
Lecture III Page 1

“Trees are the earth’s endless effort to speak to the listening heaven.”

– Rabindranath Tagore,Fireflies, 1928

Alice was walking beside the White Knight in Looking Glass Land.
”You are sad.” the Knight said in an anxious tone: ”let me singyou a song to comfort you.”
”Is it very long?” Alice asked, for she had heard a good deal ofpoetry that day.
”It’s long.” said the Knight, ”but it’s very, very beautiful. Everybody that hears me sing it
- either it brings tears to their eyes, or else -”
”Or else what?” said Alice, for the Knight had made a sudden pause.
”Or else it doesn’t, you know. Thename of the song is called’Haddocks’ Eyes.’”
”Oh, that’s the name of the song, is it?” Alice said, trying tofeel interested.
”No, you don’t understand,” the Knight said, looking a little vexed. ”That’s what the name
is called. Thename really is’The Aged, Aged Man.’”
”Then I ought to have said ’That’s what the song is called’?” Alice corrected herself.
”No you oughtn’t: that’s another thing. Thesong is called’Ways and Means’ but that’s
only what it’s called, you know!”
”Well, what is the song then?” said Alice, who was by this timecompletely bewildered.
”I was coming to that,” the Knight said. ”Thesong really is’A-sitting On a Gate’: and the
tune’s my own invention.”
So saying, he stopped his horse and let the reins fall on its neck: then slowly beating time
with one hand, and with a faint smile lighting up his gentle, foolish face, he began...

– Lewis Carroll,Alice Through the Looking Glass, 1865

Lecture III
BALANCED SEARCH TREES

Anthropologists inform us that there is an unusually large number of Eskimo words for snow. The
Computer Science equivalent of ‘snow’ is the ‘tree’ word:(a, b)-tree, AVL tree,B-tree, binary search
tree, BSP tree, conjugation tree, dynamic weighted tree, finger tree, half-balanced tree, heaps, interval
tree, leftist tree,kd-tree, octtree, optimal binary search tree, priority search tree, quadtree, R-trees,
randomized search tree, range tree, red-black tree, segment tree, splay tree, suffix tree, treaps, tries,
weight-balanced tree, etc.I have restricted the above list to trees that are used as search data structures.
If we include trees arising in specific applications (e.g., Huffman tree, DFS/BFS tree, alpha-beta tree),
we obtain an even more diverse list. The list can be enlarged to include variants of these trees: thus
there are subspecies ofB-trees calledB+- andB∗-trees, etc.

If there is a most important entry in the above list, it has to be binary search tree. It is the first
non-trivial data structure that students encounter, afterlinear structures such as arrays, lists, stacks and
queues. Trees are useful for implementing a variety ofabstract data types. We shall see that all the
common operations for search structures are easily implemented using binary search trees. Algorithms
on binary search trees have a worst-case behavior that is proportional to the height of the tree. The height
of a binary tree onn nodes is at least⌊lg n⌋. We say that a family of binary trees isbalancedif every
tree in the family onn nodes has heightO(log n). The implicit constant in the big-Oh notation here

balance-ness is a
family property

depends on the particular family. Such a family usually comes equipped with algorithms for inserting
and deleting items from trees, while preserving membershipin the family.

Many balanced families have been invented in computer science. They come in two basic forms:
height-balancedandweight-balanced schemes. In the former, we ensure that the height of siblings are

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§1. KEYED SEARCH STRUCTURES Lecture III Page 2

“approximately the same”. In the latter, we ensure that the number of descendants of sibling nodes are
“approximately the same”. Height-balanced schemes require us to maintain less information than the
weight-balanced schemes, but the latter has some extra flexibility that are needed for some applications.
The first balanced family was invented by the Russians Adel’son-Vel’skii and Landis in 1962, and are
calledAVL trees. We will describe several balanced families, including AVLtrees and red-black trees.
The notion of balance can be applied to non-binary trees; we will study the family of(a, b)-treesand
generalizations. Tarjan [11] gives a brief history of some balancing schemes.

STUDY GUIDE: all our algorithms for search trees are described in such a
way that they can be internalized, and we expect students to carry out hand-
simulations on concrete examples. We do not provide any computer code, but
once these algorithms are understood, it should be possibleto implementing
them in your favorite programming language.

hand-simulations expected!

§1. Search Structures with Keys

Search structures store a set of objects subject to searching and modification of these objects. Search
structures can be viewed as a collection ofnodesthat are interconnected by pointers. Abstractly, they
are just directed graphs with edge and/or vertex labels. Each node stores an object which we call an
item. We will be informal about how we manipulate nodes — they willvariously look like ordinary
variables and pointers1 as in the programming languageC/C++, or like references inJava. Let us look
at some intuitive examples, relying on your prior knowledgeabout programming and variables.

Legend:

data1key1 key2 data2

data2key2

data4key4

data3key3

(b)

(a)

u:

v:

data3key3

N :

M :

data1key1

Non-null Pointer

Null Pointer

Figure 1: Two Kinds of Nodes: (a) linked lists, (b) binary trees

¶1. Keys and Items. Each item is associated with akey. The rest of the information in an item is
simply calleddata, so that we may regard anitem as a pair(Key,Data). Besides an item, each node
also stores one or more pointers to other nodes. Since the definition of a node includes pointers to nodes,
this is a recursive definition. Two simple types of nodes are illustrated in Figure1: nodes with only one
pointer (Figure1(a)) are used to forming linked lists; nodes with two pointers can be used to form a

1 The concept oflocatives introduced by Lewis and Denenberg [7] may also be used: a locativeu is like a pointer variable
in programming languages, but it has properties like an ordinary variable. Informally,u will act like an ordinary variable in
situations where this is appropriate, and it will act like a pointer variable if the situation demands it. This is achieved by suitable
automatic referencing and de-referencing semantics for such variables.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§1. KEYED SEARCH STRUCTURES Lecture III Page 3

binary trees (Figure1(b)), or doubly-linked lists. Nodes with three pointers canbe used in binary trees
that require parent pointers. First, supposeN is a node variable of the type in Figure1(a). ThusN has
threefields, and we may name these fields askey,data,next. Each field has some data type. E.g.
key is typically integer,data can be string, but it can almost anything, butnext has to be a pointer
to nodes. This field information constitutes the “type” of the node. To access these fields, we write
N.key, N.data or N.next. The type ofN.next is not that of a node, but pointer to a node. In our
figures, we indicate the values of pointers by a directed arrow. Node pointer variables act rather like
node variables: if variableu is a pointer to a node, we also2 writeu.key, u.data andu.next to access
the fields in the node. There is a special pointer value calledthenull pointer ornil value. It points to
nothing, but as a figure of speech, we may say it points to thenil node. Of course the nil node is not a
true node since it cannot store any information. In figures (cf. Figure1) null pointers are indicated by a
box with a slash line.

In search queries, we sometimes need to return a set of items.The concept of an iterator captures
this in an abstract way: aniterator is a special nodeu that has two fields:u.value andu.next. Here,
u.next is a pointer to another iterator node whileu.value is a pointer to an item node. Thus, by
following thenext pointer until we reachnil, we can visit a list of items in some un-specified order.

very informally
speaking

Programming semantics: The difference between a node variable N and a
node pointer variableu is best seen using the assignment operation. Let us
assume that the node type is(key,data,next), M is another node variable
andv another node pointer variable. In the assignment ‘N ← M ’, we copy
each of the three fields ofM into the corresponding fields ofN . But in the
assignment ‘u← v’, we simply makeu point to the same node asv. Referring
to Figure1(a), we see thatu is initially pointing toN , andv pointing toM .
After the assignmentu← v, both pointers would point toM .

But what about ‘N ← u’ and ‘u ← N ’? In the former case, it has the
same effect as ‘N ← M ’ whereu points toM . In the latter case, it has the
same effect as ‘u← v’ wherev is any pointer toN (v may not actually exist).
In each case, the variable on the left-hand side determines the proper assign-
ment action. Once we admit all these four assignment possibilities, there is
little distinction between manipulating nodes and their pointers.This is what
we meant earlier, when we said that our notion of nodes will variously look
like ordinary variableN or pointersu. Indeed theJava language eschews
pointers, and introduces an intermediate concept called reference.

The four main players in our story are the two variablesu andN , the
pointer value ofu, and the node thatN refers to. This corresponds to the four
references in the tale of Alice and the White Knight at the beginning of this
chapter. We may use a a simpler example: supposex is an integer variable
whose value is3. Let ↑ x be a pointer tox whose value&x denotes the
address ofx.

Name of Song is Called ‘Haddocks’ Eyes’ ↑ x u
Name of Song is ‘The Aged, Aged Man’ &x &N
Song is Called ‘Ways and Means’ x N
Song is ‘A-sitting On a Gate’ 3 Node value

The clue from the story
of Alice and the White

Knight

Examples of search structures:

(i) An employee databasewhere each item is an employee record. The key of an employee record is

2 For instance,C++ would distinguish between nodes (N) and pointers (u) to nodes, and we would writeu → key, u →

data, etc.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§2. ABSTRACTDATA TYPES Lecture III Page 4

the social security number, with associated data such as address, name, salary history, etc.

(ii) A dictionarywhere each item is a word entry. The key is the word itself, associated with data such
as the pronunciation, part-of-speech, meaning, etc.

(iii) A scheduling queuein a computer operating systems where each item in the queue is a job that is
waiting to be executed. The key is the priority of the job, which is an integer.

It is natural to refer such structures askeyed search structures. From an algorithmic point of view,
the properties of the search structure are solely determined by the keys in items, the associated data
playing no role. This is somewhat paradoxical since, for theusers of the search structure, it is the data
that is more important. With this caveat, we will normally ignore the data part of an item in our

What is the point of
searching for keys with

no associated data?illustrations, thusidentifying the item with the key only. Our default is theunique key assumption, that
the keys in a keyed search structure are unique. Equivalently, distinct items have the distinct keys. In
the few places where we drop this assumption, it will be stated explicitly.

Binary search trees is an example of a keyed search structure. Usually, each node of the binary
search trees stores an item. In this case, our terminology of“nodes” for the location of items happily
coincides with the concept of “tree nodes”. However, there are versions of binary search trees whose
items resides only in the leaves – the internal nodes only store keys for the purpose of searching.

¶2. Uses of Key. Key values usually come from a totally ordered set. Typically, we use the set of
usually, keys≡

integers!
integers for our totally ordered set. Another common choicefor key values are character strings ordered
by lexicographic ordering. For simplicity, the default assumption is that items have unique keys. When
we speak of the “largest item”, or “comparison of two items” we are referring to the item with the largest
key, or comparison of the keys in two items, etc. Keys are called by different names to suggest their
function in the structure. For example, a key may variously called:

• priority , if there is an operation to select the “largest item” in the search structure (see example
(iii) above);

• identifier , if the keys are unique (distinct items have different keys)and our operations use only
equality tests on the keys, but not its ordering properties (see examples (i) and (ii));

• costor gain, depending on whether we have an operation to find the minimum(if cost) or maxi-
mum (if gain);

• weight, if key values are non-negative.

We may define asearch structureS as a representation of a set of items that supports thelookUp
query, among other possible operations. The lookup query, on a given keyK andS, returns a nodeu
in S such that the item inu has keyK. If no such node exists, it returnsu = nil. Next tolookUp,
perhaps the next most important operation isinsert.

SinceS represents a set of items, two other basic operations we might want to support are inserting
an item and deleting an item. IfS is subject to both insertions and deletions, we callS a dynamic set
since its members are evolving over time. In case insertions, but not deletions, are supported, we callS
a semi-dynamic set. In case both insertion and deletion are not allowed, we callS a static set. Thus,
the dictionary example (ii) above is a static set from the viewpoint of users, but it is a dynamic set from
the viewpoint of the lexicographer.

§2. Abstract Data Types

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§2. ABSTRACTDATA TYPES Lecture III Page 5

This section contains a general discussion on abstract datatypes (ADT’s). It
may be used as a reference; a light reading is recommended forthe first time

Students might be familiar with the concept ofinterface in the programming languageJava. In
the data structures literature, the general concept is known asabstract data type (ADT). Using the

Java fans: ADT =
interface

terminology of object-oriented languages such asC++ or Java, we may view a search data structure
is an instance of acontainer class. Each instance stores a set of items and have a well-defined set of
members(i.e., variables) andmethods(i.e., operations). Thus, a binary tree is just an instance of the
“binary tree class”. The “methods” of such class support some subset of the following operations listed
below.

¶3. ADT Operations. We will now list all the main operations found in all the ADT’sthat we will
study.We emphasize that each ADT will only require a proper subset of these operations. The full set of
ADT operations listed here is useful mainly as a reference.We will organize these operations into four
groups (I)-(IV):

Group Operation Meaning

(I) Initializer and Destroyers make()→Structure creates a structure
kill() destroys a structure

(II) Enumeration and Order list()→Node returns an iterator
succ(Node)→Node returns the next node
pred(Node)→Node returns the previous node
min()→Node returns a minimum node
max()→Node returns a maximum node

(III) Dictionary-like Operations lookUp(Key)→Node returns a node withKey
insert(Item)→Node returns the inserted node
delete(Node) deletes a node
deleteMin()→Item deletes a minimum node

(IV) Set Operations split(Key)→ Structure split a structure into two
merge(Structure) merges two structures into one

Most applications do not need the full suite of the these operations. Below, we will choose various
subsets of this list to describe some well-known ADT’s. The meaning of these operations are fairly
intuitive. We will briefly explain them. LetS, S′ be search structures, viewed as instances of a suitable
class. LetK be a key andu a node. Each of the above operations are invoked from someS: thus,
S.make() will initialize the structureS, andS.max() returns the maximum value inS.

When there is only one structureS, we may suppress the reference toS. E.g.,S.merge(S′) can be
simply written as “merge(S′)”.

Group (I): We need to initialize and dispose of search structures. Thusmake (with no arguments)
returns a brand new empty instance of the structure. The inverse ofmake iskill, to remove a structure.
These are constant time operations.

Group (II): This group of operations are based on some linearordering of the items stored in the
data structure. The operationlist() returns a node that is an iterator. This iterator is the beginning of
a list that contains all the items inS in some arbitraryorder. The ordering of keys is not used by the
iterators. The remaining operations in this group depend onthe ordering properties of keys. Themin()
andmax() operations are obvious. The successorsucc(u) (resp., predecessorpred(u)) of a nodeu

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§2. ABSTRACTDATA TYPES Lecture III Page 6

refers to the node inS whose key has the next larger (resp., smaller) value. This isundefined ifu has
the largest (resp., smallest) value inS.

Note thatlist() can be implemented usingmin() andsucc(u) or max() andpred(u). Such a
listing has the additional property of sorting the output bykey value.

Group (III): The first three operations of this group,

lookUp(K)→ u, insert(K,D)→ u, delete(u),

constitute the “dictionary operations”. In many ADT’s, these are the central operations.

The nodeu returned bylookUp(K) has the property thatu.key = K. In conventional program-
ming languages such asC, nodes are usually represented by pointers. In this case, the nil pointer is
returned by thelookUp function when there is no item inS with keyK.

In case no such item exists, or it is not unique, some convention should be established. At this level,
we purposely leave this under-specified. Each application should further clarify this point. For instance,
in case the keys are not unique, we may require thatlookUp(K) returns an iterator that represents the
entire set of items with key equal toK.

Bothinsert anddelete have the obvious basic meaning. In some applications, we mayprefer
to have deletions that are based on key values. But such a deletion operation can be implemented as
‘delete(lookUp(K))’. In caselookUp(K) returns an iterator, we would expect the deletion to be
performed over the iterator.

The fourth operationS.deleteMin() in Group (III) is not considered a dictionary operation. The
operation returns the minimum itemI in S, and simultaneously deletes it fromS. Hence, it could
be implemented asdelete(min()). But because of its importance,deleteMin() is often directly
implemented using special efficient techniques. In most data structures, we can replacedeleteMin by
deleteMaxwithout trouble. However, this is not the same as being able to support bothdeleteMin
anddeleteMax simultaneously.

Group (IV): The final group of operations,

S.split(K)→ S′, S.Merge(S′),

represent manipulation of entire search structures,S andS′. If S.split(K) → S′ then all the items
in S with keys greater thanK are moved into a new structureS′; the remaining items are retained inS.
Conversely, the operationS.merge(S′) moves all the items inS′ into S, andS′ itself becomes empty.
This operation assumes that all the keys inS are less than all the items inS′. Thussplit andmerge
are inverses of each other.

¶4. Implementation of ADTs using Linked Lists. The basic premise of ADTs is that we should
separate specification (given by the ADT) from implementation. We have just given the specifications,
so let us now discuss a concrete implementation.

Data structures such as arrays, linked list or binary searchtrees are calledconcrete data types.
Hence ADTs are to be implemented by such concrete data types.We will now discuss a simple imple-
mentation of all the ADT operations using linked lists. Thishumble data structure comes in8 varieties
according to Tarjan [11]. For concreteness, we use the variety that Tarjan callsendogeneous doubly-
linked list . Endogeneous means the item is stored in the node itself: thus from a nodeu, we can directly

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§2. ABSTRACTDATA TYPES Lecture III Page 7

accessu.key andu.data. Doubly-linked meansu has two pointersu.next andu.prev. These two
pointers satisfies the invariantu.next = v iff v.prev = u. We assume students understand linked
lists, so the following discussion is a review of linked lists.

Let L be a such a linked list. Conceptually, a linked list is set of nodes organized in some linear
order. The linked list has two special nodes,L.head andL.tail, corresponding to the first and last
node in this linear order. Note that ifL.head = nil iff L.tail = nil iff the list is empty. We can
visit all the nodes inL using the following routine with a simple while-loop:

List traversal Shell

L ISTTRAVERSAL(L):
u← L.head
while (u 6= nil)

VISIT(u)
u← u.next

CLEANUP()

Here, VISIT(u) and CLEANUP() aremacros, meaning that they stand for pieces of code that will be
textually substituted before compiling and executing the program. We will indicate a macro ABC by
framing it in a box like ABC . Macros should be contrasted tosubroutines, which are independent
procedures. In most situations, there is no semantic difference between macros and subroutines (except
that macros are cheaper to implement). But see the implementation oflookUp(K) next. Note that
macros, like subroutines, can take arguments. As a default,the macros do nothing (“no-op”) unless

macros are not
subroutines

we specify otherwise. We call LISTTRAVERSAL a shell program — this theme will be taken up more
fully when we discuss tree traversal below (§4). Since the while-loop (by hypothesis) visits every node
in L, there is a unique nodeu (assumeL is non-empty) withu.next = nil. This node isL.tail.

It should be obvious how to implement most of the ADT operations using linked lists. We ask
the student to carry this out for the operations in Groups (I)and (II). Here we focus on the dictionary
operations:

• lookUp(K): We can use the above ListTraversal routine but replace “VISIT(u)” by the follow-
ing code fragment:

VISIT(u) : if (u.key = K) Return(u)

Since VISIT is a macro and not a subroutine, theReturn in VISIT is nota return from VISIT, but
a return from thelookUp routine! The CLEANUP macro is similarly replaced by

CLEANUP() : Return(nil)

The correctness of this implementation should be obvious.

• insert(K,D): We use the ListTraversal shell, but define VISIT(u) as the following macro:

VISIT(u) : if (u.key=K) Return(nil)

Thus, if the keyK is found in u, we returnnil, indicating failure (duplicate key). The
CLEANUP() macro creates a new node for the item(K,D) and installs it at the head of the
list:

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§2. ABSTRACTDATA TYPES Lecture III Page 8

CLEANUP() :
u← new(Node)
u.key← K; u.data← D
u.next← L.head; u.prev← nil
L.head.prev← u ⊳ No-op ifL.head = nil
L.head← u
If (L.tail = nil) then L.tail← u
Return(u)

wherenew(Node) returns a pointer to space on the heap for a node.

• delete(u): Sinceu is a pointer to the node to be deleted, this amounts to the standard deletion
of a node from a doubly-linked list:

u.next.prev← u.prev
u.prev.next← u.next
del(u)

wheredel(u) is a standard routine to return a memory to the system heap. This takes timeO(1).

¶5. Complexity Analysis. Another simple way to implement our ADT operations is to use arrays
(Exercise). In subsequent sections, we will discuss how to implement the ADT operations using bal-
anced binary trees. In order to understand the tradeoffs in these alternative implementations, we now
provide a complexity analysis of each implementation. Let us do this for our linked list implementation.

We can provide a worst case time complexity analysis. For this, we need to have a notion of input
size: this will ben, the number of nodes in the (current) linked list. Consistent with our principles in
Lecture I, we will perform aΘ-order analysis.

The complexity oflookUp(K) isΘ(n) in the worst case because we have to traverse the entire list
in the worst case. Bothinsert(K,D) anddelete(u) are preceded bylookUp’s, which we know
takesΘ(n) in the worst case. Thedelete operation isΘ(1). Note that such an efficient deletion is
possible because we use doubly-linked lists; with singly-linked lists, we needΘ(n) time.

More generally, with linked list implementation, all the ADT operations can easily be shown to have
time complexity eitherΘ(1) orΘ(n). The principal goal of this chapter is to show that theΘ(n) can be
replaced byΘ(logn). This represents an “exponential speedup” from the linked list implementation.

¶6. Some Abstract Data Types. The above operations are defined on typed domains (keys, structures,
items) with associated semantics. Anabstract data type(acronym “ADT”) is specified by

• one or more “typed” domains of objects (such as integers, multisets, graphs);

• a set of operations on these objects (such as lookup an item, insert an item);

• properties (axioms) satisfied by these operations.

These data types are “abstract” because we make no assumption about the actual implementation.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§2. ABSTRACTDATA TYPES Lecture III Page 9

It is not practical or necessary to implement a single data structure that has all the operations listed
above. Instead, we find that certain subsets of these operations work together nicely to solve certain
problems. Here are some of these subsets with wide applicability:

• Dictionary ADT : lookUp[, insert[, delete]] .

• Ordered Dictionary ADT : lookUp, insert, delete, succ, pred.

• Priority queue ADT : deleteMin, insert[, delete[, decreaseKey]] .

• Fully mergeable dictionary ADT: lookUp, insert, delete, merge[, split].

For instance, an ADT that supports only the three operationsof lookUp,insert,delete is
called adictionary ADT . In these ADT’s, there may be further stripped-down versions where we
omit some operations (these omitted operations are enclosed in square brackets:[· · ·]. Thus, a dic-
tionary ADT without thedelete operation is called asemi-dynamic dictionary, and if it further
omitsinsert, it is called astatic dictionary. Thus static dictionaries are down to a bare minimum of
thelookUp operation. If we omit thesplit operation in fully mergeable dictionary, then we obtain

What do you get if you
omitlookUp? A

“write-only memory”
(WOM)!

themergeable dictionaryADT.

Alternatively, some ADT’s can be enhanced by additional operations. For instance, a priority queue
ADT traditionally supports onlydeleteMin andinsert. But in some applications, it must be
enhanced with the operation ofdelete and/ordecreaseKey. The latter operation can be defined as

decreaseKey(K,K ′) ≡ [u← lookUp(K);delete(u);insert(K ′, u.data)]

with the extra condition thatK ′ < K (assuming a min-queue). In other words, we change the priority
of the itemu in the queue fromK to K ′. SinceK ′ < K, this amounts to increasing its priority ofu in
a min-queue.

If the deletion in dictionaries are based on keys (see comment above) then we may think of a dictio-
nary as a kind ofassociative memory. The operationsmake andkill (from group (I)) are assumed
to be present in every ADT.

Variant interpretations of all these operations are possible. For instance, some version ofinsert
may wish to return a boolean (to indicate success or failure)or not to return any result (in case the
application will never have an insertion failure). Other useful functions can be derived from the
above. E.g., it is useful to be able to create a structureS containing just a single itemI . This can
be reduced to ‘S.make(); S.insert(I)’. The concept of ADT was a major research topic in the
1980’s. Many of these ideas found their way into structured programming languages such as Pascal
and their modern successors. An interface in Java is a kind ofADT where we capture only the types
of operation. Our discussion of ADT is informal, but one way to study them formally is to describe
axioms that these operations satisfy. For instance, ifS is a stack, then we can postulate the axiom
that pushing an itemx on S followed by poppingS should return the itemx. In our treatment, we
will rely on informal understanding of these ADT’s to avoid the axiomatic treatment.

¶7. Application to Heapsort In Chapter I, we introduce the Mergesort Algorithm which wasana-
lyzed in Chapter II to have complexityT (n) = 2T (n/2) + n = Θ(n logn). We now give another
solution to the sorting problem based on the (stripped down)priority queue ADT: in order to sort an
arrayA[1..n] of items, we insert each itemA[i] into a priority queueQ, and then remove them fromQ
usingdeleteMin:

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 10

HEAPSORT(A, n):
Input: An arrayA of n items
Output: The sorted arrayA

1. Q← make()
2. for i = 1 to n do

Q.insert(A[i])
3. for i = 1 to n do

A[i]← Q.deleteMin()
4. Return(A)

The correctness of the algorithm is obvious. As each priority queue operation isO(log n), this gives
anotherO(n logn) solution to sorting.

EXERCISES

Exercise 2.1: Recall our discussion of pointer semantics. Consider the concept of a “pointer to a
pointer” (also known as ahandler).
(a) Let the variablep, q have the type pointer-to-pointer-to-node, whileu andN have types
pointer-to-node and node (resp.). It is clear whatp ← q means. But what should ‘p ← u’,
‘p← N ’, ‘ N ← p’, and ‘u← p’ mean? Or should they have meaning?
(b) Give some situations where this concept might be useful. ♦

Exercise 2.2: In ¶4, we provided implementations of the dictionary operationsusing linked list. Please
complete this exercise by implementing the full suite of ADToperations using linked lists. We
want you to do this within the shell programming framework. ♦

Exercise 2.3: Consider the dictionary ADT.
(a) Describe algorithms to implement this ADT when the concrete data structures are arrays.
HINT: A difference from implementation using linked lists is to decide what to do when the array
is full. How do you choose the larger size? What is the analogue of the ListTraversal Shell?
(b) Analyze the complexity of your algorithms in (a). Compare this complexity with that of the
linked list implementation. ♦

Exercise 2.4: Repeat the previous question for the priority queue ADT. ♦

Exercise 2.5: SupposeD is a dictionary with the dictionary operations of lookup, insert and delete.
List a complete set of axioms (properties) for these operations. ♦

END EXERCISES

§3. Binary Search Trees

We introduce binary search trees and show that such trees cansupport all the operations described
in the previous section on ADT. Our approach will be somewhatunconventional, because we want to
reduce all these operations to the single operation of “rotation”.

the universal
operation?

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 11

Recall the definition and basic properties of binary trees inthe Appendix of Chapter I. Figure2
shows two binary trees (small and big) which we will use in ourillustrations. For each nodeu of the
tree, we store a valueu.key called its key. The keys in Figure2 are integers, used simply as identifiers
for the nodes.

(b)(a)

7 8 9 10 11

12 13 14

15

1

2 3

4 5 6
1

2 3

54

Figure 2: Two binary (not search) trees: (a) small, (b) big

Briefly, a binary treeT is a setN of nodeswhere each nodeu has two pointers,u.left and
u.right. The setN is either the empty set, orN has a special nodeu called theroot. The remaining
nodesN \ {u} are partitioned into two sets of nodes that, recursively, form binary trees,TL andTR. If
N is non-empty, then the rootu has two fields,u.left andu.right, that point to the roots ofTL and
TR (resp.). The treesTL, TR are called theleft andright subtrees of T . If these subtrees are empty,
thenu.left (u.right) is nil.

A few other useful definitions: all the nodes of a binary tree of the same depthd forms thedth level.
Thedth level iscomplete if it has 2d nodes. A node in a binary tree isfull if it has two children; a
binary tree is said to befull if every internal node is full. A simple result about non-empty full binary
trees is that it has exactly one fewer internal node than the number of leaves. Thus, if itk ≥ 1 leaves iff
it hask− 1 ≥ 0 internal nodes. As corollary, a full binary tree has an odd number of nodes. Also recall
the notion of a complete binary tree (Lecture I, Appendix A).A complete binary tree of whose size is
one less than a power of2 is said to be perfect.

Our definition of binary trees is based onstructural induction . Thesizeof T is |N |. We often
identify T with the set of nodesN , and so the size may be denoted|T |, and we may write “u ∈ T ”
instead of “u ∈ N ”. Figure 2 illustrates two binary trees whose node sets are (respectively) N =
{1, 2, 3, 4, 5} (small tree) andN = {1, 2, 3, . . . , 15} (big tree).

The keys of the binary trees in Figure2 are just used as identifiers. To turn them into a binary
searchtree, we must organize the keys in a particular way. Such a binary search tree is illustrated in
Figure3(a). Structurally, it is the big binary tree from Figure2(b), but now the keys are no longer just
arbitrary identifiers.

A binary treeT is called abinary search tree (BST) if each nodeu ∈ T has a fieldu.key that
BST are binary trees
that satisfy the BST

property!satisfies theBST property:
uL.key < u.key ≤ uR.key. (1)

for all left descendentuL and and all right descendentuR of u. Please verify that the binary search trees
in Figure3 obey (1) at each nodeu.

The “standard mistake” is to replace (1) by u.left.key < u.key ≤ u.right.key. By defi- good quiz question...

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 12

(a) (b)

rotate(2)
2

10

11

15

13

12 143

4

5

10

6 11

2 8 15

1 5 7 9 13

3 12 14

4

1 6

9

8

7

Figure 3: (a) Binary Search Tree on keys{1, 2, 3, 4, . . . , 14, 15}. (b) Afterrotate(2).

nition, a left (right) descendant ofu is a node in the subtree rooted at the left (right) child ofu. The
left and right children ofu are denoted byu.left andu.right. This mistake focuses on a necessary,
but not sufficient, condition in the concept of a BST. Self-check: construct a counter example to the
standard mistake using a binary tree of size3.

Fundamental Rule about binary trees:most properties about binary trees are
best proved by induction on the structure of the tree. Likewise, algorithms for
binary trees are often best described using structural induction.

¶8. Height of binary trees. Let M(h) andµ(h) (resp.) be the maximum and minimum number of
nodes in a binary tree with heighth. It is easy to see that

µ(h) = h+ 1. (2)

What aboutM(h)? Clearly,M(0) = 1 andM(1) = 3. Inductively, we can see thatM(h + 1) =
1 + 2M(h). ThusM(1) = 1 + 2M(0) = 3, M(2) = 1 + 2M(1) = 7, M(3) = 1 + 2M(2) = 15.
From these numbers, you might guess that

M(h) = 2h+1 − 1 (3)

and it is trivial to verify this for allh. Another way to seeM(h) is that it is equal to
∑h

i=0 2
i since there

are at most2i nodes at leveli, and this bound can be achieved at every level. The simple formula (19)
tells us a basic fact about the minimum height of binary treesonn nodes: if its height ish, then clearly,
n ≤M(h) (by definition ofM(h). Thusn ≤ 2h+1 − 1, leading to

h ≥ lg(n+ 1)− 1. (4)

Informally, the height of a binary tree is at least logarithmic in the size. This simple relation is critical
in understanding complexity of algorithms on binary trees.

¶9. Lookup. The algorithm for key lookup in a binary search tree is almostimmediate from the
binary search tree property: to look for a keyK, we begin at the root (remember the Fundamental Rule
above?). In general, suppose we are looking forK in some subtree rooted at nodeu. If u.key = K,

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 13

we are done. Otherwise, eitherK < u.key or K > u.key. In the former case, we recursively search
the left subtree ofu; otherwise, we recurse in the right subtree ofu. In the presence of duplicate keys,
what does lookup return? There are two interpretations: (1)We can return the first nodeu we found to
have the given keyK. (2) We may insist on locating all nodes whose key isK.

In any case, requirement (2) can be regarded as an extension of (1), namely, given a nodeu, find
all the other nodes belowu with same same key asu.key. This subproblem can be solved separately
(Exercise). Hence we may assume interpretation (1) in the following.

¶10. Insertion. To insert an item, say the key-data pair(K,D), we proceed as in the Lookup algo-
rithm. If we findK in the tree, then the insertion fails (assuming distinct keys). Otherwise, we would
have reached a nodeu that has at most one child. We then create a new nodeu′ containing the item
(K,D) and makeu′ into a child ofu. Note that ifK < u.key, thenu′ becomes a left child; otherwise
a right child. In any case,u′ is now a leaf of the tree.

¶11. Rotation. Roughly, to rotate a nodeu means to make the parent ofu become its child. The
set of nodes is unchanged. Rotation is not an operation in ourlist of ADT operation (§2), but it is
critical for binary trees. On the face of it, rotation does not do anything essential: it is just redirecting
some parent/child pointers. Two search structures that store exactly the same set of items are said to be
equivalent. Rotation is anequivalence transformation, i.e., it transforms a binary search tree into an
equivalent one. Remarkably, we shall show that rotation can3 form the basis for all other binary tree
operations.

The operationrotate(u) is a null operation (“no-op” or identity transformation) whenu is a root.
So assumeu is a non-root node in a binary search treeT . Thenrotate(u) amounts to the following
transformation ofT (see Figure4).

u

v

A

B C

rotate(v)

rotate(u)

v

u

A B

C

Figure 4: Rotation atu and its inverse.

In rotate(u), we basically want to invert the parent-child relation betweenu and its parentv. The
other transformations are more or less automatic, given that the result is to remain a binary search tree.
If the subtreesA,B,C (any of these can be empty) are as shown in Figure4, then they must re-attach
as shown. This is the only way to reattach as children ofu andv, since we know that

A < u < B < v < C

in the sense that each key inA is less thanu which is less than any key inB, etc. Actually, only the
parent of the root ofB has switched fromu to v. Notice that afterrotate(u), the former parent ofv

3 Augmented by the primitive operations of adding or removinga node.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 14

(not shown) will now haveu instead ofv as a child. After a rotation atu, the depth ofu is decreased by
1. Note thatrotate(u) followed byrotate(v) is the identity or no-op operation; see Figure4.

¶12. Graphical convention: Figure4 encodes two conventions: consider the figure on the left sideof
the arrow. First, the edge connectingv to its parent is directed vertically upwards. This indicates thatv
could be the left- or right-child of its parent. Second, the two edges fromv to its children are connected
by a circular arc. This is to indicate thatu and its sibling could4 exchange places (i.e.,u could be the
right-child ofv even though we choose to showu as the left-child). Thus Figure4 is a compact way to
represent four distinct situations.

¶∗ 13. Implementation of rotation. Let us discuss how to implement rotation. Until now, when we
draw binary trees, we only display child pointers. But we must now explicitly discuss parent pointers.

Let us classify a nodeu into one of threetypes: left, right or root. This is defined in the obvious
way. E.g.,u is a left type iff it is not a root and is a left child. The type ofu is easily tested:u is type root
iff u.parent = nil, andu is type left iff u.parent.left = u. Clearly,rotate(u) is sensitive to
the type ofu. In particular, ifu is a root thenrotate(u) is the null operation. IfT ∈ {left,right}
denote left or right type, itscomplementary typeis denotedT , whereleft = right andright =
left.

w w

x x

u

v

A

B C

rotate(v)

rotate(u)

v

u

A B

C

Figure 5: Links that must be fixed inrotate(u).

We are ready to discuss therotate(u) subroutine. We assume that it will return the (same) node
u. Assumeu is not the root, and its type isT ∈ {left,right}. Letv = u.parent, w = v.parent
andx = v.T . Note thatw andx might benil. Thus we have potentially three child-parent pairs:

(x, u), (u, v), (v, w). (5)

But after rotation,u andv are interchanged, and we have the following child-parent pairs:

(x, v), (v, u), (u,w). (6)

These pairs are illustrated in Figures5 and6 where we explicitly show the parent pointers as well as
child pointers. Thus, to implement rotation, we need to reassign 6 pointers (3 parent pointers and3
child pointers). We show that it is possible to achieve this re-assignment using exactly6 assignments.

Such re-assignments must be done in the correct order. It is best to see what is needed by thinking of
(5) as a doubly-linked list(x, u, v, w) which must be converted into the doubly-linked list(x, v, u, w)

4 If this were to happen, the subtreesA,B, C needs to be appropriately relabeled.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 15

x u v wu v w x

rotate(u)

Figure 6: Simplified view ofrotate(u) as fixing a doubly-linked list(x, u, v, w).

in (6). This is illustrated in Figure6. For simplicity, we use the terminology of doubly-linked list so that
u.next andu.prev are the forward and backward pointers of a doubly-linked list. Here is the code:

ROTATE(u):
⊲ Fix the forward pointers

1. u.prev.next← u.next
⊳ x.next = v

2. u.next← u.next.next
⊳ u.next = w

3. u.prev.next.next← u
⊳ v.next = u

⊲ Fix the backward pointers
4. u.next.prev.prev← u.prev

⊳ v.prev = x
5. u.next.prev← u

⊳ w.prev = u
6. u.prev← u.prev.next

⊳ u.prev = v

We can now translate this sequence of6 assignments into the corresponding assignments for binary
trees: theu.next pointer may be identified withu.parent pointer. However,u.prev would beu.T
whereT ∈ {left,right} is the type ofx. Moreover,v.prev is v.T . Also w.prev is w.T ′ for
another typeT ′. A further complication is thatx or/andw may not exist; so these conditions must be
tested for, and appropriate modifications taken.

If we use temporary variables in doing rotation, the code canbe simplified (Exercise).

¶14. Variations on Rotation. The above rotation algorithm assumes that for any nodeu, we can
access its parentu′ and grandparentu′′. This is true if each node has a parent pointeru.parent. This
is our default assumption for binary tree algorithms.But even if we have no parent pointers, we could
modify our algorithms to achieve the desired results because our search invariably starts from the root,
and we can keep track of the triple(u, u′, u′′) which is necessary to know when we rotate atu.

Some authors replace rotation with a pair of variants, called left-rotation andright-rotation . These
can be defined as follows:

left-rotate(u) ≡ rotate(u.left), right-rotate(u) ≡ rotate(u.right).

The advantage of using these two rotations is that, if we do not maintain parent pointers, then they are
slightly easier to implement than the usual rotate: we only make sure that whenever we are operating
on a nodeu, we also keep track of the parentp of u (this isnota recursive property – we do not need to
keep track of the parent ofp). After we do aleft-rotate(u) or right-rotate(u), we need to
update one of the child pointers ofp.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 16

¶15. Double Rotation. Supposeu has a parentv and a grandparentw. Then two successive rotations
on u will ensure thatv andw are descendants ofu. We may denote this operation byrotate2(u).
Up to left-right symmetry, there are two distinct outcomes in rotate2(u): (i) eitherv, w are becomes
children ofu, or (ii) only w becomes a child ofu andv a grandchild ofu. These depend on whetheru
is theouter or inner grandchildren ofw. These two cases are illustrated in Figure7. [As an exercise,
we ask the reader to draw the intermediate tree after the firstapplication ofrotate(u) in this figure.]

rotate2(u)

rotate2(u)

w

v

A B

C

D

w

v

A

B

D

C

v w

B CA D

u

A

Zig-zag Case

Zag-zag Case

v

w

CB

D
u

u

u

Figure 7: Two outcomes ofrotate2(u)

It turns out that case (ii) is the more important case. For many purposes, we would like to view the
two rotations in this case as one indivisible operation: hence we introduce the termdouble rotation to
refer to case (ii) only. For emphasis, we might call the original rotation asingle rotation.

These two cases are also known as the zig-zig (or zag-zag) andzig-zag (or zag-zig) cases, respec-
tively. This terminology comes from viewing a left turn as zig, and a right turn as zag, as we move from
up a root path. The Exercise considers how we might implementa double rotation more efficiently than
by simply doing two single rotations.

u

5 paths from a node

¶16. Five Canonical Paths from a node. A path is a sequence of nodes(u0, u1, . . . , un) where each
ui is a child ofui−1, or eachui is a parent ofui−1. The length of this path isn, andun is also called
the tip of the path. E.g.,(2, 4, 8, 12) is a path in Figure2(b), with tip 12. Relative to a nodeu, there
are 5 canonical paths that originate fromu. The first of these is the path fromu to the root, called the
root path of u. In figures, the root path is displayed as an upward path, following parent pointers from
the nodeu. E.g., ifu = 4 in Figure2(b), then the root path is(4, 2, 1). Next we introduce 4 downward
paths fromu. The left-path of u is simply the path that starts fromu and keeps moving towards the
left child until we cannot proceed further. Theright-path of u is similarly defined. E.g., withu = 4
as before, the left-path is(4, 7) and right-path is(4, 8). Next, we define theleft-spine of a nodeu is
defined to be the path(u, rightpath(u.left)). In caseu.left = nil, the left spine is just the trivial

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 17

path(u) of length0. Theright-spine is similarly defined. E.g., withu as before, the left-spine is(4, 7)
and right-spine is(4, 8, 12). The tips of the left- and right-paths atu correspond to the minimum and
maximum keys in the subtree atu. The tips of the left- and right-spines,provided they are different from
u itself, correspond to the predecessor and successor ofu. Clearly,u is a leaf iff all these four tips are
identical and equal tou.

u

v

v

w x

u

x

wrotate(w)

Figure 8: Reduction of the left-spine ofu afterrotate(u.left) = rotate(w).

We now examine what happens to these five paths ofu after a rotation. After performing a left-
rotation atu, we reduce the left-spine length ofu by one (but the right-spine ofu is unchanged). See
Figure8.

How rotations affect
the 5 paths

LEMMA 1. Let(u0, u1, . . . , uk) be the left-spine ofu andk ≥ 1. Also let(v0, . . . , vm) be the root path
of u, whereu = v0 andvm is the root of the tree. After performingrotate(u.left), the left-child of
u is transferred from the left-spine to the root path. More precisely:

(i) the left-spine ofu becomes(u0, u2, . . . , uk) of lengthk − 1,

(ii) the root path ofu becomes(v0, u1, v1, . . . , vm) of lengthm+ 1, and

(iii) the right-path and right-spine ofu are unchanged.

So repeatedly left-rotations atu will reduce the left-spine ofu to length0. A similar property holds
for right-rotations.

¶17. Deletion. Suppose we want to delete a nodeu. In caseu has at most one child, this is easy to do
– simply redirect the parent’s pointer tou into the unique child ofu (or nil if u is a leaf). Call this theCut(u) operation
procedureCut(u). It is now easy to describe a general algorithm for deleting anodeu:

DELETE(T, u):
Input: u is node to be deleted fromT .
Output: T , the tree withu deleted.

while u.left 6= nil do
rotate(u.left).

Cut(u)

The overall effect of this algorithm is schematically illustrated in Figure9.

If we maintain information about the left and right spine heights of nodes (Exercise), and the right
spine ofu is shorter than the left spine, we can perform the while-loopusing right-rotations to minimize

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 18

the number of rotations. To avoid maintaining height information, we can also do this: alternately
perform left- and right-rotates atu until one of its 2 spines have length0. This guarantees that the
number of rotations is never more than twice the minimal needed.

a

b

c

b

c

a

c

u

b

c

u

c

a

b

a

v

A

B

v ← LeftSpineTip(u)

C

E

E

C

B

A

C

E

B

A

(ii)

(i)

E
C

B

delete(u)
A

cut(v)

v

copyc

standard delete(u)

Figure 9: Deletion: (i) Rotation-based, (ii) Standard.

We ask the reader to simulate the operations ofDelete(T, 10) whereT is the BST of Figure3.

¶18. Standard Deletion Algorithm. The preceding deletion algorithm is simple but it is quite non-
standard. We now describe thestandard deletion algorithm:

STANDARD DELETE(T, u):
Input: u is node to be deleted fromT .
Output: T , the tree with item inu deleted.

if u has at most one child, applyCut(u) and return.
else let v be the tip of the left spine ofu.

Copy the item inv into u (removing the old item inu)
Cut(v).

This process is illustrated in Figure9. Note that in the else-case, the nodeu is not physically
removed: only the item represented byu is removed. Sincev is the tip of the left spine, it has at most
one child, and therefore it can be cut. If we have to return a value, it is useful to return the parent of the
nodev that was cut – this can be used in rebalancing tree (see AVL deletion below). The reader should
simulate the operations ofDelete(T, 10) for the tree in Figure3, and compare the results of standard
deletion to the rotation-based deletion.

The rotation-based deletion is conceptually simpler, and will be useful for amortized algorithms
later. However, the rotation-based algorithm seems to be slower as it requires an unbounded number of
pointer assignments. To get a definite complexity benefit, wecould perform this rotation in the style of
splaying (Chapter VI, Amortization).

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 19

¶19. Inorder listing of a binary tree.

LEMMA 2. LetT be a binary tree onn nodes. There is a unique way to assign the keys{1, 2, . . . , n}
to the nodes ofT such that the result is a binary search tree on these keys.

We leave the simple proof to an Exercise. For example, ifT is the binary tree in Figure2(b), then
this lemma assigns the keys{1, . . . , 15} to the nodes ofT as in Figure3(a). In general, the node that is
assigned keyi (i = 1, . . . , n) by Lemma2 may be known as theith node of T . In particular, we can
speak of thefirst (i = 1) andlast node(i = n) of T . The unique enumeration of the nodes ofT from
first to last is called thein-order listing of T .

¶20. Successor and Predecessor.If u is theith node of a binary treeT , thesuccessorof u refers to
the(i+1)st node ofT . By definition,u is thepredecessorof v iff v is the successor ofu. Letsucc(u)
andpred(u) denotes the successor and predecessor ofu. Of course,succ(u) (resp.,pred(u)) is
undefined ifu is the last (resp., first) node in the in-order listing of the tree.

We will define a closely related concept, but applied to any key K. LetK be any key, not necessarily
occurring inT . Define thesuccessorof K in T to be the least keyK ′ in T such thatK < K ′. We
similarly define thepredecessorof K in T to be the greatestK ′ in T such thatK ′ < K. Note that ifK
occurs inT , say in nodeu, then the successor/predecessor ofK are just the successor/predecessor ofu.

In some applications of binary trees, we want to maintain pointers to the successor and predecessor
of each node. In this case, these pointers may be denotedu.succ andu.pred. Note that the succes-
sor/predecessor pointers of nodes is unaffected by rotations. Our default version of binary trees do not
include such pointers.Let us make some simple observations:

LEMMA 3. Letu be a node in a binary tree, butu is not the last node in the in-order traversal of the
tree. Letsucc(u) = v.
(i) If u.right 6= nil thenv is the tip of the right-spine ofu.
(ii) If u.right = nil thenu is the tip of the left-spine ofv.

It is easy to derive an algorithm forsucc(u) using this lemma:

SUCC(u):
Output: The successor node ofu (if it exists) ornil.

1. if u.right 6= nil ⊳ return the tip of the right-spine ofu
1.1 v ← u.right;
1.2 while v.left 6= nil, v ← v.left;
1.3 Return(v).
2. else ⊳ returnv whereu is the tip of the left-spine ofv
2.1 v ← u.parent;
2.2 while v 6= nil andu = v.right,
2.3 (u, v)← (v, v.parent).
2.4 Return(v).

The algorithm forpred(u) is similar.

We can also develop a rotation-based version of successor orpredecessor.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 20

¶21. Min, Max, DeleteMin. This is trivial once we notice that the minimum (maximum) item is
in the first (last) node of the binary tree. Moreover, the first(last) node is at the tip of the left-path
(right-path) of the root.

¶22. Merge. To merge two treesT, T ′ where all the keys inT are less than all the keys inT ′, we
proceed as follows. Introduce a new nodeu and form the tree rooted atu, with left subtreeT and right
subtreeT ′. Then we repeatedly perform left rotations atu until u.left = nil. At this point, we can
performCut(u) (see¶17). If you like, you can perform right rotations instead of left rotations.

¶23. Split. Suppose we want to split a treeT at a keyK. Recall the semantics of split from§2:
T.split(K) → T ′. This says that all the keys less than or equal toK is retained inT , and the rest are
split off into a new treeT ′ that is returned.

First we do alookUp of K in T . This leads us to a nodeu that either containsK or elseu is the
successor or predecessor ofK in T . That is,u.key is either the smallest key inT that is greater or
equal toK or the largest key inT that is less than or equal toK. Now we can repeatedly rotate atu
until u becomes the root ofT . At this point, we can split off either the left-subtree or right-subtree of
T , renaming them asT andT ′ appropriately. This pair(T, T ′) of trees is the desired result. work out this little

detail

¶24. Complexity. Let us now discuss the worst case complexity of each of the above operations. They
are allΘ(h) whereh is the height of the tree. It is therefore desirable to be ableto maintainO(log n)
bounds on the height of binary search trees.

We stress that our rotation-based algorithms for insertionand deletion may be slower than the
“standard” algorithms which perform only a constant numberof pointer re-assignments. If this cost
is not an issue, then rotation-based algorithms are attractive because of their simplicity. Other possible
benefits of rotation will be explored in Chapter 6 on amortization and splay trees.

EXERCISES

Exercise 3.1: Let T be a left-list (i.e., a BST in which no node has a right-child).
(a) Supposeu is the tip of the left-path of the root. Describe the result ofrepeated rotation ofu
until u becomes the root.
(b) Describe the the effect of repeated left-rotate of the root of T (until the root has no left child)?
Illustrate your answer to (a) and (b) by drawing the intermediate trees whenT has5 nodes. ♦

Exercise 3.2: Consider the BST of Figure3(a). This calls for hand-simulation of the insertion and
deletion algorithms. Show intermediate trees after each rotation, not just the final tree.
(a) Perform the deletion of the key10 this tree using the rotation-based deletion algorithm.
(b) Repeat part (a), using the standard deletion algorithm. ♦

Exercise 3.3: Suppose the set of keys in a BST are no longer unique, and we want to modify the
lookUp(u,K) function to return a linked list containing all the nodes containing keyK in a
subtreeTu rooted atu. Write the pseudo-code forLookUpAll(u,K). ♦

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 21

Exercise 3.4: The function VERIFY(u) is supposed to returntrue iff the binary tree rooted atu is a
binary search tree with distinct keys:

VERIFY(Nodeu)
if (u = nil) Return(true)
if ((u.left 6= nil) and (u.key < u.left.key)) Return(false)
if ((u.right 6= nil) and (u.key > u.right.key)) Return(false)
Return(VERIFY(u.left)∧VERIFY(u.right))

Either argue for it’s correctness, or give a counter-example showing it is wrong. ♦

Exercise 3.5: TRUE or FALSE: Recall that a rotation can be implemented with6 pointer assignments.
Suppose a binary search tree maintains successor and predecessor links (denotedu.succ and
u.pred in the text). Now rotation requires12 pointer assignments. ♦

Exercise 3.6: (a) Implement the above binary search tree algorithms (rotation, lookup, insert, deletion,
etc) in your favorite high level language. Assume the binarytrees have parent pointers.
(b) Describe the necessary modifications to your algorithmsin (a) in case the binary trees do not
have parent pointers. ♦

Exercise 3.7: Let T be the binary search tree in Figure3. You should recall the ADT semantics of
T ′ ← split(T,K) andmerge(T, T ′) in §2. HINT: although we only require that you show
the trees at the end of the operations, we recommend that you show selected intermediate stages.
This way, we can give you partial credits in case you make mistakes!

(a) Perform the operationT ′ ← split(T, 5). DisplayT andT ′ after the split.
(b) Now performinsert(T, 3.5) whereT is the tree after the operation in (a). Display the tree
after insertion.
(c) Finally, performmerge(T, T ′) whereT is the tree after the insert in (b) andT ′ is the tree
after the split in (a). ♦

Exercise 3.8: Give the code for rotation which uses temporary variables. ♦

Exercise 3.9: Instead of minimizing the number of assignments, let us try to minimize the time. To
count time, we count each reference to a pointer as taking unit time. For instance, the assignment
u.next.prev.prev ← u.prev costs5 time units because in addition to the assignment, we
have to make access4 pointers.
(a) What is the rotation time in our6 assignment solution in the text?
(b) Give a faster rotation algorithm, by using temporary variables. ♦

Exercise 3.10:We could implement a double rotation as two successive rotations, and this would take
12 assignment steps.
(a) Give a simple proof that 10 assignments are necessary.
(b) Show that you could do this with 10 assignment steps. ♦

Exercise 3.11:Open-ended: The problem of implementingrotate(u) without using extra storage or
in minimum time (previous Exercise) can be generalized. LetG be a directed graph where each

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§3. BINARY SEARCH TREES Lecture III Page 22

edge (“pointer”) has a name (e.g.,next,prev,left,right) taken from a fixed set. Moreover,
there is at most one edge with a given name coming out of each node. Suppose we want to
transformG to another graphG′, just by reassignment of these pointers. Under what conditions
can this transformation be achieved with only one variableu (as inrotate(u))? Under what
conditions is the transformation achievable at all (using more intermediate variables? We also
want to achieve minimum time. ♦

Exercise 3.12:The goal of this exercise is to show thatif T0 andT1 are two equivalent binary search
trees, then there exists a sequence of rotations that transformsT0 into T1. Assume the keys in
each tree are distinct. We explore two strategies.

thus rotation is a
“universal”
equivalence

transformation.
(a) One strategy is to first make sure that the roots ofT0 andT1 have the same key. Then by
induction, we can transform the left- and right-subtrees ofT0 so that they are identical to those
of T1. Describe an algorithmA(T1, T2) that implements this strategy. The algorithmA does not
modifyT2 at all, but transformsT1 by rotations untilT1 has the same shape asT2. Of course, we
assume thatT1, T2 are equivalent BST’s.
(a’) Let RA(n) be the worst case number of rotations of algorithmA on trees withn keys. Give
a tight analysis ofRA(n).
(b) Another strategy is to show that any tree can be reduced toa canonical form. For canonical
form, we choose those binary search trees that form a left-list. A left-list is a binary tree in which
every node has no right-child. If every BST can be rotated into a left-list, then we can rotate from
anyT0 to anyT1 as follows: sinceT0 andT1 are equivalent, they can each be rotated into the
same left-listL. To rotate fromT0 to T1, we first transformT0 to L, and then apply thereverse
of the sequence of rotations that transformT1 to L. Give an explicit description of an algorithm
B(T) that transforms any BSTT into an equivalent BST that is a left-list.
(b’) Let RB(n) be worst case number of rotations for algorithmB(T) on trees withn keys. Give
a tight analysis ofRB(n). ♦

Exercise 3.13:Prove Lemma2, that there is a unique way to order the nodes of a binary treeT that is
consistent with any binary search tree based onT . HINT: remember the Fundamental Rule about
binary trees. ♦

Exercise 3.14: Implement the Cut(u) operation in a high-level informal programming language. As-
sume that nodes have parent pointers, and your code should work even if u.parent = nil.
Your code should explicitly “delete(v)” after you physically remove a nodev. If u has two chil-
dren, then Cut(u) must be a no-op. ♦

Exercise 3.15:Design an algorithm to find both the successor and predecessor of a given keyK in
a binary search tree. It should be more efficient than just finding the successor and finding the
predecessor independently. ♦

Exercise 3.16:Show that if a binary search tree has heighth andu is any node, then a sequence of
k ≥ 1 repeated executions of the assignmentu← successor(u) takes timeO(h + k). ♦

Exercise 3.17:Show how to efficiently maintain the heights of the left and right spines of each node.
(Use this in the rotation-based deletion algorithm.) ♦

Exercise 3.18:We refine the successor/predecessor relation. Suppose thatT u is obtained fromT by
pruning all the proper descendants ofu (sou is a leaf inT u). Then the successor and predecessor

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§4. TREE TRAVERSALS Lecture III Page 23

of u in T u are called (respectively) theexternal successorandpredecessorof u in T Next, if
Tu is the subtree atu, then the successor and predecessor ofu in Tu are called (respectively) the
internal successorandpredecessorof u in T
(a) Explain the concepts of internal and external successors and predecessors in terms of spines.
(b) What is the connection between successors and predecessors to the internal or external ver-
sions of these concepts? ♦

Exercise 3.19:The text gave a conventional algorithm for successor of a node in a BST. Give the
rotation-based version of the successor algorithm. ♦

Exercise 3.20:Suppose that we begin withu pointing at the first node of a binary tree, and continue to
apply the rotation-based successor (see previous question) until u is at the last node. Bound the
number of rotations made as a function ofn (the size of the binary tree). ♦

Exercise 3.21:Suppose we allow allow duplicate keys. Under (1), we can modify our algorithms
suitably so that all the keys with the same value lie in consecutive nodes of some “right-path
chain”.
(a) Show how to modify lookup on keyK so that we list all the items whose key isK.
(b) Discuss how this property can be preserved during rotation, insertion, deletion.
(c) Discuss the effect of duplicate keys on the complexity ofrotation, insertion, deletion. Suggest
ways to improve the complexity. ♦

Exercise 3.22:Consider the priority queue ADT. Describe algorithms to implement this ADT when
the concrete data structures are binary search trees.
(b) Analyze the complexity of your algorithms in (a). ♦

END EXERCISES

§4. Tree Traversals and Applications

In this section, we describe systematic methods to visit allthe nodes of a binary tree. Such methods
are calledtree traversals. Tree traversals provide “algorithmic skeletons” orshellsfor implementing

Unix fans – shell
programming is not
what you think it ismany useful algorithms. We had already seen this concept in¶4, when implemented ADT operations

using linked lists.

¶25. In-order Traversal. There are three systematic ways to visit all the nodes in a binary tree: they
are all defined recursively. Perhaps the most important is the in-order or symmetric traversal. To do

Fundamental Rule of
binary trees!

in-order traversal of a binary tree rooted atu, you recursively do in-order traversal ofu.left, then you
visit u, then recursive do in-order traversal ofu.right. Here is the shell for this traversal:

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§4. TREE TRAVERSALS Lecture III Page 24

IN-ORDER(u):
Input: u is root of binary treeT to be traversed.
Output: The in-order listing of the nodes inT .

0. BASE(u) .
1. In-order(u.left).
2. VISIT(u) .
3. In-order(u.right).

This recursive shell uses two macros called BASE and VISIT. For traversals, the BASE macro can be
expanded into the following single line of code:

BASE(u) :
if (u=nil) Return.

The VISIT(u) macro is simply:

VISIT(u) :
Print u.key.

In illustration, consider the two binary trees in Figure2. The numbers on the nodes are keys, but they
are not organized into a binary search tree. They simply serve as identifiers.

An in-order traversal of the small tree in Figure2 will produce(2, 4, 1, 5, 3). For a more substantial
example, consider the output of an in-order traversal of thebig tree:

(7, 4, 12, 15, 8, 2, 9, 5, 10, 1, 3, 13, 11, 14, 6)

Basic fact:if we list the keys of a BST using an inorder traversal, then the keys will be sorted.

For instance, the in-order traversal of the BST in Figure3 will simply produce the sequence

(1, 2, 3, 4, 5, . . . , 12, 13, 14, 15).

This yields an interesting conclusion:sorting a setS of numbers can be reduced to constructing a
binary search tree on a set of nodes withS as their keys.This is because once we have such at BST, we
can do an in-order traversal to list the keys in sorted order.

¶26. Pre-order Traversal. We can re-write the above In-Order routine succinctly as:

IN(u) ≡ [BASE(u) ; IN(u.left); VISIT(u) ; IN(u.right)]

Changing the order of Steps 1, 2 and 3 in the In-Order procedure (but always doing Step 1 before
Step 3), we obtain two other methods of tree traversal. Thus,if we perform Step 2 before Steps 1 and 3,
the result is called thepre-order traversal of the tree:

PRE(u) ≡ [BASE(u) ; VISIT(u) ;PRE(u.left);PRE(u.right)]

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§4. TREE TRAVERSALS Lecture III Page 25

Applied to the small tree in Figure2, we obtain(1, 2, 4, 3, 5). The big tree produces

(1, 2, 4, 7, 8, 12, 15, 5, 9, 10, 3, 6, 11, 13, 14).

¶27. Post-order Traversal. If we perform Step 2 after Steps 1 and 3, the result is called the post-
order traversal of the tree:

POST (u) ≡ [BASE(u) ;POST (u.left);POST (u.right); VISIT(u)]

Using the trees of Figure2, we obtain the output sequences(4, 2, 5, 3, 1) and

(7, 15, 12, 8, 4, 9, 10, 5, 2, 13, 14, 11, 6, 3, 1).

¶28. Applications of Tree Traversal: Shell Programming Tree traversals may not appear interest-
ing on their own right. However, they serve as shells for solving many interesting problems. That is,
many algorithms can be programmed by taking a tree traversalshell, and replacing the named macros
by appropriate code: for tree traversals, we have two such macros, called BASE and VISIT.

To illustrate shell programming, suppose we want to computethe height of each node of a BST.
Assume that each nodeu has a variableu.H that is to store the height of nodeu. If we have recursive
computed the values ofu.left.H andu.right.H , then we see that the height ofu can be computed
as

u.H = 1 +max {u.left.H + u.right.H} .
This suggests the use of post-order shell to solve the heightproblem: We keep the no-op BASE

computing height in
post-order

subroutine, but modifyV ISIT (u) to the following task:

VISIT(u)
if (u.left = nil) then L← −1.

else L← u.left.H .
if (u.right = nil) then R← −1.

else R← u.right.H .
u.H ← 1 + max{L,R}.

On the other hand, suppose we want to compute the depth of eachnode. Again, assume each nodeu
stores a variableu.D to record its depth. Then, assuming thatu.D has been computed, then we could

computing depth in
pre-order

easily compute the depths of the children ofu using

u.left.D = u.right.D = 1 + u.D.

This suggests that we use the pre-order shell for computing depth.

¶29. Return Shells. For some applications, we want a version of the above traversal routines that
return some value. Call them “return shells” here. We illustrate this by modifying the previous postorder
shell POST(u) into a new version rPOST(u) which returns a value of typeT . For instance,T might be
the type integer or the type node. The returned value from recursive calls are then passed to the VISIT
macro:

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§4. TREE TRAVERSALS Lecture III Page 26

RPOST(u)

rBASE(u) .

L← rPOST (u.left).
R← rPOST (u.right).

rVISIT(u, L,R) .

Note that bothrBASE(u) andrV ISIT (u, L,R) returns some value of typeT .

As an application of this rPOST routine, consider our previous solution for computing the height of
binary trees. There we assume that every nodeu has an extra field calledu.H that we used to store the
height ofu. Suppose we do not want to introduce this extra field for everynode. Instead of POST(u),
we can use rPOST(u) to return the height ofu. How can we do this? First, BASE(u) should be modified
to return the height ofnil nodes:

RBASE(u):
if (u=nil) Return(−1).

Second, we must re-visit the VISIT routine, modifying (simplifying!) it as follows: no pun intended

RVISIT(u, L,R)
Return(1 + max{L,R}).

The reader can readily check that rPOST solves the height problem elegantly. As another application
of such “return shell”, suppose we want to check if a binary tree is a binary search tree. This is explored
in Exercises below.

The motif of using shell programs to perform node traversals, augmented by a small set of macros
such as BASE and VISIT, will be further elaborated when we study graph traversals in the next Lecture.
Indeed, graph traversal is a generalization of tree traversal. Shell programs unify many programming
aspects of traversal algorithms: we cannot over emphasize this point. Hear! Hear!

EXERCISES

Exercise 4.1: Joe said that in a post-order listing of the keys in a BST, we must begin with the smallest
key in the tree. Is he right? ♦

Exercise 4.2: Give the in-order, pre-order and post-order listing of the nodes in the binary tree in Fig-
ure16. ♦

Exercise 4.3: BST reconstruction from node-listings in tree traversals.
(a) Let the in-order and pre-order traversal of a binary treeT with 10 nodes be
(a, b, c, d, e, f, g, h, i, j) and(f, d, b, a, c, e, h, g, j, i), respectively. Draw the treeT .
(b) Prove that if we have the pre-order and in-order listing of the nodes in a binary tree, we can

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§4. TREE TRAVERSALS Lecture III Page 27

reconstruct the tree.
(c) Consider the other two possibilities: (c.1) pre-order and post-order, and (c.2) in-order and
post-order. State in each case whether or not they have the same reconstruction property as in (b).
If so, prove it. If not, show a counter example.
(d) Redo part(c) for full binary trees. Recall that in a full binary tree, each node either has no
children or 2 children. ♦

i

f

d h

b

a
c

g
j

Figure 10:

Exercise 4.4: Here is the inorder and postorder listing of nodes in a binarytree:(a, b, c, d, e, f, g, h, i)
and(f, b, a, e, c, d, h, g, i), respectively. Please draw the BST. ♦

Exercise 4.5: Tree reconstruction from key-listings in tree traversals.This is a slightly problem from
the previous question. In the previous problem, we want to reconstruct a BST from the list of
nodes from various traversals. Now, instead of nodes, we aregiven the keys in a traversal. Instead
of two lists, we only need one for reconstruction.
(a) Here is the list of keys from post-order traversal of a BST:

2, 1, 3, 7, 10, 8, 5, 13, 15, 14, 12

Draw this binary search tree.
(b) Describe the general algorithm to reconstruct a BST fromits post-order traversal. ♦

Exercise 4.6: Use shell programming to give an algorithm to compute the size of a nodeu (i.e., the
number of nodes in the subtree rooted atu). Give two versions: (a) using a return shell, and (b)
using a version where the size of nodeu is recorded in a fieldu.size. ♦

Exercise 4.7: Let size(u) be the number of nodes in the tree rooted atu. Say that nodeu is size-
balancedif

1/2 ≤ size(u.left)/size(u.right) ≤ 2

where a leaf node is size-balanced by definition.
(a) Use shell programming to compute the routineB(u) which returnssize(u) if each node in
the subtree atu is balanced, andB(u) = −1 otherwise. Do not assume any additional fields in
the nodes or that the size information is available.
(b) Suppose you know thatu.left and u.right are size-balanced. Give a routine called
REBALANCE(u) that uses rotations to makeu balanced. Assume each nodev has an ex-
tra fieldu.SIZE whose value issize(u) (you must update this field as you rotate). ♦

Exercise 4.8: Show how to use the pre-order shell to compute the depth of each node in a binary tree.
Assume that each nodeu has a depth field,u.D. ♦

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§5. TREE TRAVERSALS Lecture III Page 28

Exercise 4.9: Give a recursive routine calledCheckBST (u) which checks whether the binary tree
Tu rooted at a nodeu is a binary search tree (BST). Unfortunately, we cannot afford to simply
return a Boolean value only, because in recursive calls, theparent need to receive some extra
information from the children. Design aCheckBST (u) to return a pair(ℓ, r) of keys. Perhaps
(ℓ, r) could encode the minimum and maximum keys inTu. But this pair should also be able
to tell you whetherTu is BST or not. Assume that each non-nil nodeu has the three fields,
u.key, u.left, u.right. ♦

Exercise 4.10:The previous exercise yields a recursive subroutineCheckBST (u) to check if
Tu is a BST. This exercise explores an alternative solution: the recursive subroutine
bCheckBST (u,min,max) that returns a Boolean value; the value is true iffTu is a BST.
REMARK: we also definebCheckBST (u) to bebCheckBST (u,−∞,+∞). For simplicity,
assumeTu has no duplicate keys. ♦

Exercise 4.11:A student proposed a different approach to the previous question. LetminBST (u) and
maxBST (u) compute the minimum and maximum keys inTu, respectively. These subroutines
are easily computed in the obvious way. For simplicity, assume all keys are distinct andu 6= nil
in these arguments. The recursive subroutine is given as follows:

CheckBST(u)
⊲ Returns largest key inTu if Tu is BST
⊲ Returns+∞ if not BST
⊲ Assumeu is notnil

If (u.left 6= nil)
L← maxBST (u.left)
If (L > u.key orL =∞) return(∞)

If (u.right 6= nil)
R← minBST (u.right)
If (R < u.key orR =∞) return(∞)

Return(CheckBST (u.left) ∧ (CheckBST (u.right)

Is this program correct? Bound its complexity. HINT: Let the“root path length” of a node be the
length of its path to the root. The “root path length” of a binary treeTu is the sum of the root path
lengths of all its nodes. The complexity is related to this number. ♦

Exercise 4.12:Like the previous problem, we want to check if a binary tree isa BST. Write a recursive
algorithm calledSlowBST (u) which solves the problem, except that the running time of your
solution must be provably exponential-time. If you like, your solution may consist of mutually
recursive algorithms. Your overall algorithm must achievethis exponential complexity without
any trivial redundancies. E.g., we should not be able to delete statements from your code and still
achieve a correct program. Thus, we want to avoid a trivial solutions of this kind:

SlowBST (u)
Compute the numbern of nodes inTu

Do for 2n times:
FastBST (u)

♦

END EXERCISES

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§5. VARIATIONS ON BST Lecture III Page 29

§5. Variations on Binary Search Trees

We discuss some important variations of our standard treatment of binary search trees (BST). For
instance, an alternative way to use binary trees in search structures is to only store keys in the leaves.
There are also notions of implicit BST: this means that the search keys are not explicitly stored as such in
the tree. Another notion of implicitness is where the child/parent links of the BST is not directly stored,
but computed. We can also store various auxiliary information in the BST such as height, depth or
size information. We can also maintain additional pointerssuch as level links, or successor/predecessor
links.

¶30. Extended binary trees. There is an alternative view of binary trees; following Knuth [5, p. 399],
we call themextended binary trees. For emphasis, the original version will be calledstandard binary
trees. In the extended trees, every node has0 or 2 children; nodes with no children are called5 nil
nodeswhile the other nodes are callednon-nil nodes. See Figure11(a) for a standard binary tree
and Figure11(b) for the corresponding extended version. In this figure, we see a common convention
(following Knuth) of representing nil nodes by black squares.

nil node

external node

leaf

internal node

(b) (c)(a)

Figure 11: Binary Search Trees: (a) standard, (b) extended,(c) external

The bijection between extended and standard binary trees isgiven as follows:

1. For any extended binary tree, if we delete all its nil nodes, we obtain a standard binary
tree.
2. Conversely, for any standard binary tree, if we give everyleaf two nil nodes as children
and for every internal node with one child, we give it one nil node as child, then we obtain
a corresponding extended binary tree.

In view of this correspondence, we could switch between the two viewpoints depending on which is
more convenient. Generally, we avoid drawing the nil nodes since they just double the number of nodes
without conveying new information. In fact, nil nodes cannot store data or items. One reason we Who cares about nil

nodes?explicitly introduce them is that it simplifies the description of some algorithms (e.g., red-black tree
algorithms). They serve as sentinels in an iterative loop. The “nil node” terminology may be better
appreciated when we realize that in conventional realization of binary trees, we allocate two pointers to
every node, regardless of whether the node has two children or not. The lack of a child is indicated by
making the corresponding pointer take thenil value.

The concept of a “leaf” of an extended binary tree is apt to cause some confusion: we shall use
the “leaf” terminology so as to be consistent with standard binary trees. A node of an extended binary

5 A binary tree in which every node has 2 or 0 children is said to be “full”. Knuth calls the nil nodes “external nodes”. A path
that ends in an external node is called an “external path”.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§5. VARIATIONS ON BST Lecture III Page 30

tree is called aleaf if it is the leaf of the corresponding standard binary tree. Alternatively, a leaf in an
extended binary tree is a node with two nil nodes as children.Thus a nil node is never a leaf.

¶31. Exogenous versus Endogenous Search StructuresThe above notion of extended binary tree
is purely structural, as there is no discussion of its use in search structures. But clearly we can associate
keys/items with nodes of the extended search to turn them into the corresponding notion ofextended
binary search tree. Here, the non-nil nodes store keys in the usual nodes but thenil nodes do not
hold keys. So extended BST does not really add anything new: the nil nodes are just place holders or
sentinels. In the following, we take this idea one step further: instead of nil nodes, we replace them
by nodes that can store items, and moreover, we ban items fromthe internal nodes. This is the idea
of “external search structures” which we next describe. This terminology for standard, extended and
external binary search trees is illustrated in Figure11.

Recall that each key is associated with some data, and such key-data pairs constitute the items for
searching. There are two ways to organize such items. One wayis to directly store the data with the
key. The other way is for the key to be paired with a pointer to the data. Following6 Tarjan [11], we
call the latter organization anexogenous search structureIn contrast, if the data is directly stored
with the key, it is anendogenous search structure. What is the relative advantage of either form?
The exogenous case has an extra level of indirection (the pointer) which uses extra space. But on the
other hand, it means that the actual data can be freely re-organized more easily, independently of the
search structure. In databases, this freedom is important,and the exogenous search structure are called
“indexes”. Database users can freely create and destroy such indexes for the set of items. This allows
a collection of items can be searched using different searchcriteria. The concept of(a, b)-trees below
illustrates such exogenous search structures.

More precisely, anexternal BST is a full binary tree in which every internal nodeu stores a key
u.Key, and every leafu stores an item(u.Key, u.Data). Moreover, the usual BST property holds:

uL.key < u.key ≤ uR.key

whereuL (resp.,uR) is a node in the left (resp., right) subtree atu. Note thatuL anduR may be internal
nodes or leaves. The leaves in an external BST may be calledexternal nodes.

So! that is why
‘internal’ nodes are

so-called...

¶32. Auxiliary Information. In many applications, additional information must be maintained at
each node of the binary search tree. We already mentioned thepredecessor and successor links. Another
information is the the size of the subtree at a node. Some of this information is independent, while other
is dependent orderived. Maintaining the derived information under the various operations is usually
straightforward. In all our examples, the derived information is local in the following sense thatthe
derived information at a nodeu can only depend on the information stored in the subtree atu. We will
say that derived information isstrongly local if it depends only on the independent information at node
u, together with all the information at its children (whetherderived or independent).

¶33. Duplicate keys. We normally assume that the keys in a BST are distinct unless otherwise noted.
But let us now briefly consider BST whose keys are not necessarily unique or distinct. When we do
a lookup on a keyK, let us assume that we must visit every item with keyK. Now, this can be fairly
expensive: in Figure12(a), imagine having to search for the key3.

We consider this general question: suppose we have a nodeu whose key isK. How can we find all
the nodes with keyK in the subtree rooted atu? Let us define a procedureFindAll(u) that returns a
linked listL (i.e., iterator) containing all such nodes. The method is simple: the listL is initialized tou.

6 He used this classification for linked lists data structure.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§5. VARIATIONS ON BST Lecture III Page 31

Let v be the tip of the right-spine ofu. If v.Key= K then returnL after appending withFindAll(v);
otherwise just returnL. Note that if we have successor pointers, thenv can be instantly located. This
suggests that for BST’s with duplicates, it may be worthwhile maintaining successor and predecessor
pointers.

One way to handle simplify the algorithms for duplicate

34

3

3

4

(a)

1

(c)

3

(b)

3

3

33

31

4

1

Figure 12: (a) arbitrary, (b) right-
path rule

keys is to require the followingright-path rule : all items with
the same key must lie on consecutive nodes of some right-path.
This is illustrated in Figure12(b). We can view all the equal-
key nodes on this right-path as a super-node for the purposes
of maintaining height-balanced trees such as AVL trees. This
amounts to keeping all the duplicate keys in a single linear list.
So this rule should probably be restricted to situations where the
number of duplicates is small.

Before discussing how to maintain this right-path rule, letus
discuss howlookUp must be modified. When we look up on a keyk, we can just return the first node
that contains the keyk. Alternatively, if there is a secondary key besides the (primary) key which might
distinguish among the different items with primary keyk, we can search the right-path for this secondary
key. Now we must modify all our algorithms to preserve the right-path rule. In particular, insertion and
rotation should be appropriately modified. What about deletion? If the argument of deletion is the node
to be deleted, it is clearly easy to maintain this property. If the argument of deletion is a keyk, we can
either delete all items whose key isk or rely on secondary keys to distinguish among the items withkey
k.

Instead of the right-path rule, we could put all the equal-key items in an auxiliary linked list attached
to a node. There are pros and cons in either approach. The “right path” organization of duplicate keys
do not need any auxiliary structures. If the expected numberof duplicated keys is small, it may be the
best solution.

The right-path rule does not worry about balancing. Consider duplicate keys in the context of a
balanced tree scheme like AVL trees. Imagine a BST with threekeys, all duplicated. Then the BST
Property, thatL < Root ≤ R for all keysL (R) in the left (right) subtree, ensures that this tree is a
right path. On the other hand, this right path violates the AVL Balance Property. To restore the AVL
Balance Property, we must use themodified BST Property, namely,L ≤ Root ≤ R. TheFindAll(u)
procedure above can be easily modified to recursively searchboth the left-spine tip as well as the right-
spine tip.

¶34. Implicit Binary Trees. By an implicit tree, we mean one that does not have explicit pointers
which determine the parent/child relationships of nodes. An example is theheap structure: this is
defined to be binary tree whose nodes are indexed by integers following this rule: the root is indexed
1, and if a node has indexi, then its left and right children are indexed by2i and2i + 1, respectively.
Moreover, if the binary tree hasn nodes, then the set of its indices is the set{1, 2, . . . , n}. A heap
structure can therefore be represented naturally by an array A[1..n], whereA[i] represents the node of
index i. If, at theith node of the heap structure, we store a keyA[i] and these keys satisfy theheap
order property for eachi = 1, . . . , n,

HO(i) : A[i] ≤ min{A[2i], A[2i+ 1]}. (7)

In (7), it is understood that if2i > n (resp.,2i+ 1 > n) thenA[2i] (A[2i+ 1]) is taken to be∞. Then
we call the binary tree aheap. Here is an array that represents a heap:

A[1..9] = [1, 4, 2, 5, 6, 3, 8, 7, 9].

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§5. VARIATIONS ON BST Lecture III Page 32

In the exercises we consider algorithms for insertion and deletion from a heap. This leads to a highly
efficient method for sorting elements in an array, in place.

In general, implicit data structures are represented by an array with some rules for computing the
parent/child relations. By avoiding explicit pointers, such structures can be very efficient to navigate.

¶35. Parametric Binary Search Trees. Perhaps the most interesting variation of binary search trees
is when the keys used for comparisons are only implicit. The information stored at nodes allows us to
make a “comparison” and decide to go left or to go right at a node but this comparison may depend on
some external data beyond any explicitly stored information. We illustrate this concept in the lecture on
convex hulls in Lecture V.

EXERCISES

Exercise 5.1: Describe what changes is needed in our binary search tree algorithms for the exogenous
case. ♦

Exercise 5.2: Consider search trees with duplicate keys. First recall theBST Property.
(a) Draw all the possible BST’s with keys1, 3, 3, 3, 4, assuming the root is3.
(b) Suppose we want to design AVL trees with duplicate keys. Say why and how the BST property
must be modified. ♦

Exercise 5.3: Suppose we insist that for exogenous binary search trees, each of the keys in the internal
nodes really correspond to keys in stored items. Describe the necessary changes to the deletion
algorithm that will ensure this property. ♦

Exercise 5.4: Consider the usual binary search trees in which we no longer assume that keys in the
items are unique. State suitable conventions for what the various operations mean in this setting.
E.g.,lookUp(K) means find any item whose key isK or find all items whose keys are equal to
K. Describe the corresponding algorithms. ♦

Exercise 5.5: Describe the various algorithms on binary search trees thatstore the size of subtree at
each node. ♦

Exercise 5.6: Recall the concept of heaps in the text. LetA[1..n] be an array of real numbers. We call
A analmost-heap ati there exists a number such that ifA[i] is replaced by this number, thenA
becomes a heap. Of course, a heap is automatically an almost-heat at anyi.
(i) SupposeA is an almost-heap ati. Show how to convertA into a heap be pairwise-exchange
of array elements. Your algorithm should take no more thanlg n exchanges. Call this the
Heapify(A, i) subroutine.
(ii) SupposeA[1..n] is a heap. Show how to delete the minimum element of the heap, so that the
remaining keys inA[1..n − 1] form a heap of sizen − 1. Again, you must make no more than
lgn exchanges. Call this theDeleteMin(A) subroutine.
(iii) Show how you can use the above subroutines to sort an array in-place inO(n log n) time.

♦

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§6. AVL T REES Lecture III Page 33

Exercise 5.7: Normally, each nodeu in a binary search tree maintains two fields, a key value and
perhaps some balance information, denotedu.KEY andu.BALANCE, respectively. Suppose we
now wish to “augment” our treeT by maintaining two additional fields calledu.PRIORITY and
u.MAX. Here,u.PRIORITY is an integer which the user arbitrarily associates with this node, but
u.MAX is a pointer to a nodev in the subtree atu such thatv.PRIORITY is maximum among
all the priorities in the subtree atu. (Note: it is possible thatu = v.) Show that rotation in such
augmented trees can still be performed in constant time.

♦

END EXERCISES

§6. AVL Trees

AVL trees is the first known family of balanced trees. By definition, an AVL tree is a binary search
tree in which the left subtree and right subtree at each node differ by at most1 in height. They also have
relatively simple insertion/deletion algorithms.

More generally, define thebalanceof any nodeu of a binary tree to be the height of the left subtree
minus the height of the right subtree:

balance(u) = ht(u.left)− ht(u.right).

The node isperfectly balancedif the balance is0. It is AVL-balanced if the balance is−1, 0 or +1.
Our insertion and deletion algorithms will need to know thisbalance information at each node. Thus we
need to store at each AVL node a 3-valued variable. Theoretically, this space requirement amounts to
lg 3 < 1.585 bits per node. Of course, in practice, AVL trees will reserve2 bits per node for the balance
information (but see Exercise).

We are going to prove that the family of AVL trees is a balancedfamily. Re-using some notations
from binary trees (see (20) and(19)), we now defineM(h) andµ(h) to be the maximum and minimum
number of nodes in any AVL tree with heighth. It is not hard to see thatM(h) = 2h+1 − 1, as for
binary trees. It is more interesting to determineµ(h): its first few values are

µ(−1) = 0, µ(0) = 1, µ(1) = 2, µ(2) = 4.

It seems clear thatµ(0) = 1 since there is a unique tree with height0. The other values are not entirely
obvious. To see thatµ(1) = 2, we must define the height of the empty tree to be−1. This explains why
µ(−1) = 0. We can verifyµ(2) = 4 by case analysis.

For instance, if we define the height of the empty tree to be−∞, thenµ(1) =
3, µ(2) = 5. This definition of AVL trees could certainly be supported. See
Exercise for an exploration of this idea.

Consider an AVL treeTh of heighth and of sizeµ(h) (i.e., it hasµ(h) nodes). Clearly, among all AVL
trees of heighth, Th has the minimum size. For this reason, we callTh amin-size AVL tree (for height
h). Figure13 shows the first few min-size AVL trees. Of course, we can exchange the roles of any
pair of siblings of such a tree to get another min-size AVL tree. Using this fact, we could compute the
number of non-isomorphic min-sized AVL trees of a given height. Among these min-sized AVL trees,

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§6. AVL T REES Lecture III Page 34

T4T1 T2 T3T0

Figure 13: Canonical min-size AVL trees of heights0, 1, 2, 3 and4.

we define thecanonical min-size AVL treesto be the ones in which the balance of each non-leaf node
is+1. Note that we only drew such canonical trees in Figure13.

In general,µ(h) is seen to satisfy the recurrence

µ(h) = 1 + µ(h− 1) + µ(h− 2), (h ≥ 1). (8)

This equation says that the min-size tree of heighth having two subtrees which are min-size trees of
heightsh− 1 andh − 2, respectively. For instance,µ(2) = 1 + µ(1) + µ(0) = 1 + 2 + 1 = 4, as we
found by case analysis above. We similarly check that the recurrence (8) holds forh = 1.

From (8), we haveµ(h) > 2µ(h− 2) for h ≥ 1. It is then easy to see by induction thatµ(h) > 2h/2

for all h ≥ 1. The base cases areµ(1) > 21/2 andµ(2) > 21. Writing C =
√
2 = 1.4142 . . ., we have

thus shown
µ(h) > Ch, (h ≥ 1).

To sharpen this lower bound, we show thatC can be replaced by the golden ratioφ > 1.6180. Moreover,
it is tight up to a multiplicative constant. Recall thatφ = 1+

√
5

2 , and this is be the positive root of the
quadratic equationx2 − x− 1 = 0. Hence,φ2 = φ+ 1.

Hey, to squareφ, you
just add1

LEMMA 4. For h ≥ 0, we have
φh ≤ µ(h) < 2φh. (9)

Proof.First we proveµ(h) ≥ φh: µ(0) = 1 ≥ φ0 andµ(1) = 2 ≥ φ1. Forh ≥ 2, we have

µ(h) > µ(h− 1) + µ(h− 2) ≥ φh−1 + φh−2 = (φ+ 1)φh−2 = φh.

Next, to proveµ(h) < 2φh, we will strengthen our hypothesis toµ(h) ≤ 2φh− 1. Clearly,µ(0) = 1 ≤
2φ0 − 1 andµ(1) = 2 ≤ 2φ1 − 1. Then forh ≥ 2, we have

µ(h) = 1+ µ(h− 1) + µ(h− 2) ≤ 1 + (2φh−1 − 1)+ (2φh−2 − 1) = 2(φ+1)φh−2 − 1 = 2φh − 1.

Q.E.D.

We can further improve the lower bound onµ(h) in (9) by taking into account the “+1” term that
was ignored in the above proof — See Exercises. It is the lowerbound onµ(h) that is more important
for us. For, if an AVL tree hasn nodes and heighth then

µ(h) ≤ n

by definition ofµ(h). The lower bound in (9) then impliesφh ≤ n. Taking logs, we obtain

h ≤ logφ(n) = (logφ 2) lgn < 1.4404 lgn.

This constant of1.44 is clearly tight in view of lemma4. Thus the height of AVL trees are at most44%
more than the absolute minimum. We have proved:

COROLLARY 5. The family of AVL trees is balanced.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§6. AVL T REES Lecture III Page 35

¶36. Insertion and Deletion Algorithms. These algorithms for AVL trees are relatively simple, as
far as balanced trees go. In either case there are two phases:

UPDATE PHASE: Insert or delete as we would in a binary search tree. It is important that we use
thestandarddeletion algorithm, not its rotational variant. It followsthat the node containing the
deleted key and the node which wascut may be different.

REBALANCE PHASE: Let x be the parent of node that was just inserted, or justcutduring deletion,
in the UPDATE PHASE. The path fromx to the root will be called therebalance path. We now
move up this path, rebalancing nodes along this path as necessary.

It remains to give details for the REBALANCE PHASE. If every node along the rebalance path is
AVL-balanced, then there is nothing to do in the REBALANCE PHASE. Otherwise, letu be the first
unbalanced node we encounter. It is clear thatu has a balance of±2. In general, we fix the balance u = unbalanced
at the “current” unbalanced node and continue searching upwards along the rebalance path for the next
unbalanced node. By symmetry, we may suppose thatu has balance2. Suppose its left child is nodev
with heighth+ 1. Then its right childv′ has heighth− 1. This situation is illustrated in Figure14.

hRhL

h− 1h− 1h+ 1

v
expand left subtree

u

A
B

u

B

DC

v′

Figure 14: Nodeu is unbalanced after insertion or deletion.

Inductively, it is assumed that all the proper descendants of u are balanced. The current height ofu
is h+ 2. In any case, let the current heights of the children ofv behL andhR, respectively.

¶37. Insertion Rebalancing. Suppose that this imbalance came about because of an insertion. What
was the heights ofu, v and v′ before the insertion? It is easy to see that the previous heights are
(respectively)

h+ 1, h, h− 1. (10)

The inserted nodex must be in the subtree rooted atv. Clearly, the heightshL, hR of the children ofv
satisfymax(hL, hR) = h. Sincev is currently balanced, we know thatmin(hL, hR) = h or h− 1. But
in fact, we claim thatmin(hL, hR) = h− 1. To see this, note that ifmin(hL, hR) = h then the height
of v beforethe insertion was alsoh+1 and this contradicts the initial AVL property atu. Therefore, we
have to address the following two cases, as illustrated in Figure15.

CASE (I.a):hL = h andhR = h− 1. This means that the inserted node is in the left subtree ofv.
In this case, if we rotatev, the result would be balanced. Moreover, the height ofu is nowh+ 1.

CASE (I.b):hL = h− 1 andhR = h. This means the inserted node is in the right subtree ofv. In
this case let us expand the subtreeD and letw be its root. The two children ofw will have heightsh− δ

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§6. AVL T REES Lecture III Page 36

hL

h− 1

h− 1h− δ

h

h− 1

h− δ′

h− 1 h− δ′

h− 1

h− 1h

h− 1

h− 1

rotate(v)

expand(w) rotate2(w)

h− 1

h− δ

hR

CASE (I.b)

CASE (I.a)

v

DRDL

B

v

B

u

B

DC

u

v

B

DC

v

C

w

v

w

C DL DR

u

C

B

u

D

u

Figure 15: AVL Insertion: CASE (I.a) and CASE (I.b)

andh − δ′ whereδ, δ′ ∈ {1, 2}. Now a double-rotation atw results in a balanced tree of heighth + 1
rooted atw.

In both cases (I.a) and (I.b), the resulting subtree has heighth+ 1. Since this was height before the
insertion (see (10)), there are no unbalanced nodes further up the path to the root. Thus the insertion
algorithm terminates with at most two rotations.

For example, suppose we begin with the AVL tree in Figure16, and we insert the key9.5. This
yields the unbalanced tree on the left-hand side of Figure17. Following the rebalance path up to the
root, we find the first unbalanced node is at the root,12. Comparing the heights of nodes3 and8 in the
left-hand side of Figure17, we conclude that this is case (I.b). Performing a double rotation at8 yields
the final AVL tree on the right-hand side of Figure17.

¶38. Deletion Rebalancing. Suppose the imbalance in Figure14comes from a deletion. The previous
heights ofu, v, v′ must have been

h+ 2, h+ 1, h

and the deleted nodex must be in the subtree rooted atv′. We now have three cases to consider:

CASE (D.a):hL = h andhR = h − 1. This is like case (I.a) and treated in the same way, namely
by performing a single rotation atv. Nowu is replaced byv after this rotation, and the new height ofv
is h+1. Nowu is AVL balanced. However, since the original height ish+2, there may be unbalanced

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§6. AVL T REES Lecture III Page 37

12

1

3

2

4

5

6

7

8

9

10

11

13

14

15

16

Figure 16: An AVL tree

9.5

1

3

2

4

5

8

12

6

7

9

9.5

10

11

12

13

14

15

16

15

16

1

3

2

4

5

6

7

8

9

10

11

13

14

Insert(9.5)
rotate2(8)

Figure 17: Inserting9.5 into an AVL tree

node further up the rebalance path. Thus, this is a non-terminal case (i.e., we have to continue checking
for balance further up the root path).

CASE (D.b): hL = h − 1 andhR = h. This is like case (I.b) and treated the same way, by
performing a double rotation atw. Again, this is a non-terminal case.

h

rotate(v)

h− 1

h− 1

h h h

C

u

v

B

u

v

B

C D D

Figure 18: CASE (D.c):rotate(v)

CASE (D.c):hL = hR = h. This case is new, and is illustrated in Figure18. We simply rotate atv.
We check thatv is balanced and has heighth + 2. Sincev is in the place ofu which has heighth + 2
originally, we can safely terminate the rebalancing process.

This completes the description the insertion and deletion algorithms for AVL trees. In illustration,
suppose we delete key13 from Figure16. After deleting13, the node14 is unbalanced. This is case

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§6. AVL T REES Lecture III Page 38

(D.a) and balance is restored by a single rotation at15. The result is seen in the left-hand side of
Figure19. Now, the root containing12 is unbalanced. This is case (D.c), and balance is restored bya
single rotation at5. The final result is seen in the right-hand side of Figure19.

12

5

14 16

3

1 4

2

15

12

1

3

2

4

5

6

7

8

9

10

11

14

15

16

6

7

8

9

10

11

Delete(13)
rotate(5)

rotate(15)

Figure 19: Deleting13 from the AVL tree in Figure16

Both insertion and deletion takeO(log n) time. In case of deletion, we may have to doO(log n)
rotations but a single or double rotation suffices for insertion.

¶39. Maintaining Balance Information. In order to carry out the rebalancing algorithm, we need
to check the balance condition at each nodeu. If nodeu stores the height ofu in some field,u.H
then we can do this check. If the AVL tree hasn nodes,u.H may needΘ(lg lg n) bits to represent the
height. However, it is possible to get away with just2 bits: we just need to indicate three possible states

Hey, I thought it is
Θ(lgn)

(00, 01, 10) for each nodeu. Let 00 mean thatu.left andu.right have the same height, and01
mean thatu.left has height one less thanu.right, and similarly for10. In simple implementations,
we could just use an integer to represent this information. We leave it as an exercise to determine how
to use these bits during rebalancing.

¶40. Relaxed Balancing. Larsen [6] shows that we can decouple the rebalancing of AVL trees from
the updating of the maintained set. In the semi-dynamic case, the number of rebalancing operations is
constant in an amortized sense (amortization is treated in Chapter 5).

EXERCISES

Exercise 6.1: This calls for hand-simulation of the insertion and deletion algorithms. Show intermedi-
ate trees after each rotation, not just the final tree.
(a) Insert the key10.5 into the final AVL tree in Figure19.
(b) Delete the key4 from the final AVL tree in Figure19. NOTE: part(b) is independent of part(a).

♦

Exercise 6.2: Give an algorithm to check if a binary search treeT is really an AVL tree. Your algorithm
should take timeO(|T |). HINT: Use shell programming. ♦

Exercise 6.3: Draw an AVL tree with 12 nodes such that, by deleting one node,you will cause two
double-rotations.

You must draw the tree after each double-rotation. Partial credit if they are only single rotations.
HINT: It is unnecessary to assign keys to the nodes: just showthe tree shape, and label some
nodes to clarify the operations. ♦

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§6. AVL T REES Lecture III Page 39

Exercise 6.4: What is the minimum number of nodes in an AVL tree of height 10? ♦

Exercise 6.5: Prove thatµ(h) = aφh + bφ̂h − 1 whereφ, φ̃ = 1±
√
5

2 = 1.6180 . . . ,−0.6180 . . ., and
a, b are suitable constants. Determinea, b. ♦

Exercise 6.6: My pocket calculator tells me thatlogφ 100 = 9.5699 · · · . What does this tell you about
the height of an AVL tree with 100 nodes? ♦

Exercise 6.7: Show an AVLT with minimum number of nodes such that the following is true:there is
a nodex in T such that if you delete this node, the AVL rebalancing will require two rebalancing
acts. Note that a double-rotation counts as one, not two, rebalancing act. Can you make the
2 rebalancing acts be two single rotations? Two double-rotations? One single and one double
rotation? ♦

Exercise 6.8: Consider the AVL tree in Figure20.

16

8

5

73

2 4

1

6

13 19

11 15

10
9

12 14

18

17

20

Figure 20: An AVL Tree for deletion

(a) Please delete Key6 from the tree, and draw the intermediate AVL trees after eachrebalancing
act. NOTE: a double-rotation counts as one act.
(b) Find the setS of keys that each deletion of aK ∈ S from the AVL tree in Figure20 requires
requires two rebalancing acts. Be careful: the answer may depends on some assumptions.
(c) Among the keys in part (b), which deletion has a double rotation among its rebalancing acts?

♦

Exercise 6.9: (a) Draw two AVL trees, both of height 4. One has maximum size and the other has
minimum size.
(b) Starting with an empty AVL tree, insert the following setof keys, in this order:

5, 9, 1, 3, 8, 2, 7, 6, 4.

Now delete key9. Please show the tree at the end of each operation. ♦

Exercise 6.10:Please re-insert6 back into the tree obtained in part(a) of the previous exercise. Do you
get back the original tree of Figure20? ♦

Exercise 6.11:Let T be an AVL tree withn nodes. We consider the possible heights forT .
(a) What are the possible heights ofT if n = 15?
(b) What ifT hasn = 16 or n = 20 nodes?
(c) Are there arbitrarily largen such that all AVL trees withn nodes have unique height? ♦

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§6. AVL T REES Lecture III Page 40

Exercise 6.12:Draw the AVL trees after you insert each of the following keysinto an initially empty
tree:1, 2, 3, 4, 5, 6, 7, 8, 9 and then19, 18, 17, 16, 15, 14, 13, 12, 11. ♦

Exercise 6.13: Insert into an initially empty AVL tree the following sequence of keys:
1, 2, 3, . . . , 14, 15.
(a) Draw the trees at the end of each insertion as well as aftereach rotation or double-rotation.
[View double-rotation as an indivisible operation].
(b) Prove the following: if we continue in this manner, we will have a perfect binary tree at the
end of inserting key2n − 1 for all n ≥ 1. ♦

Exercise 6.14:Consider the range of possible heights for an AVL tree withn nodes. For this problem,
it is useful to recall the functionsM(h) in (19) andµ(h) in (8).
(a) For instance ifn = 3, the height is necessarily1, but if n = 7, the height can be2 or 3. What
is the range whenn = 15? n = 16? n = 19?
(b) Suppose that the heighth∗ of an AVL trees is uniquely determined by its numbern∗ of nodes.
Give the exact relation betweenn∗ andh∗ in order for this to be the case. HINT: use the functions
M(h) andµ(h).
(c) Is it true that there are arbitrarily largen such that AVL trees withn nodes has a unique height?

♦

Exercise 6.15:Starting with an empty tree, insert the following keys in thegiven order:
13, 18, 19, 12, 17, 14, 15, 16. Now delete18. Show the tree after each insertion and deletion.
If there are rotations, show the tree just after the rotation. ♦

Exercise 6.16:Draw two AVL trees, withn keys each: the two trees must have different heights. Make
n as small as you can. ♦

Exercise 6.17:TRUE or FALSE: In CASE (D.c) of AVL deletion, we performed a single rotation at
nodev. This is analogous to CASE (D.a). Could we have also have performed a double rotation
atw, in analogy to CASE (D.b)? ♦

Exercise 6.18:Let µ(h) be the number ofnon-isomorphicmin-size AVL trees of heighth. Give a
recurrence forµ(h). How many non-isomorphic min-size AVL trees are there of heights3 and4?
Provide sharp upper and lower bounds onµ(h). ♦

Exercise 6.19: Improve the lower boundµ(h) ≥ φh by taking into consideration the effects of “+1”
in the recurrenceµ(h) = 1 + µ(h− 1) + µ(h− 2).
(a) Show thatµ(h) ≥ F (h − 1) + φh whereF (h) is theh-th Fibonacci number. Recall that
F (h) = h for h = 0, 1 andF (h) = F (h− 1) + F (h− 2) for h ≥ 2.
(b) Further improve (a). ♦

Exercise 6.20:Prove the following connection betweenφ (golden ratio) andFn (the Fibonacci num-
bers):

φn = φFn + Fn−1, (n ≥ 1)

Note that we ignore the casen = 0. ♦

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§6. AVL T REES Lecture III Page 41

Exercise 6.21:Recall that at each nodeu of the AVL tree, we can represent its balance state using a
2-bit field calledu.BAL whereu.BAL ∈ {00, 01, 10}.
(a) Show how to maintain these fields during an insertion.
(b) Show how to maintain these fields during a deletion. ♦

Exercise 6.22: Implement the deletion for AVL trees. In particular, assumethat after cutting a node,
we need a ”Rebalance(x)” procedure. Remember that this procedure needs to check the balance
of each node along the re-balanced path. ♦

Exercise 6.23:Allocating one bit per AVL node is sufficient if we exploit thefact that leaf nodes are
always balanced allow their bits to be used by the internal nodes. Work out the details for how to
do this. ♦

Exercise 6.24: It is even possible to allocate no bits to the nodes of a binarysearch tree. The idea is to
exploit the fact that in implementations of AVL trees, the space allocated to each node is constant.
In particular, the leaves have two null pointers which are basically unused space. We can use this
space to store balance information for the internal nodes. Figure out an AVL-like balance scheme
that uses no extra storage bits. ♦

Exercise 6.25:Relaxed AVL Trees
Let us defineAVL(2) balance condition to mean that at each nodeu in the binary tree,
|balance(u)| ≤ 2.
(a) Derive an upper bound on the height of a AVL(2) tree onn nodes.
(b) Give an insertion algorithm that preserves AVL(2) trees. Try to follow the original AVL inser-
tion as much as possible; but point out differences from the original insertion.
(c) Give the deletion algorithm for AVL(2) trees. ♦

Exercise 6.26:To implement we reserve 2 bits of storage per node to represent the balance information.
This is a slight waste because we only use 3 of the four possible values that the 2 bits can represent.
Consider the family of “biased-AVL trees” in which the balance of each node is one of the values
b = −1, 0, 1, 2.
(a) In analogy to AVL trees, defineµ(h) for biased-AVL trees. Give the general recurrence
formula and conclude that such trees form a balanced family.
(b) Is it possible to give anO(log n) time insertion algorithm for biased-AVL trees? What can be
achieved? ♦

Exercise 6.27:We introduce a new notion of “height” of an AVL tree based on the following base
case: ifu has no children,h′(u):=0 (as before), and if nodeu is null,h′(u):=− 2 (this is new!).
Recursively,h′(u):=1 +max {h′(uL), h

′(uR)} as before. Let ’AVL’ (AVL in quotes) trees refer
be those trees that are AVL-balanced usingh′ as our new notion of height. We compare the
original AVL trees with ’AVL’ trees.
(a) TRUE or FALSE: every ’AVL’ tree is an AVL tree.
(b) Letµ′(h) be defined (similar toµ(h) in the text) as the minimum number of nodes in an ’AVL’
tree of heighth. Determineµ′(h) for all h ≤ 5.
(c) Prove the relationshipµ′(h) = µ(h) + F (h) whereF (h) is the standard Fibonacci numbers.
(d) Give a good upper bound onµ′(h).
(e) What is one conceptual difficulty of trying to use the family of ’AVL’ trees as a general search
structure? ♦

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§7. SIZE BALANCED TREES Lecture III Page 42

Exercise 6.28:A node in a binary tree is said to befull if it has exactly two children. Afull binary
tree is one where all internal nodes are full.
(a) Prove full binary tree have an odd number of nodes.
(b) Show that ’AVL’ trees as defined in the previous question are full binary trees. ♦

Exercise 6.29:The AVL insertion algorithm makes two passes over its searchpath: the first pass is
from the root down to a leaf, the second pass goes in the reverse direction. Consider the following
idea for a “one-pass algorithm” for AVL insertion: during the first pass, before we visit a node
u, we would like to ensure that (1) its height is less than or equal to the height of its sibling.
Moreover, (2) if the height ofu is equal to the height of its sibling, then we want to make sure
that if the height ofu is increased by1, the tree remains AVL.

♦

END EXERCISES

§7. Size Balanced Trees

We specify that the ratiosL : sR of the sizes of the two subtrees at any node should lie between1/β
andβ whereβ > 1 is fixed for the family. This defines a balanced family of trees. This is more flexible
than height balanced trees, and this is important for some applications. The price we pay is that we need
up tolg n bits of balance information at each node.

We introduce another form of balance in binary trees. Thesizeof a nodeu is the number of nodes
in the subtree rooted atu. If SIZEu is the size ofu, size balanceatu is

B(u):=SIZEu.left/SIZEu.right.

Let 0 < α < 1/2. A binary treeT hasbounded balanceα if α < B(u) ≥ 1 − α for each internal
nodeu. For short, we sayT is “BB(α)”. The family of BB(α) trees is a balanced family,i.e., has
logarithmic height. Bounded balance trees were introducedby Nievergelt and Reingold [10]. For more
information, see Anderson [1].

In bounded balance trees, each node must store its own size. ThusO(log n) space is required at each
node. This is inferior to theO(log logn) space needed for height balanced schemes. Compensating for
this, weight balanced trees are more flexible than height balanced trees for some applications. Give an
example of multidimensional...

Let us first bound the height of a binary tree that isBB(α). Let H(n) be the maximum height
of a BB(α) binary tree of sizen. Clearly,H(1) = 0 andH(n) ≤ 1 + H(n − ⌈αn⌉). This gives
H(n) ≤ 1 +H(n− αn− 1).

EXERCISES

Exercise 7.1: Show that weight balanced families are balanced in the usualsense. ♦

Exercise 7.2: Since in practice we need to reserve 2 bits of information pernode in an AVL tree, let
us try to take full advantage of this. Consider AVL trees in which the balance information at

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 43

each node isb = −1, 0, 1, 2. Hereb is the height of the left subtree minus the height of the right
subtree. What are the advantages of this new flexibility? ♦

Exercise 7.3: Work out the details about how to use only one balance bit per AVL node. ♦

Exercise 7.4: Design a one-pass algorithm for AVL insertion and AVL deletion. ♦

Exercise 7.5:
(a) Show how to maintain the min-heap property in a binary tree under insert and
deleteMin.
(b) Modify your solution in part (a) to ensure that the depth of the binary tree is alwaysO(log n)
if there aren items in the tree. ♦

Exercise 7.6: SupposeT is a binary tree storing items at each node with the property that at each
internal nodeu,

uL.key < u.key < uR.key,

whereuL anduR are the left and right children ofu (if they exist). So this is weaker than a binary
search tree. For simplicity, let us assume thatT has exactly2h − 1 nodes and heighth − 1, so
it is a perfect binary tree. Now, among all the nodes at a givendepth, we order them from left to
right in the natural way. Then, except for the leftmost and rightmost node in a level, every node
has a successor and predecessor node in its level. One of themis a sibling. The other is defined
to be itspartner . For completeness, let us define the leftmost and rightmost nodes to be each
other’s partner. See Figure21. Now define the following parallel operations. The first operation

Figure 21: Partners

is sort1: at each internal nodeu at an odd level, we order the keys atu and its childrenuL, uR so
thatuL.key < u.key < uR.key. The second issort2, and it is analogous tosort1 except that
it applies to all internal nodes at an even level. The third operation isswap which order the keys
of each pair of partners (by exchanging their keys if necessary). Suppose we repeatedly perform
the sequence of operations(sort1, sort2, swap). Will this eventually stabilize? If we start out
with a binary search tree then clearly this is a stable state.Will we always end up in a binary
search tree? ♦

END EXERCISES

§8. (a, b)-Search Trees

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 44

We consider another class of trees that is very important in practice, especially in database applica-
tions. These are no longer binary trees, but are parametrized by a choice of two integers,

2 ≤ a < b. (11)

An (a, b)-tree is a rooted, ordered7 tree with the following structural constraints:

• DEPTH PROPERTY: All leaves are at the same depth.

• DEGREE BOUND: Letm be the number of children of an internal nodeu. This is also known
as thedegreeof u. In general, we have the bounds

a ≤ m ≤ b. (12)

The root is an exception, with the bound2 ≤ m ≤ b.

Figure 22 illustrates an(a, b)-tree for (a, b) =

Figure 22: A(2, 3)-tree.

(2, 3). To see the intuition behind these conditions,
compare with binary trees. In binary trees, the leaves
do not have to be at the same depth. To re-introduce
some flexibility into trees where leaves have the same
depth, we allow the number of children of an internal
node to vary over a larger range[a, b]. Moreover, in
order to ensure logarithmic height, we requirea ≥ 2.
This means that if there aren leaves, the height is at
mostloga(n)+O(1). Therefore,(a, b)-trees constitute
a balanced family of trees.Notice that an(a, b)-tree is

also(c, d)-tree iff c, d satisfy
2 ≤ c ≤ a < b ≤ d. (13)

E.g., Figure22could have represented an(2, 10)-tree but not a(3, 4)-tree.

102 4 6 8 12 13 15 17 19 21 23

4 5 9 12 14 16 18 22 25

8 13 21

25 27

27

Figure 23: A (3,4)-search tree on14 items

¶41. From Structure to Search. The definition of(a, b)-trees imposes purely structural require-
ments. To use such trees as search structures, we need to store keys and items in the tree nodes. These
keys and items must be suitably organized. Before giving these details, we provide some intuition by
looking an example of such a search tree in Figure23. This tree is structurally a(3, 4)-tree, at a min-
imum; but it could be a(a, b)-tree for any2 ≤ a ≤ 3 andb ≥ 4. It has14 leaves, each storing a
single item. The keys of these items are2, 4, 6, 8, . . . , 23, 25, 27. Recall that an item is a(key,data)

7 “ordered” means that the children of each node has a specifiedtotal ordering. If a node in an ordered tree that has only one
child, then that ordering is unique. Although binary trees are ordered trees, but they are more than just ordered because, when a
node has only one child, we could specify that child to be a left- or a right-child. We might say binary trees have labeled children
(labels are either LEFT or RIGHT).

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 45

pair, but as usual, we do not display the associated data in items. The keys in the internal nodesdo
not correspond to items.We continue our default assumption that items have unique keys. But we see
in Figure23 that the key13 appears in the root as well as in a leaf. In other words, although keys are
unique in the leaves, they might be duplicated in the internal nodes. Another feature is this: keys in the
internal nodes (e.g. key5) need notcorrespond to keys of items. All these features will clear upin a
moment.

We define an(a, b)-search treeto be an(a, b)-tree whose nodes are organized as follows. First,
observe that the organization in leaves are different than in internal nodes, as illustrated in Figure24.
The leaf organization is controlled by another pair of parametersa′, b′ that satisfy the inequalities1 ≤
a′ ≤ b′. They are independent ofa, b, but likea, b, they control the minimum and maximum number of
items in leaves. Specifically:

· · ·(k1, d1) (k2, d2) · · · k1 k2

p1 p2 p3
pm−1 pm

1 ≤ a′ ≤ m ≤ b′ 2 ≤ a ≤ m ≤ b

(ii) Internal Node Organization

(km, dm) km−1

(i) Leaf Node Organization

Figure 24: Organization of nodes in(a, b)-search trees

• LEAF: Each leaf stores a sequence of items, sorted by their keys. Hence we represent a leafu
with m items as the sequence,

u = (k1, d1, k2, d2, . . . , km, dm) (14)

wherek1 < k2 < · · · < km. See Figure24(i). In practice,di might only be a pointer to the actual
location of the data. We must consider two cases.NON-ROOT CASE: suppose leafu is not the
root. In this case, we require

a′ ≤ m ≤ b′. (15)

ROOT CASE: supposeu is the root. Since it is also a leaf, there are no other nodes inthis
(a, b)-search tree. We now require0 ≤ m ≤ 2b′− 1. This is relaxed compared to non-root leaves
above. The reason for this condition will become clear when we discuss the insertion/deletion
algorithms.

• INTERNAL NODE: Each internal node withm children stores an alternating sequence of keys
and pointers (node references), in the form:

u = (p1, k1, p2, k2, p3, . . . , pm−1, km−1, pm) (16)

wherepi is a pointer to thei-th child of the current node. Note that the number of keys in this
sequence is one less than the numberm of children. Contrast with the organization (14) for a
leaf-node. See Figure24(ii). The keys are sorted so that

k1 < k2 < · · · < km−1.

For i = 1, . . . ,m, each keyk in thei-th subtree ofu satisfies

ki−1 ≤ k < ki, (17)

with the convention thatk0 = −∞ < ki < km = +∞. Note that this is just a generalization of
the binary search tree property in (1).

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 46

¶42. Choice of the(a′, b′) parameters. Since thea′, b′ parameters are independent ofa, b, it is
convenient to choose some default value for our discussion of (a, b) trees. This decision is justified So(a′, b′) is implicit!
because the dependence of our algorithms on thea′, b′ parameters are not significant (and they play
roles analogous toa, b). There are two canonical choices: the simplest isa′ = b′ = 1. This means
each leaf stores exactly one item. All our examples (e.g., Figure23) use this default choice. Another
canonical choice isa′ = a, b′ = b. These considerations highlights the different roles thatkeys play
in the leaves and in internal nodes.

2 5 6 23

5

298 3310 13

9 22

18

2918

21

8

186

13

30

Figure 25: A(2, 3)-search tree.

Another(a, b)-search tree is shown in Figure25, for the case(a, b) = (2, 3). In contrast to Figure23,
here we draw it using a slightly more standard convention of representing the pointers as tree edges.

¶43. Special Cases of(a, b)-Search Trees. The earliest and simplest(a, b)-search trees correspond
to the case(a, b) = (2, 3). These are called2-3 treesand were introduced by Hopcroft (1970). By
choosing

b = 2a− 1 (18)

(for any a ≥ 2), we obtain the generalization of2 − 3 trees calledB-trees. These were introduced
by McCreight and Bayer [3]. When (a, b) = (2, 4), the trees have been studied by Bayer (1972) as
symmetric binary B-treesand by Guibas and Sedgewick as2-3-4 trees. Another variant of 2-3-4 trees
is red-black trees. The latter can be viewed as an efficient way to implement 2-3-4 trees, by embedding
them in binary search trees. But the price of this efficiency is complicated algorithms for insertion and
deletion. Thus it is clear that the concept of(a, b)-search trees serves to unify a variety of search trees.
The terminology of(a, b)-trees was used by Mehlhorn [8].

TheB-tree relationship (18) is optimal in a certain8 sense. Nevertheless, there are other benefits in
allowing more general relationships betweena andb. E.g., if we replace (18) by b = 2a, the amortized
complexity of such(a, b)-search trees algorithms can improve [4].

¶44. Searching and its Complexity. The organization of an(a, b)-search tree supports an obvious
lookup algorithm that is a generalization of binary search.Namely, to dolookUp(key k), we begin
with the root as the current node. In general, ifu is the current node, we process it as follows, depending
on whether it is a leaf or not:

8 I.e., assuming a certain type of split-merge inequality, which we will discuss below.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 47

• Base Case: supposeu is a leaf node given by (14). If k occurs inu aski (for somei = 1, . . . ,m),
then we return the associated datadi. Otherwise, we return the null value, signifying search
failure.

• Inductive Case: supposeu is an internal node given by (16). Then we find thepi such that
ki−1 ≤ k < ki (with k0 = −∞, km = ∞). Setpi as the new current node, and continue by
processing the new current node.

The running time of thelookUp algorithm isO(hb) whereh is the height of the(a, b)-tree, and we
spendO(b) time at each node.

It is best to defineM(h) andµ(h) as the maximum and minimum (resp.) number of leaves in
a (a, b)-tree of heighth. Note that this definition differs from that in AVL trees in that we focus on
the number of leaves rather than the size of the tree. That is because items is stored only in leaves of
(a, b)-trees. SinceM(h) is attained if every internal node hasb children, we obtain

M(h) = bh. (19)

Likewise,µ(h) is attained if every internal node (except the root) has two children. Thus

µ(h):=2ah−1. (20)

It follows that if an(a, b)-tree withn leaves has heighth ≥ 1, then1 + 2ah−1 ≤ n ≤ bh. Taking logs,
we get

1 + loga(n/2) ≤ h ≤ logb n.

We leave to an Exercise to bound the number ofitemsstored in an(a, b)-tree, but here we must take
into account the parameters(a′, b′) as well.

It is clear that in general,b, b′ determines the lower bound onh anda, a′ determine the upper bound
onh. Our design goal is to maximizea, b, a′, b′ for speed, and to minimizeb/a for space efficiency (see
below). Typicallyb/a is bounded by a small constant close to2, as inB-trees.

¶45. Organization within a node. The keys in a node of an(a, b)-search tree must be ordered for
searching, and manipulation such as merging or splitting two list of keys. Conceptually, we display
them as in (16) and (14). Since the number of keys is not necessarily a small constant, the organization
of these keys is an issue. In practice,b is a medium size constant (say,b < 1000) anda is a constant
fraction ofb. These ordered list of keys can be stored as an array, a singly- or doubly-linked list, or even
as a balanced search tree. These have their usual trade-offs. With an array or balanced search tree at
each node, the time spent at a node improves fromO(b) to O(log b). But a balanced search tree takes
up more space than using a plain array organization; this will reduce the value ofb. Hence, a practical
compromise is to simply store the list as an array in each node. This achievesO(lg b) search time but
each insertion and deletion in that node requiresO(b) time. When we take into account the effects of
secondary memory (see below), the time for searching withina node is negligible compared to the time
accessing each node.This argues that the overriding goal in the design of(a, b)-search trees should be
to maximizeb anda.

the central tenet of
(a, b)-trees!

¶46. The Standard Split and Merge Inequalities for(a, b)-Search trees. To support efficient in-
sertion and deletion algorithms, the parametersa, b must satisfy an additional inequality in addition to
(11). This inequality, which we now derive, comes from two low-level operations on(a, b)-search tree.
Thesesplit andmerge operations are called as subroutines by the insertion and deletion algorithms

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 48

(respectively). There is actually a family of such inequalities, but we first derive the simplest one (“the
standard inequality”).

The concept ofimmediate siblingsis necessary for the following discussions. The children ofany
node have a natural total order, sayu1, u2, . . . , um wherem is the degree ofu and the keys stored in
the subtree rooted atui are less than the keys in the subtree rooted atui+1 (i = 1, . . . ,m − 1). Then
two siblingsui anduj are calledimmediate siblingsof each other iff|i − j| = 1. So every non-root
nodeu has at least one immediate sibling and at most two immediate siblings. The immediate siblings
may be calledleft sibling or right sibling

During insertion, a node withb children may acquire a new child. We say the resulting node is
overfull because it now hasb + 1 children. An obvious response is tosplit it into two nodes with
⌊(b+ 1)/2⌋ and⌈(b + 1)/2⌉ children, respectively. In order that the result is an(a, b)-tree, we require
the following split inequality:

a ≤
⌊
b+ 1

2

⌋
. (21)

Similarly, during deletion, we may remove a child from a nodethat has onlya children. We say the
resulting node witha− 1 children isunderfull . We first consider borrowing a child from an immediate
sibling, provided the sibling has more thana children. If this proves impossible, we are forced tomerge
a node witha− 1 children with a node witha children. The resulting node has2a− 1 children, and to
satisfy the branching factor bound of(a, b)-trees, we have2a− 1 ≤ b. Thus we require the following
merge inequality:

a ≤ b + 1

2
. (22)

Clearly (21) implies (22). However, sincea and b are integers, the reverse implication also holds!
Thus (21) and (22) are equivalent, and they will be known as thesplit-merge inequality. The smallest
choices of parametersa, b subject to the split-merge inequality and also (11) is (a, b) = (2, 3); this case
has been mentioned above. The case of equality in (21) and (22) gives usb = 2a − 1; this is another
special case mentioned earlier, and in the literature, the(a, 2a− 1)-search trees are known asB-trees.
Sometimes, the conditionb = 2a is used to defineB-trees; this behaves better in an amortized sense
(see [8, Chap. III.5.3.1]).

The following lemma captures the preceding argument that says that (22) implies (21). It amounts
to strengthening an inequality if one side is known to be integer. We will have occasion to re-use this
argument several times below.

LEMMA 6. Letx, y be real numbers satisfyingx ≤ y.
(a) If x is an integer, the inequality is equivalent tox ≤ ⌊y⌋.
(b) If y is an integer, the inequality is equivalent to⌈x⌉ ≤ y.

¶47. How to Split, Borrow, and Merge. Once(a, b) is known to satisfy the split-merge inequality,
we can design algorithms for insertion and deletion. However, we will first describe the subroutines of
split, borrow and merge first. We will begin with thegeneral caseof internal nodes that are non-root.
The special case of leaves and root will be discussed later.

Suppose we need tosplit an overfull nodeN with b+1 children. This is illustrated in Figure26. We
splitN into two new nodesN1, N2, one node with⌊(b+ 1)/2⌋ pointers and the other with⌈(b+ 1)/2⌉
pointers. The parent ofN will replace its pointer toN with two pointers toN1 andN2. But what is the
key to separate the pointers toN1 andN2? The solution is to use a key fromN : there areb keys in the
original node, but onlyb− 1 keys are needed by the two new nodes. The extra key can be movedin the
parent node, sandwiched between the pointers toN1 andN2, as indicated.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 49

N1 :11 2 3 4 5 6 4 5 6

split

N : 11 2 N2 :

3 7070

b ⌈(b+ 1)/2⌉⌊(b+ 1)/2⌋

Figure 26: Splitting:N splits intoN1, N2. Case(a, b) = (3, 6) is illustrated.

Next, supposeN is an underfull node witha−1 children. First we try toborrow from an immediate
sibling if possible. This is because after borrowing, the rebalancing process can stop. To borrow, we

do not borrow from
cousin (near or distant

ones). Why?look to an immediate sibling (left or right), provided the sibling has more thana children. This is
illustrated in Figure27. SupposeN borrows a new from its siblingM . After borrowing,N will havea
children, but it will need a key to separate the new pointer from its adjacent pointer. This key is taken
from its parent node. SinceM lost a child, it will have an extra key to spare — this can be sent to its
parent node.

donate

4 51 2N : M : N : M :

borrow
2 60

3 4 5

3 60

11

a> a
a− 1

≥ a

Figure 27: Borrowing:N borrows fromM . Case of(a, b) = (3, 6).

If N is unable to borrow, we resort tomerging: let M be an immediate sibling ofN . ClearlyM
hasa children, and so we can mergeM andN into a new nodeN ′ with 2a− 1 children. Note thatN ′

needs an extra key to separate the pointers ofN from those ofM . This key can be taken from the parent
node; the parent node will not miss the loss because it has lost one child pointer in the merge. This is
illustrated in Figure28.

N ′ : 11 2 3 43 4

merge

5

N : M :

2 50

1

0

a
a− 1

2a− 1

Figure 28: Merging:N andM merges intoN ′. Case of(a, b) = (3, 6).

The careful reader will notice an asymmetry in the above three processes. We have the concept of
borrowing, but it as much sense to talk about its inverse operation, donation. Indeed, if we simply
reverse the direction of transformation in Figure27, we have thedonation operation (nodeN donates
a key to nodeM). Just as the operation of merging can be preempted by borrowing, the operation of
splitting can be preempted by donation! Donation is not usually discussed in the literature. But we will
see its benefits below.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 50

¶48. Special Treatment of Leaves and Root. Now we must take care of these split, borrow, merge,
and donate operations for the special case of roots and leaves. Consider splitting a root, and merges of
children of the root:

(i) Normally, when we split a nodeu, its parent gets one extra child. But whenu is the root, we
create a new root with two children. This explains the exception we allow for roots to have between2
andb children.

(ii) Normally, when we merge two immediate siblingsu andv, the parent loses a child. But when
the parent is the root, the root may now have only one child. Inthis case, we delete the root and its sole
child is now the root.

Notice: cases (i) is theonly means for increasing the height of the(a, b)-tree; likewise case (ii) is
the only means for decreasing height.

Now consider leaves: in order for the splits and merges of leaves to proceed as above, we need the
analogue of the split-merge inequality,

a′ ≤ b′ + 1

2
. (23)

Supposeu splits into two consecutive leaves, sayu andu′. In this case, the parent needs a key to
separate the pointers tou andu′. This key can be taken to be the minimum key inu′. Conversely, if

So this is where
internal keys are

generated!two consecutive leavesu, u′ are merged, the key in the parent that separates them is simply discarded.

However, a rather unique case arise when the leaf is also a root! We cannot treat it like an ordinary
leaf having betweena′ to b′ items. So let us introduce the parametersa′0, b

′
0 to control the minimum and

maximum number of items in a root-leaf. Let us determine constraints on(a′0, b
′
0) relative to(a′, b′).

Initially, there may be no items in the root, so we must allowa′0 = 0. Also, when the number of items
exceedb′0, we must split into two or more children with at leasta′ items. The standard literature allows
the root to have 2 children and this requires2a′ ≤ b′0 + 1 (like the standard split-merge inequality).
Hence we require

b′0 ≥ 2a′ − 1. (24)

notb′0 ≥ 2a′0 − 1

In practice, it seems better to allow the root to have a largerdegree than a smaller degree. Thus, we
might even want distinguish between leaves that are non-roots and the very special case of a root that is
simultaneously a leaf. Such alternative designs are explored in Exercises.

¶49. Mechanics of Insertion and Deletion. We are ready to present the algorithm for insertion and
deletion. It is important that we describe these algorithmsin an “I/O aware” manner, meaning that
the nodes of(a, b)-search trees normally reside in secondary storage (say, a disk), and they must be
explicitly swapped in or out of main memory. Furthermore, I/O operations are much more expensive be I/O aware!
than CPU operations (two to three orders of magnitude slower). Therefore in complexity analysis below,
we will only count I/O operations. For that matter, the earlier LookUp algorithm should also be viewed
in this I/O aware manner: as we descend the search tree, we arereally bringing into main memory each
new node to examine. In the case of Lookup, there is no need to write the node back into disk. This
raises another point – we should distinguish between pure-reading or reading-cum-writing operations
when discussing I/O. We simply count pure reading as one I/O,and reading-cum-writing as two I/O’s.

We now present a unified algorithm that encompasses both insertion and deletion. The algorithm is
relatively simple, comprising a single while-loop:

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 51

INSERT/DELETE Algorithm
⊲ UPDATE PHASE
To insert an item(k, d) or delete a keyk, first do a lookUp onk.
Let u be the leaf node where the insertion or deletion takes place.
At this point,u is in main memory.
Call u thecurrent node.
⊲ REBALANCE PHASE
while u is overfull or underfull, do:

1. If u is root, handle as a special case and terminate.
2. Bring the parentp of u into main memory.
3. Bring needed sibling(s)uj ’s (j = 1, 2, . . .) of u into main memory.
4. Do the desired transformations (split, merge, borrow, donate) onu, uj ’s andp.

⊳ In main memory, nodes may temporarily have> b or less than< a children
⊳ Nodes may be created or deleted

5. Write back into disk any modified node other thanp.
6. Makep the new current node (rename it asu) to prepare for repeating this loop.

Write the current nodeu to secondary memory and terminate.

In Step 5, we do not write a nodeu back into disk unless it has been modified. In particular, when
we split or merge, then modified children must be written backto disk (the parent will be written out
too, but in the next iteration).

¶50. Standard Insert/Delete and Enhancements. We were deliberately vague in Step 3 of the above
algorithm for two reasons: first, the vague description can cover generalized split/merge operations to
be described shortly. Second, even in the “standard Insert/Delete” algorithms, there are some possible
enhancements and/or variations. These enhancements are associated with attempts to avoid split/merge
if it were possible to donate/borrow. We will now make the Standard Algorithms explicit.

(STANDARD INSERTION) For standard insertion, if nodeu is overfull, the standard algorithm
immediately splitsu into two nodes (and recurse).That is all. What are some possible enhancements?
It seems worthwhile to try donation first. To donate, we must bring into main memory an immediate
sibling. If the attempted donation fails, and we have another immediate sibling, it seems worthwhile to
attempt to donation again. Of course, when both attempts fail, we do the usual split.

(STANDARD DELETION) For standard deletion, if a nodeu is underfull, the standard algorithm
tries to borrow from an immediate siblingu′. Notice thatu′ could be either a left or a right sibling. If
we succeed in borrowing fromu′, the algorithm terminates; otherwise, we can mergeu with u′ (and
recurse).That is all.A possible enhancement in case attempt to borrow fails is to make a second attempt
to borrow. Of course this is only possible if we have another immediate siblingu′′.

Observe that standard INSERT/DELETE only need to hold in main memory at most three nodes at
any moment: current node, its parent and one sibling. These enhancements seems to favor better space
utilization and encourage earlier termination. In the worst case, the enhanced algorithm is slower than
standard algorithm because failure to donate/borrow has anassociated cost. This is quantified in our
analysis next. It may be possible to justify the enhancements using amortized or probabilistic analysis.

¶51. I/O Analysis. Let us analyze the Standard Insertion (no enhancement): there is the initial reading
and final writing of the current node. In each iteration of thewhile loop, the current nodeu is overfull,
and we need to bring in a parent, splitu into u andu′, and write outu andu′. Thus we have 3 I/O

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 52

operations per iteration. Thus the overall I/O cost is2 + 3I whereI is the number of iterations (of
courseI is bounded by the height). There is one other possibility: the last iteration might be the base
case whereu is a root. In this case, we splitu and write them out as two nodes. So this case needs only
2 I/O’s, and our bound of2 + 3I is still valid.

Suppose we enhance the insertion algorithm: each failed donation costs one I/O (to read in a sibling),
but a successful donation costs9 us two I/O’s (reading in the sibling and writing it out again). Of course,
a successful donation happens only once, and costs one more I/O than the standard algorithm. So the
total number of I/O’s is(2+ 3I)+F +S whereF is the number of failures andS = 1 or 0 (depending
on whether there is a successful donation). SinceS + F ≤ 2I, we can bound the number of I/O’s by
2 + 5I.

Consider Standard Deletion: there is an initial reading andfinal writing of the current node. In each
iteration of the while loop, the current nodeu is underfull, and we need to bring in a parent and a sibling
u′, and then writing out the merger ofu andu′. Again, this is 3 I/O’s per iteration. A possibly exception
is in the last iteration where we achieve a borrowing insteadof merging. In this case, we must write out
bothu andu′, thus requiring four I/O’s. Thus the overall I/O cost is bounded by3 + 3D whereD is
the number of iterations. Next consider the cost of enhancements: failed borrowing costs only one I/O
(to read the sibling). But any successful borrowing is already a part of the main accounting. Since the
numberF of failures is at mostD, we obtain an upper bound of3 + 4D in the enhanced algorithm.

12

8 12

9

21 23 25 272 4 6

4 5

8 13 21

13 15 17 19

16 18

151413 1917

15 16 1814

8 10 12 13

9 12 13

14 15 17 19

15 16 18

8 14 21

14

108 12

9 12 22 25 27

8 13 21

10

Donate 13

Insert(14)

Figure 29: Inserting14 into a(3, 4)-tree.

Insertion Example: Consider inserting the item (represented by its key)14 into the tree in Figure23.
This is illustrated by Figure29. Note thata′ = b′ = 1. After inserting14, we get an overfull node
with 5 children. In standard Insertion, we would immediately split. But with the enhancement, we try
to donates to our left sibling. In this case, this is possiblesince the left sibling has less than4 children.
(We shall see later that this donation action is also consistent with treating this as a(3, 4, 2)-tree.)

¶52. Achieving2/3 Space Utility Ratio. A node withm children is said to befull whenm = b; for
in general, a node withm children is said to be(m/b)-full . Hence, nodes can be as small as(a/b)-full.
Call the ratioa : b thespace utilization ratio. This ratio is< 1 and we like it to be as close to1 as
possible. The standard inequality (22) on (a, b)-trees implies that the space utilization in such trees can
never10 be better than⌊(b + 1)/2⌋ /b, and this can be achieved byB-trees. This ratio is as large as2 : 3

9 The cost of reading and writingu is separately accounted for, as part of the standard algorithm accounting.
10 The ratioa : b is only an approximate measure of space utility for various reasons. First of all, it is an asymptotic limit as

b grows. Furthermore, the relative sizes for keys and pointers also affect the space utilization. The ratioa : b is a reasonable

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 53

(achieved whenb = 3), but asb → ∞, it is asymptotically only slightly larger than1 : 2. We now
address the issue of achieving ratios that are arbitrarily close to1, for any choice ofa, b. First, we show
how to achieve2/3 asymptotically.

Consider the following modified insertion: to remove an nodeu with b+1 children, we first look at
a siblingv to see if we candonatea child to the sibling. Ifv is not full, we may donate tov. Otherwise,
v is full and we can take the2b + 1 children inu andv, and divide them into 3 groups as evenly as
possible. So each group has between⌊(2b+ 1)/3⌋ and⌈(2b+ 1)/3⌉ keys. More precisely, the size of
the three groups are

⌊(2b+ 1)/3⌋ , ⌊(2b+ 1)/3⌉, ⌈(2b+ 1)/3⌉
where “⌊(2b+ 1)/3⌉” denotesrounding to the nearest integer. For instance,⌊4/3⌋+⌊4/3⌉+⌈4/3⌉ =

for any integern:
⌊n/3⌋+ ⌊n/3⌉+

⌈n/3⌉ = n1 + 1 + 2 = 4 and⌊5/3⌋ + ⌊5/3⌉+ ⌈5/3⌉ = 1 + 2 + 2 = 5. Nodesu andv will (respectively) have
one of these groups as their children, but the third group will be children of a new node. See Figure30.

u

k k′ k′′

u v v v′

ww

(split)

(merge) a− 1

⌊
2b+1
3

⌉ ⌈
2b+1
3

⌉

a
⌈
3a−1
2

⌉ ⌊
3a−1
2

⌋
a

b+ 1 b
⌊
2b+11

3

⌋

Figure 30: Generalized (2-to-3) split and (3-to-2) merge

We want these groups to have betweena andb children. The largest groups has size⌈(2b+ 1)/3⌉
and this≤ b, automatically. For the smallest group to have size at leasta, we require

a ≤
⌊
2b+ 1

3

⌋
. (25)

This process of merging two nodes and splitting into three nodes is calledgeneralized splitbecause it
involves merging as well as splitting. Letw be the parent ofu andv. Thus,w will have an extra child
v′ after the generalized split. Ifw is now overfull, we have to repeat this process atw.

Next consider a modified deletion: to remove an underfull nodeu with a− 1 nodes, we again look
at an adjacent siblingv to borrow a child. If v hasa children, then we look at another siblingv′ to
borrow. If both attempts at borrowing fails, we merge the3a− 1 children11 the nodesu, v, v′ and then
split the result into two groups, as evenly as possible. Again, this is ageneralized mergethat involves
a split as well. The sizes of the two groups are⌊(3a− 1)/2⌋ and⌈(3a− 1)/2⌉ children, respectively.
Assuming

a ≥ 3, (26)

v andv′ exist (unlessu is a child of the root, which is handled separately). For lower bound on degree,
we require⌊(3a− 1)/2⌋ ≥ a, which is equivalent to(3a−1)/2 ≥ a (by integrality ofa), which clearly
holds. For upper bound on degree, we require

⌈
3a− 1

2

⌉
≤ b (27)

Because of integrality constraints, the floor and ceiling symbols could be removed in both (25) and (27).
Thus both inequality are seen to be equivalent to

a ≤ 2b+ 1

3
. (28)

estimate only in case the keys and pointers have about the same size.
11 Normally, we expectv, v′ to be immediate siblings ofu (to the left and right ofu). But if u is the eldest or youngest sibling,

then we may have to look slightly farther for the second sibling.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 54

As in the standard(a, b)-trees, we need to make exceptions for the root. Here, the numberm of children
of the root satisfies the bound2 ≤ m ≤ b. So during deletion, the second siblingv′ may not exist if
u is a child of the root. In this case, we can simply merge the level 1 nodes,u andv. This merger is
now the root, and it has2a − 1 children. This suggests that we allow the root to have between a and
max{2a− 1, b} children.

21

4

13 15 17 19

14 16 18

2

21 23 25 27 2 6

4(5)

2 6 8 10 12 13

4

219

12 16

15 17 19

18

14

8 13 21

108 122 4 6

22 25 27

13 15 17 19

14 16 189 124 5

8 13 21

108 126

9 12

Delete(4)

13 8

1 to 3 split3 to 1 merge

8 13

Figure 31: Deleting4 from (3, 4, 2)-tree.

¶53. Example of Generalized Merge. Consider deleting the item (represented by its key)4 from the
tree in Figure23. The is illustrated in Figure31. After deleting4, the current nodeu is underfull. We
try to borrow from the right sibling, but failed. But the right sibling of the right sibling could give up
one child.

One way to break down this process is to imagine that we mergeu with the 2 siblings to its right
(a 3-to-1 merge) to create supernode. This requires bringing some keys (6 and12) from the parent of
u into the supernode. The supernode has 9 children, which we can split evenly into 3 nodes (a 1-3
split). These nodes are inserted into the parent. Note that keys9 and14 are pushed into the parent. An
implementation should be able combine this merge-then-split steps into one more efficient process.

If we view b as a hard constraint on the maximum number of children, then the only way to allow
the root to havemax{2a − 1, b} children is to insist that2a − 1 ≤ b. Of course, this constraint is
just the standard split-merge inequality (22); so we are back to square one. This says we must treat the
root as an exception to the upper bound ofb. Indeed, one can make a strong case for treating the root
differently:
(1) It is desirable to keep the root resident in main memory atall times, unlike the other nodes.
(2) Allowing the root to be larger thanb can speed up the general search.

The smallest example of a(2/3)-full tree is where(a, b) = (3, 4). We have already seen a(3, 4)-
tree in Figure23. The nodes of such trees are actually3/4-full, not 2/3-full. But for largeb, the “2/3”
estimate is more reasonable.

¶54. Exogenous and Endogenous Search Structures.Search trees store items. But where these
items are stored constitute a major difference between(a, b)-search trees and the binary search trees
which we have presented. Items in(a, b)-search trees are stored in the leaves only, while in binary search

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 55

trees, items are stored in internal nodes as well. Tarjan [11, p. 9] calls a search structureexogenousif it
stores items in leaves only; otherwise it isendogenous.

The keys in the internal nodes of(a, b)-search trees are used purely for searching: they are not
associated with any data. In our description of binary search trees (or their balanced versions such as
AVL trees), we never explicitly discuss the data that are associated with keys. So how12 do we know
that these data structures are endogenous? We deduce it fromthe observation that, in looking up a key

Q: Is this school bus
going left or right?

Adult : I don’t know.
Child : Going Left.

Adult : Huhh???

k in a binary search tree, ifk is found in an internal nodeu, we stop the search and returnu. This means
we have found the item with keyk. The item is not necessarily stored inu, because we could store a
pointer to the real location of the item. For(a, b)-search tree, we cannot stop at any internal node, but
must proceed until we reach a leaf before we can conclude thatan item with keyk is, or is not, stored in
the search tree. It is possible to modify binary search treesso that they become exogenous (Exercise).

There are two consequence of this dual role of keys in(a, b)-search trees. First, even if items have
unique keys (our default assumption), the keys in the exogenous search structure could have duplicate
keys. In the case of(a, b)-search trees, we could have as many as one copy of the key per level. Second,
the keys in the internal nodesneed not correspond to the keys of items in the leaves. In illustration, see

Can’t we require the
keys in internal nodes
to correspond to keys

of stored items?
Figure25where the key13 appears in an item as well as in an internal node, and the key9 in an internal
node does not correspond to any items.

¶55. Database Application. One reason for treating(a, b)-trees as exogenous search structures
comes from its applications in databases. In database terminology,(a, b)-search tree constitute anindex
over the set of items in its leaves. A given set of items can have more than one index built over it. If
that is the case, at most one of the index can actually store the original data in the leaves. All the other
indices must be contented to point to the original data, i.e., thedi in (14) associated with keyki is not
the data itself, but a reference/pointer to the data stored elsewhere. Imagine a employee database where
items are employee records. We may wish to create one index based on social security numbers, and
another index based on last names, and yet another based on address. We chose these values (social se-
curity number, last name, address) for indexing because most searches in such a data base is presumably
based on these values. It seems to make less sense to build an index based on age or salary, although we
could.

¶56. Disk I/O Considerations: How to choose the parameterb. There is another reason for prefer-
ring exogenous structures. In databases, the number of items is very large and these are stored in disk
memory. If there aren items, then we need at leastn/b′ internal nodes. This many internal nodes im-
plies that the nodes of the(a, b)-trees is also stored in disk memory. Therefore, while searching through
the (a, b)-tree, each node we visit must be brought into the main memoryfrom disk. The I/O speed
for transferring data between main memory and disk is relatively slow, compared to CPU speeds. As
a rule of thumb, consider each I/O operation is three orders of magnitude slower than CPU operations.
Moreover, disk transfer at the lowest level of a computer organization takes place in fixed sizeblocks

roughly: 1000 CPU
cycles per I/O

(or pages). E.g., in UNIX, block sizes are traditionally 512bytes but can be as large as 16 Kbytes. To
minimize the number of disk accesses, we want to pack as many keys into each node as possible. So
the ideal size for a node is the block size. Thus the parameterb of (a, b)-trees is chosen to be the largest
value so that a node has thisblock size. Below, we discuss constraints on how the parameter a is

parameterb is
determined by block

sizechosen.

If the number of items stored in the(a, b)-tree is too many to be stored in main memory, the same
would be true of the internal nodes of the(a, b)-tree. Hence each of these internal nodes are also stored
on disk, and they are read into main memory as needed. ThuslookUp, insertanddelete are

12 The child knows that if the school bus were going right then you could see the entrance door.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 56

known assecondary memory algorithmsbecause data movement between disk and main memory
must be explicitly invoked. Typically, it amounts to bringing a specific disk block into memory, or
writing such a block back to disk.

¶57. On (a, b, c)-trees: Generalized Split-Merge for(a, b)-trees. Thus insertion and deletion al-
gorithms uses the strategy of “share a key if you can” in orderto avoid splitting or merging. Here,
“sharing” encompasses borrowing as well as donation. The2/3-space utility method will now be gen-
eralized by the introduction of a new parameterc. The only global constraint onc is that it be a positive
integer:c ≥ 1. Call these(a, b, c)-trees. We use the parameterc as follows.

• Generalized Splitof u: When nodeu is overfull, we will examine up toc−1 siblings to see if we
can donate a child to these siblings. If so, we are done. Otherwise, we mergec nodes (nodeu plus
c−1 siblings), and split the merger intoc+1 nodes. We viewc of these nodes as re-organizations
of the original nodes, but one of them is regarded as new. We must insert this new node into the
parent ofu. The parent will be transformed appropriately.

We stress that there is no sharp distinction between donation and splitting: we view of them as
different possibilities for a singlegeneralized split subroutine: starting from an overfull node
u, we successively bring into main memory a sequence of contiguous siblings ofu (they may be
right or left siblings) until we either (i) find one that has less thanb children, or (ii) brought in the
maximum number ofc− 1 siblings. In case (i), we do donation, and in case (ii) we split thesec
siblings intoc+ 1 siblings.

• Generalized Mergeof u: When nodeu is underfull, we will examine up toc siblings to see if
we can borrow a child of these siblings. If so, we are done. Otherwise, we mergec + 1 nodes
(nodeu plus c siblings), and split the merger intoc nodes. We viewc of the original nodes as
being re-organized, but one of them being deleted. We must thus delete a node from the parent of
u. The parent will be transformed appropriately.

Again, we view borrowing and merging as two possible possibilities for a singlegeneralized
mergesubroutine: starting from an underfull nodeu, we successively bring into main memory a
sequence of contiguous siblings ofu until we either (i) find one that has more thana children, or
(ii) brought in the maximum number ofc siblings. In case (i), we do borrowing, and in case (ii)
we mergec+ 1 siblings intoc siblings.

In summary, the generalized merge-split of(a, b, c)-trees transformsc nodes intoc + 1 nodes, or
vice-versa. Whenc = 1, we have theB-trees; whenc = 2, we achieve the2/3-space utilization ratio
above. In general, they achieve a space utilization ratio ofc : c+1 which can be arbitrarily close to1 (we
also needb→∞). Our(a, b, c)-trees must satisfy the followinggeneralized split-merge inequality,

c+ 1 ≤ a ≤ cb+ 1

c+ 1
. (29)

The lower bound ona ensures that generalized merge or split of a node will alwayshave enough siblings.
In case of merging, the current node hasa − 1 keys. When we fail to borrow, it means thatc siblings
havea keys each. We can combine all thesea(c + 1) − 1 keys and split them intoc new nodes. This
merging is valid because of the upper bound (29) on a. In case of splitting, the current node hasb + 1
keys. If we fail to donate, it means thatc − 1 siblings haveb keys each. We combine all thesecb + 1
keys, and split them intoc+ 1 new nodes. Again, the upper bound ona (29) guarantees success.

We are interested in the maximum value ofa in (29). Using the fact thata is integer, this amounts
to

a =

⌊
cb+ 1

c+ 1

⌋
. (30)

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 57

The corresponding(a, b, c)-tree will be called ageneralized B-tree. Thus generalized B-trees are spec-
ified by two parameters,b andc. why,(b, c)-trees!

Example: What is the simplest generalized B-tree wherec = 3? Thenb > a ≥ c + 1 = 4. So the
smallest choices for these parameters are(a, b, c) = (4, 5, 3).

¶58. Using thec parameter. An (a, b, c)-trees is structurally indistinguishable from an(a, b)-tree. In
other words, the set of all(a, b, c) trees and the set of all(a, b) trees are the same (“co-extensive”).

Call a pair(a, b) valid if 2 ≤ a < b. Likewise, a triple(a, b, c) is valid if it satisfies (29). We
view (29) as specifying a lower bounda ≥ c + 1 and an upper bounda ≤ (cb + 1)/(c + 1) on thea
parameter.For any valid(a, b), can we find ac such that(a, b, c) is valid? The answer is yes: choose
c = a−1. Then clearly the lower bound ona holds. The upper bound becomes toa ≤ ((a−1)b+1)/a
or a2 ≤ (a− 1)b+ 1. But this is clearly satisfied sinceb ≥ a+ 1.

The choicec = a − 1 is the largest possible choice. So the more interesting caseis the smallest
possibe value ofc. To determine the smallestc, we can easily verify (Exercise) this fact:

Assumec+ 1 ≤ a. If (a, b, c) is valid, so is(a, b, c+ 1).

For instance, we now see that(4, 5, c) has only one solution (c = 3) because(4, 5, 2) is invalid.

In general, we like to assume the parameters(a, b) is hard-coded (it is optimally determined from
the block size, etc). However, thec parameter need not hard coded — thec parameter is only used
during insertion/deletion algorithms, and we can freely changec (within the range of validity) in a
dynamic fashion. Thus, we might storec in a global variable. E.g., if we implement aC++ class for
(a, b, c)-search structures, we can storec as a static member of the class. Why would we want to modify
c? Increasingc improves space utilization but slows down the insertion/deletion process. Therefore,
we can begin withc = 1, and as space becomes tight, we slowly increasec. And conversely we can
decreasec as space becomes more available. This flexibility a great advantage of thec parameter.

¶59. A Numerical Example. Let us see how to choose the(a, b, c) parameters in a concrete setting.
The nodes of the search tree are stored on the disk. The root isassumed to be always in main memory.
To transfer data between disk and main memory, we assume a UNIX-like environment where memory
blocks have size of512 bytes. So that is the maximum size of each node. The reading orwriting
of one memory block constitute one disk access. Assume that each pointer is4 bytes and each key
6 bytes. So each (key,pointer) pair uses10 bytes. The value ofb must satisfy10b ≤ 512. Hence
we chooseb = ⌊512/10⌋ = 51. Suppose we wantc = 2. In this case, the optimum choice ofa is

a =
⌊
cb+1
c+1

⌋
= 34.

To understand the speed of using such(34, 51, 2)-trees, assume that we store a billion items in such
a tree. How many disk accesses in the worst is needed to lookupan item? The worst case is when the
root has2 children, and other internal nodes has34 children (if possible). A calculation shows that the
height is6. Assume the root is in memory, we need only6 block I/Os in the worst case. How many
block accesses for insertion? We need to readc nodes and write outc+ 1 nodes. For deletion, we need
to readc + 1 nodes and writec nodes. In either case, we have2c+ 1 nodes per level. Withc = 2 and
h = 6, we have a bound of 30 block accesses.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 58

For storage requirement, let us bound the number of blocks needed to store the internal nodes of this
tree. Let us assume each data item is8 bytes (it is probably only a pointer). This allows us to compute

the optimum value ofa′, b′. Thusb′ = ⌊512/8⌋ = 64. Also, a′ =
⌊
cb′+1
c+1

⌋
= 43. Using this, we can

now calculate the maximum and number of blocks needed by our data structure (use Lemma??).

¶60. Preemptive or 1-Pass Algorithms. The above algorithm uses 2-passes through nodes from the
root to the leaf: one pass to go down the tree and another pass to go up the tree. There is a 1-pass
versions of these algorithms. Such algorithms could potentially be twice as fast as the corresponding
2-pass algorithms since they could reduce the bottleneck disk I/O. The basic idea is to preemptively
split (in case of insertion) or preemptively merge (in case of deletion).

First consider the standard insertion algorithm (wherec = 1). During the Lookup phase, as we
descend the search path from root to leaf, if the current nodeu is already full (i.e., hasb children) then
we will pre-emptively splitu. Splittingu will introduce a new child to its parent,v. We may assume
thatv is in core, and by induction hypothesis,v is not full. Sov can accept a new child without splitting.
But this preemptive splitting ofu is not without I/O cost – sincev is modified, it must be written back
into disk. This may turn out to be an unnecessary I/O in our regular algorithm. So, in the worst case,
we could double the number of disk I/O’s compared to the normal insertion algorithm.

Suppose the height ish. At the minimum, we needh + O(1) disk I/O operations, just to do the
lookup. (Note: The “O(1)” is to fudge some details about what happens at a leaf or a root, and is
not important.) It may turn out that the regular insertion algorithm usesh + O(1) disk I/O’s, but the
pre-emptive algorithm uses3h + O(1) disk I/O’s (because of the need to read each nodeu and then
write out the two nodes resulting from splittingu). So the preemptive insertion algorithm is slower by
a factor of3. Conversely, it may turn out that the regular insertion algorithm has to split every node
along the path, using3 I/O’s per iteration as it moves up the path to the root. Combined with theh I/O
operations in Lookup, the total is4h+O(1) I/O operations. In this case, the pre-emptive algorithm uses
only 3h + O(1) disk I/O’s, and so is faster by a factor of4/3. Similar worst/best case analysis can be
estimated for generalized insertion withc ≥ 2.

For deletion, we can again do a preemptive merge when the current nodeu hasa children. Even for
standard deletion algorithm (c = 1), this may require 4 extra disk I/O’s per node: we have to bring in a
siblingw to borrow a key from, and to then write outu,w and their parent. It might well turn out that
these extra I/O’s are un

But there is another intermediate solution: instead of preemptive merge/split, we simplycachethe
set of nodes from the root to the leaf. In this way, the second pass does not involve any disk I/O, unless
absolutely necessary (when we need to split and/or merge). In modern computers, main memory is
large and storing the entire path of nodes in the 2-pass algorithm seems to impose no burden. In this
situation, the preemptive algorithms may actually be slower than a 2-pass algorithm with caching.

¶61. Background on Space Utilization. Using thea : b measure, we see that standardB-trees have
about50% space utilization. Yao showed that in a random insertion model, the utilization is about
lg 2 ∼ 0.69%. (see [8]). This was the beginning of a technique called “fringe analysis” which Yao [12]
introduced in 1974. Nakamura and Mizoguchi [9] independently discovered the analysis, and Knuth
used similar ideas in 1973 (see the survey of [2]).

Now consider the space utilization ratio of generalizedB-trees. Under (30), we see that the ratio
a : b is cb+1

(c+1) : b, and is greater thanc : c+ 1. In casec = 2, our space utilization that is close tolg 2.
Unlike fringe analysis, we guarantee this utilization in the worst case. It seems that most of the benefits

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 59

of (a, b, c)-trees are achieved withc = 2 or c = 3.

EXERCISES

Exercise 8.1: Suppose we have a(5, 6)-search tree. What is the smallest possible value ofc so that we
have a valid(5, 6, c)-search tree? ♦

Exercise 8.2: Suppose we defineM(h) andµ(h) to be the maximum and minimumsizeof an(a, b)-
tree of heighth. Give the formula forM(h) andµ(h). ♦

in text,M(h), µ(h)
were defined for

number of leaves, not
size

Exercise 8.3: Prove the claim that ifc+ 1 ≤ a and(a, b, c) is valid then so is(a, b, c+ 1). ♦

Exercise 8.4: Some students are not sure about how internal nodes could have keys that are not as-
sociated with any item. Please give an example where you start inserting keys into an empty
(a, b)-search tree, and then you delete one item. As a result, you now have an internal key that
is not associated with any item. Assume(a, b) = (2, 3) and(a′, b′) = (1, 1), and make your
example as small as possible. ♦

Exercise 8.5: Consider an(a, b)-tree withn items and heighth. Give upper and lower bounds on the
height in terms ofn. Your bounds will depend on the parameters(a, b) and(a′, b′). ♦

Exercise 8.6: Justify the following statements about(a, b)-search trees:
(a) If we only have insertions into an(a, b)-tree, then the keys in an internal node are just copies
of keys of items found in the leaves.
(b) It is possible to maintain the property in part (a) even ifthere are both insertions and deletions.

♦

Exercise 8.7: In the text, we did a worst/best case comparison between standard insertion and preemp-
tive insertion algorithms. Please do the same for the standard deletion and the preemptive deletion
algorithms. More precisely, answer these questions:
(a) What is the maximum number of I/O operations when doing a standard insertion into an(a, b)-
search tree of heighth?
(b) Repeat part (a), but now assume the pre-emptive insertion algorithm (this was discussed by
Esther in recitation, and also in¶54, p.50).
(c) In the best case scenario, how much faster is preemptive insertion?
(d) In the worst case scenario, how much slower is preemptiveinsertion?
(e) Based on the considerations above, should we do preemptive or regular insertion? ♦

Exercise 8.8: Our insertion and deletion algorithms tries to share (i.e.,donate or borrow) children from
siblings only. Suppose we now relax this condition to allow sharing among “first cousins” (i.e.,
nodes that share a common grandparent). Modify our insert/delete algorithms so that we try to
share with immediate siblings or cousins before doing the generalized split/merge. ♦

Exercise 8.9: We consider the effects of using one of the following schemesto organize the nodes of
an(a, b)-search tree. (i) an array, (ii) a singly-linked list, (iii)a doubly-linked list, (iv) a balanced

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 60

binary tree.
(a) Discuss the effects of these choices on the maximum valueof the parameterb.
(b) Illustrate your discussion using these specific numerical examples: block size is4096 bytes,
and each pointer is4 bytes, and each key also4 bytes. So a pointer within the block uses two
bytes (actually12 bits).
(c) Explain what choice would you make in this case. ♦

Exercise 8.10:Let us suppose that each node stores, not just pointers to itschildren, but also track the
degree of its children.
(a) Discuss how to maintain this additional information during insert and deletes the(a, b, c)-
search trees.
(b) How can this additional information speed up your algorithm? ♦

Exercise 8.11:Do the same worst/best analysis as the previous question, but assuming an arbitrary
c ≥ 2:
(I) Compare insertion algorithms (regular and pre-emptive)
(D) Compare deletion algorithms (regular and pre-emptive) ♦

Exercise 8.12:What is the the best ratio achievable under (22)? Under (28)? ♦

Exercise 8.13:Give a detailed analysis of space utilization based on parameters for (A) a key value,
(B) a pointer to a node, (C) either a pointer to an item (in the exogenous case) or the data itself
(in the endogenous case). Suppose we needk bytes to store a key value,p bytes for a pointer to a
node, andd bytes for a pointer to an item or for the data itself. Express the space utilization ratio
in terms of the parameters

a, b, k, p, d

assuming the inequality (22). ♦

Exercise 8.14:Describe the exogenous version of binary search trees. Givethe insertion and deletion
algorithms. NOTE: the keys in the leaves are now viewed as surrogates for the items. Moreover,
we allow the keys in the internal nodes to duplicate keys in the leaves, and it is also possible that
some keys in the internal nodes correspond to no stored item. ♦

Exercise 8.15:Consider the tree shown in Figure23. Although we previously viewed it as a(3, 4)-tree,
we now want to view it as a(2, 4)-tree. For insertion/deletion we further treat it as a(2, 4, 1)-tree.
(a) Insert an item (whose key is)14 into this tree. Draw intermediate results.
(b) Delete the item (whose key is)4 from this tree. Draw intermediate results. ♦

Exercise 8.16:To understand the details of insertion and deletion algorithms in(a, b, c)-trees, we ask
you to implement in your favorite language (we like Java) thefollowing two (2, 3, 1)-trees and
(3, 4, 2)-trees. ♦

Exercise 8.17: Is it possible to design(a, b, c) trees so that the root is not treated as an exception?♦

Exercise 8.18:Suppose we want the root, if non-leaf, to have at leasta children. But we now allow
it to have more thanb children. This is reasonably, considering that the root should probably be

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§8. (a, b)-SEARCH TREES Lecture III Page 61

kept in memory all the time and so do not have to obey theb constraint. Here is the idea: we
allow the root, when it is a leaf, to have up toa′a − 1 items. Here,(a′, b′) is the usual bound
on the number of items in non-root leaves. Similarly, when itis a non-leaf, it has betweena and
max{aa − 1, b} children. Show how to consistently carry out this policy. ♦

Exercise 8.19:We want to explore the weight balanced version of(a, b)-trees.
(a) Define such trees. Bound the heights of your weight-balanced(a, b-trees.
(b) Describe an insertion algorithm for your definition.
(c) Describe a deletion algorithm. ♦

Exercise 8.20:How can we choose thea parameter (see (30)) in generalizedB-trees in a more relaxed
manner so that the repeated splits/merges during insertionand deletions are minimized? ♦

END EXERCISES

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 62

§A. APPENDIX: Red-Black Trees

Red-black trees form a balanced family that, in some sense, is the most economical among height-
balanced binary trees. Each node in such a tree is colored13 red or black, where red nodes are considered
deficient. Such trees have some nice properties (see Exercise on treaps below). The drawback is the
relative complexity of their insertion and deletion algorithms. There is an alternative view of red-black
Trees that connects then to(2, 4)-trees. Since(2, 4)-trees (as a special case of(a, b)-trees) have simpler
algorithms, we can think of the red-black tree algorithms asthe unraveled(2, 4)-tree algorithms.

To make these algorithms easier to understand, it is convenient to introduce the “extended” version
of red-black trees:

An extended red-black treeis an extended binary search tree in which each node is colored either
red or black. The color scheme satisfies propertiesB(x), H(x) andP (x) at each nodex:

Basis propertyB(x): If x is a nil node, then it is black.
Height property H(x): The number of black nodes in a path from nodex to any

nil node is invariant. This invariant number, minus one, is
called theblack height of x. So a nil node has black height of0.

Parent property P (x): If x is red then itsparent (if any) is black.

A (standard) red-black tree tree is a standard binary search treeT whose nodes are colored ei-
ther red or black such that its corresponding extended version T ′ (with nil nodes colored black) is an
extended red-black tree. The two versions of red-black treeare interchangeable. Sometimes it is easier
to work with the extended version but most of the time we assume the standard version. Figure32
illustrates a red-black tree in its two forms.

The theoretical advantage of red-black trees over AVL treesis that we use only 1 bit of balance
information per node, as opposed tolg 3 bits in AVL trees.

m

B

R

B B

R

B

B

R

B B

R

B

(a) (b)

x

n

Figure 32: Two equivalent red-black trees: (a) extended version, (b) standard version.

There are some easy consequences of the basis, height and parent properties:
(i) Each node in a red-black tree of height two or more must have two children. (Recall that a node has
height 0 iff it is a leaf.)
(ii) A node with exactly one child must be black, and its unique child must be a leaf with color red.

13 This color terminology is borrowed from accounting practice, as in balance sheets being in the red or in the black.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 63

With these observations, we can now give a direct definition of red-black trees (without going
through the extended binary search trees). At each nodex, the following three properties hold:

Basis propertyB′(x): If x has only one child, then that child is a leaf with color red.
Height property H ′(x): The number of black nodes in a path from nodex to any

leaf is invariant. This invariant number is theblack height of x.
Parent property P ′(x): If x is red then itsparent (if any) is black.

Note that the new parent propertyP ′(x) is identical toP (x). In the following descriptions, we shall
continue to useB(x) andH(x) instead ofB′(x) andH ′(x).

Let T be an ordinary binary tree whose nodes are colored red or black andx is a node ofT . The
meaning should be clear when we say thatT violates the parent propertyP (x), or equivalently, there
is aP -violation at x. Similarly for the height property, we speak of violatingH(x) or aH-violation at
x. It may be helpful14 for the reader to think of the red nodes as deficient in a certain sense. The parent
property ensures that there are no two consecutive deficientnodes in a path.

Note that if the root of a red-black tree is red, we can just color it black, and the result is still a
red-black tree. For this reason, some literature assumes that the root of a red-black tree is always black.

If x is a node in a red-black treeT , let bht[x] = bhtT [x] denote the black height ofx in T and
bht[T] denote the black height of the root ofT . For instance, ifx is a black leaf,bht[x] = 1. For
any pathp, we also letbht[p] denote the number of black nodes inp. Red-black trees are automatically
balanced:

LEMMA 7. Suppose a red-black treeT hasn nodes and black heighth. Thenn ≥ 2h − 1 and hence
h ≤ lg(n+ 1). HenceT has height at most2 ⌊lg(n+ 1)⌋.

Proof. We prove thatn ≥ 2h − 1 by induction onh ≥ 0. This is true whenh = 0, for T has 0 or 1
node. Ifh ≥ 1, then the left and right subtree atT has black height at leasth−1 (they could have height
h). By induction, they each have at least2h−1− 1 nodes. ThusT has at least2(2h−1− 1)+1 = 2h− 1
nodes, as claimed. The rest of the lemma is immediate: fromn ≥ 2h − 1 we geth ≤ ⌊lg(n+ 1)⌋. By
the parent property, the height of the tree is at most2h. Q.E.D.

¶62. Operations on red-black trees. We next consider the basic operations oflookUp(Key),
insert(Item) anddelete(Node) on red-black trees. Since red-black trees are binary searchtrees,
the lookup operation can be done as for binary search trees. The following terminology will be useful
in our descriptions. The usual terminology for binary treesviews them as a kind of family tree where
each node has at most 2 children and reproduction is asexual.Extending this analogy, the children of
a sibling are callednephews. But we may distinguish one of these nephews as anear-nephewand the
other as afar-nephew. For instance, in Figure32(b), the nodesn,m are respectively the near-nephew
and far-nephews ofx. Of course, the reciprocal relation is anuncle: x is the unique uncle ofm and of
n. Note that a node is either a near-nephew or a far-nephew of its uncle, but not both.

EXERCISES

14 The colors in our trees comes from “red ink” and “black ink”. That is, they are accounting analogies, with no racial
connotations!

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 64

Exercise A.1: For each of the following binary trees, say whether it could be the shape of a red-black
tree or not. If yes, show a coloring scheme; if not, argue why not. i ♦

(a) (b)

Figure 33: Some binary trees.

Exercise A.2:
(a) What is the maximum possible height (not black height) ofa red-black tree with 10 keys?
Argue rigorously why your bound is correct.
(b) Show a lower bound (draw a read-black tree with this bound). ♦

Exercise A.3: Give a direct definition of red-black trees for ordinary binary search trees. (In our text,
we defined it indirectly, via extended binary search trees.) ♦

Exercise A.4: A “2-4 tree” is a search tree in which each interior node has degree 2, 3 or 4 children,
and every path from the root to a leaf has the same length. It isa search tree in the sense that if
a node hasd (d = 2, 3, 4) children, then the node storesd − 1 items. The keys of these items
K1 < K2 < · · · < Kd−1 are ordered and we have a generalization of the binary searchtree
property. This facilitates searching for any key.
(a) Show that every red-black tree can be interpreted as a 2-4tree. HINT: assume that the root is
black.
(b) Do a detail comparison of the insertion algorithms in(2, 4)-trees and red-black trees.
(c) Repeat part (b) for deletion. ♦

Exercise A.5: (Cormen-Leiserson-Rivest) Alternative definition of black height: define theblack
height of nodeu to be the number of black nodes along any path fromu to a nil node, but
not countingu. That is, ifu is red, then our black height is 1 less than the alternative definition.
In particular, if a red-black tree has a red node, we can change it to black and its height is not
changed according to this definition. One disadvantage of this definition is the need to refer to nil
nodes in its definition. But does this alternative definitionmake any difference to our algorithms?

♦

Exercise A.6: An alternative definition of an extended red-black trees is in terms of a rank functionr(x)
for each nodex with these properties: (i) If the parentp(x) of x exists, thenr(x) ≤ r(p(x)) ≤
r(x) + 1. (ii) If the grandparentp(p(x)) exists, thenr(x) < r(p(p(x))). (iii) If x is a leaf,
r(x) = 1 and if x = nil thenr(x) = 0. Show the “equivalence” of such trees and red-black
trees; part of the problem is to define “equivalence” precisely. HINT: use the definition of black
height in the previous exercise. ♦

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 65

Exercise A.7: (Olivié) A binary tree ishalf-balancedif for every nodex, the length of the longest path
from x to a leaf is at most twice as long as the length of the shortest path fromx to a leaf. As in
the previous exercise, show the “equivalence” of such treesand red-black trees. ♦

Exercise A.8: Let M(h) denote the maximum number of key-bearing nodes in a red-black tree with
black height ofh. Write the recurrence equation forM(h). Solve the recurrence. NOTE: what
if we do the same form(h), denoting the minimum number of key-bearing nodes in a red-black
tree with black heighth? ♦

END EXERCISES

§A.1. Red-Black Insertion

The following description is designed so that the student can easily commit to
memory the insertion algorithm. Consequently, the studentshould be able to
perform hand-simulation of the algorithm on actual trees. For insertion, we
prefer to treat the tree as a standard binary tree.

Suppose we want to insert a nodex into a treeT . There are three steps in insertion:

1. Insertx into T as in a binary search tree.
2. Makex a red node.
3. Rebalance atx.

We must explain the third step of rebalancing. After steps 1 and 2,x is a red leaf. We verify that
the tree automatically satisfies the height property. Next,propertyP (u) holds at each nodeu except
possibly whenu = x. In fact, the only possible violation of red-black tree properties is when the parent
of x is red. We are done if the parent ofx is black. Hence assume otherwise.

This single violation is key to understanding the insertionoperation, and deserves a definition: let
x be any node of binary search treeT whose nodes are colored red or black. We callT an almost
red-black tree at nodex if T satisfies the basis and height properties. Moreover, it satisfies property
P (u) for all nodesu 6= x but does not satisfyP (x). In this case, we also sayT has aP -violation atx
or aninsertion violation atx.

¶63. Rebalancing an almost red-black tree atx. Rebalancing an almost red-black tree means to
convert the tree into a red-black tree. This is reduced to a sequence of (repeated) “rebalancing steps”.
Each rebalancing step either (I) transfers the violation atx to the grandparent ofx, or (II) remove the
violation completely (and we terminate). The color of theuncle of x decides which of these two cases
applies. We consider the following scenario (see Figure34):

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 66

Insertion scenario.
We are trying to rebalance an almost red-black treeT at x. Both x and its
parenty are red. Letz be the parent ofy andu the sibling ofy (sou is the
uncle ofx). Thenz must be black but the color ofu is unknown and is the
critical determinant of the action we take.

u

B

?R

R

z

y

x

Figure 34: Insertion scenario: violation atx.

¶64. Justification for Insertion Scenario. Why does this scenario hold? Note that ify did not exist,
we would not have a violation atx. If the grandparentz of x did not exist, then we can simply color
y black and the result would be a red-black tree.This recoloring is the only operation in the insertion
algorithm that increases the black height of a tree.What aboutu? In general, its existence is guaranteed
by the basis propertyB(z). However, ifx hasjustbeen inserted,u may not exist (that is,u may be a nil
node). In this case, it is easy to see thatx has no sibling or children. This situation can easily be fixed
as illustrated in Figure35:

FIX SUPERNODE(x):
(a) If x is a far-nephew ofu, we rotate aty,

blackeny and redden its childrenx, z.
(b) If x is a near-nephew ofu, we rotate twice atx.

We blackenx and redden its children (y andz).

In either case, the reader verifies that the result is a red-black tree.

This transformation of the triplex, y, z will be encountered again. It is helpful
to think ofx, y, z as asupernode(hence the name of this little routine). Hence
(a) and (b) are just two cases in the rebalancing of a supernode. The operation
in (b) is quite common and is called adouble rotation. In general, a double
rotation at a nodex is defined ifx is the near-nephew of its uncle and the
operation amounts to two consecutive rotations ofx.

To conclude, this “justification” of the insertion scenarioamounts to a procedure (let us call it
CONVERT) to transform an insertion violation into the insertion scenario, or else to remove the insertion
violation.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 67

z

(a)x is a far-nephew ofu.x

x

x

x

u

u

u

u

y

y

y

yrotate(x);rotate(x)

rotate(y)

R

R

B

R

B

R

R

R

B

R

B

R

(b) x is a near-nephew ofu.

z

z

z

Figure 35: Whenu does not exist: two cases.

¶65. Rebalance Step. We assume the insertion scenario and consider two cases.

¶66. CASE I: The uncleu is red. This case is easy: we simply reddenz and blacken bothy andu
(see Figure36).

R

y

x

R

R R

B

u
recolory, z andu

u

R

BB

z

y

x

z

Figure 36: Red uncle: possible new violation atz.

It is not hard to check that the result is either a red-black tree or an almost red-black tree atz. In
the latter case, we recursively do a rebalance atz. In short, the rebalance step has either removed the
insertion violation or moved it closer to the root. Eventually the recursive process must stop.

¶67. CASE II: The uncle u is black. In this case, we transform the tree as indicated in Figure37:
This amounts to rebalancing the supernodex, y, z. That is, we just call the routine FIX SUPERNODE(x).
Since the result is a red-black tree, the black uncle case is aterminal one.

We expand on Figure37 a little bit. The left-hand side is a combination of 4 cases, depending on
whetherx is a left or right child ofy and whethery is a left or right child ofz. Note that the roots
of the four subtreesT1, T2, T3 andT4 are all black (u, the root ofT4, is black by assumption and the

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 68

rotations and recoloring
z′

B

R

y′

x′

B

R

R

z

y

x

T1 T2

T3

T4
R

T ′3 T ′4T ′1 T ′2

Figure 37: Black uncle: root ofT4, the uncle ofx, is black.

others are black by the parent property). This transformation is completely specified by the following
requirements:

• x′, y′, z′ is simplyx, y, z in non-decreasing order of their keys.

• T ′
1, T

′
2, T

′
3 andT ′

4 are the the subtreesT1, T2, T3 andT4 in non-decreasing order.

The reason this is enough to determine the tree on the right-hand side of Figure37 is because the result
must be a binary search tree. Take the possibility wherex is the right child ofy, andy the left child of
z (see Figure38). Here, if we perform a double rotations atx, reddenz and blackenx, we obtain the

recolorz red,x black

z

y
R

B B

R R

x

y z

T3 T1 T2 T4

rotate(x),rotate(x)

R
x

T1 T2

T3

T4

Figure 38: Black Uncle:x is right child ofy, y is left child ofz.

desired red-black tree. We can similarly work out the other three possibilities.

This completes our discussion of the black uncle case and hence of the rebalance step. To summarize
the insertion algorithm:

INSERT(1 I):
1. InsertI as in a binary search tree; color the inserted node red.
2. while there is a violation,do
2.1 Convert to the insertion scenario.
2.2 Perform a rebalance step.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 69

EXERCISES

Exercise A.9: Insert the following sequence of keys (in succession) into an initially empty tree:
10, 8, 3, 1, 4, 2, 5, 9, 6, 7. ♦

Exercise A.10: Verify carefully that after the rotations and re-coloringsin the rebalance steps always
result in a red-black tree or an almost red-black tree. ♦

Exercise A.11: Draw a red-black treeT1 with black height 2 and specify a keyk such that inserting
k into T1 will increase the black height ofT1. Draw the red-black tree after insertingk. HINT:
when does the black height increase in the insertion procedure? ♦

Exercise A.12: Is the recoloring in our rebalancing steps ad hoc? Try to givea more systematic account
of how to assign colors. (This is certainly another useful aid to memory.) ♦

Exercise A.13: (One pass version) Our insertion algorithm requires two passes, one pass down and the
other pass up the tree. Design an alternative insertion algorithm which has only one pass. HINT:
the idea is “preemptive rebalance”. Try to make sure that a node is black before you visit it. ♦

END EXERCISES

§A.2. Red-Black Deletion.

Deletion is slightly more involved than insertion. Again, we design the algo-
rithm to be remembered, so that the reader to perform hand-simulation of the
algorithm. For this description, we prefer to use the terminology of extended
binary trees.

Suppose we want to delete the item in a nodeu in a red-black treeT . We delete item inu as we
would in an ordinary binary tree, and then we rebalance to ensure that the result is still a red-black tree.
It is important that we use the “standard deletion algorithm” (see§3) which does not use rotations. Note
that the standard deletion algorithm may not actually remove the nodeu. Instead, some nodeu′ with
only one child will be removed.

¶68. Deletion violation. Again, the deletion of nodeu′ causes a “violation”, which we now explain.
Imagine the nodes of our search tree to carry “tokens” – a red node has no token and a black node has
one token. The nil nodes (recall we viewT as an extended binary tree now) are automatically black
and so carries a token. Thus, the black height of a nodeu is one less than the number of tokens along
any path fromu to a nil node. The height property simply says that the numberof black tokens along a
path from any node to a nil node is invariant. Thus if the deleted nodeu′ is red, we do not change the
number of tokens along any path, so the height property is preserved. So assume that the deleted node
u′ is black. Recall thatu′ has at most one child. Ifu′ has no parent, then the result is again a red-black

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 70

tree. Hence assume thatu′ has a parenty. After deletingu′, one of the children ofy becomes a nodex
in place ofu′. Note thatx is a nil node ifu′ was a leaf, but otherwisex was the only child ofu′. Let us
give the token ofu′ to x after deletion.Now the height property is restored in the sense that every path
to a nil node still contains the same number of tokens!

What can still go wrong? Well, ifx already has a token, then givingx another token means thatx
now has two tokens. We say a node isdoubly-black if it has 2 tokens. First observe that ifu′ was not a
leaf, then we know thatx must be a red leaf. This means thatx is black, not doubly-black. But ifu′ is
a leaf, thenx is a nil node and hence it is now doubly-black. In figures, we useR,B,D to denote red,
black and doubly-black nodes, respectively.

An extended binary search treeT in which an extended nodex is colored doubly-black (D), with
the remaining nodes are colored black (B) or red (R), is said to be analmost red-black tree atx if T
satisfies the basis and parent properties, and also the modified height property, interpreted in terms of
counting tokens as above. We also say15 thatT has adeletion violation at x.

We summarize the deletion algorithm:

1. Use the standard deletion algorithm to delete (the item in) u.
Let u′ be the node that is physically removed in this deletion.

2. If u′ is red or has no parent, we terminate with a red-black tree.
{Henceforth assume u′ is black and has parent y.}

3. Letx be the extended node that is the child ofy in place ofu′. If x is non-nil, we again terminate.
4. Otherwise, we doubly blacken the nil nodex.
5. Call the rebalancing procedure at nodex.

In the remainder of this section, we describe the rebalancing procedure for an almost red-black tree at
a nodex. The rebalancing procedure is recursive and consists of repeated application of a “rebalancing
step”. Each step either removes the violation atx, or move it to some node nearer the root. Each
rebalancing step assumes the following basic scenario (seeFigure39):

m

?p

Dx ? y

n ? ?

Figure 39: Deletion scenario: violation atx.

Deletion scenario.
We have an almost red-black tree which is doubly-black atx. The nodex may
be nil. The parent and sibling ofx is p andy, respectively. The children ofy
aren andm, which are respectively the near-nephew and far-nephew ofx.

15 We used the same terminology “almost red-black tree” when the tree has an insertion violation; this ambiguity is not a
problem because we normally are in either insertion or deletion mode, but not both simultaneously. The context will makethe
type of implied violation clear.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 71

¶69. Conversion to the Deletion Scenario. The illustration in Figure39 is completely general, up
to a mirror symmetry (that is,x may be the right child ofp, etc). How can we “justify” this scenario?
Suppose we have a deletion violation atx. If p did not exist, we can simply colorx black and the result
is a red-black tree. Ifp exists then the height property implies the existence ofy. Now the black-height
of y is equal to the black height ofx, which is at least2. Hencey is not nil. Note that ifx is non-nil,
then the two childrenm,n of y must also be non-nil. This justification amounts to a tiny procedure
CONVERT for bringing an deletion violation into the deletion scenario (or, failing that, to terminate in a
red-black tree).

¶70. Rebalancing Step. We now describe the rebalancing step under the hypothesis ofthe dele-
tion scenario. There are 3 cases to consider, depending on the colors ofy,m, n. The simplest is the
following.

¶71. I. All-black case. The siblingy and the two nephewsm,n are all black (see Figure40). Then
by coloringy red and by giving a black token to the parentp, we get either a red-black tree (ifp was
originally red) or an almost red-black tree atp (if p was originally black). Thus the deletion violation is
either removed or moved closer to the root.

m

recolor C ′C

D B

B B

B R

B B

x x

p p

n n

y y

m

Figure 40:x is doubly black, with black sibling and nephews.

¶72. II. Red-nephew case. Suppose some nephew ofx is red. Soy is black. There are two possibili-
ties:
(a) The far-nephewm is red: See Figure41. We can rotate aty, give the color ofp to y, and recolor
m, p andx to be black. The reader can verify that the result is a red-black tree. So this is a terminal
case.

rotate(y)

x B

mBD p B

yC

B

p

x

C

y

m R

Figure 41: Far-nephewm is red.

(b) The near-nephewn is red: See Figure42. We may further assume that the far-nephewm
is black. By rotating atn, blackeningn and reddeningy, we have reduced this to case (a) where the
far-nephew is red. (But note that case (a) will immediately cause a rotation atn, so in effect, we have a
double rotation atn and this case may be regarded as terminal also.)

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 72

HINT: We can combine both cases and view this as the rebalancing of a supernode (cf. the FIX SU-
PERNODE routine above). More precisely, in case (a), we rebalance the supernodem, y, p. Theny is
given the old color ofp, andm, p are blackened. Case (b) is similar: we rebalance the supernodem, y, p.
(That is, the role ofm taken over byn.) Theny is given the old color ofp; andn, p are blackened. In
both cases, we makex black and terminate.

p

n R

D Bx

C

y

m

B m

y

C

x

p

BD

R

n

rotate(n)

B

Figure 42: Near-nephewn is red.

¶73. III. Red sibling case. The siblingy of x is red (Figure43). So the common parentp of x andy
is black. In this case, we rotate aty, reddenp and blackeny. The result is still an almost red-black tree
atx, except that the sibling ofx is black. This means we have reduced our situation to cases I or II.

B

B

R B m

Bx D

p

y

R

B

nm

yx

p

D

n

rotate(y)

B

Figure 43: Red sibling case.

But there is a subtle point here – the depth ofx is increased. To be sure that we are not in a non-
terminating loop, we must analyze deeper: since case II is terminal, we only have to worry about a
reduction to case I (all-black case) which may or may not terminate. But if we were reduced to the
all-black case, it is easy to check that we would terminate after the necessary recoloring. Remark: this
check is just for our analysis – the algorithm need not do anything special.

HINT: we can view case III as rebalancing the supernodem, y, p, somewhat like the red far-nephew
case.

The above analysis shows that the only recursive case is the all-black case. This recursion can repeat
at most2 lgn times before we reach the root. But, regardless of how rebalancing steps are performed,
only a constant number of rotations are performed.

EXERCISES

Exercise A.14:
(a) Execute the following the red-black tree insert and delete operations (the meaning is self-

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 73

explanatory):Ins(5, 7, 3, 9, 10, 8), Del(10).
(b) Instead ofDel(10), doDel(3). ♦

Exercise A.15: Verify that the deletion operation makes only a constant number of rotations, not
Θ(lgn) rotations. (You should flesh out some of the claims in the textabout termination.) ♦

Exercise A.16: Write the deletion algorithm in a reasonable pseudo-code, making explicit any assump-
tions about the data structure and basic operations. Notes:there should be a procedure called
CONVERT. Presumably, the argument to CONVERT is a nodex where we have a deletion viola-
tion. The technical problem is thatx may be nil. So a solution is that we call convert with the pair
of nodes, CONVERT(x, y) wherey is the parent ofx. Here, eitherx or y may benil. ♦

Exercise A.17: (a) When does the black height of a tree decrease in a deletion?
(b) Is it possible to have a red-black tree so that its black height increases when you insert a certain
key, and its black height decreases when you delete a certainnode? ♦

Exercise A.18: (One pass version) Our deletion algorithm requires two passes, one pass down and the
other pass up the tree. Design an alternative deletion algorithm which has only one pass. HINT:
do “preemptive rebalance” by making sure that a node is red before you visit it. ♦

Exercise A.19: Give an alternative description (not code) for the deletionalgorithm without reference
to nil nodes. That is, view them as standard binary search trees. ♦

Exercise A.20:
(a) Show that we can modify the colors of a red-black tree so that each node of height1 is black.
Note that a leaf has height0.
(b) Modify the insertion and deletion algorithms for such red-black trees. ♦

Exercise A.21: Let S be a set ofn points in the plane. Thetreap data structure of E. McCreight
stores a setS of points using theirx-coordinate as key. I also stores at each nodeu the largest
y-coordinate among all the points in the subtree atu. The underlying data structure is a binary
search tree.
(a) Assume that binary search tree is a red-black tree. Show how to insert and delete points from
treaps.
(b) Analyze the complexity of the algorithms in (a).
(c) Can you achieve the same complexity if you use AVL trees?
(d) Can you achieve the same complexity if you use 2-3 trees? ♦

Exercise A.22: (open-ended) Suppose we havetricolored binary search treesin which each node is
colored red, black or doubly-black, satisfying some suitable modified Basis, Height and Parent
properties. Work out the insert and delete algorithms for such search trees. Discuss advantages
or disadvantages of these trees. ♦

END EXERCISES

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 74

§A.3. Merge and Split.

Suppose we want to implement the additional operations of merging and splitting,i.e., the operations
of a fully mergeable dictionary (§2). We shall write

T1 < T2

to indicate that all the keys inT1 are less than the keys inT2.

¶74. Merge. Consider how to mergeT1 andT2 under the assumptionT1 < T2. First we delete the
maximum itemu in T1, and still call the resulting treeT1. This takesO(log n) time. So we have to
solve the related problem of merging the following three trees,

T1 < u < T2.

If bht[T1] = bht[T2], merging is trivial: we just makeu the root withT1, T2 as the left and right
subtrees. So now assumebht[T1] > bht[T2] (the other case is similarly treated).

Let us now walk down the right subpath(x0, x1, . . .) of T1, terminating at a nodext whose right
subtreeS′

t = S′ has the same black height asT2. In general, the left and right subtrees ofxi are denoted
Si andS′

i, respectively (see Figure44). Note that we may assume thatS′
t has a black root (by choosing

merge

S1

St

S0
S0

S1

T2S ′

T1 = x0 +
u

+

T2

u

x1

x0

xt

x1

xt

StS ′

Figure 44: Decomposition ofT1 and merging ofT1, u, T2.

xt appropriately). We installu as the right child ofxt, makeS′ andT2 the left and right subtrees ofu.
We also coloru red. The result is an almost red-black tree with possibly an insertion violation atu (if
xt is red). As in the insertion algorithm, we can now perform therebalancing algorithm to convert an
almost red-black tree into a red-black tree. The time to carry out the rebalancing is

O(1 + bht[T1]− bht[T2]) (31)

which isO(log n). This concludes our description of merging.

¶75. Splitting. Next consider the problem of splitting a red-black treeT1 at a keyk. This is slightly
more complicated, and will use the merging algorithm just described as a subroutine.

We first perform alookUp on k, usingO(log n) time. This leads us down a path(x0, x1, . . . , xt)
to a nodext with key k′ that is equal tok if k is in the tree; otherwise it is equal to the predecessor or
successor ofk in the tree. See Figure45 for a particular case wheret = 5.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 75

x5

x4

x2x3

S0 S1 S4 S5

S ′3 S ′2

+

L

R

S ′5

x0

x1

T1=
x1

x3

x4

x5

S0 S1

S4

S ′2

S5

S ′3

S ′5

x2

x0

decompose

Figure 45: Split: decomposition ofT1.

Again, letSi, S
′
i denote the left and right subtrees ofxi. Let us form two collectionsL andR of

RBT’s: for eachi, if the key inxi is greater thank, we putxi (viewed as a RBT with one key) and
S′
i into R. Otherwise, we putxi andS′

i into L. This takes care of every key inT1, with the possible
exception of a subtree ofxt: if xt is put intoR, then we putSt into L. Otherwise,xt is put intoL and
we putS′

t into R. In Figure45, if xi andSi are put inL, we display them together as one tree withxi

as root; a similar remark holds ifxi, S
′
i are put inR.

Clearly, our task is completed if we now combine the trees inL into a newT1, and similarly combine
the trees inR into a tree which is returned as the value of this procedure call.

Let us focus on the set of trees inL (R is similarly treated). It is not hard to do see that there are
O(log n) trees inL and so we can easily merge them into one tree inO(log2 n) time. But in fact, let us
now show thatO(log n) suffices. Let us note that the trees inL can in fact be relabeled and ordered as
follows:

L1 > y1 > L2 > y2 > · · · > Lℓ > yℓ > Lℓ+1 (32)

where theyj ’s are singleton trees (coming from thexi’s), and

bht[L1] ≥ bht[L2] ≥ · · · ≥ bht[Lℓ+1] ≥ 0. (33)

Note thatLℓ+1 could be empty. For instance, the setL in Figure45is relabeled as in Figure46with L5

as an empty tree. The basic idea is to merge the trees from right to left. More precisely: initially, we

S5

relabel

x0

x1 x4
x5

S0 S1 S4 L1 L2 L3 L5

y1 y2 y3 y4

L4

Figure 46: Relabelling the trees in the setL.

mergeLℓ, yℓ, Lℓ+1 and let the result be denotedL′
ℓ−1. Inductively, assume that

Li+1, yi+1, . . . , yℓ, Lℓ+1

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 76

have been merged into a tree denoted byL′
i. If i > 0, we continue inductively by merge

Li, yi, L
′
i (34)

to formL′
i−1. Otherwise,L′

0 is the final result and we stop. This completes the merge algorithm.

The main result is the following:

LEMMA 8. The time to merge all the trees inL isO(bht[L1] + ℓ) = O(log n).

Verifying this requires some careful analysis but the idea is as follows. The inductive merge step
(34) takes time

O(1 + |bht[Li]− bht[L′
i]|). (35)

Now, if we could assume thatbht[L′
i] ≤ 1 + bht[Li+1] then we could replace (35) by

O(2 + bht[Li]− bht[Li+1]).

and the overall cost (after telescoping) would beO(bht[L1] + ℓ),

¶76. AnO(log n) bound for splitting. We refer to the collectionL (see equations (32) and (33)). Let
us callLi red or black according as its root is red or black. Notice that ifLi is red, thenbht[Li+1] >
bht[Li]. We claim: fori = 2, . . . , ℓ,

bht[Li−1] = bht[Li] =⇒ bht[Li] > bht[Li+1].

For, if bht[Li−1] = bht[Li] then the root ofLi is a near nephew of the rootLi−1 and the parentp = xi

of Li is red. Similarly, ifbht[Li] = bht[Li+1], we conclude that the parentq = xi+1 of Li+1 is red.
But p is the parent ofq, by the height property. This is a contradiction because nowthe parent property
is violated, proving our claim.

Suppose inductively, for someh = 1, . . . , ℓ, we have already merged

Lh+1, yh+1, Lh+2, . . . , yℓ, Lℓ+1

into a RBT denotedL′
h. In case

bht[L′
h] > bht[Lh]

we will say that aninversion has occurred atL′
h.

LEMMA 9 (Inversion Lemma).In case of an inversion atL′
h, the following holds.

(i) bht[L′
h] = 1 + bht[Lh].

(ii) EitherL′
h is black orbht[Lh−1] > bht[Lh].

Proof. To see this lemma, consider the previous step which combinedLh+1, yh+1, L
′
h+1 into L′

h.
We use three easy remarks. First, it is clear from the merge algorithm that

bht[L′
h] ≤ 1 + max{bht[Lh+1], bht[L

′
h+1]}. (36)

Second, if equality is achieved in (36) thenL′
h is black (using a basic property of our rebalancing

procedure for removing insertion violations). Third, ifbht[L′
h+1] > bht[Lh+1] andL′

h+1 is black,

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 77

then (36) is a strict inequality. (Similarly ifbht[L′
h+1] < bht[Lh+1] andLh+1 is black then we also

have a strict inequality.)

There are two cases.
CASE I: there is no inversion atL′

h+1, i.e., bht[Lh+1] ≥ bht[L′
h+1]. Then clearly property (i) holds

andL′
h is black (thus satisfying (ii)).

CASE II: there is an inversion atL′
h+1. We assume that this inversion satisfies the hypothesis in our

lemma. So, either (a)L′
h+1 is black or (b)bht[Lh] > bht[Lh+1]. In subcase (a), in order to have

an inversion atL′
h, our first remark implies thatbht[Lh] = bht[Lh+1]. But this meansbht[Lh−1] >

bht[Lh], satisfying property (ii). To see property (i), note that remark 3 impliesbht[L′
h] ≤ bht[L′

h+1]
and hencebht[L′

h] = bht[L′
h+1]. By induction, property (i) says thatbht[L′

h+1] = 1 + bht[Lh+1] =
1 + bht[Lh].

In subcase (b), property (i) follows because

bht[L′
h] ≤ 1 + bht[L′

h+1]

≤ 2 + bht[Lh+1] (by induction)

≤ 1 + bht[Lh] (subcase b)

≤ bht[L′
h] (inversion assumption).

Property (ii) holds sinceL′
h is black by the third remark. Q.E.D.

Since1 + bht[Lh] ≥ bht[L′
h] ≥ bht[Lh+1], the cost of combiningLh, yh, L

′
h intoL′

h−1 is

O(1 + bht[Lh]− bht[Lh+1]).

Summing up forh = 1, . . . , ℓ, we obtain the boundO(ℓ + bht[L1] − bht[Lℓ+1]) = O(log n). This
concludes our proof.

EXERCISES

Exercise A.23: Let T1 be the tree obtained in Exercise 6.1.
(a) Merge this with the treeT2 with two keys:12 and11. The root ofT2 is 12, assumed to be
black.
(b) Now split the tree obtained in (a) at the key6. ♦

Exercise A.24: Our O(log n) bound for merging theO(log n) red-black trees in the split algorithm
has fairly tight “constants” because of the inversion lemma. Give a simpler proof of anO(log n)
bound by using only the assumptions of equations (32) and (33). That is, do not assume that the
trees came from any particular process so that they have certain properties. ♦

END EXERCISES

References

[1] A. Anderson. Improving partial rebuilding by using simple balance criteria. InLecture Notes in
Computer Science, volume 382, pages 393–402, 1989. Proc.Workshop on Algorithms and Data
Structures, Aug. 17-19, 1989, Carleton University, Ottawa, Canada.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

§A. APPENDIX: RED-BLACK TREES Lecture III Page 78

[2] R. A. Baeza-Yates. Fringe analysis revisited.ACM Computing Surveys, 27(1):109–119, 1995.

[3] R. Bayer and McCreight. Organization of large ordered indexes.Acta Inform., 1:173–189, 1972.

[4] S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.Acta Inform.,
17:157–184, 1982.

[5] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1. Addison-
Wesley, Boston, 2nd edition edition, 1975.

[6] K. S. Larsen. AVL Trees with relaxed balance.J. Computer and System Sciences, 61:508–522,
2000.

[7] H. R. Lewis and L. Denenberg.Data Structures and their Algorithms. Harper Collins Publishers,
New York, 1991.

[8] K. Mehlhorn. Datastructures and Algorithms 1: Sorting and Sorting. Springer-Verlag, Berlin,
1984.

[9] T. Nakamura and T. Mizoguchi. An analysis of storage utilization factor in block split data struc-
turing scheme.VLDB, 4:489–195, 1978. Berlin, September.

[10] J. Nievergelt and E. M. Reingold. Binary trees of bounded balance.SIAM J. Computing, 2(1),
1973.

[11] R. E. Tarjan.Data Structures and Network Algorithms. SIAM, Philadelphia, PA, 1974.

[12] A. C.-C. Yao. On random 2-3 trees.Acta Inf., 9(2):159–170, 1978.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011

	 BALANCED SEARCH TREES
	 Search Structures with Keys
	 Abstract Data Types
	 Binary Search Trees
	 Tree Traversals and Applications
	 Variations on Binary Search Trees
	 AVL Trees
	 Size Balanced Trees
	 (a,b)-Search Trees
	 APPENDIX: Red-Black Trees
	 Red-Black Insertion
	 Red-Black Deletion.
	 Merge and Split.

