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“Trees are the earth’s endless effort to speak to the listgtieaven”

— Rabindranath Tagor€ijreflies 1928

Alice was walking beside the White Knight in Looking Glassd.a

"You are sad.” the Knight said in an anxious tone: "let me sipgu a song to comfort you.”
"Is it very long?” Alice asked, for she had heard a good deapoktry that day.

"It's long.” said the Knight, "but it's very, very beautifulEverybody that hears me sing it
- either it brings tears to their eyes, or else -”

"Or else what?” said Alice, for the Knight had made a suddeniga.

"Or else it doesn't, you know. Theame of the song is callétiaddocks’ Eye¥

"Oh, that’s the name of the song, is it?” Alice said, tryingfeel interested.

"No, you don’t understand,” the Knight said, looking a lgtvexed. "That’s what the name
is called. Thename really is The Aged, Aged Mdh

"Then | ought to have said 'That’'s what the song is called’ Aok corrected herself.

"No you oughtn't: that's another thing. Theong is called Ways and Meandut that's
only what it's called, you know!”

"Well, what is the song then?” said Alice, who was by this ticeenpletely bewildered.

"I was coming to that,” the Knight said. "Theong really is A-sitting On a Gatk and the
tune’s my own invention.”

So saying, he stopped his horse and let the reins fall on itk:rtben slowly beating time
with one hand, and with a faint smile lighting up his genttelish face, he began...

— Lewis Carroll,Alice Through the Looking Glas$865

Lecture Il
BALANCED SEARCH TREES

Anthropologists inform us that there is an unusually largember of Eskimo words for snow. The
Computer Science equivalent of ‘snow’ is the ‘tree’ woftd; b)-tree, AVL tree B-tree, binary search
tree, BSP tree, conjugation tree, dynamic weighted tregefitree, half-balanced tree, heaps, interval
tree, leftist tree kd-tree, octtree, optimal binary search tree, priority sdarftee, quadtree, R-trees,
randomized search tree, range tree, red-black tree, segtrem splay tree, suffix tree, treaps, tries,
weight-balanced tree, etd. have restricted the above list to trees that are used astsdata structures.

If we include trees arising in specific applications (e.guffrhan tree, DFS/BFS tree, alpha-beta tree),
we obtain an even more diverse list. The list can be enlargédctude variants of these trees: thus
there are subspecies Bftrees called3+- and B*-trees, etc.

If there is a most important entry in the above list, it has éobiinary search tree. It is the first
non-trivial data structure that students encounter, #ftear structures such as arrays, lists, stacks and
gueues. Trees are useful for implementing a varietglisftract data types We shall see that all the
common operations for search structures are easily impleadeising binary search trees. Algorithms
on binary search trees have a worst-case behavior thatpegiianal to the height of the tree. The height
of a binary tree om nodes is at leagtig n|. We say that a family of binary treest&lancedif every
tree in the family om nodes has heigl®(logn). The implicit constant in the big-Oh notation here
depends on the particular family. Such a family usually comguipped with algorithms for inserting
and deleting items from trees, while preserving membetishtipe family.

balance-nessis a
family property

Many balanced families have been invented in computer seiehey come in two basic forms:
height-balancedandweight-balanced schemedn the former, we ensure that the height of siblings are

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011



§1. KEYED SEARCH STRUCTURES Lecture Il Page 2

“approximately the same”. In the latter, we ensure that thalmer of descendants of sibling nodes are
“approximately the same”. Height-balanced schemes requdrto maintain less information than the
weight-balanced schemes, but the latter has some extrhifigxinat are needed for some applications.
The first balanced family was invented by the Russians Adiel'¢el'skii and Landis in 1962, and are
calledAVL trees. We will describe several balanced families, including Avées and red-black trees.
The notion of balance can be applied to non-binary trees; iWetwdy the family of (a, b)-treesand
generalizations. Tarjar. [] gives a brief history of some balancing schemes.

STUDY GUIDE: all our algorithms for search trees are destiin such a
way that they can be internalized, and we expect studentarty out handt
simulations on concrete examples. We do not provide any atenpode, bu
once these algorithms are understood, it should be pogsilieplementing
them in your favorite programming language.

—F

hand-simulations expected!

1. Search Structures with Keys

Search structures store a set of objects subject to segrahéthmodification of these objects. Search
structures can be viewed as a collectiomotlesthat are interconnected by pointers. Abstractly, they
are just directed graphs with edge and/or vertex labelsh Bade stores an object which we call an
item. We will be informal about how we manipulate nodes — they watiously look like ordinary
variables and pointetss in the programming languaGé C++, or like references idava. Let us look
at some intuitive examples, relying on your prior knowledgeut programming and variables.

‘?‘ keyl‘ datal ‘Q‘

N ‘ keyl‘ datal ‘.—‘—>‘ keyz‘ data2 M / \
M keyz‘ data2 ‘ A ‘ ?‘ key3‘ data3 ‘ ‘
u: /

v V‘ key4‘ datad ‘ A

Legend:
E)—> Non-null Pointe
(@) Z Null Pointer

Figure 1: Two Kinds of Nodes: (a) linked lists, (b) binarydse

91. Keys and ltems. Each item is associated withkey. The rest of the information in an item is
simply calleddata, so that we may regard arem as a painKey, Data). Besides an item, each node
also stores one or more pointers to other nodes. Since thetaefiof a node includes pointers to nodes,
this is a recursive definition. Two simple types of nodes Bustrated in Figurel: nodes with only one
pointer (Figurel(a)) are used to forming linked lists; nodes with two poistean be used to form a

1 The concept ofocativesintroduced by Lewis and Denenberg fnay also be used: a locativeis like a pointer variable
in programming languages, but it has properties like annargi variable. Informallyu will act like an ordinary variable in
situations where this is appropriate, and it will act likeainper variable if the situation demands it. This is achitbg suitable
automatic referencing and de-referencing semantics fdr sariables.
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binary trees (Figuré(b)), or doubly-linked lists. Nodes with three pointers ¢enused in binary trees
that require parent pointers. First, suppdéés a node variable of the type in Figuté). ThusN has
threefields, and we may name these fieldskesy, dat a, next . Each field has some data type. E.g.
key is typically integerdat a can be string, but it can almost anything, batxt has to be a pointer
to nodes. This field information constitutes the “type” oé thode. To access these fields, we write
N.key, N.dat a or N.next . The type ofN.next is not that of a node, but pointer to a node. In our
figures, we indicate the values of pointers by a directednarfdode pointer variables act rather like
node variables: if variable is a pointer to a node, we afsarite u.key, u.dat a andu.next to access
the fields in the node. There is a special pointer value céfledull pointer orni | value. It points to
nothing, but as a figure of speech, we may say it points tmilheode. Of course the nil node is not a
true node since it cannot store any information. In figurésHigure 1) null pointers are indicated by a
box with a slash line.

In search queries, we sometimes need to return a set of if€hesconcept of an iterator captures
this in an abstract way: aterator is a special node that has two fieldsu.val ue andu.next . Here,
u.next is a pointer to another iterator node whileval ue is a pointer to an item node. Thus, by
following thenext pointer until we reachi | , we can visit a list of items in some un-specified order.

Programming semantics: The difference between a nodeblara and g
node pointer variable is best seen using the assignment operation. Let us
assume that the node typegieey, dat a, next ), M is another node variable
andwv another node pointer variable. In the assignmént<— M’, we copy
each of the three fields dff into the corresponding fields @¥. But in the
assignmentu <+ v’, we simply makeu point to the same node asReferring
to Figurel(a), we see thait is initially pointing to N, andv pointing to M.
After the assignment < v, both pointers would point td/.

But what about N «+ «’ and ‘u <— N'? In the former case, it has the
same effect asN < M’ wherew points toM. In the latter case, it has the
same effect ag/ < v’ wherew is any pointer taV (v may not actually exist).
In each case, the variable on the left-hand side deterntireegroper assign
ment action. Once we admit all these four assignment pdisieibj there ig
little distinction between manipulating nodes and theinpers. This is what
we meant earlier, when we said that our notion of nodes willotsly look|
like ordinary variableN or pointersu. Indeed thelava language eschews
pointers, and introduces an intermediate concept calfedenece.

The four main players in our story are the two variahbleand NV, the
pointer value of:, and the node thaY refers to. This corresponds to the four
references in the tale of Alice and the White Knight at theitveigg of this
chapter. We may use a a simpler example: suppoisean integer variable
whose value is3. Let 1 x be a pointer tar whose value&z denotes the
address of.

very informally
speaking

Name of Song is Called ‘Haddocks’ Eyes’ Tz | u The clue from the story
Name of Song is ‘The Aged, Aged Man’|| &z | &N of Alice and the White
Song is Called ‘Ways and Means’ x N Knight

Song is ‘A-sitting On a Gate’ 3 Node value

Examples of search structures:

(i) An employee databasehere each item is an employee record. The key of an emplepeed is

2 For instanceC++ would distinguish between noded’f and pointers+) to nodes, and we would write — key, u —
dat a, etc.
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the social security number, with associated data such ass&ldame, salary history, etc.

(i) A dictionarywhere each item is a word entry. The key is the word itselpeissed with data such
as the pronunciation, part-of-speech, meaning, etc.

(iii) A scheduling queuim a computer operating systems where each item in the qeeu@b that is
waiting to be executed. The key is the priority of the job, ethis an integer.

Itis natural to refer such structureskasyed search structures From an algorithmic point of view,
the properties of the search structure are solely detedigethe keys in items, the associated data
playing no role. This is somewhat paradoxical since, forusers of the search structure, it is the data What is the point of
that is more important. ~ With this caveat, we will normallynare the data part of an item in oursearching for keys with
illustrations, thusdentifying the item with the key onl@ur default is theinique key assumption that no associated data?
the keys in a keyed search structure are unique. Equivgleligtinct items have the distinct keys. In
the few places where we drop this assumption, it will be stateplicitly.

Binary search trees is an example of a keyed search structiseally, each node of the binary
search trees stores an item. In this case, our terminologyoafes” for the location of items happily
coincides with the concept of “tree nodes”. However, theeevarsions of binary search trees whose
items resides only in the leaves — the internal nodes onfg &ieys for the purpose of searching.

usually, keys=

92. Uses of Key. Key values usually come from a totally ordered set. Typjcalle use the set of integers!

integers for our totally ordered set. Another common chiic&ey values are character strings ordered
by lexicographic ordering. For simplicity, the default asgption is that items have unique keys. When
we speak of the “largest item”, or “comparison of two items are referring to the item with the largest

key, or comparison of the keys in two items, etc. Keys aresddlly different names to suggest their

function in the structure. For example, a key may varioualied:

e priority , if there is an operation to select the “largest item” in tharsh structure (see example
(iii) above);

o identifier, if the keys are unique (distinct items have different keys) our operations use only
equality tests on the keys, but not its ordering properges €xamples (i) and (ii));

e costor gain, depending on whether we have an operation to find the miniifuzost) or maxi-
mum (if gain);

e weight, if key values are non-negative.

We may define aearch structure S as a representation of a set of items that supportk dlod Up
qguery, among other possible operations. The lookup querg, given keyK and.S, returns a node
in S such that the item im has keyK. If no such node exists, it returns= ni | . Next tol ookUp,
perhaps the next most important operationnsert .

SincesS represents a set of items, two other basic operations wetmvegft to support are inserting
an item and deleting an item. ff is subject to both insertions and deletions, we Sa#l dynamic set
since its members are evolving over time. In case insertimrtaot deletions, are supported, we ¢ll
a semi-dynamic set In case both insertion and deletion are not allowed, weXalktatic set Thus,
the dictionary example (ii) above is a static set from thewpieint of users, but it is a dynamic set from
the viewpoint of the lexicographer.

62. Abstract Data Types
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This section contains a general discussion on abstract tgtas (ADT's). |
may be used as a reference; a light reading is recommendetédirst time

Students might be familiar with the conceptioferface in the programming languagkava. In
the data structures literature, the general concept is krasabstract data type (ADT). Using the
terminology of object-oriented languages suctCas or Java, we may view a search data structure
is an instance of aontainer class Each instance stores a set of items and have a well-defined se
members(i.e., variables) andhethods(i.e., operations). Thus, a binary tree is just an instaridcheo
“binary tree class”. The “methods” of such class supportessobset of the following operations listed
below.

93. ADT Operations. We will now list all the main operations found in all the ADTtsat we will
study.We emphasize that each ADT will only require a proper subidtiese operations. The full set of
ADT operations listed here is useful mainly as a referende.will organize these operations into four

groups (1)-(1V):

Group | Operation | Meaning

() Initializer and Destroyers | nmake()— Structure creates a structure
kill() destroys a structure

(I Enumerationand Order | | i st () —Node returns an iterator
succ(Nodg—Node returns the next node
pr ed(Nodg—Node returns the previous node
m n()—Node returns a minimum node
max()—Node returns a maximum node

(Il Dictionary-like Operations| | ook Up(Key)—Node returns a node witkKey
i nsert (Item—Node returns the inserted node

del et e(Nodg deletes a node
del et eM n()—ltem deletes a minimum node
(IV) Set Operations spl it (Key— Structure| split a structure into two
nmer ge(Structureg merges two structures into one

Most applications do not need the full suite of the these ajgmrs. Below, we will choose various
subsets of this list to describe some well-known ADT's. Theaming of these operations are fairly
intuitive. We will briefly explain them. Lef, S’ be search structures, viewed as instances of a suitable
class. LetK be a key and: a node. Each of the above operations are invoked from sgmntaus,
S.make() will initialize the structureS, andS.nmax () returns the maximum value ii.

When there is only one structufg we may suppress the referencestoE.g.,S.mer ge(S’) can be
simply written as frer ge(S’)".

Group (I): We need to initialize and dispose of search stmest. Thusrake (with no arguments)
returns a brand new empty instance of the structure. Thesewdnmake iski | | , to remove a structure.
These are constant time operations.

Group (II): This group of operations are based on some linedering of the items stored in the
data structure. The operatibn st () returns a node that is an iterator. This iterator is the begmof
a list that contains all the items i$i in some arbitraryorder. The ordering of keys is not used by the
iterators. The remaining operations in this group depenithemrdering properties of keys. Then()
andmax () operations are obvious. The successocc (u) (resp., predecesspr ed(u)) of a nodeu
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refers to the node ity whose key has the next larger (resp., smaller) value. Thisdgfined ifu has
the largest (resp., smallest) valueSn

Note thatl i st () can be implemented using n() andsucc(u) or max() andpr ed(u). Such a
listing has the additional property of sorting the outpukiy value.

Group (IlI): The first three operations of this group,
| ookUp(K) —u, insert(K,D)—u, delete(u),

constitute the “dictionary operations”. In many ADT’s, Heeare the central operations.

The nodeu returned byl ook Up(K) has the property thatkey = K. In conventional program-
ming languages such & nodes are usually represented by pointers. In this casa, th pointer is
returned by thé ook Up function when there is no item ifi with key K.

In case no such item exists, or it is not unique, some convestiould be established. At this level,
we purposely leave this under-specified. Each applicationlsl further clarify this point. For instance,
in case the keys are not unique, we may requireltibatk Up (K') returns an iterator that represents the
entire set of items with key equal 6.

Bothi nsert anddel et e have the obvious basic meaning. In some applications, weprefgr
to have deletions that are based on key values. But such togetperation can be implemented as
‘del et e(I ookUp(K))'. In casel ookUp(K) returns an iterator, we would expect the deletion to be
performed over the iterator.

The fourth operatiort.del et eM n() in Group (Ill) is not considered a dictionary operation. The
operation returns the minimum itethin .S, and simultaneously deletes it froéh Hence, it could
be implemented adel et e(m n()). But because of its importanceel et eM n() is often directly
implemented using special efficient techniques. In most statictures, we can repladel et eM n by
del et eMax without trouble. However, this is not the same as being ab$eipport botldel et eM n
anddel et eMax simultaneously.

Group (IV): The final group of operations,
Ssplit(K)— S, S.Merge(S),

represent manipulation of entire search structusesnd S’. If S.split (K) — S’ then all the items
in S with keys greater thai” are moved into a new structufg; the remaining items are retainedsn
Conversely, the operatiafimer ge(.S’) moves all the items i’ into .S, andS’ itself becomes empty.
This operation assumes that all the key§'iare less than all the items 1. Thusspl i t andmer ge
are inverses of each other.

94. Implementation of ADTs using Linked Lists. The basic premise of ADTs is that we should
separate specification (given by the ADT) from implementat\We have just given the specifications,
so let us now discuss a concrete implementation.

Data structures such as arrays, linked list or binary seiedts are calledoncrete data types
Hence ADTs are to be implemented by such concrete data tygesvill now discuss a simple imple-
mentation of all the ADT operations using linked lists. Thismble data structure comesSivarieties
according to Tarjan11]. For concreteness, we use the variety that Tarjan ealtfogeneous doubly-
linked list. Endogeneous means the item is stored in the node itsefffithion a node:, we can directly
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access:.key andu.dat a. Doubly-linked means has two pointers.next andu.pr ev. These two
pointers satisfies the invariantnext = v iff v.prev = u. We assume students understand linked
lists, so the following discussion is a review of linkeddist

Let L be a such a linked list. Conceptually, a linked list is set oflés organized in some linear
order. The linked list has two special nodéshead andL.t ai | , corresponding to the first and last
node in this linear order. Note thatif.head = ni | iff L.tai |l = ni | iff the list is empty. We can
visit all the nodes in_ using the following routine with a simple while-loop:

LISTTRAVERSAL(L):
u + L.head
while (u # ni 1)

u < u.next
CLEANUP()

List traversal Shell

Here, VISIT{@) and CLEANUP() arenacros meaning that they stand for pieces of code that will be

textually substituted before compiling and executing thegpam. We will indicate a macro ABC by

framing it in a box Iik. Macros should be contrasted gabroutines, which are independent

procedures. In most situations, there is no semantic difiee between macros and subroutines (except

that macros are cheaper to implement). But see the impleti@ntofl ook Up(K) next. Note that

macros, like subroutines, can take arguments. As a defhgltnacros do nothing (“no-op”) unless

we specify otherwise. We calllBTTRAVERSAL ashell program — this theme will be taken up more macros are not
fully when we discuss tree traversal beldy). Since the while-loop (by hypothesis) visits every node subroutines
in L, there is a unique node(assumed. is non-empty) withu.next =ni | . This nodeis..t ai | .

It should be obvious how to implement most of the ADT operatiosing linked lists. We ask
the student to carry this out for the operations in Groupaitl (I1). Here we focus on the dictionary
operations:

e | 00kUp(K): We can use the above ListTraversal routine but replace '™Ml&)” by the follow-
ing code fragment:

: if (ukey = K) Return(u)

Since VISIT is a macro and not a subroutine, Return in VISIT is nota return from VISIT, but
a return from theé ook Up routine! The CLEANUP macro is similarly replaced by

CLEANUP()|: Return(ni |)

The correctness of this implementation should be obvious.

e i nsert (K, D): We use the ListTraversal shell, but define VIG4T as the following macro:

VISIT(u)  if (ukey=K) Return(ni | )

Thus, if the keyK is found inu, we returnni | , indicating failure (duplicate key). The
CLEANUP() macro creates a new node for the itéR), D) and installs it at the head of the
list:
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CLEANUP()|

u < new(Node)

u.key < K; u.data <+ D

u.next < L.head; u.prev < nil
L.head.prev < u < No-opifL.head =ni |
L.head + u

If (L.tail =nil)then Ltail <+ u
Return(u)

wherenew(Node) returns a pointer to space on the heap for a node.

e del et e(u): Sinceu is a pointer to the node to be deleted, this amounts to thelatdrmleletion
of a node from a doubly-linked list:

u.next .prev « u.prev
u.prev.next < u.next
del(u)

wheredel(u) is a standard routine to return a memory to the system heaptakes timeD(1).

95. Complexity Analysis. Another simple way to implement our ADT operations is to us@ys
(Exercise). In subsequent sections, we will discuss hounfgément the ADT operations using bal-
anced binary trees. In order to understand the tradeoftseiset alternative implementations, we now
provide a complexity analysis of each implementation. lsadia this for our linked list implementation.

We can provide a worst case time complexity analysis. Far, thé need to have a notion of input
size: this will ben, the number of nodes in the (current) linked list. Consisteith our principles in
Lecture I, we will perform &-order analysis.

The complexity of ookUp(K) is ©(n) in the worst case because we have to traverse the entire list
in the worst case. Bothnsert (K, D) anddel et e(u) are preceded byookUp’s, which we know
takesO(n) in the worst case. Theel et e operation isO(1). Note that such an efficient deletion is
possible because we use doubly-linked lists; with singlikdd lists, we nee®(n) time.

More generally, with linked list implementation, all the A»perations can easily be shown to have
time complexity eithe© (1) or ©(n). The principal goal of this chapter is to show that &) can be
replaced by (logn). This represents an “exponential speedup” from the linlstdrhplementation.

96. Some Abstract Data Types. The above operations are defined on typed domains (keyststes,
items) with associated semantics. Alstract data type (acronym “ADT") is specified by

e one or more “typed” domains of objects (such as integerstisets, graphs);
e a set of operations on these objects (such as lookup an itearfian item);

e properties (axioms) satisfied by these operations.

These data types are “abstract” because we make no assuoraptat the actual implementation.
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It is not practical or necessary to implement a single datecgire that has all the operations listed
above. Instead, we find that certain subsets of these opesatiork together nicely to solve certain
problems. Here are some of these subsets with wide appitgabi

e Dictionary ADT : | ookUp[,i nsert[, del et e]].

Ordered Dictionary ADT : | ookUp, i nsert,del et e, succ, pr ed.

Priority queue ADT : del et eM n,i nsert [, del et e[, decr easeKey]].

Fully mergeable dictionary ADT: | ookUp, i nsert,del et e, merge[,split].

For instance, an ADT that supports only the three operatiddrisookUp,i nsert ,del et e is
called adictionary ADT . In these ADT's, there may be further stripped-down versiamere we
omit some operations (these omitted operations are entiassquare brackets:---]. Thus, a dic-
tionary ADT without thedel et e operation is called @emi-dynamic dictionary, and if it further
omitsi nsert, itis called astatic dictionary. Thus static dictionaries are down to a bare minimum
thel ook Up operation. If we omitthepl i t operation in fully mergeable dictionary, then we obtain
themergeable dictionary ADT.

0Y\/hat do you get if you
omitl ookUp? A
write-only memory”
(WOM)!

Alternatively, some ADT’s can be enhanced by additionarapens. For instance, a priority queue
ADT traditionally supports onlydel et eM n andi nsert. But in some applications, it must be
enhanced with the operation@él et e and/ordecr easeKey. The latter operation can be defined as

decreaseKey(K,K') = [u + | ookUp(K);del et e(u);i nsert (K’,u.dat a)]

with the extra condition thak” < K (assuming a min-queue). In other words, we change the fyriori
of the itemu in the queue fronk to K’. SinceK’ < K, this amounts to increasing its priority ofin
a min-queue.

If the deletion in dictionaries are based on keys (see comatmve) then we may think of a dictio-
nary as a kind ofssociative memory The operationsake andki | I (from group (I)) are assumed
to be present in every ADT.

Variant interpretations of all these operations are péssHor instance, some versioniafiser t
may wish to return a boolean (to indicate success or failorejot to return any result (in case the
application will never have an insertion failure). Otheefus functions can be derived from the
above. E.g., it is useful to be able to create a structuo®ntaining just a single itemh. This can
be reduced toS.make(); Si nsert (I)’. The concept of ADT was a major research topic in the
1980’s. Many of these ideas found their way into structunesyramming languages such as Pascal
and their modern successors. An interface in Java is a kidddf where we capture only the types
of operation. Our discussion of ADT is informal, but one waystudy them formally is to describe
axioms that these operations satisfy. For instanc8, i a stack, then we can postulate the axiom
that pushing an item: on S followed by poppingS should return the itenz. In our treatment, we
will rely on informal understanding of these ADT's to avoltetaxiomatic treatment.

97. Application to Heapsort In Chapter I, we introduce the Mergesort Algorithm which veas-
lyzed in Chapter Il to have complexit¥(n) = 27 (n/2) + n = ©(nlogn). We now give another
solution to the sorting problem based on the (stripped dgwioyity queue ADT: in order to sort an
array A[1..n] of items, we insert each iter[i] into a priority queu&), and then remove them frof)
usingdel et eM n:
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HEAPSORTA, n):
Input: An array A of n items
Output: The sorted arrayl
1. Q@+« make()
2. fori=1tondo
Q.insert (Afi])
3. fori=1tondo
Ali] + Q.del eteM n()
4. Return(A)

The correctness of the algorithm is obvious. As each pyiguiieue operation i©(log n), this gives
anotherO(n logn) solution to sorting.

EXERCISES

Exercise 2.1: Recall our discussion of pointer semantics. Consider theeot of a “pointer to a
pointer” (also known as handler).
(a) Let the variablep, ¢ have the type pointer-to-pointer-to-node, whileand N have types
pointer-to-node and node (resp.). It is clear what- ¢ means. But what shoulg '+ «’,
‘p+ N','N «+ p’, and ‘u «+ p’ mean? Or should they have meaning?
(b) Give some situations where this concept might be useful. &

Exercise 2.2: In 94, we provided implementations of the dictionary operatigsiag linked list. Please
complete this exercise by implementing the full suite of ADJerations using linked lists. We
want you to do this within the shell programming framework. &

Exercise 2.3: Consider the dictionary ADT.
(a) Describe algorithms to implement this ADT when the cetermata structures are arrays.
HINT: A difference from implementation using linked liststb decide what to do when the array
is full. How do you choose the larger size? What is the anaauhe ListTraversal Shell?
(b) Analyze the complexity of your algorithms in (a). Com@dnis complexity with that of the
linked list implementation. &

Exercise 2.4: Repeat the previous question for the priority queue ADT. &

Exercise 2.5: SupposeD is a dictionary with the dictionary operations of lookupsént and delete.
List a complete set of axioms (properties) for these opemati &

END EXERCISES

3. Binary Search Trees

We introduce binary search trees and show that such treesupgort all the operations described
in the previous section on ADT. Our approach will be somewimaionventional, because we want to
reduce all these operations to the single operation of timta
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Recall the definition and basic properties of binary treethenAppendix of Chapter I. Figur2
shows two binary trees (small and big) which we will use in tlustrations. For each node of the
tree, we store a valuekey called its key. The keys in Figuteare integers, used simply as identifiers
for the nodes.

@ (b)

Figure 2: Two binary (not search) trees: (a) small, (b) big

Briefly, a binary tre€l is a set/N of nodeswhere each node has two pointersy.l ef t and
u.ri ght. The setV is either the empty set, @V has a special node called theroot. The remaining
nodesN \ {u} are partitioned into two sets of nodes that, recursivelynfbinary trees7, andTr. If
N is non-empty, then the roathas two fieldsy.l ef t andw.ri ght, that point to the roots df;, and
Tr (resp.). The tree%, Ty are called theeft andright subtrees of T'. If these subtrees are empty,
thenu.l eft (u.right)isnil .

A few other useful definitions: all the nodes of a binary tréthe same deptt forms thedth level.
The dth level iscompleteif it has 2¢ nodes. A node in a binary treefisll if it has two children; a
binary tree is said to btull if every internal node is full. A simple result about non-daynfull binary
trees is that it has exactly one fewer internal node than tineter of leaves. Thus, if it > 1 leaves iff
it hask — 1 > O internal nodes. As corollary, a full binary tree has an odehber of nodes. Also recall
the notion of a complete binary tree (Lecture |, Appendix Acomplete binary tree of whose size is
one less than a power dfis said to be perfect.

Our definition of binary trees is based structural induction. Thesizeof T is |[N|. We often
identify 7" with the set of nodedV, and so the size may be denot&d, and we may write ¢, € 7"
instead of & € N”. Figure 2 illustrates two binary trees whose node sets are (respdotiv. =
{1,2,3,4,5} (small tree) andV = {1,2,3,...,15} (big tree).

The keys of the binary trees in FiguPeare just used as identifiers. To turn them into a binary
searchtree, we must organize the keys in a particular way. Such arpisearch tree is illustrated in
Figure3(a). Structurally, it is the big binary tree from Figu2éb), but now the keys are no longer just
arbitrary identifiers.

BST are binary trees
A binary treeT is called abinary search tree (BST) if each node: € T has a fieldu.key that that satisfy the BST
satisfies thé8ST property: property!
ur.key < u.key < up.key. (1)
for all left descendent,, and and all right descendemt, of u. Please verify that the binary search trees
in Figure3 obey (1) at each nodea.

The “standard mistake” is to replace) by u.l ef t .key < u.key < w.ri ght key. By defi- good quiz question...
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@ (b)

Figure 3: (a) Binary Search Tree on kejis 2, 3,4, ...,14,15}. (b) Afterr ot at e(2).

nition, a left (right) descendant af is a node in the subtree rooted at the left (right) child.ofThe
left and right children of; are denoted by..| ef t andwu.ri ght . This mistake focuses on a necessary,
but not sufficient, condition in the concept of a BST. Seléckt construct a counter example to the
standard mistake using a binary tree of size

Fundamental Rule about binary tre@sost properties about binary trees are
best proved by induction on the structure of the tree. Likeywalgorithms for
binary trees are often best described using structural atigdun.

98. Height of binary trees. Let M (h) andu(h) (resp.) be the maximum and minimum number of
nodes in a binary tree with height It is easy to see that

p(h) =h+ 1. (2)

What aboutM (h)? Clearly,M(0) = 1 andM (1) = 3. Inductively, we can see that/(h + 1) =
14+ 2M(h). ThusM (1) = 1 +2M(0) = 3, M(2) = 1 +2M (1) = 7, M(3) = 1 + 2M(2) = 15.
From these numbers, you might guess that

M(h) =21 —1 (3)

and it is trivial to verify this for all.. Another way to sed/(h) is that it is equal t({jﬁ;o 2¢ since there
are at mos®’ nodes at level, and this bound can be achieved at every level. The simpteuiar (L9)
tells us a basic fact about the minimum height of binary taes nodes: if its height i, then clearly,
n < M(h) (by definition of M (k). Thusn < 2"*! — 1, leading to

h>lg(n+1)—1. (4)

Informally, the height of a binary tree is at least logarithmic in the sizlis simple relation is critical
in understanding complexity of algorithms on binary trees.

99. Lookup. The algorithm for key lookup in a binary search tree is almpsnediate from the
binary search tree property: to look for a kiy we begin at the root (remember the Fundamental Rule
above?). In general, suppose we are lookingoin some subtree rooted at nodelf u.key = K,
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we are done. Otherwise, eith&r < u.key or K > u.key. In the former case, we recursively search
the left subtree ofi; otherwise, we recurse in the right subtreea:ofin the presence of duplicate keys,
what does lookup return? There are two interpretationsW@ an return the first nodewe found to
have the given keys'. (2) We may insist on locating all nodes whose ke¥is

In any case, requirement (2) can be regarded as an exterfgib)y aamely, given a node, find
all the other nodes below with same same key askey. This subproblem can be solved separately
(Exercise). Hence we may assume interpretation (1) in th@sfng.

910. Insertion. To insert an item, say the key-data pgif, D), we proceed as in the Lookup algo-
rithm. If we find K in the tree, then the insertion fails (assuming distinctsheptherwise, we would
have reached a nodethat has at most one child. We then create a new moa®ntaining the item
(K, D) and make:’ into a child ofu. Note that if K’ < u.key, thenu’ becomes a left child; otherwise
aright child. In any casey’ is now a leaf of the tree.

911. Rotation. Roughly, to rotate a node means to make the parent efbecome its child. The
set of nodes is unchanged. Rotation is not an operation idigtuof ADT operation §2), but it is
critical for binary trees. On the face of it, rotation does do anything essential: it is just redirecting
some parent/child pointers. Two search structures theg staactly the same set of items are said to be
equivalent. Rotation is arequivalence transformation i.e., it transforms a binary search tree into an
equivalent one. Remarkably, we shall show that rotatior? éamm the basis for all other binary tree
operations.

The operatiom ot at e(u) is a null operation (“no-op” or identity transformation) @ is a root.
So assume is a non-root node in a binary search t®eThenr ot at e(u) amounts to the following
transformation of” (see Figurel).

rotate(u)

rotate(v)

Figure 4: Rotation at and its inverse.

Inr ot at e(u), we basically want to invert the parent-child relation beéwu and its parent. The
other transformations are more or less automatic, giverthiearesult is to remain a binary search tree.
If the subtreesA, B, C (any of these can be empty) are as shown in Figutaen they must re-attach
as shown. This is the only way to reattach as children afidv, since we know that

A<u<B<ouv<(C

in the sense that each key ihis less than: which is less than any key ifs, etc. Actually, only the
parent of the root of3 has switched fromu to v. Notice that after ot at e(u), the former parent of

3 Augmented by the primitive operations of adding or remowarmpde.
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(not shown) will now have: instead ofv as a child. After a rotation at, the depth of: is decreased by
1. Note thatr ot at e(u) followed byr ot at e(v) is the identity or no-op operation; see Figdre

912. Graphical convention: Figure4 encodes two conventions: consider the figure on the leftcide
the arrow. First, the edge connectingp its parent is directed vertically upwards. This indicateaty
could be the left- or right-child of its parent. Second, twe edges fromv to its children are connected
by a circular arc. This is to indicate thatand its sibling couliexchange places (i.es,could be the
right-child of v even though we choose to shavas the left-child). Thus Figuréis a compact way to
represent four distinct situations.

9* 13. Implementation of rotation. Let us discuss how to implement rotation. Until now, when we
draw binary trees, we only display child pointers. But we tmasv explicitly discuss parent pointers.

Let us classify a node into one of thredypes left, right or root. This is defined in the obvious
way. E.g.uis alefttypeiffitis notaroot and is a left child. The typewfs easily testedu is type root
iff w.parent =ni |, andu is type left iffu.par ent .| ef t = w. Clearly,r ot at e(u) is sensitive to
the type ofu. In particular, ifu is a root therr ot at e(u) is the null operation. 1T € {l ef t ,ri ght }
denote left or right type, itsomplementary typeis denoted’, wherel ef t = ri ght andri ght =
left.

w

|
0

rot at e(u)

rotate(v)

Figure 5: Links that must be fixed not at e (u).

We are ready to discuss thet at e(u) subroutine. We assume that it will return the (same) node
u. Assumeu is not the root, and its type 5 € {l ef t ,ri ght }. Letv = u.par ent, w = v.par ent
andx = v.T. Note thatw andz might beni | . Thus we have potentially three child-parent pairs:

(@, u), (u,v), (v,w). (®)
But after rotationy andv are interchanged, and we have the following child-pareinspa
(2,0), (v, u), (u,w). (6)

These pairs are illustrated in Figuresand6 where we explicitly show the parent pointers as well as
child pointers. Thus, to implement rotation, we need to siggs6 pointers § parent pointers and
child pointers). We show that it is possible to achieve thiggsignment using exactiyassignments.

Such re-assignments must be done in the correct order.dsigdsee what is needed by thinking of
(5) as a doubly-linked listz, u, v, w) which must be converted into the doubly-linked Ijst v, u, w)

4 If this were to happen, the subtreds B, C' needs to be appropriately relabeled.
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.
~___--" ~___--" = -

Figure 6: Simplified view of ot at e(u) as fixing a doubly-linked listx, u, v, w).

in (6). This s illustrated in Figuré. For simplicity, we use the terminology of doubly-linkestlso that
u.next andu.pr ev are the forward and backward pointers of a doubly-linked kere is the code:

ROTATE(u):
> Fix the forward pointers
1. wu.prev.next <+ u.next
<4 z.next =wv
2. wu.next < u.next.next
<4 u.next =w
3. wu.prev.next.next < u
<4 v.next =u
> Fix the backward pointers
4. wu.next.prev.prev < u.prev
d v.prev==z
5. wu.next.prev < u

<4 w.prev =u
6. wu.prev < u.prev.next
< u.prev=w

We can now translate this sequencesadissignments into the corresponding assignments for binary
trees: theu.next pointer may be identified with.par ent pointer. Howevery.pr ev would beu.T'
whereT € {l eft right} is the type ofr. Moreover,v.prev isv.T. Also w.prev is w.T" for
another typel”. A further complication is that or/andw may not exist; so these conditions must be
tested for, and appropriate modifications taken.

If we use temporary variables in doing rotation, the codelmsimplified (Exercise).

914. Variations on Rotation. The above rotation algorithm assumes that for any nadee can
access its parent and grandparent”. This is true if each node has a parent pointgrar ent . This

is our default assumption for binary tree algorithnigut even if we have no parent pointers, we could
modify our algorithms to achieve the desired results bexaus search invariably starts from the root,
and we can keep track of the triple, ', +’") which is necessary to know when we rotate.at

Some authors replace rotation with a pair of variants, dédit-rotation andright-rotation . These
can be defined as follows:

left-rotate(u)=rotate(uleft), right-rotate(u) =rotate(u.right).

The advantage of using these two rotations is that, if we denaintain parent pointers, then they are
slightly easier to implement than the usual rotate: we ordkensure that whenever we are operating
on a nodey, we also keep track of the parenof « (this isnota recursive property — we do not need to
keep track of the parent @f). After we do al eft -r ot at e(u) orri ght - r ot at e(u), we need to
update one of the child pointers pf
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915. Double Rotation. Suppose: has a parent and a grandparent. Then two successive rotations
on u will ensure thaty andw are descendants af We may denote this operation byt at e?(u).
Up to left-right symmetry, there are two distinct outcomes ot at e?(u): (i) eitherv, w are becomes
children ofu, or (ii) only w becomes a child of andv a grandchild ofu. These depend on whether
is theouter or inner grandchildren ofw. These two cases are illustrated in FigidrdAs an exercise,
we ask the reader to draw the intermediate tree after thefipdication ofr ot at e(w) in this figure.]

Q A rot at e2(u) A Q
A A Zag-zag Case A A

0 a r ot at e?(u)
A A Zig-zag Case

Figure 7: Two outcomes afot at e?(u)

It turns out that case (ii) is the more important case. Forynpamposes, we would like to view the
two rotations in this case as one indivisible operation:ceame introduce the termhouble rotation to
refer to case (ii) only. For emphasis, we might call the oxddrotation asingle rotation.

These two cases are also known as the zig-zig (or zag-zagigwzég (or zag-zig) cases, respec-
tively. This terminology comes from viewing a left turn ag,zand a right turn as zag, as we move from
up a root path. The Exercise considers how we might implemeiouble rotation more efficiently than
by simply doing two single rotations.

916. Five Canonical Paths from a node. A path is a sequence of nodeg, u1, . . ., u,, ) where each
u; is a child ofu;_, or eachu; is a parent ofs;_;. The length of this path is, andu,, is also called
thetip of the path. E.g.(2,4,8,12) is a path in Figur&(b), with tip 12. Relative to a node, there
are 5 canonical paths that originate framThe first of these is the path fromto the root, called the 5 paths from a node
root path of u. In figures, the root path is displayed as an upward pathoviatig parent pointers from

the nodeu. E.g., ifu = 4 in Figure2(b), then the root path ist, 2, 1). Next we introduce 4 downward

paths fromu. Theleft-path of « is simply the path that starts fromand keeps moving towards the

left child until we cannot proceed further. Thight-path of « is similarly defined. E.g., withw = 4

as before, the left-path igl, 7) and right-path ig4, 8). Next, we define théeft-spine of a nodeu is

defined to be the path, rightpati{u.l eft )). In caseu.l ef t = ni |, the left spine is just the trivial
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path(u) of length0. Theright-spine is similarly defined. E.g., with as before, the left-spine {d, 7)
and right-spine ig4, 8, 12). The tips of the left- and right-paths atcorrespond to the minimum and
maximum keys in the subtree@t The tips of the left- and right-spingsovided they are different from
u itself, correspond to the predecessor and successor Gfearly,u is a leaf iff all these four tips are
identical and equal ta.

O
UJ)
O u otate

2R

Figure 8: Reduction of the left-spine afafterr ot at e(u.l ef t ) =r ot at e(w).

/

We now examine what happens to these five paths after a rotation. After performing a left-
rotation atu, we reduce the left-spine length afby one (but the right-spine af is unchanged). See
Figure8.

LEMMA 1. Let(ug,u1,...,u;) be the left-spine of andk > 1. Also let(v, . .., v,,) be the root path
of u, whereu = vy anduv,, is the root of the tree. After performingt at e(u.l ef t ), the left-child of How rotations affect
w is transferred from the left-spine to the root path. Moregisely: the 5 paths
(i) the left-spine oft becomegug, us, . .., uy) of lengthk — 1,
(i) the root path ofu becomesguvy, u1,v1,...,v,) oflengthm + 1, and

(iii) the right-path and right-spine ofi are unchanged.

So repeatedly left-rotations atwill reduce the left-spine ofi to length0. A similar property holds
for right-rotations.

917. Deletion. Suppose we want to delete a naddn caseu has at most one child, this is easy to do
— simply redirect the parent’s pointer tointo the unique child of: (or ni | if wis a leaf). Call this theCut(u) operation
procedureC'ut(u). It is now easy to describe a general algorithm for deletingdeu:

DELETE(T, w):
Input:  w« is node to be deleted froffi.
Output: T, the tree withu deleted.
while u.l eft #ni | do
rotate(uleft).
Cut(w)

The overall effect of this algorithm is schematically iliceged in Figured.

If we maintain information about the left and right spinedtas of nodes (Exercise), and the right
spine ofu is shorter than the left spine, we can perform the while-lasipg right-rotations to minimize
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the number of rotations. To avoid maintaining height infation, we can also do this: alternately
perform left- and right-rotates at until one of its 2 spines have length This guarantees that the
number of rotations is never more than twice the minimal eded

0]
deletef:)

(i)

standard delete]

v Left\S\pineTip@)

cut(v)

Figure 9: Deletion: (i) Rotation-based, (ii) Standard.

We ask the reader to simulate the operationBefete(T', 10) whereT is the BST of Figure.

918. Standard Deletion Algorithm. The preceding deletion algorithm is simple but it is quit@no
standard. We now describe thandard deletion algorithm:

STANDARD DELETE(T, u):
Input:  w is node to be deleted froffi.
Output: T, the tree with item in, deleted.
if « has at most one child, apptyut(«) and return.
else let v be the tip of the left spine af.
Copy the item inv into « (removing the old item inu)
Cut(v).

This process is illustrated in Figu® Note that in the else-case, the nodés not physically
removed: only the item represented#ys removed. Since is the tip of the left spine, it has at most
one child, and therefore it can be cut. If we have to returnlaevat is useful to return the parent of the
nodev that was cut — this can be used in rebalancing tree (see Adtidelbelow). The reader should
simulate the operations dbelete(T', 10) for the tree in Figure3, and compare the results of standard
deletion to the rotation-based deletion.

The rotation-based deletion is conceptually simpler, ailbb& useful for amortized algorithms
later. However, the rotation-based algorithm seems todweeslas it requires an unbounded number of
pointer assignments. To get a definite complexity benefitcowdd perform this rotation in the style of
splaying (Chapter VI, Amortization).
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919. Inorder listing of a binary tree.

LEMMA 2. LetT be a binary tree om nodes. There is a unique way to assign the Kayg, ..., n}
to the nodes of" such that the result is a binary search tree on these keys.

We leave the simple proof to an Exercise. For exampl&,ig the binary tree in Figurg(b), then
this lemma assigns the keys, . . ., 15} to the nodes of " as in Figure3(a). In general, the node that is
assigned key (i = 1,...,n) by Lemma2 may be known as théh node of 7. In particular, we can
speak of thdirst ( = 1) andlast node(i = n) of T. The unique enumeration of the nodeslofrom
first to last is called then-order listing of 7.

920. Successor and Predecessorlf « is theith node of a binary tre®’, thesuccessoof « refers to
the (i + 1)st node ofl". By definition,u is thepredecessonf v iff v is the successor af. Letsucc(u)

andpr ed(u) denotes the successor and predecessar df coursesucc(u) (resp.,pred(u)) is
undefined ifu is the last (resp., first) node in the in-order listing of treet

We will define a closely related concept, but applied to aryyKe Let K be any key, not necessarily
occurring in7T'. Define thesuccessoiof K in T to be the least ke’ in T such thatk’ < K’. We
similarly define thepredecessonf K in T to be the greatedt” in T' such that’ < K. Note that ifK
occurs inT’, say in nodeu, then the successor/predecessakadre just the successor/predecessar.of

In some applications of binary trees, we want to maintaimigws to the successor and predecessor
of each node. In this case, these pointers may be denctedc andw.pr ed. Note that the succes-
sor/predecessor pointers of nodes is unaffected by ratt@ur default version of binary trees do not
include such pointerd.et us make some simple observations:

LEMMA 3. Letw be a node in a binary tree, butis not the last node in the in-order traversal of the
tree. Letsucc(u) = v.

() If u.ri ght #ni | thenw is the tip of the right-spine af.

(i) If u.ri ght =ni |l thenu is the tip of the left-spine af.

Itis easy to derive an algorithm femucc (u) using this lemma:

Succ(u):
Output: The successor node of(if it exists) orni | .
1. if wright #nil < returnthe tip of the right-spine af
1.1 v+ u.right;
1.2 whilev.l eft #nil,v«vleft;
1.3 Return(v).
2. else <« returnv whereu is the tip of the left-spine af

2.1 v < u.parent;
2.2 while v # ni | andu = v.ri ght,
2.3 (u,v) + (v,v.parent).

2.4 Return(v).

The algorithm fopr ed(u) is similar.

We can also develop a rotation-based version of succesgoedecessor.
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921. Min, Max, DeleteMin. This is trivial once we notice that the minimum (maximumites
in the first (last) node of the binary tree. Moreover, the fffast) node is at the tip of the left-path
(right-path) of the root.

922. Merge. To merge two tree§’, T where all the keys iff" are less than all the keys i, we

proceed as follows. Introduce a new nadand form the tree rooted at with left subtreel” and right
subtre€l”. Then we repeatedly perform left rotationsuatintil u.| ef t = ni | . At this point, we can
performCut(u) (see§17). If you like, you can perform right rotations instead oftledtations.

923. Split. Suppose we want to split a trédéat a keyK. Recall the semantics of split frof2:
T.split(K) — T’. This says that all the keys less than or equaktes retained inl’, and the rest are
split off into a new tredl” that is returned.

First we do d ookUp of K in T'. This leads us to a nodethat either contain&” or elseu is the
successor or predecessorffin 7. That is,u.key is either the smallest key i that is greater or
equal toK or the largest key iff" that is less than or equal . Now we can repeatedly rotate at
until ©w becomes the root df. At this point, we can split off either the left-subtree ayhi-subtree of
T, renaming them && and7” appropriately. This paif7’, 7”) of trees is the desired result.

924. Complexity. Letus now discuss the worst case complexity of each of theeatyoerations. They
are all©(h) whereh is the height of the tree. It is therefore desirable to be &blaintainO(log n)
bounds on the height of binary search trees.

We stress that our rotation-based algorithms for inserioth deletion may be slower than the
“standard” algorithms which perform only a constant numtfepointer re-assignments. If this cost
is not an issue, then rotation-based algorithms are attedmecause of their simplicity. Other possible
benefits of rotation will be explored in Chapter 6 on amoti@aand splay trees.

EXERCISES

Exercise 3.1: Let T be a left-list (i.e., a BST in which no node has a right-child)
(a) Suppose: is the tip of the left-path of the root. Describe the resultegeated rotation af
until w becomes the root.
(b) Describe the the effect of repeated left-rotate of thot 067" (until the root has no left child)?
lllustrate your answer to (a) and (b) by drawing the interiatedtrees whefi’ has5 nodes. <

Exercise 3.2: Consider the BST of Figur8(a). This calls for hand-simulation of the insertion and
deletion algorithms. Show intermediate trees after eatdtiom, not just the final tree.
(a) Perform the deletion of the kay this tree using the rotation-based deletion algorithm.
(b) Repeat part (a), using the standard deletion algorithm. &

Exercise 3.3: Suppose the set of keys in a BST are no longer unique, and wetwanodify the
| ookUp(u, K) function to return a linked list containing all the nodes t@iming key K in a
subtre€r’, rooted atu. Write the pseudo-code fdrookUpAll(u, K). &
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Exercise 3.4: The function \ERIFY(u) is supposed to returtnr ue iff the binary tree rooted at is a
binary search tree with distinct keys:

VERIFY(Nodeu)
if (uw=nil)Return(true)
if ((uleft #nil)and@.key <u.left.key))Return(f al se)
if ((u.right #nil)and@.key >w.right.key))Return(f al se)
Return(VERIFY(u.l ef t )AVERIFY(u.ri ght))

Either argue for it's correctness, or give a counter-exaspbwing it is wrong. &

Exercise 3.5: TRUE or FALSE: Recall that a rotation can be implemented Wighointer assignments.
Suppose a hinary search tree maintains successor and @ssdetinks (denoted.succ and
u.pr ed in the text). Now rotation requirel® pointer assignments. &

Exercise 3.6: (a) Implement the above binary search tree algorithmst{ootdookup, insert, deletion,
etc) in your favorite high level language. Assume the birieggs have parent pointers.
(b) Describe the necessary modifications to your algoritim@a) in case the binary trees do not
have parent pointers. &

Exercise 3.7: Let T be the binary search tree in Figuse You should recall the ADT semantics of
T « split(T,K)andmerge(7,7’) in §2. HINT: although we only require that you show
the trees at the end of the operations, we recommend thathywuselected intermediate stages.
This way, we can give you partial credits in case you makeakést!

(a) Perform the operatiof’ + spl i t (T,5). DisplayT andT” after the split.

(b) Now performi nsert (T, 3.5) whereT is the tree after the operation in (a). Display the tree
after insertion.

(c) Finally, performner ge(7,7") whereT is the tree after the insert in (b) affd is the tree
after the splitin (a). &

Exercise 3.8: Give the code for rotation which uses temporary variables. &

Exercise 3.9: Instead of minimizing the number of assignments, let usdryntnimize the time. To
count time, we count each reference to a pointer as takindiom@. For instance, the assignment
u.next .prev.prev « u.prev costss time units because in addition to the assignment, we
have to make accedsointers.

(a) What is the rotation time in odirassignment solution in the text?
(b) Give a faster rotation algorithm, by using temporaryiafales. &

Exercise 3.10: We could implement a double rotation as two successiveioogtand this would take
12 assignment steps.
(a) Give a simple proof that 10 assignments are necessary.
(b) Show that you could do this with 10 assignment steps. &

Exercise 3.11:Open-ended: The problem of implementingt at e(u) without using extra storage or
in minimum time (previous Exercise) can be generalized.d &k a directed graph where each
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edge (“pointer”) has a name (e.gext ,prev,| ef t ;ri ght) taken from a fixed set. Moreover,
there is at most one edge with a given name coming out of eadl. nSuppose we want to
transformG to another grapld:’, just by reassignment of these pointers. Under what camditi
can this transformation be achieved with only one variab(es inr ot at e(«))? Under what
conditions is the transformation achievable at all (usirgyenintermediate variables? We also
want to achieve minimum time. &

Exercise 3.12: The goal of this exercise is to show thaf, and T} are two equivalent binary search

trees, then there exists a sequence of rotations that wamsf7}, into 77. Assume the keys in thus rotation is a

each tree are distinct. We explore two strategies. eunul\i/\glse ar:ce
(a) One strategy is to first make sure that the rootgpand7; have the same key. Then by transqformation

induction, we can transform the left- and right-subtree$p$o that they are identical to those
of T;. Describe an algorithml (77, T») that implements this strategy. The algorithdoes not
modify T5 at all, but transform§? by rotations untill’; has the same shape’Bs Of course, we
assume thdry, T, are equivalent BST's.

(@) Let Ra(n) be the worst case number of rotations of algoritAron trees withn keys. Give

a tight analysis o 4 (n).

(b) Another strategy is to show that any tree can be reducadcamonical form. For canonical
form, we choose those binary search trees that form a &ftAileft-list is a binary tree in which
every node has no right-child. If every BST can be rotatea énleft-list, then we can rotate from
any T, to anyT; as follows: sincel, and7; are equivalent, they can each be rotated into the
same left-listL. To rotate fromI to T, we first transfornil}y to L, and then apply thesverse
of the sequence of rotations that transfafimto L. Give an explicit description of an algorithm
B(T) that transforms any BST into an equivalent BST that is a left-list.

(b”) Let Rp(n) be worst case number of rotations for algorit®(i") on trees withn keys. Give

a tight analysis o (n). O

Exercise 3.13: Prove Lemma&, that there is a unique way to order the nodes of a binaryftré®t is
consistent with any binary search tree base@oRlINT: remember the Fundamental Rule about
binary trees. &

Exercise 3.14:Implement the Cut:) operation in a high-level informal programming language- A
sume that nodes have parent pointers, and your code shoukdewen if u.parent = nil.
Your code should explicitly “delete)” after you physically remove a node If « has two chil-
dren, then Cut:) must be a no-op. &

Exercise 3.15:Design an algorithm to find both the successor and predecessogiven keyK in
a binary search tree. It should be more efficient than justrfaqnthe successor and finding the
predecessor independently. &

Exercise 3.16: Show that if a binary search tree has heigldnd« is any node, then a sequence of
k > 1 repeated executions of the assignmert successor(u) takes timeO(h + k). O

Exercise 3.17:Show how to efficiently maintain the heights of the left arghtispines of each node.
(Use this in the rotation-based deletion algorithm.) &

Exercise 3.18: We refine the successor/predecessor relation. Supposé'thiatobtained fromil” by
pruning all the proper descendantagfsow is a leaf inT™). Then the successor and predecessor
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of w in T are called (respectively) thexternal successoandpredecessornf v in T" Next, if
T, is the subtree at, then the successor and predecessariof7), are called (respectively) the
internal successorandpredecessof u in T'

(a) Explain the concepts of internal and external successwt predecessors in terms of spines.
(b) What is the connection between successors and predesé¢sgshe internal or external ver-
sions of these concepts? &

Exercise 3.19: The text gave a conventional algorithm for successor of eerinca BST. Give the

rotation-based version of the successor algorithm. &

Exercise 3.20: Suppose that we begin withpointing at the first node of a binary tree, and continue to

apply the rotation-based successor (see previous qugstitihu is at the last node. Bound the
number of rotations made as a functiornnofthe size of the binary tree). %

Exercise 3.21: Suppose we allow allow duplicate keys. Undé&}, (we can modify our algorithms

suitably so that all the keys with the same value lie in contee nodes of some “right-path
chain”.

(a) Show how to modify lookup on kel so that we list all the items whose keyA&s

(b) Discuss how this property can be preserved during mtainsertion, deletion.

(c) Discuss the effect of duplicate keys on the complexitsotédition, insertion, deletion. Suggest
ways to improve the complexity. &

Exercise 3.22: Consider the priority queue ADT. Describe algorithms to lienpent this ADT when

the concrete data structures are binary search trees.
(b) Analyze the complexity of your algorithms in (a). &

END EXERCISES

64. Tree Traversals and Applications

In this section, we describe systematic methods to visthalhodes of a binary tree. Such methods Unix fans — shell

are calledree traversals Tree traversals provide “algorithmic skeletons” stkellsfor implementing

many useful algorithms. We had already seen this concefpd,invhen implemented ADT operations

using linked lists.

925. In-order Traversal. There are three systematic ways to visit all the nodes in arpitnee: they
are all defined recursively. Perhaps the most importaneigitorder or symmetric traversal. To do
in-order traversal of a binary tree rooteduiatyou recursively do in-order traversalefl ef t , then you
visit u, then recursive do in-order traversahof i ght . Here is the shell for this traversal:
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IN-ORDER(u):

Input:  w is root of binary tredl” to be traversed.

Output: The in-order listing of the nodes if.
I n-order (ul eft).

1.
3.

I n-order (u.ri ght).

This recursive shell uses two macros called BASE and VISorF.tFaversals, the BASE macro can be
expanded into the following single line of code:

[BAsEQ)]

if (u=nil) Return.

The VISIT(u) macro is simply:

VST]

Printukey.

In illustration, consider the two binary trees in Fig@eThe numbers on the nodes are keys, but they
are not organized into a binary search tree. They simplyesasudentifiers.

An in-order traversal of the small tree in Figutevill produce(2,4, 1,5, 3). For a more substantial
example, consider the output of an in-order traversal obtgdree:

(7,4,12,15,8,2,9,5,10,1,3,13,11, 14,6)

Basic fact:if we list the keys of a BST using an inorder traversal, thenkiiys will be sorted.

For instance, the in-order traversal of the BST in Figaivell simply produce the sequence
(1,2,3,4,5,...,12,13,14,15).

This yields an interesting conclusiosorting a setS of numbers can be reduced to constructing a
binary search tree on a set of nodes witas their keysThis is because once we have such at BST, we
can do an in-order traversal to list the keys in sorted order.

926. Pre-order Traversal. We can re-write the above In-Order routine succinctly as:

IN(u) = [BASE(@) | IN(u.l ef t );[ VISIT(u) | IN (u.r i ght )]

Changing the order of Steps 1, 2 and 3 in the In-Order proee(hut always doing Step 1 before
Step 3), we obtain two other methods of tree traversal. Tihug perform Step 2 before Steps 1 and 3,
the result is called thpre-order traversal of the tree:

PRE(u) = | BASE() || VISIT(v) | PRE(u.l ef t ); PRE(u.ri ght )]
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Applied to the small tree in Figurg we obtain(1, 2, 4, 3,5). The big tree produces

(1,2,4,7,8,12,15,5,9,10,3,6, 11, 13, 14).

927. Post-order Traversal. If we perform Step 2 after Steps 1 and 3, the result is callegpdst-
order traversal of the tree:

POST (u) = [; POST(ul ef t ); POST (u.ri ght );| VISIT(u) |

Using the trees of Figur2 we obtain the output sequendés2, 5, 3, 1) and

(7,15,12,8,4,9,10,5,2,13,14,11,6,3,1).

928. Applications of Tree Traversal: Shell Programming Tree traversals may not appear interest-
ing on their own right. However, they serve as shells for sg\many interesting problems. That is,
many algorithms can be programmed by taking a tree travehgdl, and replacing the named macros
by appropriate code: for tree traversals, we have two suanagsacalled BASE and VISIT.

To illustrate shell programming, suppose we want to comghaeheight of each node of a BST.
Assume that each nodehas a variable. H that is to store the height of node If we have recursive
computed the values afl ef t .H andw.ri ght .H, then we see that the heightottan be computed
as
uw.H =1+ max{u.l eft . H+4+uright.H}.
computing height in

This suggests the use of post-order shell to solve the heigitlem: We keep the no-op BASE post-order

subroutine, but modify’ 7,517 (u) to the following task:

if (uleft =nil)thenL + —1.
else L < u.l eft.H.

if (w.ri ght =nil)then R« —1.
else R < w.ri ght .H.

u.H + 1+ max{L, R}.

On the other hand, suppose we want to compute the depth ofnealgh Again, assume each nade
stores a variable.D to record its depth. Then, assuming thab has been computed, then we could
easily compute the depths of the childrenuaising

computing depth in
pre-order

uleft.D=wuright.D=1+u.D.

This suggests that we use the pre-order shell for compugpthd

929. Return Shells. For some applications, we want a version of the above tralessitines that
return some value. Call them “return shells” here. We iliatgt this by modifying the previous postorder
shell POST{) into a new version rPOST§ which returns a value of tyg€. For instance]” might be
the type integer or the type node. The returned value fromrsae calls are then passed to the VISIT
macro:
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RPOST()
[1BASEW) |

L+ rPOST (u.l eft).
R < rPOST (u.ri ght).

\ IVISIT (u, L, R) \

Note that bothr BASE(u) andrVISIT (u, L, R) returns some value of tygg.

As an application of this rPOST routine, consider our prasisolution for computing the height of
binary trees. There we assume that every notlas an extra field called. H that we used to store the
height ofu. Suppose we do not want to introduce this extra field for emede. Instead of POS#),
we can use rPOST] to return the height of. How can we do this? First, BASE) should be modified
to return the height afii | nodes:

RBASE(u):
if (u=ni ) Return(—1).

Second, we must re-visit the VISIT routine, modifying (siffypng!) it as follows:

RVISIT(u, L, R)
Return(1l + max{L, R}).

The reader can readily check that rPOST solves the heightgroelegantly. As another application
of such “return shell”, suppose we want to check if a binagg fis a binary search tree. This is explored
in Exercises below.

The motif of using shell programs to perform node traversalgmented by a small set of macros
such as BASE and VISIT, will be further elaborated when wegtgraph traversals in the next Lecture.
Indeed, graph traversal is a generalization of tree tratefhell programs unify many programming
aspects of traversal algorithms: we cannot over emphdsgzedint.

EXERCISES

Exercise 4.1: Joe said that in a post-order listing of the keys in a BST, wetrhagin with the smallest
key in the tree. Is he right? &

Exercise 4.2: Give the in-order, pre-order and post-order listing of tbees in the binary tree in Fig-
urel6. &

Exercise 4.3: BST reconstruction from node-listings in tree traversals.
(a) Let the in-order and pre-order traversal of a binary tfEewith 10 nodes be
(a,b,c,d, e, f,g,h,i,5)and(f,d,b,a,c e h,g,j, 1), respectively. Draw the treE.
(b) Prove that if we have the pre-order and in-order listihthe nodes in a binary tree, we can
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reconstruct the tree.

(c) Consider the other two possibilities: (c.1) pre-orded g@ost-order, and (c.2) in-order and
post-order. State in each case whether or not they havertieegonstruction property as in (b).
If so, prove it. If not, show a counter example.

(d) Redo part(c) for full binary trees. Recall that in a fuilhary tree, each node either has no
children or 2 children. &

Figure 10:

Exercise 4.4: Here is the inorder and postorder listing of nodes in a bit@s. (a, b, ¢, d, e, f, g, h, 1)
and(f,b,a,e,c,d, h,qg,i), respectively. Please draw the BST. O

Exercise 4.5: Tree reconstruction from key-listings in tree traversdlkis is a slightly problem from
the previous question. In the previous problem, we want ¢comstruct a BST from the list of
nodes from various traversals. Now, instead of nodes, wgieea the keys in a traversal. Instead
of two lists, we only need one for reconstruction.

(a) Here is the list of keys from post-order traversal of a BST

2,1,3,7,10,8,5,13,15, 14, 12

Draw this binary search tree.
(b) Describe the general algorithm to reconstruct a BST fitsmost-order traversal. &

Exercise 4.6: Use shell programming to give an algorithm to compute the eiza nodeu (i.e., the
number of nodes in the subtree rooted:at Give two versions: (a) using a return shell, and (b)
using a version where the size of nadé recorded in a field..size. &

Exercise 4.7: Let size(u) be the number of nodes in the tree rooted.atSay that node is size-
balancedif
1/2 < size(u.l eft)/size(u.ri ght) <2

where a leaf node is size-balanced by definition.

(a) Use shell programming to compute the routig:) which returnssize(u) if each node in
the subtree at is balanced, an@(u) = —1 otherwise. Do not assume any additional fields in
the nodes or that the size information is available.

(b) Suppose you know that.| eft andu.ri ght are size-balanced. Give a routine called
REBALANCE(u) that uses rotations to makebalanced. Assume each nodéas an ex-
tra fieldu.SIZ FE whose value isize(u) (you must update this field as you rotate). &

Exercise 4.8: Show how to use the pre-order shell to compute the depth &f eade in a binary tree.
Assume that each nodehas a depth fieldy.D. &
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Exercise 4.9: Give a recursive routine calle@heckBST (u) which checks whether the binary tree
T, rooted at a node is a binary search tree (BST). Unfortunately, we cannotrdffo simply
return a Boolean value only, because in recursive callsp#rent need to receive some extra
information from the children. Design@heckBST (u) to return a pai¢, r) of keys. Perhaps
(¢,7) could encode the minimum and maximum keysZin But this pair should also be able
to tell you whetherT,, is BST or not. Assume that each non-nil nodédas the three fields,
u.key,u.l eft uright. &

Exercise 4.10: The previous exercise yields a recursive subroutiieeckBST (u) to check if
T, is a BST. This exercise explores an alternative solutione thcursive subroutine
bCheckBST (u, min, maz) that returns a Boolean value; the value is trueTiff is a BST.
REMARK: we also definéCheckBST (u) to bebCheckBST (u, —oc0, +00). For simplicity,
assume’,, has no duplicate keys. &

Exercise 4.11: A student proposed a different approach to the previoudigmed.etmin BST (u) and
maxBST (u) compute the minimum and maximum keysTip, respectively. These subroutines
are easily computed in the obvious way. For simplicity, assall keys are distinct and# ni |
in these arguments. The recursive subroutine is given kvl

CheckBST(u)
> Returns largest key iffi, if T}, is BST
> Returnstoo if not BST
> Assumaey is notni |
If (u.l eft #nil)
L <+ maxBST(u.l eft)
If (L > u.key or L = o0) returno)
If (u.ri ght #nil)
R < minBST (u.ri ght)
If (R < u.key or R = o0) returno)
Return(CheckBST (u.l eft) A (CheckBST (u.ri ght)

Is this program correct? Bound its complexity. HINT: Let theot path length” of a node be the
length of its path to the root. The “root path length” of a iinlkee T, is the sum of the root path
lengths of all its nodes. The complexity is related to thimber. &

Exercise 4.12: Like the previous problem, we want to check if a binary treg BST. Write a recursive
algorithm calledSlowBST (u) which solves the problem, except that the running time ofryou
solution must be provably exponential-time. If you likeuysolution may consist of mutually
recursive algorithms. Your overall algorithm must achiéivie exponential complexity without
any trivial redundancies. E.g., we should not be able totdalatements from your code and still
achieve a correct program. Thus, we want to avoid a trivilitens of this kind:

SlowBST (u)
Compute the number of nodes inT;,
Do for 2™ times:
FastBST(u)

END EXERCISES
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65. Variations on Binary Search Trees

We discuss some important variations of our standard trem@tiof binary search trees (BST). For
instance, an alternative way to use binary trees in seargbtgtes is to only store keys in the leaves.
There are also notions of implicit BST: this means that teedekeys are not explicitly stored as such in
the tree. Another notion of implicitness is where the clpifdént links of the BST is not directly stored,
but computed. We can also store various auxiliary inforaratn the BST such as height, depth or
size information. We can also maintain additional poingersh as level links, or successor/predecessor
links.

930. Extended binary trees. There is an alternative view of binary trees; following Kim{i, p. 399],
we call themextended binary trees For emphasis, the original version will be caldndard binary
trees In the extended trees, every node Basr 2 children; nodes with no children are calfenll
nodeswhile the other nodes are callesn-nil nodes See Figurell(a) for a standard binary tree
and Figurel1(b) for the corresponding extended version. In this figure see a common convention
(following Knuth) of representing nil nodes by black squsare

. leaf
. ] () internal nod
D D m nil node
/ [ ] external node
u (c)

Figure 11: Binary Search Trees: (a) standard, (b) exter(dgdxternal

(@)

The bijection between extended and standard binary tregpgdn as follows:

1. For any extended binary tree, if we delete all its nil nqdes obtain a standard binary
tree.

2. Conversely, for any standard binary tree, if we give eveay two nil nodes as children
and for every internal node with one child, we give it one wifla as child, then we obtain
a corresponding extended binary tree.

In view of this correspondence, we could switch between wWeeuiewpoints depending on which is
more convenient. Generally, we avoid drawing the nil nodiesesthey just double the number of nodes
without conveying new information. In fact, nil nodes cahstore data or items. One reason we
explicitly introduce them is that it simplifies the descigpt of some algorithms (e.g., red-black tree
algorithms). They serve as sentinels in an iterative loope Til node” terminology may be better
appreciated when we realize that in conventional reatimadf binary trees, we allocate two pointers to
every node, regardless of whether the node has two childreato The lack of a child is indicated by
making the corresponding pointer take thid value.

Who cares about nil
nodes?

The concept of a “leaf” of an extended binary tree is apt tctseaaome confusion: we shall use
the “leaf” terminology so as to be consistent with standandty trees. A node of an extended binary

5 A binary tree in which every node has 2 or 0 children is saidetfoll”. Knuth calls the nil nodes “external nodes”. A path
that ends in an external node is called an “external path”.
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tree is called deaf if it is the leaf of the corresponding standard binary tretierhatively, a leaf in an
extended binary tree is a node with two nil nodes as childféns a nil node is never a leaf.

931. Exogenous versus Endogenous Search StructureThe above notion of extended binary tree
is purely structural, as there is no discussion of its useamch structures. But clearly we can associate
keys/items with nodes of the extended search to turn theortliret corresponding notion eiktended
binary search tree Here, the non-nil nodes store keys in the usual nodes butitheodes do not
hold keys. So extended BST does not really add anything niesvnil nodes are just place holders or
sentinels. In the following, we take this idea one step frthnstead of nil nodes, we replace them
by nodes that can store items, and moreover, we ban itemstfrerimternal nodes. This is the idea
of “external search structures” which we next describe.sTarminology for standard, extended and
external binary search trees is illustrated in Figlte

Recall that each key is associated with some data, and syetidta pairs constitute the items for
searching. There are two ways to organize such items. Onésaaydirectly store the data with the
key. The other way is for the key to be paired with a pointethi® data. Following Tarjan [L1], we
call the latter organization a@xogenous search structurén contrast, if the data is directly stored
with the key, it is anendogenous search structure What is the relative advantage of either form?
The exogenous case has an extra level of indirection (th@qrdiwhich uses extra space. But on the
other hand, it means that the actual data can be freely @ted more easily, independently of the
search structure. In databases, this freedom is impogadtthe exogenous search structure are called
“indexes”. Database users can freely create and destrdyisdexes for the set of items. This allows
a collection of items can be searched using different seaitdria. The concept ofa, b)-trees below
illustrates such exogenous search structures.

More precisely, arexternal BST is a full binary tree in which every internal nodestores a key
u.Key, and every leaf, stores an itenfu.Key, u.Data). Moreover, the usual BST property holds:

ur.key < u.key <ug.key

whereuy, (resp.ug) is a node in the left (resp., right) subtreaiatNote thatu;, andu iz may be internal So! that is why
nodes or leaves. The leaves in an external BST may be eattednal nodes ‘internal’ nodes are
so-called...

932. Auxiliary Information.  In many applications, additional information must be maimed at
each node of the binary search tree. We already mentionguaié¢decessor and successor links. Another
information is the the size of the subtree at a node. Somagifitformation is independent, while other
is dependent oderived. Maintaining the derived information under the variousragiens is usually
straightforward. In all our examples, the derived inforimatis local in the following sense thahe
derived information at a node can only depend on the information stored in the subtree &Ye will

say that derived information &rongly local if it depends only on the independent information at node
u, together with all the information at its children (whetlderived or independent).

933. Duplicate keys. We normally assume that the keys in a BST are distinct unkb&swise noted.
But let us now briefly consider BST whose keys are not necigsanique or distinct. When we do
a lookup on a key¥, let us assume that we must visit every item with KeyNow, this can be fairly
expensive: in Figuré?2(a), imagine having to search for the k&y

We consider this general question: suppose we have amnad®se key isK. How can we find all
the nodes with keyx in the subtree rooted at? Let us define a proceduféndAll(u) that returns a
linked list L (i.e., iterator) containing all such nodes. The methodnigpée: the listL is initialized tow.

6 He used this classification for linked lists data structure.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011



§5. VARIATIONS ON BST Lecture Il Page 31

Let v be the tip of the right-spine af. If v.Key= K then returnL after appending withFind All(v);
otherwise just returr.. Note that if we have successor pointers, theran be instantly located. This
suggests that for BST’s with duplicates, it may be worthe/nilaintaining successor and predecessor
pointers.

One way to handle simplify the algorithms for duplicate

s to require the followingght-path rule : all items with
ame key must lie on consecutive nodes of some right-path

@ 3 ) & (lustrated in Figuréd.2(b). We can view all the equal-
©) @ pdes on this right-path as a super-node for the purposes
0 @ of maintaining height-balanced trees such as AVL trees.s Thi

@ ) amgqunts to keeping all the duplicate keys in a single linisar |
So this rule should probably be restricted to situationsreviiee

Figure 12: (a) arbitrary, (b) right- number of duplicates is small.
path rule

Before discussing how to maintain this right-path rule uket
discuss how ook Up must be modified. When we look up on a keywe can just return the first node
that contains the kej. Alternatively, if there is a secondary key besides thenfgriy) key which might
distinguish among the different items with primary keyve can search the right-path for this secondary
key. Now we must modify all our algorithms to preserve thétigath rule. In particular, insertion and
rotation should be appropriately modified. What about datét If the argument of deletion is the node
to be deleted, it is clearly easy to maintain this propeftthé argument of deletion is a kéy we can
either delete all items whose keykir rely on secondary keys to distinguish among the items kath
k.

Instead of the right-path rule, we could put all the equalikems in an auxiliary linked list attached
to a node. There are pros and cons in either approach. TH# fragh” organization of duplicate keys
do not need any auxiliary structures. If the expected nurobduplicated keys is small, it may be the
best solution.

The right-path rule does not worry about balancing. Consitimlicate keys in the context of a
balanced tree scheme like AVL trees. Imagine a BST with thees, all duplicated. Then the BST
Property, thatl < Root < R for all keys L (R) in the left (right) subtree, ensures that this tree is a
right path. On the other hand, this right path violates theé BAlance Property. To restore the AVL
Balance Property, we must use thedified BST Property, namely,L. < Root < R. The Find All(u)
procedure above can be easily modified to recursively sdaiththe left-spine tip as well as the right-
spine tip.

934. Implicit Binary Trees. By an implicit tree, we mean one that does not have expliditteos
which determine the parent/child relationships of nodes. eXample is théneap structure: this is
defined to be binary tree whose nodes are indexed by integiéwa/iing this rule: the root is indexed
1, and if a node has indeX then its left and right children are indexed dyand2i + 1, respectively.
Moreover, if the binary tree has nodes, then the set of its indices is the §&t2,...,n}. A heap
structure can therefore be represented naturally by awg aifia.n], whereA[i] represents the node of
index:. If, at theith node of the heap structure, we store a Kgi and these keys satisfy theap
order property foreachi =1,...,n,

HO(®i):  Ali] < min{A[2], A[2i + 1]}. @)

In (7), itis understood that i > n (resp.,2i + 1 > n) then A[2i] (4[2i + 1]) is taken to bex. Then
we call the binary tree Beap. Here is an array that represents a heap:

A[1.9] = [1,4,2,5,6,3,8,7,9].
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In the exercises we consider algorithms for insertion aretide from a heap. This leads to a highly
efficient method for sorting elements in an array, in place.

In general, implicit data structures are represented byriay avith some rules for computing the
parent/child relations. By avoiding explicit pointersghustructures can be very efficient to navigate.

935. Parametric Binary Search Trees. Perhaps the most interesting variation of binary sear@stre
is when the keys used for comparisons are only implicit. Tifiermation stored at nodes allows us to
make a “comparison” and decide to go left or to go right at aenlmuat this comparison may depend on
some external data beyond any explicitly stored infornmatidVe illustrate this concept in the lecture on
convex hulls in Lecture V.

EXERCISES

Exercise 5.1: Describe what changes is needed in our binary search tredthlgs for the exogenous
case. &

Exercise 5.2: Consider search trees with duplicate keys. First recalB®B€ Property.
(a) Draw all the possible BST’s with keyis3, 3, 3, 4, assuming the root i3.
(b) Suppose we want to design AVL trees with duplicate kegs.\vghy and how the BST property
must be modified.

Exercise 5.3: Suppose we insist that for exogenous binary search tregsoéshe keys in the internal
nodes really correspond to keys in stored items. Describaditessary changes to the deletion
algorithm that will ensure this property. &

Exercise 5.4: Consider the usual binary search trees in which we no longgrmae that keys in the
items are unique. State suitable conventions for what tHewsoperations mean in this setting.
E.g.,l ookUp(K) means find any item whose keyis or find all items whose keys are equal to
K. Describe the corresponding algorithms. &

Exercise 5.5: Describe the various algorithms on binary search treesstioa¢ the size of subtree at
each node. &

Exercise 5.6: Recall the concept of heaps in the text. L&E1..n] be an array of real numbers. We call
A analmost-heap ati there exists a number such thatdfi] is replaced by this number, theh
becomes a heap. Of course, a heap is automatically an aheasat any.

(i) SupposeA is an almost-heap at Show how to convertl into a heap be pairwise-exchange
of array elements. Your algorithm should take no more tham exchanges. Call this the
Heapify(A,1i) subroutine.

(i) SupposeA[l..n] is a heap. Show how to delete the minimum element of the heapasthe
remaining keys in[1..n — 1] form a heap of size. — 1. Again, you must make no more than
lgn exchanges. Call this thBelete Min(A) subroutine.

(iii) Show how you can use the above subroutines to sort ayan-place inO(nlogn) time.

&
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Exercise 5.7: Normally, each node: in a binary search tree maintains two fields, a key value and
perhaps some balance information, denatd¢EY and«.BALANCE, respectively. Suppose we
now wish to “augment” our tre&' by maintaining two additional fields calledPRIORITY and
u.MAX. Here,u.PRIORITY is an integer which the user arbitrarily assagsatith this node, but
u.MAX is a pointer to a node in the subtree at such that.PRIORITY is maximum among
all the priorities in the subtree at (Note: it is possible that = v.) Show that rotation in such
augmented trees can still be performed in constant time.

O

END EXERCISES

66. AVL Trees

AVL trees is the first known family of balanced trees. By défami, an AVL tree is a binary search
tree in which the left subtree and right subtree at each niff dy at mostl in height. They also have
relatively simple insertion/deletion algorithms.

More generally, define thiealanceof any node. of a binary tree to be the height of the left subtree
minus the height of the right subtree:

balance(u) = ht(u.l ef t) — ht(u.ri ght).

The node igerfectly balancedif the balance i9). It is AVL-balanced if the balance is-1,0 or +1.
Our insertion and deletion algorithms will need to know thédance information at each node. Thus we
need to store at each AVL node a 3-valued variable. TheaiBtitchis space requirement amounts to
lg 3 < 1.585 bits per node. Of course, in practice, AVL trees will rese2\mts per node for the balance
information (but see Exercise).

We are going to prove that the family of AVL trees is a balanfaedily. Re-using some notations
from binary trees (se€() and(9), we now define\/ (k) andy(h) to be the maximum and minimum
number of nodes in any AVL tree with height It is not hard to see that/(h) = 2"+ — 1, as for
binary trees. It is more interesting to determijr(é): its first few values are

It seems clear that(0) = 1 since there is a unique tree with heightThe other values are not entirely
obvious. To see that(1) = 2, we must define the height of the empty tree te-beThis explains why
u(—1) = 0. We can verifyu(2) = 4 by case analysis.

For instance, if we define the height of the empty tree te-be, thenu(1) =
3, 1(2) = 5. This definition of AVL trees could certainly be supportecke
Exercise for an exploration of this idea.

UJ

Consider an AVL tred’, of heighth and of sizeu(h) (i.e., it hasu(h) nodes). Clearly, among all AVL
trees of height, T}, has the minimum size. For this reason, we &gl min-size AVL tree (for height
h). Figure13 shows the first few min-size AVL trees. Of course, we can ergkahe roles of any
pair of siblings of such a tree to get another min-size AVIetr&sing this fact, we could compute the
number of non-isomorphic min-sized AVL trees of a given heigAmong these min-sized AVL trees,
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Ty Ty Ty T n

Figure 13: Canonical min-size AVL trees of heightd, 2, 3 and4.

we define theanonical min-size AVL treesto be the ones in which the balance of each non-leaf node
is +1. Note that we only drew such canonical trees in FigiLBe

In generalyu(h) is seen to satisfy the recurrence
pth) =1+ ph=1)+ph=2),  (h=1). 8

This equation says that the min-size tree of heigltaving two subtrees which are min-size trees of
heightsh — 1 andh — 2, respectively. For instancg(2) =1+ u(1) + u(0) =1+2+1 =4, aswe
found by case analysis above. We similarly check that therrence 8) holds forh = 1.

From @), we haveu(h) > 2u(h—2) for h > 1. Itis then easy to see by induction thh) > 2"/2
forall h > 1. The base cases au€l) > 2'/2 andu(2) > 2'. Writing C' = /2 = 1.4142. .., we have
thus shown

u(h)>C", (b= 1),
To sharpen this lower bound, we show thatan be replaced by the golden ratio- 1.6180. Moreover,

it is tight up to a multiplicative constant. Recall that= 1*—2\/5 and this is be the positive root of the

quadratic equation? — z — 1 = 0. Hence$? = ¢ + 1. Hey, to square, you

just add1
LEMMA 4. For h > 0, we have

¢" < u(h) < 20" 9)

Proof. First we proveu(h) > ¢": u(0) =1 > ¢% andu(1) = 2 > ¢*. Forh > 2, we have
p(h) > p(h = 1)+ p(h —2) > "1+ 9" 2 = (9 + 1)¢" % = ¢".

Next, to proveu(h) < 2¢", we will strengthen our hypothesis tgh) < 2¢" — 1. Clearly,u(0) = 1 <
2¢° — 1andu(1) = 2 < 2¢' — 1. Then forh > 2, we have

ph) =1+ puh =1 +puh—2) <14+ 20" 1 —1)+ (206" 2 —1) =2(p+1)p" 2 -1 =2¢" — 1.
Q.E.D.

We can further improve the lower bound p(h) in (9) by taking into account the “+1” term that
was ignored in the above proof — See Exercises. It is the Imwand onu(h) that is more important
for us. For, if an AVL tree has nodes and heiglit then

p(h) <n
by definition of.(h). The lower bound ing) then impliesp” < n. Taking logs, we obtain
h <logy(n) = (log, 2)lgn < 1.44041gn.

This constant ot .44 is clearly tight in view of lemma. Thus the height of AVL trees are at mast%
more than the absolute minimum. We have proved:

COROLLARY 5. The family of AVL trees is balanced.
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936. Insertion and Deletion Algorithms. These algorithms for AVL trees are relatively simple, as
far as balanced trees go. In either case there are two phases:

UPDATE PHASE: Insert or delete as we would in a binary search tree. It is napo that we use
the standarddeletion algorithm, not its rotational variant. It followsat the node containing the
deleted key and the node which wag may be different.

REBALANCE PHASE: Letx be the parent of node that was just inserted, orgustiuring deletion,
in the UPDATE PHASE. The path fromto the root will be called theebalance path We now
move up this path, rebalancing nodes along this path as seges

It remains to give details for the REBALANCE PHASE. If evergde along the rebalance path is
AVL-balanced, then there is nothing to do in the REBALANCEASE. Otherwise, let: be the first
unbalanced node we encounter. It is clear thags a balance of2. In general, we fix the balance
at the “current” unbalanced node and continue searchingrgsalong the rebalance path for the next
unbalanced node. By symmetry, we may suppose:thets balance. Suppose its left child is node
with heighth + 1. Then its right childv’ has height. — 1. This situation is illustrated in FigurkZ.

expand left subtree

Figure 14: Node: is unbalanced after insertion or deletion.

Inductively, it is assumed that all the proper descendanisame balanced. The current heightwof
is h + 2. In any case, let the current heights of the children b& 1, andh g, respectively.

937. Insertion Rebalancing. Suppose that this imbalance came about because of anamsafthat
was the heights ofi,v and v’ before the insertion? It is easy to see that the previoushteigre
(respectively)

h+1, h, h-—1. (10)

The inserted node must be in the subtree rootedwatClearly, the heightéy, hr of the children ofv
satisfymax(hr, hr) = h. Sincev is currently balanced, we know thafin(hz, hr) = h orh — 1. But
in fact, we claim thatnin(hr,hr) = h — 1. To see this, note thatihin(hy, hr) = h then the height
of v beforethe insertion was alsb+ 1 and this contradicts the initial AVL property at Therefore, we
have to address the following two cases, as illustratedgnreil 5.

CASE (l.a):hr = handhr = h — 1. This means that the inserted node is in the left subtree of
In this case, if we rotate, the result would be balanced. Moreover, the height sfnowh + 1.

CASE (I.b):h, = h — 1 andhgr = h. This means the inserted node is in the right subtree
this case let us expand the subtf@and letw be its root. The two children af will have heightsh — §
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rotate(v)

CASE (l.a)

AV

6 A expand(v)

B

r ot at e?(w)

CASE (I.b)

Figure 15: AVL Insertion: CASE (l.a) and CASE (l.b)

andh — ¢’ whered, ¢’ € {1,2}. Now a double-rotation ab results in a balanced tree of height- 1

rooted atw.

In both cases (l.a) and (I.b), the resulting subtree hashgig- 1. Since this was height before the
insertion (seeX0)), there are no unbalanced nodes further up the path to tite Thius the insertion

algorithm terminates with at most two rotations.

For example, suppose we begin with the AVL tree in Figliéeand we insert the ke9.5. This

yields the unbalanced tree on the left-hand side of FigureFollowing the rebalance path up to the

root, we find the first unbalanced node is at the ro®t,Comparing the heights of nod8s®nds in the
left-hand side of Figuré7, we conclude that this is case (l.b). Performing a doublatiar at8 yields
the final AVL tree on the right-hand side of Figute.

938. Deletion Rebalancing. Suppose the imbalance in Figurécomes from a deletion. The previous

heights ofu, v, v must have been

h+2,h+1,h

and the deleted nodemust be in the subtree rootedidt We now have three cases to consider:

CASE (D.a):h;, = handhg = h — 1. This is like case (l.a) and treated in the same way, hamely

by performing a single rotation at Now « is replaced by after this rotation, and the new heightof

ish+ 1. Noww is AVL balanced. However, since the original heightis- 2, there may be unbalanced
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InsertQ.5)

Figure 17: Inserting.5 into an AVL tree

node further up the rebalance path. Thus, this is a non-tairoase (i.e., we have to continue checking
for balance further up the root path).

CASE (D.b): hy, = h — 1 andhr = h. This is like case (l.b) and treated the same way, by
performing a double rotation at. Again, this is a non-terminal case.

Figure 18: CASE (D.c)r ot at e(v)

CASE (D.c):hy = hr = h. This case is new, and is illustrated in Figdi& We simply rotate ab.
We check thav is balanced and has heightt- 2. Sincew is in the place of: which has height + 2
originally, we can safely terminate the rebalancing preces

This completes the description the insertion and deletigariihms for AVL trees. In illustration,
suppose we delete kay from Figurel6. After deletingl3, the nodel4 is unbalanced. This is case
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(D.a) and balance is restored by a single rotation5at The result is seen in the left-hand side of
Figure19. Now, the root containing2 is unbalanced. This is case (D.c), and balance is restored by
single rotation ab. The final result is seen in the right-hand side of Figlge

Delete(3)

rotate(15)

Figure 19: Deleting 3 from the AVL tree in Figurel6

Both insertion and deletion tak@(logn) time. In case of deletion, we may have to @¢log n)
rotations but a single or double rotation suffices for irieart

939. Maintaining Balance Information. In order to carry out the rebalancing algorithm, we need
to check the balance condition at each nadelf node « stores the height of in some field,u.H
then we can do this check. If the AVL tree hasiodesu.H may needd(lglgn) bits to represent the
height. However, it is possible to get away with jadiits: we just need to indicate three possible states
(00,01, 10) for each node:. Let 00 mean that.| ef t andu.ri ght have the same height, afd
mean that..| ef t has height one less thamr i ght , and similarly for10. In simple implementations,
we could just use an integer to represent this informatioa.l&sve it as an exercise to determine how
to use these bits during rebalancing.

Hey, | thought it is
O(lgn)

940. Relaxed Balancing. Larsen [] shows that we can decouple the rebalancing of AVL trees from
the updating of the maintained set. In the semi-dynamic,¢hsenumber of rebalancing operations is
constant in an amortized sense (amortization is treatethapter 5).

EXERCISES

Exercise 6.1: This calls for hand-simulation of the insertion and dele@dgorithms. Show intermedi-
ate trees after each rotation, not just the final tree.
(a) Insert the key 0.5 into the final AVL tree in Figurél9.
(b) Delete the keyt from the final AVL tree in Figured.9. NOTE: part(b) is independent of part(a).
¢

Exercise 6.2: Give an algorithm to check if a binary search tiess really an AVL tree. Your algorithm
should take time(|T'|). HINT: Use shell programming. O

Exercise 6.3: Draw an AVL tree with 12 nodes such that, by deleting one ngda,will cause two
double-rotations.

You must draw the tree after each double-rotation. Panteditif they are only single rotations.
HINT: It is unnecessary to assign keys to the nodes: just gheviree shape, and label some
nodes to clarify the operations. &
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Exercise 6.4: What is the minimum number of nodes in an AVL tree of height 10? &

Exercise 6.5: Prove thafu(h) = a¢" + b — 1 whereg, ¢ = 1i2‘/5 = 1.6180...,—-0.6180..., and

a, b are suitable constants. Determing. O

Exercise 6.6: My pocket calculator tells me thaig,, 100 = 9.5699 - - -. What does this tell you about
the height of an AVL tree with 100 nodes? &

Exercise 6.7: Show an AVLT with minimum number of nodes such that the following is trilere is
a noder in T such that if you delete this node, the AVL rebalancing wifjuee two rebalancing
acts. Note that a double-rotation counts as one, not twalaabing act. Can you make the
2 rebalancing acts be two single rotations? Two doubletioots? One single and one double
rotation? &

Exercise 6.8: Consider the AVL tree in Figurg0.

8
/5\/ \/1
A S R 6\/w\z
2 4 6 /lk /15 /18 0

10 12 14 17
d

Figure 20: An AVL Tree for deletion

/

1

(a) Please delete Kay/from the tree, and draw the intermediate AVL trees after eabhlancing
act. NOTE: a double-rotation counts as one act.

(b) Find the sef5 of keys that each deletion of/d € S from the AVL tree in Figure0 requires
requires two rebalancing acts. Be careful: the answer mpgriis on some assumptions.

(c) Among the keys in part (b), which deletion has a doublatioh among its rebalancing acts?

&

Exercise 6.9: (a) Draw two AVL trees, both of height 4. One has maximum sizd tne other has
minimum size.
(b) Starting with an empty AVL tree, insert the following sétkeys, in this order:

5,9,1,3,8,2,7,6, 4.

Now delete key). Please show the tree at the end of each operation. &

Exercise 6.10: Please re-inseftback into the tree obtained in part(a) of the previous egerddo you
get back the original tree of Figug®? &

Exercise 6.11:Let T be an AVL tree withn nodes. We consider the possible heightsifor
(a) What are the possible heightsbif n = 15?
(b) What if T hasn = 16 orn = 20 nodes?
(c) Are there arbitrarily large such that all AVL trees witm nodes have unique height? <
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Exercise 6.12: Draw the AVL trees after you insert each of the following kéy® an initially empty
tree:1,2,3,4,5,6,7,8,9and thenl9, 18,17, 16, 15, 14, 13,12, 11. &

Exercise 6.13:Insert into an initially empty AVL tree the following sequem of keys:
1,2,3,...,14,15.
(a) Draw the trees at the end of each insertion as well as @diein rotation or double-rotation.

[View double-rotation as an indivisible operation].
(b) Prove the following: if we continue in this manner, we viidve a perfect binary tree at the

end of inserting kep™ — 1 foralln > 1. &

Exercise 6.14:Consider the range of possible heights for an AVL tree withodes. For this problem,
it is useful to recall the functiond/ (k) in (19) andp(h) in (8).
(a) For instance ifi = 3, the height is necessarily but if n = 7, the height can b2 or 3. What
is the range when = 15? n = 16? n = 19?
(b) Suppose that the height of an AVL trees is uniquely determined by its numlbérof nodes.
Give the exact relation betweeri andh™* in order for this to be the case. HINT: use the functions
M(h) andp(h).
(c) Isit true that there are arbitrarily largesuch that AVL trees witl nodes has a unique height?

O

Exercise 6.15: Starting with an empty tree, insert the following keys in tlgiven order:
13,18,19,12,17,14,15,16. Now deletel8. Show the tree after each insertion and deletion.

If there are rotations, show the tree just after the rotation &

Exercise 6.16: Draw two AVL trees, withn keys each: the two trees must have different heights. Make
n as small as you can. &

Exercise 6.17: TRUE or FALSE: In CASE (D.c) of AVL deletion, we performed angle rotation at
nodev. This is analogous to CASE (D.a). Could we have also havepedd a double rotation
atw, in analogy to CASE (D.b)? &

Exercise 6.18:Let 7z(h) be the number ohon-isomorphiamin-size AVL trees of height.. Give a
recurrence fofz(h). How many non-isomorphic min-size AVL trees are there ofh&s3 and4?

Provide sharp upper and lower boundsih). &

Exercise 6.19:Improve the lower boung(h) > ¢" by taking into consideration the effects of t”
in the recurrenc@(h) =1+ p(h — 1) + p(h — 2).
(@) Show thatu(h) > F(h — 1) + ¢" where F(h) is the h-th Fibonacci number. Recall that
F(h)=hforh=0,1andF(h) = F(h— 1)+ F(h —2) for h > 2.
(b) Further improve (a). &

Exercise 6.20: Prove the following connection betweén(golden ratio) and,, (the Fibonacci num-

bers):
¢n:¢Fn+anla (7121)

Note that we ignore the case= 0. &
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Exercise 6.21:Recall that at each nodeof the AVL tree, we can represent its balance state using a
2-bit field calledu. BAL whereu.BAL € {00,01,10}.
(a) Show how to maintain these fields during an insertion.
(b) Show how to maintain these fields during a deletion. &

Exercise 6.22:Implement the deletion for AVL trees. In particular, assuimat after cutting a node,
we need a "Rebalance)’ procedure. Remember that this procedure needs to chedbalance
of each node along the re-balanced path. &

Exercise 6.23: Allocating one bit per AVL node is sufficient if we exploit tHact that leaf nodes are
always balanced allow their bits to be used by the interndésoWork out the details for how to
do this. &

Exercise 6.24:1t is even possible to allocate no bits to the nodes of a bisagych tree. The idea is to
exploit the fact that in implementations of AVL trees, thasp allocated to each node is constant.
In particular, the leaves have two null pointers which argdsdly unused space. We can use this
space to store balance information for the internal nodigsir& out an AVL-like balance scheme
that uses no extra storage bits. &

Exercise 6.25: Relaxed AVL Trees
Let us defineAVL(2) balance condition to mean that at each node in the binary tree,
|balance(u)| < 2.
(a) Derive an upper bound on the height of a AVL(2) treenamdes.
(b) Give an insertion algorithm that preserves AVL(2) treby to follow the original AVL inser-
tion as much as possible; but point out differences from tiggral insertion.
(c) Give the deletion algorithm for AVL(2) trees. &

Exercise 6.26: To implement we reserve 2 bits of storage per node to représehalance information.
This is a slight waste because we only use 3 of the four pa&sgithlies that the 2 bits can represent.
Consider the family of “biased-AVL trees” in which the bat@of each node is one of the values
b=-1,0,1,2.

(@) In analogy to AVL trees, defing(h) for biased-AVL trees. Give the general recurrence
formula and conclude that such trees form a balanced family.

(b) Is it possible to give an)(log n) time insertion algorithm for biased-AVL trees? What can be
achieved? &

Exercise 6.27:We introduce a new notion of “height” of an AVL tree based oe thllowing base
case: ifu has no children}’(u):=0 (as before), and if nodeis null, A’ (u):= — 2 (this is new!).
Recursivelys' (u):=1 + max {h/(ur), h'(ur)} as before. Let’AVL' (AVL in quotes) trees refer
be those trees that are AVL-balanced usirigas our new notion of height. We compare the
original AVL trees with 'AVL' trees.

(a) TRUE or FALSE: every 'AVL tree is an AVL tree.

(b) Lety’(h) be defined (similar ta(h) in the text) as the minimum number of nodes in an’AVL’
tree of height:. Determiney’(h) for all h < 5.

(c) Prove the relationshig/ (h) = w(h) + F(h) whereF (h) is the standard Fibonacci numbers.
(d) Give a good upper bound @ri(h).

(e) What is one conceptual difficulty of trying to use the fanoif 'AVL trees as a general search
structure? &
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Exercise 6.28: A node in a binary tree is said to fell if it has exactly two children. Aull binary
tree is one where all internal nodes are full.
(a) Prove full binary tree have an odd number of nodes.
(b) Show that 'AVL trees as defined in the previous questignfall binary trees. &

Exercise 6.29: The AVL insertion algorithm makes two passes over its sepath: the first pass is
from the root down to a leaf, the second pass goes in the edeestion. Consider the following
idea for a “one-pass algorithm” for AVL insertion: duringetfiirst pass, before we visit a node
u, we would like to ensure that (1) its height is less than ora¢do the height of its sibling.
Moreover, (2) if the height of. is equal to the height of its sibling, then we want to make sure
that if the height ofu is increased by, the tree remains AVL.

&

END EXERCISES

7. Size Balanced Trees

We specify that the ratisy, : si of the sizes of the two subtrees at any node should lie betigen
ands wheres > 1 is fixed for the family. This defines a balanced family of treéBisis is more flexible
than height balanced trees, and this is important for sorpkcagpions. The price we pay is that we need
up tolg n bits of balance information at each node.

We introduce another form of balance in binary trees. 3ireof a nodeu is the number of nodes
in the subtree rooted at If SizEu is the size ofu, size balanceatu is

B(u):=Sizeu.l ef t /SizEw.ri ght.

Let0 < a < 1/2. A binary treeT hasbounded balancex if @ < B(u) > 1 — « for each internal
nodew. For short, we say’ is “BB(«)”. The family of BB(«) trees is a balanced familie., has
logarithmic height. Bounded balance trees were introdbgeldievergelt and Reingold.[)]. For more
information, see Anderson].

In bounded balance trees, each node must store its own $imeOTlog n) space is required at each
node. This is inferior to thé& (log log n) space needed for height balanced schemes. Compensating for
this, weight balanced trees are more flexible than heiglarizald trees for some applications. Give an
example of multidimensional...

Let us first bound the height of a binary tree thalBB®(«). Let H(n) be the maximum height
of a BB(«) binary tree of size:. Clearly, H(1) = 0 andH(n) < 1+ H(n — [an]). This gives
H(n) <14+ H(n—an—1).

EXERCISES

Exercise 7.1: Show that weight balanced families are balanced in the sanese. &

Exercise 7.2: Since in practice we need to reserve 2 bits of informationnoete in an AVL tree, let
us try to take full advantage of this. Consider AVL trees iniehhthe balance information at
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each node i = —1,0, 1, 2. Hereb is the height of the left subtree minus the height of the right

subtree. What are the advantages of this new flexibility? &
Exercise 7.3: Work out the details about how to use only one balance bit pérmode. &
Exercise 7.4: Design a one-pass algorithm for AVL insertion and AVL dedati &
Exercise 7.5:

(@) Show how to maintain the min-heap property in a binarne teenderi nsert and

del eteM n.

(b) Modify your solution in part (a) to ensure that the depfitthe binary tree is alway®(log n)

if there aren items in the tree. &

Exercise 7.6: Supposel’ is a binary tree storing items at each node with the propéy at each
internal node:,
ur.key < u.key < ug.key,

whereu, andug are the left and right children af (if they exist). So this is weaker than a binary
search tree. For simplicity, let us assume thatas exacth2” — 1 nodes and height — 1, so

it is a perfect binary tree. Now, among all the nodes at a gilepth, we order them from left to
right in the natural way. Then, except for the leftmost aghtinost node in a level, every node
has a successor and predecessor node in its level. One ofglgsibling. The other is defined
to be itspartner. For completeness, let us define the leftmost and rightmud¢sto be each
other’s partner. See Figulsd. Now define the following parallel operations. The first giem

Figure 21: Partners

is sort1: at each internal nodeat an odd level, we order the keysiaénd its children:y,, ur so
thatur.key < u.key < ugr.key. The second isort2, and it is analogous teort1 except that

it applies to all internal nodes at an even level. The thirdrapion isswap which order the keys
of each pair of partners (by exchanging their keys if neag$s8uppose we repeatedly perform
the sequence of operatiofsrtl, sort2, swap). Will this eventually stabilize? If we start out
with a binary search tree then clearly this is a stable st&f#. we always end up in a binary
search tree? &

END EXERCISES

8. (a, b)-Search Trees
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We consider another class of trees that is very importantaotice, especially in database applica-
tions. These are no longer binary trees, but are parametoiza choice of two integers,

2<a<hb. (11)

An (a, b)-treeis a rooted, orderédree with the following structural constraints:

e DEPTH PROPERTY: All leaves are at the same depth.

e DEGREE BOUND: Letn be the number of children of an internal nogeThis is also known
as thedegreeof u. In general, we have the bounds

a<m<b. (12)

The root is an exception, with the bouad< m < b.

Figure 22 illustrates an(a, b)-tree for (a,b) =
(2,3). To see the intuition behind these conditions,
compare with binary trees. In binary trees, the leaves
do not have to be at the same depth. To re-introduce
some flexibility into trees where leaves have the same
depth, we allow the number of children of an internal
node to vary over a larger randge, b]. Moreover, in
order to ensure logarithmic height, we require> 2.
This means that if there ane leaves, the height is at
Figure 22: A(2, 3)-tree. mostlog, (n) + O(1). Therefore(a, b)-trees constitute
a balanced family of treedNotice that an(a, b)-tree is
also(c, d)-tree iff ¢, d satisfy
2<c<a<b<d. (13)

E.g., Figure22 could have represented &2 10)-tree but not &3, 4)-tree.

ol s lol 1slelotle

ol afelslol [olo lolizle] lolutle]1olalrsle] o] o]2s o] ore

2 4 6 8 10 12 13 15 17 19 21 23 25 27

Figure 23: A (3,4)-search tree ad items

941. From Structure to Search. The definition of(a, b)-trees imposes purely structural require-
ments. To use such trees as search structures, we needet@eysrand items in the tree nodes. These
keys and items must be suitably organized. Before givingdluetails, we provide some intuition by
looking an example of such a search tree in Fig2BeThis tree is structurally &3,4)-tree, at a min-
imum; but it could be ga,b)-tree for any2 < a < 3 andb > 4. It has14 leaves, each storing a
single item. The keys of these items &, 6,8, ..., 23,25, 27. Recall that an item is &ey, dat a)

7 “ordered” means that the children of each node has a spetifiadordering. If a node in an ordered tree that has only one
child, then that ordering is unique. Although binary trees @ardered trees, but they are more than just ordered becahea a
node has only one child, we could specify that child to be ta tefa right-child. We might say binary trees have labeleittobn
(labels are either LEFT or RIGHT).
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pair, but as usual, we do not display the associated daternmsit The keys in the internal nodés
not correspond to items\e continue our default assumption that items have uniqye Beit we see
in Figure23 that the keyl3 appears in the root as well as in a leaf. In other words, athdweys are
unigue in the leaves, they might be duplicated in the inlarades. Another feature is this: keys in the
internal nodes (e.g. key) need notcorrespond to keys of items. All these features will cleairup
moment.

We define an(a, b)-search treeto be an(a, b)-tree whose nodes are organized as follows. First,
observe that the organization in leaves are different thdanternal nodes, as illustrated in Figuzé.
The leaf organization is controlled by another pair of pagtersa’, b’ that satisfy the inequalities <
a’ < V. They are independent af b, but like a, b, they control the minimum and maximum number of
items in leaves. Specifically:

[ o) |k | ()| i fof o e[yl
D1 / P2J pg p&,‘nf 1 K)m
1<d <m<V¥ 2<a<m<b
(i) Leaf Node Organization (ii) Internal Node Organization

Figure 24: Organization of nodes (n, b)-search trees

e LEAF: Each leaf stores a sequence of items, sorted by thgs. Kdence we represent a leaf
with m items as the sequence,

u=(ki,d1,ka,da, ... km,dn) (14)

wherek; < ko < --- < kp,. See Figur@4(i). In practiced; might only be a pointer to the actual
location of the data. We must consider two cad®N-ROOT CASE: suppose leatf; is not the
root. In this case, we require

a <m<UV. (15)

ROOT CASE: supposeu is the root. Since it is also a leaf, there are no other nodéiisn
(a, b)-search tree. We now requibe< m < 2b’ — 1. This is relaxed compared to non-root leaves
above. The reason for this condition will become clear whendigcuss the insertion/deletion
algorithms.

e INTERNAL NODE: Each internal node witm children stores an alternating sequence of keys
and pointers (node references), in the form:

u:(plaklap21k21p3a"-7pm—lak7nflapm) (16)

wherep; is a pointer to the-th child of the current node. Note that the number of keysia t
sequence is one less than the numbeof children. Contrast with the organizatioh4) for a
leaf-node. See Figur@4(ii). The keys are sorted so that

k1 <ko<- - <kp_1.

Fori =1,...,m, each key in thei-th subtree of, satisfies
ki <k <k, (17)
with the convention thaty, = —oco < k; < k,, = +oc. Note that this is just a generalization of

the binary search tree property i) (
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942. Choice of the(a’, ') parameters. Since thea’, b’ parameters are independentab, it is

convenient to choose some default value for our discusdidn,®) trees. This decision is justified So(a’, ") is implicit!
because the dependence of our algorithms omthi® parameters are not significant (and they play

roles analogous ta, b). There are two canonical choices: the simplest'is= ¥’ = 1. This means

each leaf stores exactly one item. All our examples (e.gur€i23) use this default choice. Another

canonical choice i’ = a, b = b. These considerations highlights the different roles kiegs play

in the leaves and in internal nodes.

of]  Llel] [Ds]] [[=[] [[s]]

|

2 5 6 8 10 13 18 21 23 29 33

Figure 25: A(2, 3)-search tree.

Another(a, b)-search tree is shown in Figu2g, for the caséa, b) = (2, 3). In contrast to Figurés,
here we draw it using a slightly more standard conventiorpfesenting the pointers as tree edges.

943. Special Cases ofa, b)-Search Trees. The earliest and simpleét;, b)-search trees correspond
to the casda,b) = (2,3). These are calle@-3 treesand were introduced by Hopcroft (1970). By

choosing
b=2a—1 (18)

(for anya > 2), we obtain the generalization @f— 3 trees calledB-trees These were introduced
by McCreight and Bayerd]. When (a,b) = (2,4), the trees have been studied by Bayer (1972) as
symmetric binary B-treesand by Guibas and Sedgewickz$8-4 trees Another variant of 2-3-4 trees
isred-black trees The latter can be viewed as an efficient way to implement2+ges, by embedding
them in binary search trees. But the price of this efficiesoyamplicated algorithms for insertion and
deletion. Thus it is clear that the concept(afb)-search trees serves to unify a variety of search trees.
The terminology of a, b)-trees was used by Mehlhor#][

The B-tree relationshipX8) is optimal in a certaifisense. Nevertheless, there are other benefits in
allowing more general relationships betweeandb. E.qg., if we replacei8) by b = 2a, the amortized
complexity of sucHa, b)-search trees algorithms can improvg |

944. Searching and its Complexity. The organization of afia, b)-search tree supports an obvious
lookup algorithm that is a generalization of binary seafdamely, to dd ookUp(key k), we begin
with the root as the current node. In general, i the current node, we process it as follows, depending
on whether it is a leaf or not:

8 |.e., assuming a certain type of split-merge inequalityicvlve will discuss below.
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e Base Case: supposss a leaf node given byld). If £ occurs inu ask; (for somei = 1,...,m),
then we return the associated ddta Otherwise, we return the null value, signifying search
failure.

e Inductive Case: supposeis an internal node given byl6). Then we find thep; such that
kio1 < k < k; (with kg = —o0, k,,, = o0). Setp,; as the new current node, and continue by
processing the new current node.

The running time of thé ook Up algorithm isO(hb) whereh is the height of théa, b)-tree, and we
spendO(b) time at each node.

It is best to defineM (h) and u(h) as the maximum and minimum (resp.) number of leaves in
a (a,b)-tree of heighth. Note that this definition differs from that in AVL trees inahwe focus on
the number of leaves rather than the size of the tree. Thadause items is stored only in leaves of
(a,b)-trees. Sincé/ (h) is attained if every internal node hashildren, we obtain

M(h) = b". (19)
Likewise, uu(h) is attained if every internal node (except the root) has thitsloen. Thus
p(h):=2a""1, (20)

It follows that if an(a, b)-tree withn leaves has heigltt > 1, thenl + 2a"~! < n < b". Taking logs,
we get
1+1log,(n/2) < h <log,n.

We leave to an Exercise to bound the numbeiterhsstored in an(a, b)-tree, but here we must take
into account the paramete(is, b’) as well.

Itis clear that in generab, b’ determines the lower bound éranda, o’ determine the upper bound
onh. Our design goal is to maximize b, o', b’ for speed, and to minimize/ « for space efficiency (see
below). Typicallyb/a is bounded by a small constant closet@s inB-trees.

945. Organization within a node. The keys in a node of afu, b)-search tree must be ordered for
searching, and manipulation such as merging or splittimy Itst of keys. Conceptually, we display
them as in {6) and (L4). Since the number of keys is not necessarily a small cohdtenorganization
of these keys is an issue. In practiéa@s a medium size constant (s@y< 1000) anda is a constant
fraction ofb. These ordered list of keys can be stored as an array, a sorghpubly-linked list, or even
as a balanced search tree. These have their usual tradeAdffsan array or balanced search tree at
each node, the time spent at a node improves ftdi) to O(logb). But a balanced search tree takes
up more space than using a plain array organization; thig&duce the value of. Hence, a practical
compromise is to simply store the list as an array in each ndt& achieve®)(lgb) search time but
each insertion and deletion in that node requiés) time. When we take into account the effects of
secondary memory (see below), the time for searching wétimiode is negligible compared to the time
accessing each nod&his argues that the overriding goal in the desigiicob)-search trees should be
to maximizeb anda.

946. The Standard Split and Merge Inequalities for(a, b)-Search trees. To support efficient in-
sertion and deletion algorithms, the parameteismust satisfy an additional inequality in addition to
(11). This inequality, which we now derive, comes from two losvé| operations ofu, b)-search tree.
Thesesplit andmerge operations are called as subroutines by the insertion alediate algorithms
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(respectively). There is actually a family of such ineqtiedi, but we first derive the simplest one (“the
standard inequality”).

The concept ofmmediate siblingsis necessary for the following discussions. The childrearof
node have a natural total order, say, us, ..., u,, wherem is the degree of; and the keys stored in
the subtree rooted at; are less than the keys in the subtree rooted;af (i = 1,...,m — 1). Then
two siblingsu; andu; are calledmmediate siblingsof each other iffii — j| = 1. So every non-root
nodeu has at least one immediate sibling and at most two immedilaliagss. The immediate siblings
may be calledeft sibling or right sibling

is

During insertion, a node with children may acquire a new child. We say the resulting node
overfull because it now has+ 1 children. An obvious response is $plit it into two nodes with
[(b+1)/2] and[(b+ 1)/2] children, respectively. In order that the result is(anb)-tree, we require

the following split inequality:
a< {b*—lJ . 21)
2

Similarly, during deletion, we may remove a child from a naldat has only: children. We say the
resulting node wittu — 1 children isunderfull . We first consider borrowing a child from an immediate
sibling, provided the sibling has more thachildren. If this proves impossible, we are forcedrterge
a node witha — 1 children with a node witla children. The resulting node has — 1 children, and to
satisfy the branching factor bound @f, b)-trees, we hav@a — 1 < b. Thus we require the following
merge inequality:

< (22)
Clearly 1) implies 22). However, sincex andb are integers, the reverse implication also holds!
Thus @1) and @2) are equivalent, and they will be known as #pit-merge inequality. The smallest
choices of parametets b subject to the split-merge inequality and al&d)(is (a, b) = (2, 3); this case
has been mentioned above. The case of equalitYihgnd @2) gives usb = 2a — 1; this is another
special case mentioned earlier, and in the literature(¢h®n — 1)-search trees are known &strees

Sometimes, the conditiolh = 2a is used to defind3-trees; this behaves better in an amortized sense
(see B, Chap. 111.5.3.1]).

The following lemma captures the preceding argument that #wat £2) implies 21). It amounts
to strengthening an inequality if one side is known to begate We will have occasion to re-use this
argument several times below.

LEMMA 6. Letz,y be real numbers satisfying < y.
(a) If = is an integer, the inequality is equivalentto< |y].
(b) If y is an integer, the inequality is equivalentfto] < y.

947. How to Split, Borrow, and Merge. Once(a, b) is known to satisfy the split-merge inequality,
we can design algorithms for insertion and deletion. Howewne will first describe the subroutines of
split, borrow and merge first. We will begin with tlgeneral casef internal nodes that are non-root.
The special case of leaves and root will be discussed later.

Suppose we need split an overfull nodeV with b+ 1 children. This is illustrated in Figurzs. We
split V into two new nodesV;, N., one node witH (b + 1)/2| pointers and the other with(b + 1) /2]
pointers. The parent a¥ will replace its pointer taV with two pointers taV; and NV,. But what is the
key to separate the pointersda and N,? The solution is to use a key fromi: there areé keys in the
original node, but only — 1 keys are needed by the two new nodes. The extra key can be rimoed
parent node, sandwiched between the pointerg;tand Vs, as indicated.
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| fofe[7] ] [ofe]a o] ]
split
—_—
ol 1]e2]e 3jo] 4o Sle] cle N 1le2le] . le[4le[sle e
b =t+1)/2= —Ff(b+1)/2—

Figure 26: Splitting:N splits intoN,, No. Case(a, b) = (3, 6) is illustrated.

Next, supposeV is an underfull node witlh — 1 children. First we try tdorrow from an immediate do not borrow from
sibling if possible. This is because after borrowing, theatancing process can stop. To borrow, weousin (near or distant
look to an immediate sibling (left or right), provided thélgig has more tham children. This is ones). Why?
illustrated in Figure27. SupposeV borrows a new from its sibling/. After borrowing,N will have a
children, but it will need a key to separate the new pointenfits adjacent pointer. This key is taken
from its parent node. Sinck/ lost a child, it will have an extra key to spare — this can be sefits
parent node.

| [ols[2]o]e] | | [ols[slele]
__borrow _

donate /
v o fe]  are[sle[4fe[s]e N:jo[ 1o 2 a:[ef 4 o] 5 o]

- -
a—1

- — - 4 —= — >a

Figure 27: Borrowing:N borrows from}/. Case of(a,b) = (3, 6).

If N is unable to borrow, we resort toerging: let M be an immediate sibling aV. Clearly M
hasa children, and so we can merdgé and N into a new nodéV’ with 2a — 1 children. Note thaiV’
needs an extra key to separate the pointers &fom those ofd/. This key can be taken from the parent
node; the parent node will not miss the loss because it hashaschild pointer in the merge. This is
illustrated in Figure28.

[ole[2/8]s] | | [ofef5] |

/ merge /
—_—
N/

N aLEIE o 2/03lesle

- q——> 2a—1

a—1

Figure 28: MergingN and M merges intaV’. Case of(a,b) = (3, 6).

The careful reader will notice an asymmetry in the abovedip@cesses. We have the concept of
borrowing, but it as much sense to talk about its inverse aifmat, donation. Indeed, if we simply
reverse the direction of transformation in Fig@&g we have thelonation operation (nodeV donates
a key to nodel/). Just as the operation of merging can be preempted by bimgotihe operation of
splitting can be preempted by donation! Donation is not Igdéscussed in the literature. But we will
see its benefits below.
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948. Special Treatment of Leaves and Root. Now we must take care of these split, borrow, merge,
and donate operations for the special case of roots andde®ansider splitting a root, and merges of
children of the root:

(i) Normally, when we split a node, its parent gets one extra child. But whens the root, we
create a new root with two children. This explains the exioepive allow for roots to have betweén
andb children.

(i) Normally, when we merge two immediate siblingsandv, the parent loses a child. But when
the parent is the root, the root may now have only one childhisicase, we delete the root and its sole
child is now the root.

Notice: cases (i) is thenly means for increasing the height of the b)-tree; likewise case (ii) is
the only means for decreasing height.

Now consider leaves: in order for the splits and merges afleto proceed as above, we need the
analogue of the split-merge inequality,
b +1
o <2 (23)
2
Supposeu splits into two consecutive leaves, sayand«’. In this case, the parent needs a key to
separate the pointers toandw’. This key can be taken to be the minimum kewin Conversely, if

two consecutive leaves u’ are merged, the key in the parent that separates them isysitisghrded.

However, a rather unique case arise when the leaf is alsotaWmocannot treat it like an ordinary
leaf having between’ to b’ items. So let us introduce the parametgys, to control the minimum and
maximum number of items in a root-leaf. Let us determine trairgs on(ay, b;) relative to(a’, b').
Initially, there may be no items in the root, so we must allgyv= 0. Also, when the number of items
exceedy,, we must split into two or more children with at leastitems. The standard literature allows
the root to have 2 children and this requiteg < &) + 1 (like the standard split-merge inequality).
Hence we require

by > 2a’ — 1. (24)

In practice, it seems better to allow the root to have a ladggree than a smaller degree. Thus, we
might even want distinguish between leaves that are nots-eoal the very special case of a root that is
simultaneously a leaf. Such alternative designs are es@lorExercises.

949. Mechanics of Insertion and Deletion. We are ready to present the algorithm for insertion and
deletion. It is important that we describe these algoritiiman “I/O aware” manner, meaning that
the nodes of e, b)-search trees normally reside in secondary storage (sagks dnd they must be
explicitly swapped in or out of main memory. Furthermor® tperations are much more expensive
than CPU operations (two to three orders of magnitude slowéerefore in complexity analysis below,
we will only count I/O operations. For that matter, the earliookUp algorithm should also be viewed
in this 1/0 aware manner: as we descend the search tree, weadlsebringing into main memory each
new node to examine. In the case of Lookup, there is no needite the node back into disk. This
raises another point — we should distinguish between pading or reading-cum-writing operations
when discussing I/0. We simply count pure reading as onedf@d,reading-cum-writing as two 1/O’s.

We now present a unified algorithm that encompasses botttiorsand deletion. The algorithm is
relatively simple, comprising a single while-loop:
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INSERT/DELETE Algorithm
> UPDATE PHASE
To insert an iterk, d) or delete a ke, first do a lookUp ork.
Letu be the leaf node where the insertion or deletion takes place.
At this point,« is in main memory.
Call u thecurrent node.
> REBALANCE PHASE
while « is overfull or underfull, do:
1. Ifuisroot, handle as a special case and terminate.
2. Bring the parenp of v into main memory.
3. Bring needed sibling(s);’s (j = 1,2, ...) of w into main memory.
4. Do the desired transformations (split, merge, borrowate) onu, u;'s andp.
< In main memory, nodes may temporarily havé or less than< a children
< Nodes may be created or deleted
5. Write back into disk any modified node other than
6. Makep the new current node (rename it@sto prepare for repeating this loop.
Write the current node to secondary memory and terminate.

In Step 5, we do not write a nodeback into disk unless it has been modified. In particular,wwhe
we split or merge, then modified children must be written bacttisk (the parent will be written out
too, but in the next iteration).

950. Standard Insert/Delete and Enhancements. We were deliberately vague in Step 3 of the above
algorithm for two reasons: first, the vague description carec generalized split/merge operations to
be described shortly. Second, even in the “standard lixete” algorithms, there are some possible
enhancements and/or variations. These enhancementsaocéedsd with attempts to avoid split/merge

if it were possible to donate/borrow. We will now make therf8tard Algorithms explicit.

(STANDARD INSERTION) For standard insertion, if nodeis overfull, the standard algorithm
immediately splits: into two nodes (and recurselhat is all What are some possible enhancements?
It seems worthwhile to try donation first. To donate, we mustdinto main memory an immediate
sibling. If the attempted donation fails, and we have anothenediate sibling, it seems worthwhile to
attempt to donation again. Of course, when both attemgtsfaido the usual split.

(STANDARD DELETION) For standard deletion, if a nodes underfull, the standard algorithm
tries to borrow from an immediate sibling. Notice thatu’ could be either a left or a right sibling. If
we succeed in borrowing from’, the algorithm terminates; otherwise, we can mergeith »’ (and
recurse)Thatis all. A possible enhancementin case attempt to borrow fails isstikera second attempt
to borrow. Of course this is only possible if we have anothenediate sibling.”.

Observe that standard INSERT/DELETE only need to hold immaemory at most three nodes at
any moment: current node, its parent and one sibling. Thelsereeements seems to favor better space
utilization and encourage earlier termination. In the woese, the enhanced algorithm is slower than
standard algorithm because failure to donate/borrow hasssociated cost. This is quantified in our
analysis next. It may be possible to justify the enhancesgsihg amortized or probabilistic analysis.

951. 1/0 Analysis. Letus analyze the Standard Insertion (no enhancementg ightne initial reading
and final writing of the current node. In each iteration of wtgle loop, the current node is overfull,
and we need to bring in a parent, spliinto « and«’, and write outu and«’. Thus we have 3 1/0
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operations per iteration. Thus the overall /0O cos? is 3/ where! is the number of iterations (of
coursel is bounded by the height). There is one other possibilitg: |83t iteration might be the base
case where is a root. In this case, we splitand write them out as two nodes. So this case needs only
21/0’s, and our bound o + 31 is still valid.

Suppose we enhance the insertion algorithm: each failedtioncosts one 1/0O (to read in a sibling),
but a successful donation costss two I/0’s (reading in the sibling and writing it out agai®f course,
a successful donation happens only once, and costs one f@ottealn the standard algorithm. So the
total number of I/O’s ig2 + 31) + F' + S whereF is the number of failures antl = 1 or 0 (depending
on whether there is a successful donation). Sifiece I’ < 2/, we can bound the number of 1/O’s by
2451

Consider Standard Deletion: there is an initial readingfarad writing of the current node. In each
iteration of the while loop, the current nodés underfull, and we need to bring in a parent and a sibling
u/, and then writing out the merger afandw’. Again, this is 3 1/0’s per iteration. A possibly exception
is in the last iteration where we achieve a borrowing inst#faderging. In this case, we must write out
bothu andw’, thus requiring four 1/O’s. Thus the overall I/O cost is bded by3 + 3D whereD is
the number of iterations. Next consider the cost of enhaeogsn failed borrowing costs only one 1/0
(to read the sibling). But any successful borrowing is alyea part of the main accounting. Since the
numberF’ of failures is at mosD, we obtain an upper bound 8t 4D in the enhanced algorithm.

Insert(14)
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Figure 29: Inserting4 into a(3, 4)-tree.

Insertion Example: Consider inserting the item (represg:by its key)l 4 into the tree in Figur@3.
This is illustrated by Figur@9. Note thata’ = b = 1. After inserting14, we get an overfull node
with 5 children. In standard Insertion, we would immediatelytsg@iut with the enhancement, we try
to donates to our left sibling. In this case, this is poss#libee the left sibling has less tharchildren.
(We shall see later that this donation action is also caaisistith treating this as €8, 4, 2)-tree.)

952. Achieving2/3 Space Utility Ratio. A node withm children is said to b&ull whenm = b; for
in general, a node with: children is said to bém /b)-full. Hence, nodes can be as small@gb)-full.
Call the ratioa : b the space utilization ratio. This ratio is< 1 and we like it to be as close tbas
possible. The standard inequaliBZf on (a, b)-trees implies that the space utilization in such trees can
never® be better tham(b + 1)/2] /b, and this can be achieved B¢trees. This ratio is as large as 3

9 The cost of reading and writing is separately accounted for, as part of the standard aigodiccounting.
10 The ratioa : b is only an approximate measure of space utility for vari@asons. First of all, it is an asymptotic limit as
b grows. Furthermore, the relative sizes for keys and paraéso affect the space utilization. The radia b is a reasonable
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(achieved wherb = 3), but asb — oo, it is asymptotically only slightly larger thah : 2. We now
address the issue of achieving ratios that are arbitrdolsectol, for any choice of:, b. First, we show
how to achieve/3 asymptotically.

Consider the following modified insertion: to remove an nadeith b + 1 children, we first look at
a siblingv to see if we camlonatea child to the sibling. I is not full, we may donate to. Otherwise,
v is full and we can take theb + 1 children inu andv, and divide them into 3 groups as evenly as
possible. So each group has betweé&b + 1)/3] and[(2b + 1)/3] keys. More precisely, the size of
the three groups are

[(2b+1)/3], [(26+1)/3], [(20b+1)/3] for any integem:
where “{(2b + 1)/3]” denotesounding to the nearest integer. For instanpé/3] + [4/3]4 [4/3] = [n/3] + [n/3] +
1+1+2=4and|5/3] + |5/3] + [5/3] = 14+ 2+ 2 = 5. Nodesu andv will (respectively) have [n/3] =n

one of these groups as their children, but the third groupbsichildren of a new node. See Figla@

wl ol ?\\ ol el el ey
IR A N N R
= b N e
5] 5] I e et T

Figure 30: Generalized (2-to-3) split and (3-to-2) merge

We want these groups to have betweesndb children. The largest groups has siZéb + 1)/3]
and this< b, automatically. For the smallest group to have size at lgase require

o< fb_;lJ | (25)

This process of merging two nodes and splitting into thregesas calledyeneralized splitbecause it
involves merging as well as splitting. Letbe the parent of, andv. Thus,w will have an extra child
v’ after the generalized split. 16 is now overfull, we have to repeat this processat

Next consider a modified deletion: to remove an underfulleowith « — 1 nodes, we again look
at an adjacent sibling to borrow a child. If v hasa children, then we look at another sibling to
borrow. If both attempts at borrowing fails, we merge Bae— 1 children'! the nodes:, v, v’ and then
split the result into two groups, as evenly as possible. Adais is ageneralized mergethat involves
a split as well. The sizes of the two groups &(8a — 1)/2] and[(3a — 1)/2] children, respectively.
Assuming

a >3, (26)

v andv’ exist (unless: is a child of the root, which is handled separately). For lob@und on degree,
we require| (3a — 1)/2| > a, which is equivalentt@3a —1)/2 > a (by integrality ofa), which clearly
holds. For upper bound on degree, we require

3a—1
2 < @7)
2
Because of integrality constraints, the floor and ceilingkgls could be removed in botB%) and 7).
Thus both inequality are seen to be equivalent to
2b+1
a< . (28)
3

estimate only in case the keys and pointers have about the siam

11 Normally, we expect, v’ to be immediate siblings af (to the left and right of.). But if « is the eldest or youngest sibling,
then we may have to look slightly farther for the second sibli
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As in the standar(, b)-trees, we need to make exceptions for the root. Here, thdawmof children
of the root satisfies the bourtd< m < b. So during deletion, the second siblingmay not exist if
u is a child of the root. In this case, we can simply merge thelle\nodes. andv. This merger is
now the root, and it ha% — 1 children. This suggests that we allow the root to have batweand
max{2a — 1, b} children.

Delete(4)
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Figure 31: Deletingl from (3, 4, 2)-tree.

953. Example of Generalized Merge. Consider deleting the item (represented by its kefypm the
tree in Figure23. The is illustrated in Figur81. After deleting4, the current node is underfull. We
try to borrow from the right sibling, but failed. But the rigkibling of the right sibling could give up
one child.

One way to break down this process is to imagine that we mengigh the 2 siblings to its right
(a 3-to-1 merge) to create supernode. This requires bigngpme keysq and12) from the parent of
u into the supernode. The supernode has 9 children, which wesgiét evenly into 3 nodes (a 1-3
split). These nodes are inserted into the parent. Note thetkand14 are pushed into the parent. An
implementation should be able combine this merge-theihsipps into one more efficient process.

If we view b as a hard constraint on the maximum number of children, therohly way to allow
the root to havenax{2a — 1,b} children is to insist thaa — 1 < b. Of course, this constraint is
just the standard split-merge inequali?); so we are back to square one. This says we must treat the
root as an exception to the upper bound.ofndeed, one can make a strong case for treating the root
differently:
(1) Itis desirable to keep the root resident in main memoagjlaimes, unlike the other nodes.
(2) Allowing the root to be larger thalncan speed up the general search.

The smallest example of@/3)-full tree is where(a, b) = (3,4). We have already seen(3, 4)-
tree in Figure23. The nodes of such trees are actudliy-full, not 2/3-full. But for largeb, the “2/3”
estimate is more reasonable.

954. Exogenous and Endogenous Search StructuresSearch trees store items. But where these
items are stored constitute a major difference betw@eh)-search trees and the binary search trees
which we have presented. Itemg(in b)-search trees are stored in the leaves only, while in bireaych
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trees, items are stored in internal nodes as well. Tafjangd. 9] calls a search structuegogenousf it
stores items in leaves only; otherwise ieisdogenous

The keys in the internal nodes i, b)-search trees are used purely for searching: they are not OO0
associated with any data. In our description of binary setnees (or their balanced versions such as 3 o

AVL trees), we never explicitly discuss the data that ar@eissed with keys. So hoWw do we know
that these data structures are endogenous? We deduce thiearbservation that, in looking up a key
k in a binary search tree, kfis found in an internal node, we stop the search and returnThis means
we have found the item with key. The item is not necessarily stored«inbecause we could store a
pointer to the real location of the item. For, b)-search tree, we cannot stop at any internal node, but
must proceed until we reach a leaf before we can concludathiéém with keyk is, or is not, stored in

the search tree. It is possible to modify binary search tsedhat they become exogenous (Exercise).

Q: Is this school bus
going left or right?

Adult: I don’t know.

Child: Going Left.
Adult: Huhh???

There are two consequence of this dual role of keyi)-search trees. First, even if items have
unique keys (our default assumption), the keys in the exagesearch structure could have duplicate
keys. In the case df, b)-search trees, we could have as many as one copy of the kesveér$econd,
the keys in the internal nodeged not correspond to the keys of items in the leawedlustration, see
Figure25where the key 3 appears in an item as well as in an internal node, and thé kegn internal
node does not correspond to any items.

Can't we require the
keys in internal nodes
to correspond to keys

of stored items?

955. Database Application. One reason for treatin¢u, b)-trees as exogenous search structures
comes from its applications in databases. In databasertelogly,(a, b)-search tree constitute amdex

over the set of items in its leaves. A given set of items carelmagre than one index built over it. If
that is the case, at most one of the index can actually stereriginal data in the leaves. All the other
indices must be contented to point to the original data, the.d; in (14) associated with key; is not

the data itself, but a reference/pointer to the data stdsesvaere. Imagine a employee database where
items are employee records. We may wish to create one indedhan social security numbers, and
another index based on last names, and yet another basedm@ssd/\Ve chose these values (social se-
curity number, last name, address) for indexing becauséseasches in such a data base is presumably
based on these values. It seems to make less sense to builtkarbased on age or salary, although we
could.

956. Disk I/O Considerations: How to choose the parametes. There is another reason for prefer-
ring exogenous structures. In databases, the number of ilewery large and these are stored in disk
memory. If there are items, then we need at leastd’ internal nodes. This many internal nodes im-
plies that the nodes of tHe, b)-trees is also stored in disk memory. Therefore, while $eagthrough
the (a, b)-tree, each node we visit must be brought into the main merfrory disk. The I/O speed
for transferring data between main memory and disk is redtislow, compared to CPU speeds. As
a rule of thumb, consider each 1/O operation is three ordensagnitude slower than CPU operations.
Moreover, disk transfer at the lowest level of a computeraigation takes place in fixed sibéocks

(or pages). E.g., in UNIX, block sizes are traditionally 3#%2es but can be as large as 16 Kbytes. To
minimize the number of disk accesses, we want to pack as meys/ifito each node as possible. So

roughly: 1000 CPU
cycles per 1/0

the ideal size for a node is the block size. Thus the pararbefie(a, b)-trees is chosen to be the largest parameter is
value so that a node has thitock size. Below, we discuss constraints on how the paramei® determined by lock
chosen. size

If the number of items stored in tHe, b)-tree is too many to be stored in main memory, the same
would be true of the internal nodes of the b)-tree. Hence each of these internal nodes are also stored
on disk, and they are read into main memory as needed. ThakUp, i nsertanddel et e are

12 The child knows that if the school bus were going right then gould see the entrance door.
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known assecondary memory algorithmsbecause data movement between disk and main memory
must be explicitly invoked. Typically, it amounts to bringi a specific disk block into memory, or
writing such a block back to disk.

957. On(a,b, c)-trees: Generalized Split-Merge for(a, b)-trees. Thus insertion and deletion al-
gorithms uses the strategy of “share a key if you can” in otdeavoid splitting or merging. Here,
“sharing” encompasses borrowing as well as donation. ZFBespace utility method will now be gen-
eralized by the introduction of a new parametefrhe only global constraint anis that it be a positive
integer:c > 1. Call thesga, b, ¢)-trees We use the parameteias follows.

e Generalized Splitof u: When node. is overfull, we will examine up te — 1 siblings to see if we
can donate a child to these siblings. If so, we are done. @tbeywe merge nodes (node plus
c¢— 1 siblings), and split the merger inte+ 1 nodes. We view of these nodes as re-organizations
of the original nodes, but one of them is regarded as new. W& imsert this new node into the
parent ofu. The parent will be transformed appropriately.

We stress that there is no sharp distinction between danatid splitting: we view of them as
different possibilities for a singlgeneralized split subroutine starting from an overfull node
u, We successively bring into main memory a sequence of centig siblings of: (they may be
right or left siblings) until we either (i) find one that hass$etharb children, or (ii) brought in the
maximum number of — 1 siblings. In case (i), we do donation, and in case (ii) wet $pésec
siblings intoc + 1 siblings.

e Generalized Mergeof u: When nodeu is underfull, we will examine up te siblings to see if
we can borrow a child of these siblings. If so, we are done.e@ilse, we merge + 1 nodes
(nodeu plusc siblings), and split the merger intonodes. We view: of the original nodes as
being re-organized, but one of them being deleted. We mustdklete a node from the parent of
u. The parent will be transformed appropriately.

Again, we view borrowing and merging as two possible poksés for a singlegeneralized
mergesubroutine: starting from an underfull nodewe successively bring into main memory a
sequence of contiguous siblingswfintil we either (i) find one that has more thachildren, or
(i) brought in the maximum number efsiblings. In case (i), we do borrowing, and in case (ii)
we merge: + 1 siblings intoc siblings.

In summary, the generalized merge-split(afb, c)-trees transforms nodes intoc + 1 nodes, or
vice-versa. Wher = 1, we have theB-trees; where = 2, we achieve th@/3-space utilization ratio
above. In general, they achieve a space utilization ratia @f+ 1 which can be arbitrarily close to(we
also need — o). Our(a, b, c)-trees must satisfy the followingeneralized split-merge inequality

chb+1
c+1°

The lower bound on ensures that generalized merge or split of a node will always enough siblings.
In case of merging, the current node has 1 keys. When we fail to borrow, it means thasiblings
havea keys each. We can combine all thege + 1) — 1 keys and split them inte new nodes. This
merging is valid because of the upper bouf8) (on a. In case of splitting, the current node has 1
keys. If we fail to donate, it means that- 1 siblings have) keys each. We combine all thegle+ 1
keys, and split them inte+ 1 new nodes. Again, the upper bound®(R29) guarantees success.

c+1<a< (29)

We are interested in the maximum valueaah (29). Using the fact that is integer, this amounts

B rf;ffJ' (30)

to
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The correspondingy, b, ¢)-tree will be called ayeneralized B-tree Thus generalized B-trees are spec-
ified by two parameter$,andc. why, (b, ¢)-trees!

Example: What is the simplest generalized B-tree whete3? Thenb > a > ¢+ 1 = 4. So the
smallest choices for these parameters(aré, c) = (4, 5, 3).

958. Using thec parameter. An (a, b, ¢)-trees is structurally indistinguishable from @n b)-tree. In
other words, the set of alk, b, ¢) trees and the set of dl, b) trees are the same (“co-extensive”).

Call a pair(a,b) valid if 2 < a < b. Likewise, a triple(a, b, ¢) is valid if it satisfies 9). We
view (29) as specifying a lower bound > ¢ + 1 and an upper bound < (¢b + 1)/(c+ 1) on thea
parameterFor any valid(a, b), can we find a such that(a, b, ¢) is valid? The answer is yes: choose
¢ = a— 1. Then clearly the lower bound enholds. The upper bound becomesitel ((a —1)b+1)/a
ora? < (a — 1)b+ 1. But this is clearly satisfied sinde> a + 1.

The choicec = a — 1 is the largest possible choice. So the more interesting isabe smallest
possibe value of. To determine the smallestwe can easily verify (Exercise) this fact:

Assume: + 1 < a. If (a,b, ¢) is valid, so is(a, b, c + 1).

For instance, we now see th@t 5, ¢) has only one solutiore(= 3) becausé4, 5, 2) is invalid.

In general, we like to assume the parameter$) is hard-coded (it is optimally determined from
the block size, etc). However, theparameter need not hard coded — thparameter is only used
during insertion/deletion algorithms, and we can freelgraec (within the range of validity) in a
dynamic fashion. Thus, we might storen a global variable. E.g., if we implementGt++ class for
(a, b, c)-search structures, we can stor&s a static member of the class. Why would we want to modify
¢? Increasing: improves space utilization but slows down the insertiolefilen process. Therefore,
we can begin withe = 1, and as space becomes tight, we slowly increasénd conversely we can
decrease as space becomes more available. This flexibility a grearatdge of the parameter.

959. A Numerical Example. Let us see how to choose th, b, ¢c) parameters in a concrete setting.
The nodes of the search tree are stored on the disk. The rassisned to be always in main memory.
To transfer data between disk and main memory, we assume &-likél environment where memory
blocks have size 0512 bytes. So that is the maximum size of each node. The readingiting

of one memory block constitute one disk access. Assume #udt pointer ist bytes and each key
6 bytes. So each (key,pointer) pair usésbytes. The value ob must satisfyl0b < 512. Hence
we choosé = |512/10] = 51. Suppose we want = 2. In this case, the optimum choice ofis

_ |ebt1 |
o= |2 =31

To understand the speed of using s@h 51, 2)-trees, assume that we store a billion items in such
a tree. How many disk accesses in the worst is needed to leaokitpm? The worst case is when the
root has2 children, and other internal nodes Itaischildren (if possible). A calculation shows that the
height is6. Assume the root is in memory, we need ofilplock 1/0s in the worst case. How many
block accesses for insertion? We need to readdes and write out+ 1 nodes. For deletion, we need
to readc + 1 nodes and write nodes. In either case, we hae+ 1 nodes per level. Witk = 2 and
h = 6, we have a bound of 30 block accesses.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011



§8. (a,b)-SEARCH TREES Lecture IlI Page 58

For storage requirement, let us bound the number of blockdeteto store the internal nodes of this
tree. Let us assume each data iter iy/tes (it is probably only a pointer). This allows us to corgu

the optimum value of/’, b’. Thust' = [512/8] = 64. Also,a’ = H@—TJ = 43. Using this, we can

now calculate the maximum and number of blocks needed byatarsiructure (use Lemn?®).

960. Preemptive or 1-Pass Algorithms. The above algorithm uses 2-passes through nodes from the
root to the leaf: one pass to go down the tree and another pags tip the tree. There is a 1-pass
versions of these algorithms. Such algorithms could p@tynbe twice as fast as the corresponding
2-pass algorithms since they could reduce the bottlenesdkIdD. The basic idea is to preemptively
split (in case of insertion) or preemptively merge (in cakdedetion).

First consider the standard insertion algorithm (where 1). During the Lookup phase, as we
descend the search path from root to leaf, if the current madelready full (i.e., has children) then
we will pre-emptively splitu. Splitting « will introduce a new child to its parent, We may assume
thatwv is in core, and by induction hypothesisis not full. Sov can accept a new child without splitting.
But this preemptive splitting of is not without I/O cost — since is modified, it must be written back
into disk. This may turn out to be an unnecessary 1/O in ouulaagalgorithm. So, in the worst case,
we could double the number of disk I/O’s compared to the nbmsartion algorithm.

Suppose the height . At the minimum, we need + O(1) disk I/O operations, just to do the
lookup. (Note: The O(1)” is to fudge some details about what happens at a leaf or a aoaok is
not important.) It may turn out that the regular insertiogaaithm uses: + O(1) disk 1/O’s, but the
pre-emptive algorithm use¥h + O(1) disk 1/O’s (because of the need to read each no@dad then
write out the two nodes resulting from splitting. So the preemptive insertion algorithm is slower by
a factor of3. Conversely, it may turn out that the regular insertion dthm has to split every node
along the path, using 1/O’s per iteration as it moves up the path to the root. Combiwith theh I/O
operations in Lookup, the totalig: + O(1) /O operations. In this case, the pre-emptive algorithnsuse
only 3k + O(1) disk 1/O’s, and so is faster by a factor ©f3. Similar worst/best case analysis can be
estimated for generalized insertion with> 2.

For deletion, we can again do a preemptive merge when therdgurode: hasa children. Even for
standard deletion algorithna & 1), this may require 4 extra disk 1/0O’s per node: we have todima
sibling w to borrow a key from, and to then write outw and their parent. It might well turn out that
these extra I/O’s are un

But there is another intermediate solution: instead of p@Ee&/e merge/split, we simplgachethe
set of nodes from the root to the leaf. In this way, the sec@ss ploes not involve any disk /O, unless
absolutely necessary (when we need to split and/or mergejnodern computers, main memory is
large and storing the entire path of nodes in the 2-passitiigpseems to impose no burden. In this
situation, the preemptive algorithms may actually be skalven a 2-pass algorithm with caching.

961. Background on Space Utilization. Using thea : b measure, we see that stand&rdrees have
about50% space utilization. Yao showed that in a random insertion ehatthe utilization is about
lg2 ~ 0.69%. (see B]). This was the beginning of a technique called “fringe ga@l’ which Yao [L7]
introduced in 1974. Nakamura and MizogucHj [ndependently discovered the analysis, and Knuth
used similar ideas in 1973 (see the surveyf.[

Now consider the space utilization ratio of generalizetrees. Under30), we see that the ratio

a:bis (‘ibjll) : b, and is greater tham: ¢ + 1. In casec = 2, our space utilization that is close 2.

Unlike fringe analysis, we guarantee this utilization ie thorst case. It seems that most of the benefits
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of (a,b, c)-trees are achieved with= 2 or ¢ = 3.

EXERCISES

Exercise 8.1: Suppose we have(a, 6)-search tree. What is the smallest possible valuesaf that we
have a valid’5, 6, ¢)-search tree? &

in text, M (h), u(h)
were defined for
number of leaves, not
size

Exercise 8.2: Suppose we defin&/(h) andu(h) to be the maximum and minimusizeof an (a, b)-
tree of height:. Give the formula ford/ (k) andp(h).

Exercise 8.3: Prove the claim that if + 1 < @ and(a, b, ¢) is valid then so iga, b, c + 1). O

Exercise 8.4: Some students are not sure about how internal nodes couéKesg that are not as-
sociated with any item. Please give an example where yotiistarting keys into an empty
(a, b)-search tree, and then you delete one item. As a result, yathage an internal key that
is not associated with any item. Assurfieb) = (2,3) and(d/,b’) = (1,1), and make your
example as small as possible. &

Exercise 8.5: Consider an(a, b)-tree withn items and height. Give upper and lower bounds on the
height in terms of:.. Your bounds will depend on the parametersh) and(a’, b'). O

Exercise 8.6: Justify the following statements abdut, b)-search trees:
(a) If we only have insertions into &fa, b)-tree, then the keys in an internal node are just copies
of keys of items found in the leaves.
(b) Itis possible to maintain the property in part (a) evethére are both insertions and deletions.

&

Exercise 8.7: In the text, we did a worst/best case comparison betweedatdimsertion and preemp-
tive insertion algorithms. Please do the same for the stdritidetion and the preemptive deletion
algorithms. More precisely, answer these questions:

(a) What is the maximum number of /O operations when doirtgradard insertion into afu, b)-
search tree of heighit?

(b) Repeat part (a), but now assume the pre-emptive ingeatgorithm (this was discussed by
Esther in recitation, and also §64, p.50).

(c) In the best case scenario, how much faster is preemptegtion?

(d) In the worst case scenario, how much slower is preemptsertion?

(e) Based on the considerations above, should we do preengptiegular insertion? &

Exercise 8.8: Our insertion and deletion algorithms tries to share (@enate or borrow) children from
siblings only. Suppose we now relax this condition to alld®varsng among “first cousins” (i.e.,
nodes that share a common grandparent). Modify our ingetél algorithms so that we try to
share with immediate siblings or cousins before doing threegaized split/merge. &

Exercise 8.9: We consider the effects of using one of the following schetoewganize the nodes of
an(a,b)-search tree. (i) an array, (ii) a singly-linked list, (i#)doubly-linked list, (iv) a balanced
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binary tree.

(a) Discuss the effects of these choices on the maximum vl parametei.

(b) lllustrate your discussion using these specific nunaéezamples: block size 096 bytes,
and each pointer i¢ bytes, and each key algiobytes. So a pointer within the block uses two
bytes (actuallyi 2 bits).

(c) Explain what choice would you make in this case. &

Exercise 8.10: Let us suppose that each node stores, not just pointersdbilitsen, but also track the
degree of its children.
(a) Discuss how to maintain this additional informationidgrinsert and deletes the, b, ¢)-
search trees.
(b) How can this additional information speed up your aldon? &

Exercise 8.11:Do the same worst/best analysis as the previous questidrassuming an arbitrary

c> 2.

(I) Compare insertion algorithms (regular and pre-emptive

(D) Compare deletion algorithms (regular and pre-emptive) &
Exercise 8.12: What is the the best ratio achievable und&l)® Under £8)? &

Exercise 8.13:Give a detailed analysis of space utilization based on petens for (A) a key value,
(B) a pointer to a node, (C) either a pointer to an item (in thegenous case) or the data itself
(in the endogenous case). Suppose we iidegtes to store a key valug bytes for a pointer to a
node, andl bytes for a pointer to an item or for the data itself. Expréssspace utilization ratio
in terms of the parameters
a,b,k,p,d

assuming the inequality2@). %

Exercise 8.14: Describe the exogenous version of binary search trees. t@avimsertion and deletion
algorithms. NOTE: the keys in the leaves are now viewed awgates for the items. Moreover,
we allow the keys in the internal nodes to duplicate keys énl¢aves, and it is also possible that
some keys in the internal nodes correspond to no stored item. &

Exercise 8.15: Consider the tree shown in Figuz8. Although we previously viewed it as(8, 4)-tree,
we now want to view it as €2, 4)-tree. For insertion/deletion we further treat it a2a4, 1)-tree.
(a) Insert an item (whose key i$)} into this tree. Draw intermediate results.
(b) Delete the item (whose key ig)from this tree. Draw intermediate results. &

Exercise 8.16: To understand the details of insertion and deletion algoriin(a, b, ¢)-trees, we ask
you to implement in your favorite language (we like Java)fiowing two (2, 3, 1)-trees and
(3,4, 2)-trees. O

Exercise 8.17:1s it possible to desigfu, b, ¢) trees so that the root is not treated as an exceptiof?

Exercise 8.18: Suppose we want the root, if non-leaf, to have at leashildren. But we now allow
it to have more thai children. This is reasonably, considering that the roothprobably be
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kept in memory all the time and so do not have to obeyttlenstraint. Here is the idea: we
allow the root, when it is a leaf, to have updt: — 1 items. Here(a’,?’) is the usual bound
on the number of items in non-root leaves. Similarly, whee & non-leaf, it has betweenand
max{a® — 1, b} children. Show how to consistently carry out this policy. O

Exercise 8.19:We want to explore the weight balanced versioriaqb)-trees.
(a) Define such trees. Bound the heights of your weight-loaldu, b-trees.
(b) Describe an insertion algorithm for your definition.
(c) Describe a deletion algorithm. &

Exercise 8.20: How can we choose theparameter (see()) in generalized-trees in a more relaxed
manner so that the repeated splits/merges during insemtidrleletions are minimized? <

END EXERCISES
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5A. APPENDIX: Red-Black Trees

Red-black trees form a balanced family that, in some seagbeimost economical among height-
balanced binary trees. Each node in such a tree is cafored or black, where red nodes are considered
deficient. Such trees have some nice properties (see Exengigeaps below). The drawback is the
relative complexity of their insertion and deletion algbms. There is an alternative view of red-black
Trees that connects then(®, 4)-trees. Sinc€2, 4)-trees (as a special case(of b)-trees) have simpler
algorithms, we can think of the red-black tree algorithmthasunraveled2, 4)-tree algorithms.

To make these algorithms easier to understand, it is coemeta introduce the “extended” version
of red-black trees:

An extended red-black treeis an extended binary search tree in which each node is cbéitteer
red or black. The color scheme satisfies propefiiés), H(x) andP(z) at each node:

Basis property B(x): If 2 is a nil node, then itis black.
Height property H(z): The number of black nodes in a path from nad® any
nil node is invariant. This invariant number, minus one, is
called theblack height of x. So a nil node has black height @f
Parent property P(x): If = is red then itgarent (if any) is black.

A (standard) red-black tree treeis a standard binary search tréewhose nodes are colored ei-
ther red or black such that its corresponding extendedamf&i (with nil nodes colored black) is an
extended red-black tree. The two versions of red-blackdreenterchangeable. Sometimes it is easier
to work with the extended version but most of the time we agstime standard version. Figug2
illustrates a red-black tree in its two forms.

The theoretical advantage of red-black trees over AVL tisdhat we use only 1 bit of balance
information per node, as opposedg® bits in AVL trees.

() (b)

Figure 32: Two equivalent red-black trees: (a) extendesionr (b) standard version.

There are some easy consequences of the basis, height andl paperties:
(i) Each node in a red-black tree of height two or more musehaw children. (Recall that a node has
height 0 iff it is a leaf.)
(ii) A node with exactly one child must be black, and its uréaunild must be a leaf with color red.

13 This color terminology is borrowed from accounting praetias in balance sheets being in the red or in the black.
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With these observations, we can now give a direct definitibned-black trees (without going
through the extended binary search trees). At each mptte following three properties hold:

Basis property B’ (z): If  has only one child, then that child is a leaf with color red.
Height property H'(z): The number of black nodes in a path from nad® any

leaf is invariant. This invariant number is th&ack height of x.
Parent property P’(x): If « is red then itparent (if any) is black.

Note that the new parent proper/ () is identical toP(x). In the following descriptions, we shall
continue to usé3(x) and H (x) instead ofB’(z) andH' ().

Let 7" be an ordinary binary tree whose nodes are colored red ok bladz is a node ofl’. The
meaning should be clear when we say thatiolates the parent property P(x), or equivalently, there
is a P-violation at «. Similarly for the height property, we speak of violatifffz) or a H-violation at
z. It may be helpful* for the reader to think of the red nodes as deficient in a cesese. The parent
property ensures that there are no two consecutive defivgglgs in a path.

Note that if the root of a red-black tree is red, we can jusocdlblack, and the result is still a
red-black tree. For this reason, some literature assuragghroot of a red-black tree is always black.

If 2 is a node in a red-black trég, let bht[z] = bhtr[z] denote the black height af in 7" and
bht[7T] denote the black height of the root 8t For instance, ifc is a black leafpht[z] = 1. For
any pathp, we also lebht[p] denote the number of black nodeginRed-black trees are automatically
balanced:

LEMMA 7. Suppose a red-black trég hasn nodes and black heiglit. Thenn > 2" — 1 and hence
h <lg(n + 1). HenceT has height at most |1g(n + 1)].

Proof. We prove that. > 2" — 1 by induction onk > 0. This is true wherk = 0, for 7" has 0 or 1
node. Ifh > 1, then the left and right subtree’&thas black height at least— 1 (they could have height
h). By induction, they each have atle@st! — 1 nodes. Thu§ has atleas2(2"~! — 1) +1=2"—1
nodes, as claimed. The rest of the lemma is immediate: from2" — 1 we geth < |lg(n +1)|. By
the parent property, the height of the tree is at n2ast Q.E.D.

962. Operations on red-black trees. We next consider the basic operationslafok Up(Key),

i nsert (Item) anddel et e(Node on red-black trees. Since red-black trees are binary ségzeh,
the lookup operation can be done as for binary search trdesfdllowing terminology will be useful
in our descriptions. The usual terminology for binary treesvs them as a kind of family tree where
each node has at most 2 children and reproduction is asekxeinding this analogy, the children of
a sibling are callethephews But we may distinguish one of these nephews aea-nephewand the
other as dar-nephew. For instance, in Figurd2(b), the nodes:, m are respectively the near-nephew
and far-nephews of. Of course, the reciprocal relation is ancle: z is the unique uncle of: and of

n. Note that a node is either a near-nephew or a far-nephew ohitle, but not both.

EXERCISES

14 The colors in our trees comes from “red ink” and “black ink”hak is, they are accounting analogies, with no racial
connotations!
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Exercise A.1: For each of the following binary trees, say whether it cowddhe shape of a red-black
tree or not. If yes, show a coloring scheme; if not, argue wity n &

/@?x% @@ﬁ
o b

Figure 33: Some binary trees.

Exercise A.2:
(a) What is the maximum possible height (not black heighth eéd-black tree with 10 keys?
Argue rigorously why your bound is correct.
(b) Show a lower bound (draw a read-black tree with this byund &

Exercise A.3: Give a direct definition of red-black trees for ordinary ijnaearch trees. (In our text,
we defined it indirectly, via extended binary search trees.) &

Exercise A.4: A “2-4 tree” is a search tree in which each interior node hagee 2, 3 or 4 children,
and every path from the root to a leaf has the same lengthals&arch tree in the sense that if
a node hadl (d = 2, 3,4) children, then the node stords— 1 items. The keys of these items
K, < Ky < --- < K4 are ordered and we have a generalization of the binary sé@eh
property. This facilitates searching for any key.
(a) Show that every red-black tree can be interpreted as aege4HINT: assume that the root is
black.
(b) Do a detail comparison of the insertion algorithmg$an4)-trees and red-black trees.
(c) Repeat part (b) for deletion. &

Exercise A.5: (Cormen-Leiserson-Rivest) Alternative definition of aleight: define theblack
height of nodew to be the number of black nodes along any path froto a nil node, but
notcountingu. That is, ifu is red, then our black height is 1 less than the alternatifiaition.

In particular, if a red-black tree has a red node, we can ahdng black and its height is not
changed according to this definition. One disadvantagei®figgfinition is the need to refer to nil
nodes in its definition. But does this alternative definitioake any difference to our algorithms?

&

Exercise A.6: An alternative definition of an extended red-black trees teims of a rank function(x)
for each noder with these properties: (i) If the pareptx) of x exists, then-(z) < r(p(z)) <
r(x) + 1. (ii) If the grandparenp(p(z)) exists, then:(z) < r(p(p(x))). (i) If z is a leaf,
r(z) = landifz = ni | thenr(z) = 0. Show the “equivalence” of such trees and red-black
trees; part of the problem is to define “equivalence” pregigdINT: use the definition of black
height in the previous exercise. &
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Exercise A.7: (Olivié) A binary tree ishalf-balancedif for every noder, the length of the longest path
from x to a leaf is at most twice as long as the length of the shortghtfpomz to a leaf. Asin
the previous exercise, show the “equivalence” of such aeesed-black trees. %

Exercise A.8: Let M (h) denote the maximum number of key-bearing nodes in a redkittae with
black height ofh. Write the recurrence equation faf (k). Solve the recurrence. NOTE: what
if we do the same fom(h), denoting the minimum number of key-bearing nodes in a tadkb
tree with black height? &

END EXERCISES

¢A.1. Red-Black Insertion

The following description is designed so that the studentezsily commit to
memory the insertion algorithm. Consequently, the studleotlld be able t
perform hand-simulation of the algorithm on actual treesr sertion, we
prefer to treat the tree as a standard binary tree.

O

Suppose we want to insert a nad@to a treeT’. There are three steps in insertion:

1. Insertz into T" as in a binary search tree.
2. Makezx a red node.
3. Rebalance at.

We must explain the third step of rebalancing. After stepsd 2,z is a red leaf. We verify that
the tree automatically satisfies the height property. Nepdperty P(u) holds at each node except
possibly when: = z. In fact, the only possible violation of red-black tree peajes is when the parent
of z is red. We are done if the parent.ofs black. Hence assume otherwise.

This single violation is key to understanding the insertiperation, and deserves a definition: let
2 be any node of binary search tréewhose nodes are colored red or black. We @atn almost
red-black tree at nodex if T satisfies the basis and height properties. Moreover, &fgsgiproperty
P(u) for all nodesu # « but does not satisfy?(x). In this case, we also sdy has aP-violation atx
or aninsertion violation at x.

963. Rebalancing an almost red-black tree afr. Rebalancing an almost red-black tree means to
convert the tree into a red-black tree. This is reduced tajaesgce of (repeated) “rebalancing steps”.
Each rebalancing step either (I) transfers the violation &t the grandparent of, or (II) remove the
violation completely (and we terminate). The color of tiele of = decides which of these two cases
applies. We consider the following scenario (see Figid)e
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Insertion scenario.

We are trying to rebalance an almost red-black ffeat z. Both z and its
parenty are red. Let: be the parent o andu the sibling ofy (sow is the
uncle ofz). Thenz must be black but the color af is unknown and is the
critical determinant of the action we take.

Figure 34: Insertion scenario: violation:at

964. Justification for Insertion Scenario. Why does this scenario hold? Note thay iflid not exist,
we would not have a violation at. If the grandparent of = did not exist, then we can simply color
y black and the result would be a red-black tr&éis recoloring is the only operation in the insertion
algorithm that increases the black height of a tré¢hat about.? In general, its existence is guaranteed
by the basis propert(z). However, ifz hasjustbeen inserted; may not exist (that isy may be a nil
node). In this case, it is easy to see thdtas no sibling or children. This situation can easily be fixed
as illustrated in Figuré&5s:

FIXSUPERNODE(x):
() If zis afar-nephew ofi, we rotate ay,
blackeny and redden its children, z.
(b) If z is a near-nephew of, we rotate twice at.
We blacken: and redden its childreny(@andz).

In either case, the reader verifies that the result is a racklitee.

This transformation of the triple, y, = will be encountered again. Itis helpful
to think of z, y, 2 as asupernodéhence the name of this little routine). Hence
(a) and (b) are just two cases in the rebalancing of a superidtk operatio
in (b) is quite common and is calleddmuble rotation. In general, a doubl
rotation at a node: is defined ifz is the near-nephew of its uncle and the
operation amounts to two consecutive rotations.of

D -

To conclude, this “justification” of the insertion scenagmounts to a procedure (let us call it
CONVERT) to transform an insertion violation into the insertionisago, or else to remove the insertion
violation.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011



§A. APPENDIX: RED-BLACK TREES Lecture lll Page 67

, \
z rotate(y) y
SORNN ® R

&
x (a) x is a far-nephew of:. “

(b) x is a near-nephew af.

Figure 35: When: does not exist: two cases.

965. Rebalance Step. We assume the insertion scenario and consider two cases.

966. CASE |: The unclew is red. This case is easy: we simply redderand blacken botly andu
(see Figure36).

Figure 36: Red uncle: possible new violatiorzat

It is not hard to check that the result is either a red-blaek wr an almost red-black treezatIn
the latter case, we recursively do a rebalance dh short, the rebalance step has either removed the
insertion violation or moved it closer to the root. Evenltyi#the recursive process must stop.

967. CASE ll: The uncle u is black. In this case, we transform the tree as indicated in Figre
This amounts to rebalancing the supernodg . Thatis, we just call the routinel ¥SUPERNODE(x).
Since the result is a red-black tree, the black uncle casteisranal one.

We expand on Figur87 a little bit. The left-hand side is a combination of 4 casespehding on
whetherz is a left or right child ofy and whethel is a left or right child ofz. Note that the roots
of the four subtreeg’, 7>, T3 andT}, are all black {, the root ofT}, is black by assumption and the
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rotations and recoloring

Figure 37: Black uncle: root d¢fy, the uncle ofz, is black.

others are black by the parent property). This transfoiwnat completely specified by the following
requirements:

e o',y 2" is simplyx,y, z in non-decreasing order of their keys.

e T, Ty,T5 andT} are the the subtreds, T», 75 andT} in non-decreasing order.

The reason this is enough to determine the tree on the riggind-kide of Figur&7 is because the result
must be a binary search tree. Take the possibility whdgethe right child ofy, andy the left child of
z (see Figure38). Here, if we perform a double rotationsmatredden: and blacken:, we obtain the

\
rotate(z),rotat e(x) I
recolorz red,z black
. Ry (®)
/N

4
T3 T1 T2 T4

Figure 38: Black Unclez is right child ofy, y is left child of .

desired red-black tree. We can similarly work out the otheze possibilities.

This completes our discussion of the black uncle case anzktwithe rebalance step. To summarize
the insertion algorithm:

INSERT( 1 1):
1. Insertl asin abinary search tree; color the inserted node red.
2. while there is a violationdo
2.1 Convert to the insertion scenario.
2.2 Perform a rebalance step.
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EXERCISES

Exercise A.9: Insert the following sequence of keys (in succession) imoiratially empty tree:
10,8,3,1,4,2,5,9,6,7. &

Exercise A.10: Verify carefully that after the rotations and re-coloririgghe rebalance steps always
result in a red-black tree or an almost red-black tree. &

Exercise A.11: Draw a red-black tre&" with black height 2 and specify a kdysuch that inserting
k into T7 will increase the black height af;. Draw the red-black tree after insertihg HINT:
when does the black height increase in the insertion proe€du &

Exercise A.12: Is the recoloring in our rebalancing steps ad hoc? Try to@were systematic account
of how to assign colors. (This is certainly another usefditaimemory.) &

Exercise A.13: (One pass version) Our insertion algorithm requires twe@ssone pass down and the
other pass up the tree. Design an alternative insertiorrigigowhich has only one pass. HINT:
the idea is “preemptive rebalance”. Try to make sure thatden®black before you visitit.

END EXERCISES

6A.2. Red-Black Deletion.

Deletion is slightly more involved than insertion. Agaire design the algg
rithm to be remembered, so that the reader to perform hamussition of the
algorithm. For this description, we prefer to use the teradagy of extende
binary trees.

[®X

Suppose we want to delete the item in a nade a red-black tred’. We delete item in. as we
would in an ordinary binary tree, and then we rebalance tarerthat the result is still a red-black tree.
Itis important that we use the “standard deletion algoritfsees3) which does not use rotations. Note
that the standard deletion algorithm may not actually rezrtbe node.. Instead, some nod€ with
only one child will be removed.

968. Deletion violation. Again, the deletion of node’ causes a “violation”, which we now explain.
Imagine the nodes of our search tree to carry “tokens” — a ogle inas no token and a black node has
one token. The nil nodes (recall we viélvas an extended binary tree now) are automatically black
and so carries a token. Thus, the black height of a nodeone less than the number of tokens along
any path fromu to a nil node. The height property simply says that the nurobblack tokens along a
path from any node to a nil node is invariant. Thus if the delatodeu’ is red, we do not change the
number of tokens along any path, so the height property sgpved. So assume that the deleted node
u' is black. Recall that.” has at most one child. #’ has no parent, then the result is again a red-black
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tree. Hence assume thdthas a pareng. After deletingu’, one of the children of becomes a node

in place ofu’. Note thatz is a nil node ifu’ was a leaf, but otherwisewas the only child of.’. Let us
give the token of/ to = after deletion.Now the height property is restored in the sense that evdty pa
to a nil node still contains the same number of tokens!

What can still go wrong? Well, if: already has a token, then givinganother token means that
now has two tokens. We say a nod@a@ubly-black if it has 2 tokens. First observe thatif was not a
leaf, then we know that must be a red leaf. This means thais black, not doubly-black. But i." is
a leaf, thene is a nil node and hence it is now doubly-black. In figures, wesB, D to denote red,
black and doubly-black nodes, respectively.

An extended binary search tréein which an extended nodeis colored doubly-black (D), with
the remaining nodes are colored black (B) or red (R), is saliktanalmost red-black tree atz if T'
satisfies the basis and parent properties, and also the swbdgight property, interpreted in terms of
counting tokens as above. We also’SahatT has adeletion violation at z.

We summarize the deletion algorithm:

1. Use the standard deletion algorithm to delete (the item.in
Letu’ be the node that is physically removed in this deletion.
2. Ifu/ isred or has no parent, we terminate with a red-black tree.
{Henceforth assume v is black and has parent y.}
Letx be the extended node that is the childjoh place ofu’. If x is non-nil, we again terminate.
Otherwise, we doubly blacken the nil nade
Call the rebalancing procedure at nade

ok w

In the remainder of this section, we describe the rebalgmmiocedure for an almost red-black tree at
a noder. The rebalancing procedure is recursive and consists ebted application of a “rebalancing
step”. Each step either removes the violationcabr move it to some node nearer the root. Each
rebalancing step assumes the following basic scenarid~{geec39):

o2)
o B
2 2

Figure 39: Deletion scenario: violation at

Deletion scenario.

We have an almost red-black tree which is doubly-black athe noder may
be nil. The parent and sibling afis p andy, respectively. The children af
aren andm, which are respectively the near-nephew and far-nephew of

15 We used the same terminology “almost red-black tree” whentte has an insertion violation; this ambiguity is not a
problem because we normally are in either insertion or elehode, but not both simultaneously. The context will méie
type of implied violation clear.
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969. Conversion to the Deletion Scenario. The illustration in Figure39 is completely general, up
to a mirror symmetry (that isy may be the right child op, etc). How can we “justify” this scenario?
Suppose we have a deletion violationcatf p did not exist, we can simply colar black and the result
is a red-black tree. Ip exists then the height property implies the existence dow the black-height
of y is equal to the black height af, which is at leas. Hencey is not nil. Note that ifx is non-nil,
then the two childremn, n of y must also be non-nil. This justification amounts to a tinyogaure
CoNVERT for bringing an deletion violation into the deletion scdéndor, failing that, to terminate in a
red-black tree).

970. Rebalancing Step. We now describe the rebalancing step under the hypothestseadele-
tion scenario. There are 3 cases to consider, dependingeorotors ofy, m,n. The simplest is the
following.

971. 1. All-black case. The siblingy and the two nephews., n are all black (see Figur€0). Then
by coloringy red and by giving a black token to the pargnive get either a red-black tree fifwas
originally red) or an almost red-black treegafif p was originally black). Thus the deletion violation is
either removed or moved closer to the root.

p recolor

oW R
& 3

Figure 40:x is doubly black, with black sibling and nephews.

972. 1. Red-nephew case. Suppose some nephew:nfs red. Say is black. There are two possibili-
ties:

(a) The far-nephewm is red: See Figurell. We can rotate aj, give the color ofp to y, and recolor
m,p andz to be black. The reader can verify that the result is a redikdieee. So this is a terminal
case.

rotate(y) y
OG \m
"R A

Figure 41: Far-nephew: is red.

(b) The near-nephewn is red: See Figure42. We may further assume that the far-nephaw
is black. By rotating at, blackeningn and reddening, we have reduced this to case (a) where the
far-nephew is red. (But note that case (a) will immediatalyse a rotation at, so in effect, we have a
double rotation at and this case may be regarded as terminal also.)
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HINT: We can combine both cases and view this as the rebalgdia supernode (cf. thedFSu-
PERNODE routine above). More precisely, in case (a), we rebalanestipernoden, y, p. Theny is
given the old color o, andm, p are blackened. Case (b) is similar: we rebalance the sugermgy, p.
(That is, the role ofn taken over byn.) Theny is given the old color op; andn, p are blackened. In
both cases, we makeblack and terminate.

\

p rotate(n) D
SOEINOY SOy
/ (R)y

m

FORC

(8)m
Figure 42: Near-nephew s red.

973. lll. Red sibling case. The siblingy of x is red (Figuret3). So the common pareptof x andy
is black. In this case, we rotategtredderp and blackeny. The result is still an almost red-black tree
atz, except that the sibling af is black. This means we have reduced our situation to casds.| o

p(B) rotate(y) y
ORI Gk R
R CUCE o

Figure 43: Red sibling case.

But there is a subtle point here — the depthea$ increased. To be sure that we are not in a non-
terminating loop, we must analyze deeper: since case lIrsital, we only have to worry about a
reduction to case | (all-black case) which may or may not teate. But if we were reduced to the
all-black case, it is easy to check that we would terminatier éfie necessary recoloring. Remark: this
check is just for our analysis — the algorithm need not dotangtspecial.

HINT: we can view case Il as rebalancing the supernadeg, p, somewhat like the red far-nephew
case.

The above analysis shows that the only recursive case idlthkaek case. This recursion can repeat
at most2 Ig n times before we reach the root. But, regardless of how raebalg steps are performed,
only a constant number of rotations are performed.

EXERCISES

Exercise A.14:
(a) Execute the following the red-black tree insert and t@etgerations (the meaning is self-
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explanatory)ins(5,7,3,9,10,8), Del(10).
(b) Instead ofDel(10), do Del(3). &

Exercise A.15: Verify that the deletion operation makes only a constant Imemof rotations, not
O(lgn) rotations. (You should flesh out some of the claims in theabxiut termination.)

Exercise A.16: Write the deletion algorithm in a reasonable pseudo-cod&jmy explicit any assump-
tions about the data structure and basic operations. Ndiese should be a procedure called
CONVERT. Presumably, the argument t@8VERT is a noder where we have a deletion viola-
tion. The technical problem is thatmay be nil. So a solution is that we call convert with the pair
of nodes, @NVERT(x, y) wherey is the parent of. Here, either: ory may beni | . &

Exercise A.17: (a) When does the black height of a tree decrease in a deketion
(b) Is it possible to have a red-black tree so that its bladiiéncreases when you insert a certain
key, and its black height decreases when you delete a cedder? &

Exercise A.18: (One pass version) Our deletion algorithm requires twogmsmme pass down and the
other pass up the tree. Design an alternative deletionitligowhich has only one pass. HINT:
do “preemptive rebalance” by making sure that a node is réat®&gou visit it. &

Exercise A.19: Give an alternative description (not code) for the deletityorithm without reference
to nil nodes. That s, view them as standard binary searels.tre &

Exercise A.20:
(a) Show that we can modify the colors of a red-black tree abehch node of heiglitis black.
Note that a leaf has height
(b) Modify the insertion and deletion algorithms for suct-tdack trees. %

Exercise A.21: Let S be a set ofn points in the plane. Th&eap data structure of E. McCreight
stores a seb' of points using theirz-coordinate as key. | also stores at each nodlee largest
y-coordinate among all the points in the subtre@.afThe underlying data structure is a binary
search tree.

(a) Assume that binary search tree is a red-black tree. Sbantdinsert and delete points from
treaps.

(b) Analyze the complexity of the algorithms in (a).

(c) Can you achieve the same complexity if you use AVL trees?

(d) Can you achieve the same complexity if you use 2-3 trees? &

Exercise A.22: (open-ended) Suppose we havieolored binary search trees; which each node is
colored red, black or doubly-black, satisfying some suéabodified Basis, Height and Parent
properties. Work out the insert and delete algorithms fehssearch trees. Discuss advantages
or disadvantages of these trees. &

END EXERCISES
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6A.3. Merge and Split.

Suppose we want to implement the additional operations ofimgand splittingi.e., the operations
of a fully mergeable dictionary®). We shall write

T, < Ty
to indicate that all the keys i, are less than the keys .

974. Merge. Consider how to merg®; and7; under the assumptiofy < T5. First we delete the
maximum itemu in 77, and still call the resulting tre@;. This takesO(logn) time. So we have to
solve the related problem of merging the following threes;e

T <u<Ts.
If bht[T7] = bht[T3], merging is trivial: we just make the root withTy,T5 as the left and right

subtrees. So now assumiet[T}] > bht[T3] (the other case is similarly treated).

Let us now walk down the right subpath, 1, ...) of 71, terminating at a node; whose right
subtreeS; = S’ has the same black height&s In general, the left and right subtreesgfare denoted
S; andS!, respectively (see Figured). Note that we may assume thfthas a black root (by choosing

Lo
+ O+
7 U merge it

Ty

So

Tt
S, U
St SI S t
ST

Figure 44: Decomposition dfy and merging ofl, u, T5.

x; appropriately). We install as the right child ofr;, makeS’ andT} the left and right subtrees af
We also color red. The result is an almost red-black tree with possiblynaerition violation at: (if

x¢ is red). As in the insertion algorithm, we can now performtelealancing algorithm to convert an
almost red-black tree into a red-black tree. The time toyoaut the rebalancing is

O(1 4 bht[T1] — bht[T3]) (31)

which isO(logn). This concludes our description of merging.

975. Splitting.  Next consider the problem of splitting a red-black tigeat a keyk. This is slightly
more complicated, and will use the merging algorithm justodéed as a subroutine.

We first perform d ook Up on k, usingO(log n) time. This leads us down a pathy, 1, . .., 2;)
to a noder; with key &’ that is equal td if & is in the tree; otherwise it is equal to the predecessor or
successor of in the tree. See Figurs for a particular case whete= 5.
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e

Figure 45: Split: decomposition @f; .

H}Q

€

decompose
_—

Again, letS;, S! denote the left and right subtreesxf Let us form two collectiond. and R of
RBT's: for eachi, if the key inz; is greater thark, we putz; (viewed as a RBT with one key) and
S’ into R. Otherwise, we put; and.S, into L. This takes care of every key ifi, with the possible
exception of a subtree af;: if z; is putinto R, then we putS; into L. Otherwisey; is put intoL and
we putS; into R. In Figure45, if 2; andS; are put inL, we display them together as one tree with
as root; a similar remark holds:f;, S/ are put inR.

Clearly, our task is completed if we now combine the tredsiimto a new’?, and similarly combine
the trees ink into a tree which is returned as the value of this procedute ca

Let us focus on the set of trees In(R is similarly treated). It is not hard to do see that there are
O(log n) trees inL and so we can easily merge them into one tre@(tog” n) time. But in fact, let us
now show thaO(log n) suffices. Let us note that the treeslircan in fact be relabeled and ordered as
follows:

Li>y1>Lo>ys > > Ly >ye> Lyt (32)

where they;’s are singleton trees (coming from thgs), and
bht[Ll] > bht[LQ] > 2> bht[Lngl] > 0. (33)

Note thatl,,, could be empty. For instance, the gein Figure45is relabeled as in Figu#t with Lj
as an empty tree. The basic idea is to merge the trees fromtoidgft. More precisely: initially, we

e x
K. K 0O relabel % % 6 6
A= 0h b,

Figure 46: Relabelling the trees in the get

mergeLy, ye, Le+1 and let the result be denotéd_,. Inductively, assume that

Liv1,Yiv1,-- 590, Loy

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011



§A. APPENDIX: RED-BLACK TREES Lecture lll Page 76

have been merged into a tree denoted bylf i > 0, we continue inductively by merge
Li7 Yis L; (34)

to form L _,. Otherwise L is the final result and we stop. This completes the merge ighgor

The main result is the following:

LEMMA 8. The time to merge all the trees inis O(bht[L;] + £) = O(log n).

Verifying this requires some careful analysis but the ideas follows. The inductive merge step
(34) takes time
O(1 + |bht[L;] — bht[L]]). (35)

Now, if we could assume thaht[L!] < 1 + bht[L;4;] then we could replacep) by
0(2 + bht [Lz] — bht [Li-l-l])-

and the overall cost (after telescoping) would®@ht[L,] + ¢),

976. AnO(logn) bound for splitting.  We refer to the collectiol (see equations@) and @3)). Let
us call L, red or black according as its root is red or black. Notice thaLifis red, therbht[L; 1] >
bht[L;]. We claim: fori = 2,... ¢,

bht[L;_1] = bht[L;] == bht[L;] > bht[L;41].

For, if bht[L;_1] = bht[L;] then the root of; is a near nephew of the rodt_, and the parent = «;
of L; is red. Similarly, ifoht[L;] = bht[L; 1], we conclude that the pareqpt= ;1 of L;; is red.
But p is the parent of;, by the height property. This is a contradiction because theyarent property
is violated, proving our claim.

Suppose inductively, for sonie= 1, ..., ¢, we have already merged

Lpy1,ynt1s Liyay - Yo, Loy

into a RBT denoted);,. In case
bht[L}] > bht[Ly]

we will say that arinversion has occurred ak;,.

LEMMA 9 (Inversion Lemma).n case of an inversion dt/ , the following holds.

(i) bht[L}] =1+ bht[Ly].
(i) EitherLj is black orbht[Lj_1] > bht[Ly].
Proof. To see this lemma, consider the previous step which combined, y 1, L), , into L},.
We use three easy remarks. First, it is clear from the meggighm that
bht[L}] < 1+ max{bht|[Lj41], bht[L) ]} (36)

Second, if equality is achieved i3§) then L} is black (using a basic property of our rebalancing
procedure for removing insertion violations). Thirdbifit[L;_ ;] > bht[Ls41] andL;_; is black,
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then @6) is a strict inequality. (Similarly ibht[L) ;] < bht[Lp 1] andL;y, is black then we also
have a strict inequality.)

There are two cases.
CASE I there is no inversion at, |, i.e, bht[Lj41] > bht[L}_ ,]. Then clearly property (i) holds
andL), is black (thus satisfying (ii)).
CASE II: there is an inversion atj, ;. We assume that this inversion satisfies the hypothesisrin ou
lemma. So, either (a};, , is black or (b)bht[L;] > bht[L;1]. In subcase (a), in order to have
an inversion at}, our first remark implies thatht[L;,] = bht[Lj1]. But this mean®ht[L;_1] >
bht[Ly], satisfying property (ii). To see property (i), note thaniegk 3 impliesoht[L}] < bht[L} ]
and henceht[L}| = bht[L} ,]. By induction, property (i) says thaht[L} ] = 14 bht[Lj41] =
1+ bht [Lh]

In subcase (b), property (i) follows because

bht[Lj] < 1+bht[Lj, ]
< 2+4+bht[Lpy1] (byinduction)
< 1-+bht[L,] (subcase b)
< bht[L}] (inversion assumption).
Property (ii) holds sincé/), is black by the third remark. Q.E.D.

Sincel + bht[Ly] > bht[L}] > bht[Lx41], the cost of combinind.,, yp, L}, into L}, _, is
O(1 + bht[Ly] — bht[Lp41]).

Summing up forh = 1,...,¢, we obtain the boun@ (¢ + bht[L;] — bht[Ly+1]) = O(logn). This
concludes our proof.

EXERCISES

Exercise A.23: Let T be the tree obtained in Exercise 6.1.
(a) Merge this with the tre&; with two keys: 12 and11. The root ofT5 is 12, assumed to be
black.
(b) Now split the tree obtained in (a) at the k&y &

Exercise A.24: Our O(log n) bound for merging th&(logn) red-black trees in the split algorithm
has fairly tight “constants” because of the inversion lem@ae a simpler proof of a®W(logn)
bound by using only the assumptions of equati@®} &nd @3). That is, do not assume that the
trees came from any particular process so that they havac@roperties. &

END EXERCISES
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