relative
to um. Note thatm is well-defined. Now define theDFS-distancebetweenu andv to be the length of
the<dfs-leastunseen pathfromu to v at time we first seeu. By anunseen pathfromu to v, we mean
one

π : (u−u1− · · ·−uk−v) (9)

where each vertexu1, . . . , uk, v is unseen at time when we first seeu. If there are no unseen paths from
u to v, the DFS-distance fromu to v is infinite.

For anyk ∈ N, let IND(k) be the statement: “If the DFS-distance fromu to v has lengthk + 1, and
(9) is the<dfs-least unseen path fromu to v, then this path is a path in the DFS tree”. Hence our goal
is to prove the validity of IND(k).

BASE CASE: Supposek = 0. The<dfs-least unseen path fromu to v is just (u−v). So v is
adjacent tou. Supposev′ is a vertex such thatv′ <dfs v (relative tou). Then there does not exist
an unseen pathπ′ from v′ to v; otherwise, we get the contradiction that the path(u−v′);π′ is <dfs

than than(u−v)). Hence, when we recursively visitv′, we will never colorv asseen (using the easy
direction of this lemma). Hence, as we cycle through all the vertices adjacent tou, we will eventually
reachv and color itseen from u, i.e., u−v is an edge of the DFS tree.

INDUCTIVE CASE: Supposek > 0. Let π in (9) be the<dfs-least unseen path of lengthk + 1
from u to v. As before, ifv′ <dfs u1 then we will recursively visitv′, we will never color any of the

8 If we use the white-black coloring scheme, this may be calledthe “white path” as in [4].
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verticesu1, u2, . . . , uk, v asseen. Therefore, we will eventually visitu1 from u at some timet1 > t0.
Moreover, the sub pathπ′ : (u1−u2− · · ·−uk−v) is still unseen at this time. Moreover,π′ remains
the<dfs-least unseen path fromu1 to v at timet1. By IND(k − 1), the subpathπ′ is in the DFS tree.
Hence the pathπ = (u−u1);π

′ is in the DFS tree. Q.E.D.

¶27. Classification of digraph edges by DFS. First consider a digraphG. Upon callingDFS(G, s0),
the edges ofG becomes classified as follows (see Figure7):

• Tree edges: these are the edges belonging to the DFS tree.

• Back edges: these are non-tree edgesu−v ∈ E wherev is an ancestor ofu. E.g., edges2−1 and
3−2 in Figure7(iii).

• Forward edges: these are non-tree edgesu−v ∈ E wherev is a descendant ofu. E.g., edges
1−6 and5−6 in Figure7(iii).

• Cross edges: these are non-tree edgesu−v for which u and v are not related by ances-
tor/descendant relation. E.g., edges4−6, 3−6 and4−3 in Figure7(iii). There are actually two
possibilities:u, v may or may not share a common ancestor. Note that in Figure7, we only have
the case whereu, v share a common ancestor, but it is easy to construct exampleswhere this is
not the case.

• Unseen edges: all other edges are put in this category. These are edgesu−v in whichu is unseen
at the end of the algorithm.

Let us give a simple application of the Unseen Path Lemma:

LEMMA 7. Consider the DFS forest of a digraphG:
(i) If u−v is a back edge in this forest thenG has a unique simple cycle containingu−v.
(ii) If Z is a simple cycle ofG then exactly one of the edges ofZ is a back edge in the DFS forest.

Proof. (i) is clear: given the back edgeu−v, we construct the unique cycle comprising the path in
the DFS forest fromv to u, plusu−v. Conversely, for any simple cycleZ = [v1, v2, . . . , vk], in the
running of the DFS Driver program onG, there is a first instant when we see a vertex inZ. Wlog, let it
bev1. At this instant, there is an unseen path fromv1 to vk. By the Unseen Path Lemma, this implies
thatvk will become a descendant ofv1 in the DFS forest. Clearly,vk−v1 is a back edge in the forest.

Q.E.D.

Thus detecting cycles in graphs can be reduced to detecting back edges. More generally, we will
address the computational classification of the edges of a DFS forest. Before we do this in full generality,
we look at the simpler case of classifying bigraph edges.

¶28. Computational classification of bigraph edges by DFS. When DFS is applied to bigraphs,
we can treat the bigraph as a special type of digraph. As usualwe view a bigraphG as a digraphG′

whose directed edges come in pairs:u−v andv−u, one pair for each undirected edge{u, v} of G. So
the above classification (¶27) is immediately applicable to these directed edges. This classification has
special properties which are relatively easy to see (Exercise):
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LEMMA 8. Letu−v be an edge ofG′.
(a) u−v is never a cross edge.
(b) u−v is a back edge if and only if its partnerv−u is either a tree edge or a forward edge.
(c) An edgeu−v is unseen iff its partnerv−u is unseen.

We can now simplify the classification of edges by regardingG (after running DFS onG) as a
“hybrid graph”, withbothdirected and undirected edges. The undirected edges ofG′ are precisely the
unseen edges ofG. But the seen edges ofG are converted into directed edges as follows: tree edges are
directed from parent to child, and back edges. Thus, the (modified)G just have three kinds of edges:

tree, back, unseen. (10)

We address the computational problem of classifying edges according to (10). We will encode tree
edges by introducing aparent array p[v ∈ V ] wherep[v] is the parent ofv in the DFS tree. Thus tree
edges are precisely of the formp[v]−v. The root is the unique nodev with the propertyp[v] = v.

In the shell of¶24, we can detect the forward/back duringPREVISIT(v, u) (Line 10). There are
two possibilities: ifv is unseen then edgeu−v is a tree edge. Otherwise, it must be a back or forward
(recall there are no cross edges). But we cannot distinguishbetween back and forward edges without
more information.

The solution is to introduce “time”. We plan to record thetime when we first see a node. Then
in PREVISIT(v, u), assumingv is seen, we know thatu−v is a back edge iffv was seen beforeu.
To implement “time”, we introduce a global counterclock that is initially 0. We introduce an array,
firstTime[v : v ∈ V ] such thatfirstTime[v] is set to the value ofclockwhen we first seev (and
the value ofclock will be incremented). Thus the clock is just counting the number of “significant This is no ordinary

clockevents”. Later we will expand the notion of significant events. These operations are encoded in our
macros:

INIT(G, s0) : clock ← 0

PREVISIT(v, u) :
If v is unseen,

firstTime[v]← clock++
p[v]← u ⊳ Sou = p[v] is parent ofv, andp[v]−v is“tree-edge”

elif (firstTime[u] > firstTime[v])
NO-OP ⊳ u−v is “back edge”

else
NO-OP ⊳ u−v is “forward edge’’

¶29. Biconnectivity. When we introduced reduced graph earlier, we said that it is not a useful concept
for bigraphs. We now introduce the appropriate analogue forbigraphs.

Let G = (V,E) be a bigraph. A subsetC ⊆ V is a biconnected setof G if for every pairu, v
of distinct vertices inC, there is a simple cycle of vertices inC that containsu andv. For instance, if
there is an edgeu−v, then{u, v} is a biconnected set. That is because a closed path of the formu−v−
is considered a simple closed path; so its equivalence class[u−v] is considered9 a simple cycle. Any

9 One may feel[u−v] is considered “simple” by a technicality.
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singleton{u} is also a biconnected set, for a trivial reason. IfC is a biconnected set that is maximal with
respect to biconnectedness, then we callC a biconnected component. If G has only one biconnected
component, thenG is called abiconnected graph. Biconnected components of sizes≤ 2 aretrivial .
Trivial components are of two types: those of size1 are calledisolated componentsand those of size2
are calledbridges.

cut-vertex

bridge-edge

non cut-vertex

Figure 8: Graph with 3 non-trivial biconnected components and 8 bridges

E.g., the bigraph in Figure3(a) has two biconnected components,{a, b, c, d} and{c, e}. Moreover,
{a, b, c} is a biconnected set but{a, e} is not. A more interesting graph is Figure8 which has11
biconnected components, of which3 are non-trivial.

Biconnectivity is clearly a strong notion of connectivity.Two biconnected components can share at
most one common vertex, and such vertices are calledcut-vertices(or “articulation points”). We give
an alternative characterization using connectivity instead of biconnectivity: vertexu is a cut-vertex iff
the removal ofu, and also all edges incident onu, will increase the number of connected components
of resulting bigraph. This means there exist two verticesv, v′ (both different fromu) such that all paths
from v to v′ must pass throughu. The absence of cut-vertices isalmostequivalent to biconnectivity, as
seen is the following easily verified facts:

LEMMA 9.
(a) If G has a cut-vertex, then it is not biconnected.
(b) If G has no cut-vertices, and is connected, then it is biconnected.

There is an edge analogue of cut-vertex: an edgeu−v is called abridge-edgeif the removal of this
edge will increase the number of connected components of theresulting bigraph. The two endpoints of
a bridge-edge constitute a bridge (a biconnected componentof size2). E.g., in the line graphLn (see
Figure4(c)) with vertex setV = {1, . . . , n}, a vertexi is a cut-vertex iff1 < i < n. Also, every edge of
Ln is a bridge. The graph in Figure3(a), has one cut-vertexc and one bridgec−e; the graph in Figure8
has9 bridges and10 cut-vertices.

LEMMA 10. AssumeG is connected, andT is a DFS tree ofG. A vertexu in T is a cut-vertex iff one
of the following conditions hold:
(i) If u is the root ofT and has two or more children.
(ii) If u is not the root, but it has a childv such that for any descendantw of v, if w is adjacent tow,
thenw is also a descendant ofu. Note that a vertexw may be equal tov.
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C

C ′

v′

u

v

w

w

cut vertexu

Proof.Condition (i) impliesu is a cut-vertex because there are no cross edges. Condition (ii) implies
any path from the parent ofu to w must pass throughu, but there is no path fromw to any ancestor of
u; thusu is a cut-vertex.

Conversely, supposeu is a cut-vertex. LetC,C′ be two distinct biconnected components containing
u. If u is the root, thenu must have a childv ∈ C and a childv′ ∈ C′. Thusu has more than one
child, i.e., property (i) holds. Hence assumeu is not the root. Thenu has a parentv′ and wlog, we
may letC′ denote the biconnected component ofv′. Also one of the childrenv of u must belong to the
other componentC. Suppose there exists a descendantw of v such thatw is adjacent to some vertex
w. wherew not a descendant ofu. Since the BFS tree has no cross edges,w must be an ancestor ofu.
So there is a path in the BFS tree fromw to w. This path, together with the edgew−w forms a cycle
Z that passes throughv′ andv. This contradicts the assumption thatC,C′ are distinct biconnected
components. Thus, property (ii) holds. Q.E.D.

¶30. Biconnectivity Detection. We now present an algorithm to detect if a bigraphG is biconnected.
Our algorithm either outputs a cut-vertex ofG or report thatG is biconnected. It is based on detecting
any one of the two conditions in Lemma10. Detecting condition (i) is easy: we introduce a global
variablenumChildren count the number of children of the root. Initially,numChildren ← 0.
and each time the root spawns a new child, we update this number. If this number exceeds1, we
report the root to be a cut-vertex. To detect condition (ii),let mft[u] denote the minimum value of
firstTime[w] wherew ranges over the setB(u) of vertices for which there exists a back edge of the
form v−w andv is a descendant ofu. Note thatv need not be a proper descendant ofu (i.e., we allow
v = u). As usual, the minimum over an empty set is∞, somft[u] = ∞ iff B(u) is empty. We now
address three questions:

• What is the significance ofmft[u]? Supposeu is not the root of the DFS tree. Claim:u is a
cut-vertex iff there exists a childv of u such thatmft[v] ≥ firstTime[u]. In proof, if u
is a cut-vertex, then condition (ii) provides a childv of u such thatmft[v] ≥ firstTime[u].
Conversely, supposemft[v] ≥ firstTime[u]. Take any path fromv to p[u]. There is a first
edgew−w′ in this path such thatfirstTime[w] ≥ firstTime[u] > firstTime[w′]. We
claim thatw = u. If not, thenw is a descendant ofv, andw−w′ is a back edge and sow′ ∈ B(v).
Thusmft[v] ≤ firstTime[w′] < firstTime[u], contradiction. Thus every path connecting
v andp[u] must pass throughu, i.e.,u is a cut-vertex. This proves our claim.

• How do we maintainmft[u]? We initializemft[u] to∞ whenu is first seen. We subsequently
updatemft[u] in two ways:
(i) When we detected a back edgeu−v, we will update mft[u] with
min {mft[u],firstTime[v]}.
(ii) When we POSTVISIT(v), andp[v] = u, we can updatemft[u] to min {mft[u],mft[v]}.
By the time we have POSTVISITu, the value ofmft[u] would have been correctly computed
because, inductively, it has been updated with the contributions of each of its children in the DFT,
and also the contributions of each back edge originating from u.

• How do we usemft[u] computationally? We can only use it to detect cut-vertices:in
POSTVISIT(u), we check ifmft[u] ≥ firstTime[p[u]], andp[u] is not the root.

To summarize the algorithm, here are the shell macros:
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INIT(G, s0) :
clock ← 0
p[s0] = s0
numChildren = 0

PREVISIT(v, u) :
If (v is unseen),

firstTime[v]← clock++
p[v]← u ⊳ (u−v) is “tree-edge”
mft[v]←∞
If p[u] = u ⊳ u is root

If (++numChildren > 1)
Return(“u is cut-vertex”)

elif (firstTime[u] > firstTime[v]) ⊳ u−v is “back edge”
mft[u]← min {mft[u],firstTime[v]}

POSTVISIT(u) :
If (mft[u] ≥ firstTime[p[u]]) and(p[u] 6= p[p[u]])

Return(“p[u] is a cut-vertex”)

¶31. Reduced Bigraphs. Given a bigraphG, we define a bigraphGc = (V c, Ec) such that the

“ Gc” is a recycled
notation for the

reduced graph of a
digraphG. No

confusion need arise
onceG is identified as

a digraph or a bigraph.

elements ofV c are the biconnected components ofG, and(C,C′) ∈ Ec iff C ∩ C′ is non-empty. It is
easy to see thatGc is acyclic. We may callGc thereduced graphfor G. In the Exercise, we ask you to
extend the above biconnectivity detection algorithm to compute some representation ofGc.

EXERCISES

Exercise 5.1: T or F: Let C be a connected componentC of a bigraph. ThenC is a biconnected
component iffC does not contain a cut-vertex or a bridge. ♦

Exercise 5.2:
(a) Give the appropriate definitions for INIT(G), VISIT((v, u)) and POSTVISIT(u) so that our
DFS Algorithm computes the DFS Tree, say represented by a data structureT
(b) Prove that the objectT constructed in (a) is indeed a tree, and is the DFS tree as defined in the
text. ♦

Exercise 5.3: Programming in the straightjacket of our shell macros is convenient when our format fits
the application. But the exact placement of these shell macros, and the macro arguments, may
sometimes require some modifications.
(a) We have sometimes defined VISIT(u, v) to take two arguments. Show that we could have
defined this it as VISIT(u), and not lost any functionality in our shell programs. HINT: take
advantage of PREVISIT(u, v).
(b) Give an example where it is useful for the Driver to call CLEANUP(u) after DFS(u). ♦
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Exercise 5.4: Relationship between the traversals of binary trees and DFS.
(a) Why are there not two versions of DFS, corresponding to pre- and postorder tree traversal?
What about inorder traversal?
(b) Give the analogue of DFS for binary trees. As usual, you must provide place holders for shell
routines. Further assume that the DFS returns some values which is processed at the appropriate
place. ♦

Exercise 5.5: Give an alternative proof of the Unseen Path Lemma, without explicitly invoking the
ordering properties of<dfs. Also, do not invoke properties of the Full DFS (with time stamps).

♦

Exercise 5.6: Prove that our DFS classification of edges of a digraph is complete. Recall that each edge
is classified as either tree, back, forward, cross, unseen. ♦

Exercise 5.7: Prove Lemma8 concerning the DFS classification of the directed edges of a bigraph. ♦

Exercise 5.8: In the text, we gave an algorithm to detect if a bigraph is biconnected. Generalize this
algorithm to compute all the biconnected components of the bigraph. ♦

Exercise 5.9: Extend our biconnected graph detection algorithm to compute a representation of the
reduced graphGc of a bigraphG. How should you representGc? First, we want to identify each
vertexv as a cut-vertex or not. This can be represented by a Boolean arrayCV [v ∈ V ] where
CV [v] = true iff v is a cut-vertex. Second, we want to assign to each edge ofG an integer called
its “component number” (two edges have the same component number iff they belong to the same
biconnected component ofG). ♦

Exercise 5.10:Let G = (V,E) be a connected bigraph. For any vertexv ∈ V define

radius(v,G) := max
u∈V

distance(u, v)

where distance(u, v) is the length of the shortest (link-distance) path fromu to v. Thecenterof
G is the vertexv0 such that radius(v0, G) is minimized. We call radius(v0, G) the radiusof G
and denote it by radius(G). Define thediameterdiameter(G) of G to be the maximum value of
distance(u, v) whereu, v ∈ V .
(a) Prove that2 · radius(G) ≥ diameter(G) ≥ radius(G).
(b) Show that for every natural numbern, there are graphsGn and Hn such thatn =
radius(Gn) = diameter(Gn) and diameter(Hn) = n and radius(Hn) = ⌈n/2⌉. This shows
that the inequalities in (a) are the best possible.
(c) Using DFS, give an efficient algorithm to compute the diameter of a undirected tree (i.e., con-
nected acyclic undirected graph). Please use shell programming. Prove the correctness of your
algorithm. What is the complexity of your algorithm? HINT: write down a recursive formula for
the diameter of a tree in terms of the diameterandheight of its subtrees.
(d) Same as (c), but compute the radius instead of diameter.
(e,f) Same as (c) and (d) but using BFS instead of DFS. ♦

Exercise 5.11:Re-do the previous question (part (c)) to compute the diameter, but instead of using
DGS, use BFS. ♦
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Exercise 5.12:Prove that our nonrecursive DFS algorithm is equivalent to the recursive version. ♦

Exercise 5.13:Suppose we simply replace the queue data structure of BFS by the stack data structure.
Do we get the DFS? Here is result, obtainedmutatis mutandis, from BFS algorithm:

BDFS ALGORITHM

Input: G = (V,E; s0) a graph.
Output: Application specific
⊲ Initialization:

0 Initialize the stackS to contains0.
1 INIT(G, s0) ⊳ If standalone, make all verticesunseen except fors0

⊲ Main Loop:
while S 6= ∅ do

2 u← S.pop().
3 for each v adjacent tou do
4 PREVISIT(v, u)
5 if v is unseen then
6 colorv seen
7 VISIT(v, u)
8 S.push(v)

9 POSTVISIT(u) .

This algorithm shares properties of BFS and DFS, but is distinct from both. Which problems can
still be solved by BDFS? Is there any conceivable advantage of DBFS? ♦

END EXERCISES

§6. Standard Depth First Search

¶32. Recursive DFS. The Nonrecursive DFS is simplified when formulated as a recursive algorithm.
The simplification comes from the fact that the explicit stack is now hidden as the recursive stack.
Indeed, this is the “standard” presentation of DFS:

STANDARD DFS
Input: G = (V,E; s0) a graph (bi- or di-)

The vertices inV are coloredunseen, seen or done; s0 is unseen.
Output Application dependent

1 Colors0 asseen, and VISIT(s0)

2 for each v adjacent tos0 do
3 PREVISIT(v, s0)
4 if (v is unseen) then
6 Standard DFS((V,E; v)) ⊳ Recursive call
7 Colors0 done, and POSTVISIT(s0) .

8 CLEANUP(G) .
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To visit every vertex of a digraph, we invoke a DFS Driver on the graph. We can keep the DFS
Driver in ¶25, except that each DFS call refers to the Standard DFS.

Our placements of thePOSTVISIT(s0) macro in Line 7 is intended to allow you to visit all the
vertices adjacent tos0 once more. This violates our normal injunction against non-constant work macros
(see¶15). Of course, this means doing another iteration of the loop of Line 2. That injunction is now
modified to mean that, for eachv adjacent tos0, you should doO(1) work in the POSTVISIT macro.

¶33. Computational classification of digraph edges by DFS. The result of calling this driver on
G is the production of a DFS forest that spansG and a classification of every edge ofG. But this
classification is only conceptual so far — the purpose of thissection is to achieve a computational
classification of these edges. Previously we have only achieved this for the edges of a bigraph. Indeed,
we can extend the solution method used for bigraphs: recall that we had time stamps and we maintained
an arrayfirstTime[v ∈ V ]. We now introduce another arraylastTime[v ∈ V ] to record the time
of when we finish POSTVISIT of vertices.

Assume thatfirstTime[v] andlastTime[v] are both initialized to−1 in DRIVER INIT(G).
It is possible to avoid initialization of these arrays. Thatis because the color scheme
unseen/seen/done can serve to detect initialization conditions. We will discuss this later.

In the Standard DFS, unlike the nonrecursive version, thereis no INIT(G) step — that is because we
do not want to initialize with each recursive call! Also, we perform VISIT(v) (Line 1) at the beginning
of the recursive call tov (Line 6), but first ensuring thatv isunseen. Finally, after recursively VISITing
all the children ofs0, we POSTVISIT(s0) (Line 7). This is done in a much smoother way than in the
Nonrecursive DFS. Here are some macro definitions:

• DRIVER INIT(G)≡ clock← 0; (for v ∈ V )[firstTime[v]← lastTime[v]← −1].

• PREVISIT(v, u)≡ If v is unseen, firstTime[v]← clock++.

• POSTVISIT(v)≡ lastTime[v]← clock++.

During the computation, a nodev is unseen if firstTime[v] < 0; it is seen if
firstTime[v] > lastTime[v]; it is done if firstTime[v] < lastTime[v]. In other words,
we can avoid maintaining colors explicitly if we have the arraysfirstTime andlastTime.

Let active(u) denote the time interval[firstTime[u],lastTime[u]], and we sayu is active
within this interval. It is clear from the nature of the recursion that two active intervals are either
disjoint or has a containment relationship. In case of non-containment, we may writeactive(v) <
active(u) if lastTime[v] < firstTime[u]. We return to the computational classification of the
edges of a digraphG relative to a DFS forest onG:

LEMMA 11. Assume that a digraphG has been searched using the DFS Driver, resulting in a complete
classification of each edge ofG. Letu−v be an edge ofG.

1. u−v is a back edge iffactive(u) ⊆ active(v).

2. u−v is a cross edge iffactive(v) < active(u).

3. u−v is a forward edge iff there exists somew ∈ V \ {u, v} such thatactive(v) ⊆
active(w) ⊆ active(u).
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4. u−v is a tree edge iffactive(v) ⊆ active(u) but it is not a forward edge.

This above classification of edges by active ranges is illustrated in Figure9.

cross

back

lastTime[u]firstTime[u]

v

v

u

v

forward/tree
time

Figure 9: Relative positions of active ranges ofu, v and the classification of edge(u−v)

These criteria can be used by the PREVISIT(v, u) macro to classify edges ofG:

PREVISIT(v, u)
⊲ Visitingv, fromu

if (firstTime[v] = −1),
marku−v as “tree edge”

elif (firstTime[v] > firstTime[u]),
marku−v as “forward edge”

elif (lastTime[v] = −1),
marku−v as “back edge”

else
marku−v as “cross edge”.

The correctness of this classification is a direct consequence of Lemma11(cf. Figure9). If the arrays
firstTime,lastTime are not initialized, we could replace the above code as follows: instead of the
testfirstTime[v] = −1, we could check if “v is unseen”. Instead of the testlastTime[v] = −1,
we could check if “v is seen” (thus not yetdone).

¶34. Application of cycle detection. Cycle detection is a basic task in many applications. In oper-
ating systems, we haveprocessesandresources: a process canrequesta resource, and the operating
system cangrant that request. We also say that the process hasacquired the resource after it has been
granted. Finally, a process canreleasea resource that it has acquired.

Let P be the set of processes andR the set of resources. We introduce a bipartite graphG =
(P,R,E) whereV = P ⊎ R is the vertex set andE ⊆ (P × R) ∪ (R × P ). See Figure10 for an
example with 2 processes and 3 resources. An edge(p, r) ∈ E ∩ P × R means that processp has
requested resourcer but it has not yet been granted. An edge(r, p) ∈ E ∩ R × P meansr has been
granted top (subsequent to a request). A processp can also release any resourcer it has acquired.
While requests and releases are made by processes, the granting of resources to processes is made by
the operating system. It is clear from this description thatwe viewG as a dynamic graph where edges
appear and disappear over time. Specifically, a processp can create a new edge of the form(p, r) or
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r

q

p

s

t

Figure 10: Process-resource Graph:P = {p, q}, R = {r, s, t}.

remove edges of the form(r, p); the operating system can transform an edge of the form(p, r) to (r, p).
In operating systems (Holt 1971),G is called aprocess-resource graph.

Let us make some additional assumptions about how processesoperates. As processes are executed,
they issue requests on a set of one or more resources. For instance, to print a file, a process may need
to acquire two resources, a file queue and a printer. We assumethat the process will be blocked until
each one of these requests it has required each of these resources. Sometime after it has acquired all
the resources, the process will releaseall the acquired resources. The graphG is thus an instantaneous
snapshot of the set of requests that are pending(p, r) or granted(r′, p′). Under these assumptions,G
represents adeadlockif there is a cycle[p1, r1, p2, r2, . . . , pk, rk] in G (k ≥ 2) wherepi requestsri but
ri has been granted topi+1. In particular,rk has been granted topk+1 = p1. For instance, the graph
in Figure10 has a deadlock because of the cycle[p, r, q, t]. In this situation, the processesp1, . . . , pk
could not make any progress. Thus our cycle detection algorithm can be used to detect this situation.

EXERCISES

Exercise 6.1: Why does the following variation of the recursive DFS fail?

SIMPLE DFS (recursive form)
Input: G = (V,E; s0) a graph.

1 for each v adjacent tos0 do
2 if v is unseen then

3 VISIT(v, s0) .

4 Simple DFS((V,E; v))

5 POSTVISIT(s0) .
6 Colors0 asseen.

♦

Exercise 6.2: In what sense is the Nonrecursive DFS (¶24) and the Standard DFS equivalent? ♦

Exercise 6.3: SupposeG = (V,E;λ) is a strongly connected digraph in whichλ : E → R>0. A
potential function of G is φ : V → R such that for allu−v ∈ E,

λ(u, v) = φ(u)− φ(v).
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(a) Consider the cyclic graphsCn (see Figure4(d)). Show that ifG = (Cn;λ) thenG does not
have a potential function.
(b) Generalize the observation in part (a) to give an easy-to-check propertyP (G) of G such that
G has a potential function iff propertyP (G) holds.
(c) Give an algorithm to compute a potential function forG iff P (G) holds. You must prove that
your algorithm is correct. EXTRA: modify your algorithm to output a “witness” in caseP (G)
does not hold. ♦

Exercise 6.4: Give an efficient algorithm to detect a deadlock in the process-resource graph. ♦

Exercise 6.5: Process-Resource Graphs. LetG = (VP , VR, E) be a process-resource graph — all the
following concepts are defined relative to such a graphG. We now model processes in some
detail. A processp ∈ VP is viewed as a sequence of instructions of the formREQUEST (r) and
RELEASE(r) for some resourcer. This sequence could be finite or infinite. A processp may
executean instruction to transformG to another graphG′ = (VP , VR, E

′) as follows:

• If p is blocked (relative toG) thenG′ = G. In the following, assumep is not blocked.

• Suppose the instruction isREQUEST (r). If the outdegree ofr is zero or if(r, p) ∈ E,
thenE′ = E ∪ {(r, p)}; otherwise,E′ = E ∪ {(p, r)}.

• Suppose the instruction isRELEASE(r). ThenE′ = E \ {(r, p)}.

An execution sequencee = p1p2p3 . . . (pi ∈ VP ) is just a finite or infinite sequence of processes.
Thecomputation path of e is a sequence of process-resource graphs,(G0, G1, G2, . . .), of the
same length ase, defined as follows: letGi = (VP ∪ VR, Ei) whereE0 = ∅ (empty set) and for
i ≥ 1, if pi is thejth occurrence of the processpi in e, thenGi is the result ofpi executing its
jth instruction onGi−1. If pi has nojth instruction, we just defineGi = Gi−1. We saye (and
its associated computation path) isvalid if for eachi = 1, . . . ,m, the processpi is not blocked
relative toGi−1, and no process occurs ine more times than the number of instructions ine. A
processp is terminated in e if p has a finite number of instructions, andp occurs ine for exactly
this many times. We say that a setVP of processescan deadlockif some valid computation path
contains a graphGi with deadlock.
(a) Suppose each process inVP has a finite number of instructions. Give an algorithm to decide
if VP can deadlock. That is, does there exist a valid computation path that contains a deadlock?
(b) A process iscyclic if it has an infinite number of instructions and there exists an integern > 0
such that theith instruction and the(i + n)th instruction are identical for alli ≥ 0. Give an
algorithm to decide ifVP can deadlock whereVP consists of two cyclic processes. ♦

Exercise 6.6: We continue with the previous model of processes and resources. In this question, we
refine our concept of resources. With each resourcer, we have a positive integerN(r) which
represents the number of copies ofr. So when a process requests a resourcer, the process does
not block unless the outdegree ofr is equal toN(r). Redo the previous problem in this new
setting. ♦

END EXERCISES

§7. Further Applications of Graph Traversal

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011



§7. FURTHERAPPLICATIONS OFGRAPH TRAVERSAL Lecture IV Page 37

In the following, assumeG = (V,E) is a digraph withV = {1, 2, . . . , n}. Let per[1..n] be an
integer array that represents a permutation ofV in the sense thatV = {per[1], per[2], . . . , per[n]}.
This array can also be interpreted in other ways (e.g., a ranking of the vertices).

¶35. Topological Sort. One motivation is the so-called10 PERT graphs: in their simplest form, these
are DAG’s where vertices represent activities. An edgeu−v ∈ E means that activityu must be per-
formed before activityv. By transitivity, if there is a path fromu to v, thenu must be performed before
v. A topological sort of such a graph amounts to a feasible order of execution of all these activities.

wake up

breakfast

newspaper

go to work

Figure 11: PERT graph

Let
(v1, v2, . . . , vn) (11)

be a listing of the vertices inV . We call it atopological sort if every edge has the formvi−vj where
i < j. In other words, each edge points to the right, no edge pointsto the left. REMARK: if(v1, . . . , vn)
is a topological sort, then(vn, vn−1, . . . , v1) is called areverse topological sort.

If an edgesu−v is interpreted as saying “activityu must precede activityv”, then a topological sort
give us one valid way for doing these activities (do activitiesv1, v2, . . . in this order).

Let us say that vertexvi hasrank i in the topological sort (11). Hence, topological sort amounts
to computing this rank attribute of each vertex. We introduce an arrayRank[v ∈ V ] for this purpose.
Thus the goal of topological sort amounts to a “ranking algorithm” which fills in this array.

E.g., If our topological sort is the sequence(v3, v1, v2, v4), the corresponding rank array is
Rank[v1, v2, v3, v4] = [2, 3, 1, 4].

We use the DFS Driver to compute the rank attribute array. We must initialize theRank array in the
DRIVER INIT.

DRIVER INIT(G) ≡ (for v = 1 to n,Rank[v]← −1).

Indeed, we need not use a separate color array, but simply interpret aRank of −1 asunseen. How
can we use DFS to assign a ranks to the vertices? If we reach a leaf v of the DFS tree, then we can
clearly assign it with the largest available rank (initially, the largest available rank isn). To support this,
we introduce a global counterR that is initialized ton. Each time a vertexv is to receive a rank, we use
the current value ofR, and then decrementR, thus:

Rank[v]← R--. (12)

Inductively, if all the proper descendants ofv have received ranks, we can assign a rank tov. If all ranks
are assigned as in (12), then it will be clear that the rank ofv is less than the ranks of its descendants,
which is what we want in the topological sort. Moreover, it isclear that the rank assignment (12) should

10 PERT stands for “Program Evaluation and Review Technique”,a project management technique that was developed for
the U.S. Navy’s Polaris project (a submarine-launched ballistic missile program) in the 1950’s. The graphs here are also called
networks. PERT is closely related to the CriticalPath Method (CPM) developed around the same time.
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be performed in POSTVISIT(v). Note that the rank function is just as the order ofv according to
lastTime[v]. So we could also perform (12) when we update thelastTime array.

It is easy to prove the correctness of this ranking procedure, provided the input graph is a DAG.
What ifG is not a DAG? There are two responses.

• First, we could say that our ranking algorithm should detectthe situation when the input digraph
G is not a DAG. This amounts to detecting the existence of back edges. When a back edge is
detected, we abort and output “no topological sort”.

• Second, it might turn out that the output of our ranking algorithm is still useful for a non-DAG.
Indeed, this will be the case in our strong component algorithm below. For the strong component
algorithm, it is more convenient to compute theinverseof Rank, i.e., an arrayiRank[1..n] such
that

iRank[i] = v ⇐⇒ Rank[v] = i (13)

Thus we just have to replace (12) by

iRank[R--]← v. (14)

The topological sort (11) is then given by

(iRank[1],iRank[2], . . . ,iRank[n]).

¶36. Strong Components. Computing the components of digraphs is somewhat more subtle than
the corresponding problem of biconnected components for bigraphs. There are at least three distinct
algorithms known for this problem. Here, we will develop theversion based on “reverse graph search”.

Recall that connected components of a digraph are also called “strong components”. The strong
components forms a partition of the vertex set; this is in contrast to biconnected components that may
intersect at cut-vertices.

Let G = (V,E) be a digraph whereV = {1, . . . , n}. Let Per[1..n] be an array that represents
some permutation of the vertices, soV = {Per[1],Per[2], . . . ,Per[n]}. LetDFS(v) denote the DFS
algorithm starting from vertexv. Consider the following method to visit every vertex inG:

STRONG COMPONENT DRIVER(G,Per)
INPUT: DigraphG and permutationPer[1..n].
OUTPUT: DFS Spanning Forest ofG.

⊲ Initialization
1 Forv = 1, . . . , n, color[v] =unseen.
⊲ Main Loop
2 Forv = 1, . . . , n,
3 If (color[Per[v]] =done)
4 DFS1(Per[v]) ⊳ Outputs a DFS Tree

This program is the usual DFS Driver program, except that we usePer[i] to determine the choice of
the next vertex to visit, and it callsDFS1, a variant ofDFS. We assume thatDFS1(i) will (1) change
the color of every vertex that it visits, fromunseen to done, and (2) output the DFS tree rooted ati.
If Per is correctly chosen, we want each DFS tree that is output to correspond to a strong component
of G.
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First, let us see how the above subroutine will perform on thedigraphG6 in Figure5(a). Let us also
assume that the permutation is

Per[1, 2, 3, 4, 5, 6] = [6, 3, 5, 2, 1, 4]

= [v6, v3, v5, v2, v1, v4]. (15)

The output of STRONG COMPONENT DRIVER will be the DFS trees for on the following sets of vertices
(in this order):

C1 = {v6}, C2 = {v3, v2, v5}, C3 = {v1}, C4 = {v4}.

Since these are the four strong components ofG6, the algorithm is correct. On the other hand, if we use
the ”identity” permutation,

Per[1, 2, 3, 4, 5, 6] = [1, 2, 3, 4, 5, 6], (16)

our STRONG COMPONENT DRIVER will first call to DFS1(Per[1]). This produces a DFS tree con-
taining the vertices{1, 2, 3, 5, 6}. Only one vertex4 remainunseen, and so the driver will next call
DFS1(Per[4]) which produces a DFS tree containing{4}. Thus, the identity permutation does not
lead to the correct output for strong components.

It is not not hard to see that there always exist “good permutations” for which the output is correct.
Here is the formal definition of what this means:

A permutationPer[1..n] is said to begood if, for any two strong componentsC,C′ of G, if there
is a path fromC toC′, then thefirst vertex ofC′ is listed before the first vertex ofC′.

Clearly, our Strong Component Driver will give the correct output iff the given permutation is good.
But how do we get good permutations? Roughly speaking, they correspond to some form of “reverse
topological sort” ofG. There are two problems: topological sorting ofG is not really meaningful when
G is not a DAG. Second, good permutations requires some knowledge of the strong components which
is what we want to compute in the first place! Nevertheless, let us go ahead and run the topological sort
algorithm (not the robust version) onG. We may assume that the algorithm returns an arrayPer[1..n]
(the inverse of theRank[1..n]). The next lemma shows thatPer[1..n] almost has the properties we
want. For any setC ⊆ V , we first define

Rank[C] = min{i : Per[i] ∈ C} = min{Rank[v] : v ∈ C}

LEMMA 12. LetC,C′ be two distinct strong components ofG.
(a) If u0 ∈ C is the first vertex inC that is seen, thenRank[u0] = Rank[C].
(b) If there is path fromC toC′ in the reduced graph ofG, thenRank[C] < Rank[C′].

Proof. (a) By the Unseen Path Lemma, every nodev ∈ C will be a descendant ofu0 in the DFS
tree. Hence,Rank[u0] ≤ Rank[v], and the result follows sinceRank[C] = min{Rank[v] : v ∈ C}.
(b) Letu0 be the first vertex inC ∪ C′ which is seen. There are two possibilities: (1) Supposeu0 ∈ C.
By part (a),Rank[C] = Rank[u0]. Since there is a path fromC to C′, an application of the Unseen
Path Lemma says that every vertex inC′ will be descendants ofu0. Letu1 be the first vertex ofC′ that
is seen. Sinceu1 is a descendant ofu0, Rank[u0] < Rank[u1]. By part(a),Rank[u1] = Rank[C′].
ThusRank[C] < Rank[C′]. (2) Supposeu0 ∈ C′. Since there is no path fromu0 toC, we would have
assigned a rank tou0 before any node inC is seen. Thus,Rank[C0] < Rank[u0]. But Rank[u0] =
Rank[C′]. Q.E.D.
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Is the reverse “topological sort” ordering

[iRank[n],iRank[n− 1], . . . ,iRank[1]] (17)

is a good permutation?
Suppose there is path from strong componentC to strong componentC′.
Then our lemma tells us that the rank of thefirst seen vertexv of C is less
than the rank of thefirst seen vertexv′ of C′. Sov appearsafter v′ in the list
(17).
Unfortunately, what we need for a good ordering is that thelast seen vertexu
of C should appear after thelast seen vertexu′ of C′ in (17). Why? Because
u (and notv) is the first vertex ofC to appear in the list (17).

We use another insight: consider the reverse graphGrev (i.e., u−v is an edge ofG iff v−u is an
edge ofGrev). It is easy to see thatC is a strong component ofGrev iff C is a strong component ofG.
However, there is a path fromC to C′ in Grev iff there is a path fromC′ toC in G.

LEMMA 13. If iRank[1..n] is the result of running topological sort onGrev theniRank is a good
permutation forG.

Proof. Let C,C′ be two components ofG and there is a path fromC to C′ in G. Then there is a
path fromC′ to C in the reverse graph. According to the above, the last vertexof C is listed before the
last vertex ofC′ in (17). That means that the first vertex ofC is listed after the first vertex ofC′ in the
listing [iRank[1],iRank[2], . . . ,iRank[n]]. This is good. Q.E.D.

We now have the complete algorithm:

STRONG COMPONENT ALGORITHM(G)
INPUT: DigraphG = (V,E), V = {1, 2, . . . , n}.
OUTPUT: A list of strong components ofG.

1. Compute the reverse graphGrev.
2. Call topological sort onGrev.

This returns a permutation arrayiRank[1..n].
3. Call STRONG COMPONENT DRIVER(G,iRank)

Remarks. Tarjan [7] gave the first linear time algorithm for strong components.R. Kosaraju and
M. Sharir independently discovered the reverse graph search method described here. The reverse graph
search is conceptually elegant. But since it requires two passes over the graph input, it is slower in
practice than the direct method of Tarjan. Yet a third methodwas discovered by Gabow in 1999. For
further discussion of this problem, including history, we refer to Sedgewick [6].

EXERCISES

Exercise 7.1: (a) Provide a self-contained algorithm (containing all themacros filled-in) to compute
inverse Rank arrayiRank[1..n].
(b) Code up this program in your favorite programming language. ♦
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Exercise 7.2: Give an algorithm to compute the numberN [v] of distinct paths originating from each
vertexv of a DAG. ThusN [v] = 1 iff v is a sink, and ifu−v is an edge,N [u] ≥ N [v]. ♦

Exercise 7.3: LetG be a DAG.
(a) Prove thatG has a topological ranking.
(b) If G hasn vertices, thenG has at mostn! topological rankings.
(c) LetG consists of 3 disjoint linear lists of vertices withn1, n2, n3 vertices (resp.). How many
topological rankings ofG are there? ♦

Exercise 7.4: Prove that a digraphG is cyclic iff every DFS search ofG has a back edge. ♦

Exercise 7.5: Consider the following alternative algorithm for computing strong components of a di-
graphG: what we are trying to do in this code is to avoid computing thereverse ofG.

STRONG COMPONENT ALGORITHM(G)
INPUT: DigraphG = (V,E), V = {1, 2, . . . , n}.
OUTPUT: A list of strong components ofG.

1. Call topological sort onG.
This returns a permutation arrayPer[1..n].

2. Reverse the permutation:
for i = 1, . . . , ⌊n/2⌋, do the swapPer[i]↔ Per[n+ 1− i].

3. Call STRONG COMPONENT DRIVER(G,Per)

Either prove that this algorithm is correct or give a counterexample. ♦

Exercise 7.6: An edgeu−v is inessentialif there exists aw ∈ V \ {u, v} such that there is a path from
u to w and a path fromw to v. Otherwise, we say the edge isessential. Give an algorithm to
compute the essential edges of a DAG. ♦

Exercise 7.7: Let G0 be a DAG withm edges. We want to construct a sequenceG1, G2, . . . , Gm of
DAG’s such that eachGi is obtained fromGi−1 by reversing a single edge so that finallyGm is
the reverse ofG0. Give anO(m+ n) time algorithm to compute an ordering(e1, . . . , em) of the
edges corresponding to this sequence of DAGs.

NOTE: this problem arises in a tie breaking scheme. LetM be a triangulated mesh that represents a terrain.
Each vertexv of M has a heighth(v) ≥ 0, and each pairu, v of adjacent vertices ofM gives rise to a
directed edgeu−v if h(u) > h(v). Note that if the heights are all distinct, the resulting graph is a DAG.
If h(u) = h(v), we can arbitrarily pick one direction for the edge, as long as the graph remain a DAG.
This is the DAGG0 in our problem above. Suppose now we have two height functions h0 andh1, and we
want to interpolate them: for eacht ∈ [0, 1], let ht(v) = th0(v) + (1− t)h1(v). We want to represent the
transformation fromh0 toh1 by a sequence of graphs, where each successive graph is obtained by changing
the direction of one edge. ♦

Exercise 7.8: Let D[u] denote the number of descendants a DAGG = (V,E). Note thatD[u] = 1 iff
u is a sink. Show how to computeD[u] for all u ∈ V by programming the shell macros. What is
the complexity of your algorithm? ♦
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Exercise 7.9: A vertexu is called abottleneck if for every other vertexv ∈ V , either there is a path
from v to u, or there is a path fromu to v. Give an algorithm to determine if a DAG has a
bottleneck. HINT: You should be able to do this in at mostO(n(m+ n)) time. ♦

Exercise 7.10: In the previous problem, we defined bottlenecks. Now we want to classify these bot-
tlenecks into “real” and “apparent” bottlenecks. A bottlenecku is “apparent” if there exists an
ancestorv ( 6= u) and a descendantw ( 6= u) such thatv−w is an edge. Such an edgev−w is called
a by-pass foru. Give an efficient algorithm to detect all real bottlenecks of a DAGG. HINT: This
can be done inO(n+m logn) time. ♦

Exercise 7.11:Given a DAGG, let D[u] denote the number of descendants ofu. Can we compute
D[u] for all u ∈ V in o((m+ n)n) time, i.e., faster than the obvious solution? ♦

END EXERCISES

§8. Games on Graphs

How do we know if a computer program has a given property? In industrial-strength software, espe-
cially in mission-critical applications, we seek strong assurances of certain properties. The controller for
a rocket is such a mission-critical software. The area of computer science dealing with such questions is
calledprogram verification . We can use a graph to model salient properties of a program: the vertices
representstatesof the program, and edges represent possibletransitions between states. Properties of
the program is thereby transformed into graph properties. Here are two basic properties in verification:

• Reachability asks whether, starting from initial states from someA, we can reach some states
in some setB. For example, ifB is the set of terminal states, this amounts to the question of
halting becomes a reachability question. Sometimes the property we seek isnon-reachability:
for instance, ifC is the set of “forbidden states”, then we want the states inC to be non-reachable
from the initial states. Of course, in this simple form, DFS and BFS can check the reachability or
non-reachability properties.

• Fairnessasks if we can reach any state in some given setB infinitely often. Suppose the program
is an operating system. If the states inB represent running a particular process, then we see why
this property is regarded as “fairness” (no process is shut out by the process scheduler). Again, if
stateB represents the servicing of a print job at the printer queue,then fairness implies that the
print job will eventually complete (assuming some minimum finite progress).

We introduce a new twist in the above reachability and fairness questions by introducing two op-
posing players, let us call them Alice and Bob. Alice represents a program, and is responsible for Alice and Bob
some transitions in the graph. Bob represents the external influences (sometimes called “nature”) that
determines other transitions in the graph. For instance, inour above example, Alice might send us into
the stateq which represents the servicing of a printer queue. But the transitions out ofq might take us to
states representing finished job, out-of-paper, paper jam,etc. It is Bob, not Alice, who determines these
transitions.
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¶37. Game Graphs. To model this, we introduce the concept of agame graphG = (VA, VB , E)
whereVA ∩ VB = ∅ and(VA ∪ VB , E) is a digraph in the usual sense. Note thatG is not necessarily
a bipartite graph — we do not assumeE ⊆ (VA × VB) ∪ (VB × VA). The intuitive idea is that each
v ∈ VA (v ∈ VB) represents a state whose next transition is determined by Alice (Bob). A particu-
lar path through this graph(v1, v2, . . .) represents a run of the program, with the transitionvi−vi+1

determined by Alice (Bob) iffvi ∈ VA (vi ∈ VB). We might think of the original (single player) reach-
ability/fairness problems as operating in a graph in whichVB is the empty set. Clearly, the introduction
of Bob captures new realities of an operating system. Reachability/Fairness is now defined to mean
“reachable/fair in spite of Bob”.

We next introduce a “game” onG = (VA, VB, E) played by Alice and Bob (called the “play-
ers”). Let V = VA ∪ VB, and for v ∈ V , let Out(v) = {u ∈ V : v−u ∈ E} and In(v) =
{u ∈ V : u−v ∈ E}. The elements ofV are also calledstates. A terminal state is v such that
Out(v) = ∅. There is a single token that resides at some state ofV . At each step, this token is
moved from its current statev to some new stateu ∈ Out(v). This move is determined by Alice (Bob)
if v ∈ VA (v ∈ VB). In general, the moves ofA or B can be non-deterministic, but for our basic
questions, we may assume them to be deterministic. That is, the moves of PlayerX (X ∈ {A,B}) is
determined by a functionπX : VX → V such thatπX(v) ∈ Out(v) We callπX thestrategy for Player
X (X-strategy for short). Typically, we letα denote anA-strategy, andβ denote aB-strategy. Acom-
plete strategyis a pair(α, β), which can be succinctly represented by a single functionπ : V → V .
From anyv1 ∈ V , the pairπ = (α, β) determines a maximal path(v1, v2, . . .) wherevi+1 = π(vi).
This path is either finite (in which case the last state is terminal) or infinite. We may denote the path
by ω(v1, α, β) or ω(v1, π), and call it aplay. Let Ω = Ω(G) denote the set of all plays, ranging over
all complete strategies and all initial states. We write “u ∈ ω” to meanu occurs in the playω. Also
“u ∈∞ ω” if u occurs infinitely often inω (this impliesω is infinite). We may now define:

• Intuitively, Force(u) is the set of states from which Alice can force the
system into stateu. Formally:

Force(u):= {v ∈ V : (∃α)(∀β)[u ∈ ω(v, α, β)]} .

• Intuitively, Fair(u) is the set of states from which Alice can force the
system to enter stateu infinitely often. Formally:

Fair(u):= {v ∈ V : (∃α)(∀β)[u ∈∞ ω(v, α, β)]} .

ForU ⊆ V , let Force(U) = ∪u∈UForce(u) and Fair(U) = ∪u∈UFair(u). The set Fair(U) is also called
thewinning statesfor a Büchi game with Büchi objectiveU . Such games originated in mathematical
logic. We will design algorithms to compute the sets Force(U) and Fair(U) in timesO(n + m) and
O(mn). The exercises11 will show how Fair(U) can be computed inO(n2) time.

¶38. Least Fixed Points (LFP). Inherent in these concepts is the important computing concept of
least fixed points (LFP). Let us look at the basic properties of the set Force(U):

• U ⊆ Force(U)

• If v ∈ VA andOut(v) ∩ Force(U) 6= ∅ thenv ∈ Force(U).

• If v ∈ VB andOut(v) ⊆ Force(U) thenv ∈ Force(U).

11 From Krishnendu Chatterjee and Monika Henzinger (2011).
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Let us introduce an operator to capture these properties:

µG = µ : 2V → 2V

such that for allU ⊆ V

v ∈ µ(U)⇔







v ∈ U, or [BASIS]
v ∈ VA ∧ (Out(v) ∩ U 6= ∅), or [INDUCT(A)]
v ∈ VB ∧ (Out(v) ⊆ U) [INDUCT(B)]

(18)

For anyU ⊆ V , there is a leasti ≥ 0 such thatµ(i)(U) = µ(i+1)(U); defineµ∗(U) to beµ(i)(U). We
easily verify:

LEMMA 14. µ∗(U) is theleast fixed point(LFP) ofU under the operatorµ):

• µ∗(U) is a fixed point ofµ:
µ(µ∗(U)) = µ∗(U)).

• µ∗(U) is theleastfixed point ofµ that containsU :

(W ⊇ U) ∧ (W = µ(W )) ⇒ µ∗(U) ⊆W.

LEMMA 15. Force(U) is the least fixed point ofU . In other words,Force(U) = µ∗(U).

Proof. Clearly,µ∗(U) ⊆ Force(U). Conversely, supposeu ∈ Force(U). By definition, there is a
strategyα for Alice such that for all strategiesβ for Bob, if π = (α, β) then there exists ak ≥ 1 such
thatπk(u) ∈ U . This proves thatu ∈ µk(U). Q.E.D.

¶39. Computing Force(U). GivenU ⊆ VA ∪ VB , we now develop an algorithm to computeµ∗(U)
in O(m + n) time. It is assumed that the input game graphG = (VA, VB , E) has the adjacency list
representation. This implies that we can compute the reverseGr = (VA, VB , E

r) ofG in timeO(m+n),
whereEr simply reverses the direction of each edge inE. As we shall see, it is more convenient to use
Gr thanG.

The basic idea is to maintain a setW . Initially, W ← U but it will grow monotonically untilW is
equal toµ∗(U). For each vertexv ∈ V \W it is easy to use the conditions in (18) to check whether
v ∈ µ(W ), and if so, add it toW . So the computability ofµ(W ) is not in question. But it may be a bit
less obvious how to do this efficiently. The critical question is — in what order should we examine the
verticesv or the edgesv−w?

For efficiency, we want to examine edges of the form(u−w) ∈ W ′×W whereW ′ = V \W . If we
redirect this edge from what is known (W ) to the unknown (W ′), we get anw−u of Gr. So we imagine
our algorithm as searching the edges ofGr. We maintain a queueQ containing thosew ∈W for which
the edgesOut(w) is yet unprocessed. Initially,Q = U , and at the end,Q is empty.

You will see that our algorithm is reminiscent of BFS or DFS, searching all graph edges under the
control of a queueQ. The difference is that this queue is almost breadth-first, but has a certain built-in
priority.

We now set up the main data structure, which is an arrayC[1..n] of natural numbers. Assuming
V = {1, . . . , n}, we shall useC to encode the setW under the interpretationi ∈ W iff C[i] = 0.
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Initially, we have

C[i] =







0 i ∈ U
1 i ∈ VA

degree(i) i ∈ VB

. (19)

Here, the degree of vertexi is the number of edges leading out ofv in G; it is just the length of the
adjacency list ofi. Actually, if the degree ofi is 0 and i 6∈ U , we should setC[i] = −1, to avoid
confusingi with an element ofW .

It is now clear how we to update this array when processing an edge(w−u) ∈ W×W ′: if C[u] = 0,
there is nothing to do (u is already inW ). Else, we decrementC[u]. If C[u] becomes0 as a result of
the decrement, it meansu is now a member ofW . Note that ifu ∈ VA, then this will happen with
the very first decrement ofC[u]; but if u ∈ VB , we need to decrementdegree(u) times. We need to
also take action in caseC[u] becomes0 after decrement: we must now addu to Q. That completes the
description of our algorithm, and it is summarized in this pseudo-code:

µ∗(U):
Input: Gr = (VA, VB , E

r) andU ⊆ V = {1, . . . , n}
Output: ArrayC[1..n] representingµ∗(U)

⊲ Initialization
Initialize arrayC[1..n] as in (19)
Initialize queueQ← U

⊲ Main Loop
while (Q 6= ∅)

w ← Q.pop()
for each u adjacent tow in Gr

If (C[u] > 0)
C[u]--
If C[u] == 0, Q.push(u)

Return(C)

We leave the correctness of this algorithm to the reader. Thecomplexity of this algorithm isO(m+
n) because each vertexu is added toQ at most once, and for eachu ∈ Q, we process its adjacency list
in O(1) time.

¶40. ComputingFair(U). We next use this as a subroutine to compute Fair(U).
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