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“Its very illuminating to think about the fact that some — abshfour hundred — years
ago, professors at European universities would tell thdiarit students that if they were
very diligent, it was not impossible to learn how to do longsion. You see, the poor guys
had to do it in Roman numerals. Now, here you see in a nutshelt avdifference there is
in a good and bad notation.”

— Edsger W. Dijkstra
DatamationVol.23, No.5, p.164, 1977

“Make it as simple as possible. But no simpler”

— Albert Einstein
(paraphrase)

Lecture Il
RECURRENCES

This chapter provides a thoroughgoing treatment of solvetwurrences g
they arise in algorithmics. We begin with some working rufess solving
recurrences, stressing the use of real recurrence®aordier analysis. The
latter emphasis leads to elementary (non-calculus) tddis.highlight of thig
chapter are two Master Theorems.

n

Recurrences arise naturally in the complexity analysisofirsive algorithms and in probabilistic
analysis. We introduce some basic techniques for solviogrrences. A recurrence is a recursive
relation for a complexity functioff’(n). Here are two examples:

F(n)=F(n—-1)+ F(n—2) 1)

and
T(n)=n+2T(n/2). 2
The reader may recognize the first as the recurrence for dmbmumbers, and the second as the

complexity of the Mergesort, described in Lecture 1. Thesaimences havehe following “separable
form™

Fibonacci in nature

T(n)=Gn,T(n),...,T(ng)) 3

whereG(xo, x1, ..., xy) is a function ink + 1 variables and each; (: = 1,..., k) is a function ofn
that is strictly less than. E.g., in (), we havek = 2 andn; = n —1,n, = n— 2 while in (2), we have
k=1landn; =n/2.

What does it mean to “solve” recurrences such as equatigms(l ¢)? The Fibonacci and Merge-
sort recurrences have the following well-known solutions:

F(n) =0(¢")
whereg = (1 ++/5)/2 = 1.618.. . . is the golden ratio, and Solve up t@®-order
T(n) = O(nlogn).

1 Non-separable recurrences looks lRén, T'(n), T(n1), ..., T(ns)) = 0, but these are rare.
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In this book, we generally estimate complexity functidig:) only? up to its ©-order. The reason
goes back to Lecture I, where we saw the importance of robaestproperties in complexity results. If
only an upper bound or lower bound is needed, and we deteffiimpup to itsO-order or toQ2-order.

In rare cases, we may be able to derive the exact solutiora¢in this is possible fof'(n) and F'(n)
above). One benefit gb-order solutions is this — most of the recurrences we trettifibook can be
solved by purely elementary methods, without assumingidifitiability or using calculus tools.

The variable %" is called thedesignated variableof the recurrenced). If there are non-designated
variables, they are supposed to be held constant. In matlesmae usually reserver” for natural
numbers or perhaps integers. In the above examples, tls isatural interpretation for. But one of
the first steps we take in solving recurrences s to re-inéerp(or whatever is the designated variable) to
range over the real numbers. The corresponding recurrejuegien @) is then called aeal recurrence.
For this reason, we may prefer the symbel! as our designated variable, sineds normally viewed get real!

as a real variable.

What does an extension to real numbers mean? In the Fibare&ceiencel), what isF(2.5)? In
Mergesort ), what doed'(w) = T'(3.14159 .. ..) represent? The short answer is, we don't really care.

In addition to the recurrenc&), we generally need tHeoundary conditionsor initial values of the
functionT'(n). They give us the values @f(n) beforethe recurrence3) becomes valid. Without initial
valuesT'(n) is generally under-determined. For our examfi)eif » ranges over natural numbers, then
the initial conditions

F(0) =0, F(1) =1 Some initial conditions

give rise to the standard Fibonacci numbeses, F(n) is thenth Fibonacci number. Thug(2) = may yield trivial
1,F(3) = 2,F(4) = 3, etc. On the other hand, if we use the initial conditidn®) = F(1) = 0, solutions...
then the solution is trivial:F'(n) = 0 for all n > 0. Thus, our assertion earlier thA{n) = ©(¢™)

is the solution to 1) is nof really true without knowing the initial conditions. On th¢her hand,

T(n) = O(nlogn) can be shown to hold for2] regardless of the initial conditions. For the typical

recurrence from complexity analysis, this will be the case.

EXERCISES

Exercise 0.1: Consider the non-homogeneous version of Fibonacci reccetE(n) = F(n — 1) +
F(n —2)+ f(n) for some functionf (n). If f(n) = 1, show thatF'(n) = Q(c") for somec > 1,
regardless of the initial conditions. Try to find the largesltue forc. Does your bound hold if we
havef(n) = n instead? O

Exercise 0.2:Let ¢ = (1+v/5)/2 ~ 1.618 and¢ = (1 — v/5)/2 ~ —0.618. If F(n) satisfies the
FibonaccirecurrencE(n) = F(n — 1)+ F(n — 2), we said in the text thall'(n) = ©(¢"). Let
us now give the exact solution for this recurrence.

(a) Use induction to show thdt(n) = ¢" //5 — ¢" /\/5 is the solution with the initial conditions
F(n)=nforn=0,1.

(b) Some authors like to begin with(n) = 1 for n = 0,1. Find the constants, b such that
F(n) =a¢" + bg" forall n € N.

2 In recurrences of non-complexity functions, we sometinagesrecurrences more accurately than just determinin@its
order. E.g.u(h) = p(h — 1) + p(h — 2) + 1 for minimum size AVL trees in Lecture Ill. Even for complexifunctions, some
exceptions arise: in the comparison model, sharp boundedazomplexity of sorting(n) or medianM (n) can be meaningful
(Lecture I).

3 The reason behind this is that)(is a homogeneous recurrence whi® (s non-homogeneous. For instand&(n) =
F(n—1)+ F(n — 2) + 1 would be non-homogeneous and@ssolution would not depend on the initial conditions.
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(c) In general, how can you give an exact formula fom) given that you know the value of
F(n) at two consecutive values af (sayn = ng andn = ng + 1)? Is it strictly necessary for
no = 0, and ¢

Exercise 0.3: LetT'(n) = aT'(n/b) + n, wherea > 0 andb > 1. How sensitive is this recurrence to
the initial conditions? More precisely,Tf; (n) andT:(n) are two solutions corresponding to two
initial conditions, what is the strongest relation you caier betweel¥; and7,? &

Exercise 0.4: (Aho and Sloane, 1973) Consider recurrences of the form

T(n) = (T(n—1))*+ g(n). (4)

For this exercise, we assumas a natural numbers and use explicit boundary conditions.
(a) Show that the number of binary trees of height at mo& given by this recurrence with
g(n) =1 and the boundary conditidf(1) = 1. Show that this particular case @f)(has solution

T(n) = V{ZJ . (5)
(b) Show that the number of Boolean functionsrowariables is given by4) with g(n) = 0 and
T(1) = 2. Solve this. O

Exercise 0.5: Let T, 7" be binary trees an’| denote the number of nodesTh Define the relation
T ~ T’ recursively as follows: (BASIS) IfT’| = 0 or 1 then|T'| = |T”|. (INDUCTION) If
|T'| > 1then|T’| > 1 and either (i, ~ T} andTr ~ T}, or (i) Tr, ~ T andTr ~ T} . Here
T, andT'g denote the left and right subtreesTof
(a) Use this to give a recursive algorithm for checkin@'if- 7".

(b) Give the recurrence satisfied by the running tifie) of your algorithm.
(c) Give asymptotic bounds ai(in). O

END EXERCISES

1. Simplification

In the real world, when faced with an actual recurrence todieesl, there are usually some sim-

lifications steps to be taken. Here are three general Singtions that should be automatically taken: .
P P 9 o y Taking a cue from

Einstein...

e Initial Condition. In this book, we normally state recurrene@houtinitial conditions. In this
case, we expect the student to supply the initial conditidrise following form: DIC for convenience

Default Initial Condition (DIC):

There is some; > 0 such that

(1) the recurrence fof'(n) holds forn > ny,
(2) T'(n) is assigned arbitrary values for < n;.

(6)

Our favorite form of DIC is the “constant DIC”, namely, theesome constanf’ such that
T(n) = C forall n < n;. Why would one choose any other form of DIC? Mainly to simplif
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the form of the solution (seel) in §3 below). In using DIC, we need not specify or the
initial values ofT'(n) in advance: instead, we can just proceed to solve the rewme@nd, at the
appropriate moments, introduce these values.

What is the justification for this approach? It frees us tai®on the recurrence itself rather than
the initial conditions. In many cases, this arbitrarinesssinot affect the asymptotic behavior of
the solution. Even if our choice of DIC affects the solutisre might have learned something
about the recurrence. We have seen in the Fibonacci thanitied condition can lead to the
trivial solution F'(n) = 0 or an exponential solution. In typical recurrences, whenrnwveke the
“constant DIC” (I'(n) = C for n < n1), the solution is unique up t©-order provided we ensure
C>0.

e Extension to Real Functions.Even if the functionl'(n) is originally defined for natural num-
bersn, we will now treatT’(n) as a real functionife., n is viewed as a real variable), and defined
for n sufficiently large. See the Exercise for a standard appr@@achple domain”) that avoids
extensions to real functions. It is important to realizet tben if we have no interest in real
recurrences, some solution techniques below will tramsfour recurrences into non-integer re-
currences. So we might as well take the plunge from the fBaittthe best recommendation for
our approach is its simplicity and naturalness.

e Converting Recurrence Inequality into a Recurrence Equaton. If we begin with a recur-
rence inequality such d8(n) < G(n,T(n1),...,T(ng)), we simply rewrite this as an equal-
ity relation: T'(n) = G(T(n1),...,T(ng)). Because of this change, our eventual solution
for T'(n) is only an upper bound on the original function. Similarifywie had started with
T(n) > G(n,T(ny),...,T(nk)), the eventual solution is only a lower bound.

91. Special Simplifications. Suppose the running time of an algorithm satisfies the folgwin-
equality:
T(n) <T([n/2])+T(|n/2]) +6n+lgn — 4, @

for integern > 100, with boundary condition
T(n) = 3n* —4n + 2 (8)

for 0 < n < 100. Such arecurrence in-equation may arises in some imagined implementation of
Mergesort, with special treatment far< 100. Our general simplification steps tells us to (a) discard
the specific boundary condition8)(in favor of DIC, (b) treatl’(n) as a real function, and (c) write the
recurrence as a equation.

What other simplifications might apply here? Let us convérir{to the following
T(n) =2T(n/2) + n. 9)

This represents two additional simplifications: (i) We ea@d the term 4+6n + lgn — 4” by some
simple expression (n”) with same©-order. (ii) We have removed the ceiling and floor functions.
Step (i) is justified because this does not affect@ierder (if this is not clear, then you can always
come back to verify this claim). Step (ii) exploits the fatat we now treaf’(n) as a real function, so
we need not worry about non-integral arguments when we rertig/ceiling or floor functions. Also,

it does not affect the asymptotic value®fn) here.

The justifications for these steps are certainly not obyibusthey should seem reasonable. Ulti-
mately, one ought to return to such simplifications to jystifem.

EXERCISES
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Exercise 1.1: Show that our above simplifications of the the recurreaéwith its initial conditions)
cannot affect the asymptotic order of the solution. [Show thr ANY choice of Default Initial
Condition.] &

Exercise 1.2: We seek counter-examples to the claim that we can reptat® by n/2 in a recurrence
without changing th&-order of the solution.
(a) Construct a functiog(n) that provides a counter example for the following recureenc
T(n) =T([n/2]) + g(n). HINT: makeg(n) depend on the parity of.
(b) Construct a different counter example of the fdfim) = h(n)T'([%]) for a suitable function
h(n). HINT: makeh(n) grow very fast. O

Exercise 1.3: Show examples where the choice of initial conditions camgbkahe©-order of the
solutionT' (n). HINT: Choose€T'(n) to increase exponentially. &

Exercise 1.4: Supposer, n are positive numbers satisfying the following “non-sepéeaecurrence”
equation,
2% — g2,

Solve forz as a function of,, showing
z(n) = [1 + o(1)]2nlog,y(2n).

HINT: take logarithms. This is an example of a bootstrap@ngument where we use an ap-
proximation ofz(n) to derive yet a better approximation. See, e.g., Purdom apdB[16].

&

Exercise 1.5: [Ample Domains] Our approach of considering real functimson-standard. The stan-
dard approach to solving recurrences in the algorithmsalitee is the following. Consider the
simplification of (7) to (9). Suppose, instead of assumifign) to be a real function (so tha®)
makes sense for all values of, we continue to assumeis a natural number. It is easy to see
thatT'(n) is completely defined bygj iff n is a power o2. We say that9) is closed over the set
Do:={2% : k € N} of powers of2. In general, we say a recurrence is “closed over asét R”
if for all n € D, the recurrence fdF (n) depends only on smaller valugsthat also belong iD
(unlessn; lies within the boundary condition).

(a) Letus call a seb C R an “ample set” if, for somex > 1, the setD N [n, « - n| is non-empty
forall n € N. Here[n,an] is closed real interval betweenandan. If the solutionT'(n) is
sufficiently “smooth”, then knowing the values ®fn) at an ample seb gives us a good ap-
proximation to values where ¢ D. In this question, our “smoothness assumption” is simply:
T (n) is monotonic non-decreasing§uppose thal'(n) = n* for n ranging over an ample sél.
What can you say abo(t(n) for n ¢ D? What ifT'(n) = ¢" over D? What if T'(n) = 22" over

D?
(b) Supposé’(n) is recursively expressed in termsBfn,) wheren, < n is the largest prime
smaller tham. Is this recurrence defined over an ample set? &

Exercise 1.6: Consider inversions in a sequence of numbers.
(a) The sequencé, = (1,2,3,4) has no inversions, but sequenge = (2, 1,4,3) has two
inversions, namely the paifd, 2} and{3,4}. Now, the sequenc§, = (2,3, 1,4) also has two
inversions, namely the paifd, 2} and{1, 3}. Let I(.S) be the number of inversions . Give
anO(nlgn) algorithm to computd(S). Hint: this is a generalization of Mergesort.
(b) We next distinguish between the quality of the inversiofiS; andS,. The inversiong1, 2}
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and{3,4} in S; are said to have weight of 1 each, so tiighted inversionof S; is W (S;) =

2 =1+ 1. Butfor Sy, the inversion{1, 2} has weigh® while inversion{1, 3} has weightl. So
the weighted inversion i8//(S2) = 3 = 2 + 1. Thus the “weight” measures how far apart the
two numbers are. In general, $f = (a1, ...,a,) then a paifa;, a;} is aninversion if i < j
anda; > a;. The weight of this inversion ig — i. Let W (S) be the sum of the weights of all
inversions. Give a®(n lg n) algorithm for weighted inversions. &

Exercise 1.7: We might consider following form of DIC where we assume thatre existd) < ng <
n1, and constant8 < Cy < C4 such that

Solve the Fibonacci and mergesort recurrences using thésoveof DIC. Your solutions should
be stated in terms of the parametéts Cs. &

END EXERCISES

62. Divide-and-Conquer Algorithms

In this section, we see some other interesting recurrehegstise in a divide-and-conquer algo-
rithms. First, we look at Karatsuba’s classic algorithmrfarltiplying integers {(]. Then we consider
a modern problem arising in searching for key words.

OK,youlearned itin

92. Example from Arithmetic. To motivate Karatsuba’s algorithm, let us recall the classigh-
gradeschool

school algorithm” for multiplying integers. Given posgiintegersX, Y, we want to compute their
productZ = XY. This algorithm assumes you know how to do single-digit iplittation and multi-
digit additions (“pre-high school”). The algorithm mullgs X by each digit ofY". If X andY haven
digits each, then we now haweproducts, each having at most+ 1 digits. After appropriate left-shifts
of thesen products, we add them all up. It is not hard to see that thisritgn takes9 (n?) time. Can

we improve on this? Not Roman numerals,
please. Recall the
Usually we think ofX,Y" in decimal notation, but the algorithm works equally wellany base.  Dijkstra’s remark on
We shall assume bag&dor simplicity. For instance, ifX = 19 then in binaryX = 10011. To avoid the the importance of
ambiguity from different bases, we indicatide base using a subscripf, = (10011),. The standard notations.
convention is that decimal base is assumed when no basddated. Thus a plain100” without any
base represents one hundred, (100), represents four.

AssumeX andY has length exactly wheren is a power of2 (we can pad with)’s if necessary).
Let us split upX into a high-order halfX; and low-order halfX,. Thus

X = X, + 272X,
whereX, X; aren/2-bit numbers. Similarly,

Y = Yo + 2"/%v;.

4 By the same token, we may writ§ = (19)1o for basel0. But now the base10” itself may be ambiguous — after all
“10” in binary is equal to two. The convention is to write the basdecimal.
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Then

Z = (Xo+2V%X1)(Yo +2"*V1)
= XoYo+2"3(X 1Yy + XoY1) + 2" X1 Y;
Zo+ 2272, + 277,

whereZ, = XYy, etc. Clearly, each of thesg’s have at mos2n bits. Now, if we compute the 4
products

X()}/Ole}/Oa Xoifla X1Y1

recursively, then we can put them together (“conquer step?)(n) time. To see this, we must make
an observation: in binary notation, multiplying any numbB&by 2* (for any positive integek) takes
O(k) time, independent oK. We can view this as a matter of shifting left By or by appending a
string of k zeros toX .

Hence, ifT'(n) is the time to multiply twon-bit numbers, we obtain the recurrence
T(n) <4T(n/2)+ Cn (11)
for someC > 1. Given our simplification suggestions, we immediately iienthis as
T(n) =4T(n/2) + n.

As we will see, this recurrence has solutiditn) = ©(n?), so we have not really improved on the
high-school method.

Karatsuba observed that we can proceed as follows: we capuwtetd, = XYy andZ; = X1Y;
first. Then we can computé, using the formula

Zy=(Xo+X1) Yo+ Y1) — Zy — Zs.

Thus Z; can be computed with one recursive multiplication plus samditionalO(n) work. From
Zy, Z1, Z2, We can again obtaif in O(n) time. This gives us thKaratsuba recurrence,

first improvement in

(12) 1000 years? According
to Wikipedia, high
school multiplication is
equivalent to the
“lattice method”
which is at least 1000
years old.

T(n) =3T(n/2) +n.

We shall show thal'(n) = ©(n®) wherea = 1g3 = 1.58 ---. This is clearly an improvement of the
high school method.

There is an even faster multiplication algorithm from Sage and Strassen (1971)
that runs in timeO(n log nloglogn). There is an increasing need for multiplication
of arbitrarily large integers. In cryptography or compigaal number theory, for ex-
ample. These are typically implemented in software in a ihtgger” package. Far
instance, Java has aBi gl nt eger class. A well-engineered big integer multigli-
cation algorithm will typically implement the High-Schoalgorithm forn < ng,
and use Karatsuba fot, < n < n1, and use Schonhage-Strassenor> n;.
Typical values forng, n1 are 30,200 digits. One of the oldest questions in theoret-
ical computer science concerns the inherent complexity wifiplication. In partic-
ular, isO(nlog nloglogn) the best possible? Most computer scientists believe that
O(nlogn) is the right answer. After more than 30 years, finally M. F{(2007)
breached théog log n factor. He achieved a@(n log nlog™ n) multiplication algo-
rithm. In 2008, A. De, C. Saha, P. Kurur and R. Saptharishexeti the same bound
by a different method.
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93. A Google Problem. The Google Phenomenon is possible because of efficientitlos: every
files on the web can be searched and indexed. Searching isytyptas. Let us suppose that Google
pre-processes every file in its database for keywords. Hervawser may ask to search files for two or
more keywords. We will reduce this multi-keyword search fm@computed single-keyword index.

Let F' be a file, viewed as a sequence of words (ignoring punctuatapitalization, etc). We first
pre-procesg” for the occurrences of keywords. For each keywordve precompute amdex which
amounts a sorted sequenéw) of positions indicating where occurs inF. E.g.,

P(divide) = (11,16,42, 101,125, 767)

means that the keywordivide occurs6 times in I, at positionsl1, 16, etc. Suppose we want to

search the file using a conjunctioniokeywordsw, ..., wy. AnintervalJ = [s,t] is called acover
for wy,...,wy if eachw; occurs at least once within the positions.jn The size of a covels, t] is
justt — s. A cover isminimal if does contain in some smaller cover; itngnimum if its size is
smallest among all covers. Note thafsf, ¢;] are minimal covers fot = 1,2,..., and ifs; < s;41
thent; < t;41. Thekeyword cover problemis this: given the indice®(w,), ..., P(wy) for a set
W = {wy,...,w} of keywords in a file, to compute a minimum cover 0.

P(divide)

11 16 42 101 125 767
— 5 - —— L~ positions
2 44 289 300
P(conquer)

Figure 1: Minimal Covers

E.g., letk = 2 with wy = divide andws = conquer. With P(divide) as before, leP(conquer) =
(2,44,289,300). Then the minimal covers afe, 11], [42, 44], [44, 101], [125, 289], [300, 767]. This is
illustrated in Figurel. The minimum cover i$42, 44].

Before attempting to solve this problem, consider how Geagight use the minimum cover so-
lutions: suppose a user wants to search for det {w:,...,w;} of key words. For each fil¢;
(j = 1,2,...) we use the algorithm to compute a minimum colegr d;] (if one exists) forlV in f;.
The indicesP(w;) for each key wordw, are assumed to have been precomputed. The search results
will be a list of all files for which covers exist, but we ordéese files in order of non-decreasing cover
sized; — ¢;. The actual covefe;, d;] can be used by Google to display a snippet of theffile

Let us now consider algorithms. Let be the length of listP(w;) (i = 1,...,k) andn = ny +
---+ny. The casé = 2 is relatively straightforward, and we leave it for an exseciConsider the case
k = 3. First, mergeP(wy ), P(w2), P(ws) into the arrayA[1..n]. Recall thatin Lecture |, we discussed
the merging of sorted lists. Merging takes ti@én; + ns + n3) = O(n). To keep track of the origin
of each number iM, we may also construct an arrdf1..n] such thatB[i] = j € {1,2,3} iff A[i]
comes from the lisP(w;).

We use a divide-and-conquer approach. Recursively, camguhinimum cover ofd[1..(n/2)]
and A[(n/2) + 1..n] (for simplicity, assumer is a power of2). LetC, ,,/» andCy, 241, be these
minimum covers. We now need to find a minimal cover that stiesdd[(n/2)] and A[(n/2) + 1]. Let
C = [A[i], A[j]] be such a minimal cover, wheie< (n/2) andj > (n/2) + 1. There are 6 cases. One
case is wher = C" U C”, whereC’ = [A]i], A[n/2]] is the rightmost cover fow, in A[l..(n/2)],
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andC” = [A[(n/2) + 1], A[j]] is the leftmost cover fows, w3 in A[(n/2) + 1,n]. We can findC” and
C" in O(n) time. The remaining 5 cases can similarly be foun®{m) time. ThenC'is the cover that
has minimum size among these 6 cases. Hence, the overalledtppf the algorithm satisfies

T(n)=2T(n/2) +n.

We have seen this recurrence before, as the Mergesort eacer?). The solution isT'(n) =
O(nlogn). See exercise for a general solutior((n log k) time.

94. Master Recurrence and Divide-and-Conquer Algorithms. The recurrence<?j and (L2) are
instances of thiaster Recurrencewhich has the form:

T(n) =aT(n/b) +d(n) (13)

wherea > 0 andb > 1 are constants and is any function, usually called thériving or forcing
function. Below, we shall solve this recurrence under fairly geneoalditions.

The idea of solving a problem by reducing it to smaller subjgms is a very general one. In
this chapter, we mainly focus on reductions from problemsizén to subproblems of siz& cn for
some fixed: < 1. If there are a finite number of such subproblems, the runtiings can be bounded
using solutions to the Master recurrend&)( In other problems, we reduce a problem of sizé&
several subproblems that of sizen — ¢ for some fixed: > 1. Such solutions would be exponential
time without additional properties; we study these underttpic of dynamic programming (Chapter
7). In applications, we havé(n) > 0, representing the cost of merging solutions of subprobliems
divide-and-conquer algorithms.

EXERCISES

Exercise 2.1: Carry out Karatsuba’s algorithm fof = 6 = (0110); andY = 11 = (1011)s. Itis
enough to display the recursion tree with the correct argusi®r each recursive call, and the
returned values. &

Exercise 2.2: Suppose an implementation of Karatsuba’s algorithm aelsig\n) < Cn'-°® where
C = 1000. Moreover, the High School multiplication &(n) = 30n2. Beyond what value ofi
does Karatsuba definitely becomes competitive with the ISigimool method? &

Exercise 2.3: Consider the recurren@n) = 37(n/2) +n andI’(n) = 37"([n/2]) + kn (for some
constant > 1). Show thaf'(n) = ©(7"(n)). HINT: Use the factthaf[n/27] /2] = [n/27+1].
Thus, this question shows that the presencelofindk in 7’ does not matter.

Exercise 2.4: The following is a programming exercise. It is best done gisipprogramming language
such as Java that has a readily available library of big ereg
(a) Implement Karatsuba'’s algorithm using such a programgiiainguage and using its big integer
data structures and related facilities. The only resticts that you must not use the multipli-
cation, squaring, division or reciprocal facility of thédary. But you are free to use its addi-
tion/subtraction operations, and any ability to perforfiviight shifts (multiplication by powers
of 2).
(b) Let us measure the running time of your implementatiokafatsuba’s algorithm. For in-
put numbers, use a random number generator to produce nsiobany desired bit length. If
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NumBits  AvgTime  Exponent |

NumBits  AvgTime  Exponent |

4000 4.358 0.0 9600 23.034 1.9017905239616146
4200 4.696 1.531002145103799| 9800 24.055 1.9064306092855452
4400 5.194 1.841260577604784| 10000 24.986 1.905838802838664

4600 5.517 1.687304811025434f 10200 25.987 1.9074840762036238
4800 5.983 1.7381865504999572 10400 26.948 1.9067232067781992
5000 6.51 1.7985113947251763 10600 28.108 1.912700793571853

5200 6.988 1.7997159663026001 10800 29.111 1.9120055203582398
5400 7.509 1.812998128928514| 11000 30.221 1.9143159996069712
5600 8.01 1.8089977665618309 11200 31.534 1.922120988851417

5800 8.684 1.85558837393382 || 11400 31.542 1.8898795547030012
6000 9.183 1.838236378924439| 11600 32.67 1.89201058944977718
6200 9.769 1.8418523402197153 11800 33.703 1.8908891117429292
6400 10.365 1.8434357852847958 12000 34.67 1.8877101089855162
6600 11.088 1.864808884276074| 12200 36.082 1.8955269064390694
6800 11.717 1.86388029695711(09 12400 37.218 1.8956825843907563
7000 12.413 1.8704459319724796 12600 38.049 1.88849305740309(Q7
7200 13.092 1.8714070696035308 12800 39.242 1.8894663931349043
7400 13.843 1.8787279477010768 13000 40.553 1.892493164635264

7600 14.532 1.8763458534440565 13200 41.696 1.891573384417087%2
7800 15.297 1.880186086119557# 13400 42.951 1.8925738155123988
8000 16.054 1.881194701150757y 13600 44.159 1.8923271871808227
8200 16.905 1.8884383570994894 13800 45.533 1.8947617307075215
8400 17.644 1.8847717474449632 14000 46.816 1.8951803717241376
8600 18.498 1.8885827751677746 14200 48.1 1.8953182704475686
8800 19.283 1.8862283707110576 14400 49.401 1.8954588786790316
9000 20.225 1.8927722703240168 14600 50.873 1.8979435636574864
9200 21.17 1.8976522229154338 14800 52.364 1.9002856600816482
9400 22.063 1.89824398902585! t 15000 53.537 1.8977482007273088

Figure 2: Timing as a function of number of bits

T(n) < Cn® thenlgT(n) < lgC + algn. Theexponenta is thus the slope of the curve ob-
tained by plottindg 7'(n) againstg n, we should get a slope of at mast Plot the running time
of your implementation to verify that its exponentisl.58.

(c) What is the exponent in Java’s native implementation@l&ir your data.

(d) My 1999 undergraduate class in algorithms did the precedxercise, using the
j ava. mat h. Bi gl nt eger package. One timing from this class is shown in TahleThe
“exponent” in this table is computing with a crude form Ziﬂﬁiﬁifﬂéﬁiﬁ where
numBitsy = 4000 and avgTimeo = 4.358 (the initial trial). This crude exponent hovers
aroundl.9. What would be the empirical exponent if you do a proper regjom analysis? This
data suggests that in 1999, the library only implementeéiigh School algorithm. By 2001, the
situation appeared to have improved. &

Exercise 2.5: Suppose the running time of an algorithm is an unknown faenatif the form7'(n) =
An® + Bn® wherea > b and A, B are arbitrary positive constants. You want to discover the
exponentz by measurement. How can you, by plotting the running timehef algorithm for
variousn, find a with an error of at most? Assume that you can do least squares line fittingy.

Exercise 2.6: Try to generalize Karatsuba’s algorithm by breaking up eaddit number into3 parts.
What recurrence can you achieve in your approach? Does gourrence improve upon Karat-
suba’s exponentdg3 = 1.58---? &

Exercise 2.7: To generalize Karatsuba’s algorithm, consider splittinguebit integerX into m equal
parts (assumingn dividesn). Let the parts b&Xy, X1, ..., X,,_1 whereX = ZZZ_Ol X, 2in/m,
Similarly, lety = S>7" ' v;27"/™. Let us defineZ; = Yo XjYijfori=0,1,...,2m —2.
In the formula forZ;, assumeX, = Y; = 0 when/ > m.

(i) Determine the9-order of f(m,n), defined to be the time to compute the prodidct: XY

when you are givewy, Z1, . .., Zom—o. Remember that(m, n) is the number of bit operations.
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(i) It is known that we can comput¢Zy, Z, ..., Zam—2} from the X;’s and Y;'s using
O(mlogm) multiplications andO(m logm) additions, all involving(n/m)-bit integers. Us-
ing this fact with part (i), give a recurrence relations foettime7'(n) to multiply two n-bit

integers.

(iii) Conclude that for every > 0, there is an algorithm for multiplying any twe-bit integers
intime T'(n) = ©(n'*¢). NOTE: part (iii) is best attempted after you have studie Master
Theorem in the subsequent sections. &

Exercise 2.8: In the Google problem, we need to merge several sorted R&tsall from Lecture | that
we can merge a two lists of sizes andn in time ©(m + n). SupposeXy,..., X, aren > 1
sorted lists, each with > 1 elements. Here; andk are independent parameters.

() We want to analyze the complexify(n, k) of sorting the sefX = J"_, X;. At each phase,
we merge pairs of lists. With lists of sizek, we takeO(nk) time to merge, and produce/2
lists each of siz&€k. Set up the recurrence f@i(n, k) based on this repeated merging algorithm.
(b) Show thatl'(n, k) = O(nklgn)) HINT: you could use domain transformation (88 but
this is not necessary.

(c) Use the Information Theoretic Lower Bound from Lecturéolshow a lower bound of
Q(nklgn). O

Adapted from a Google
interview question (the
interviewed student

Z. was hired)

Exercise 2.9: Recall the Google multi-keyword search. This was reducecbtoputing a minimum
cover for a setV = {wy,...,w;} of key words in a file. For each key word, € W, we are
given an indexP(w;) which is just a sorted list of positions whetg occurs in the file. Let
n= Zle n; whereP(w;) has lengt;. The text solves the cage= 3 in O(nlogn) time.

(a) Solve the minimum cover fdr = 2 in linear time.

(b) SupposeP(w;) = (s;,t;) for eachi = 1,...k, i.e., each keyword has just two positions.
Give anO(klog k) algorithm to find the minimum cove?' for wy, ..., wy. HINT: suppose the
minimal covers ar€’y, .. ., C,, for somem > 1. Give an algorithm to list all the minimal covers.
If C; = [c;,d;] and assuming; < ¢ < -+ < ¢, how do you findC;? How do you find”; ;4
givenC;?

(c) Solve the general Google problemi§é arbitrary and each word can have arbitrarily many
occurrences in the file). HINT: if you used the hint from (k)should be possible to generalize
your solution. &

Exercise 2.10: Write a program to solve the Google multi-keyword for theeclas= 3 as described in
the text. Use your favorite programming language (C or Jatrzowt any Object-Oriented fanfare
is recommended). Initially, assumses a power of. Indicate how to adapt your algorithm when
n is not a power of. &

Exercise 2.11:Consider the following problem: we are given an arefyl..n] of numbers, possibly
with duplicates. Letf(x) be the number of times (“frequency”) a numheoccurs. Given a
numberk > 1, we want to know whether there akedistinct numberseq, ..., x; such that
Zle f(zi) > n/2. Call{x1,..., 2z} ak-majority set.

(a) Solve this decision problem fér= 1.

(b) Solve this decision problem far= 2.

(c) Instead of the previous decision problem, we consideofitimization version: find the small-
estk such that there arenumberse, . . ., z; with Zle f(x:) >n/2. &

END EXERCISES
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3. Rote Method

We are going to introduce two “direct methods” for solvinguerences: rote method and induction.
They are “direct” as opposed to other transformation methvasich we will introduce later. Although
fairly straightforward, these direct methods may call fame creativity (educated guesses). We begin
with the rote method, as it appears to require somewhat lesssgvork.

95. Whatisrote? The “rote method” refers to the idea of solving a recurrencespeated expansion
of a recurrence. Since such expansions can be done medhaniis method has been characterized
as rote.

Let us illustrate this method using the merge-sort recage®): 7'(n) = 27(n/2) + n. The
important thing is that we can replaaen this by any expression: plugging'2 for n in the recurrence,
we getT'(n/2) = 2T(n/4) 4+ n/2. If we plug this back into the original recurrence, we get segond
expansion in the following derivation:

T(n) = 2 +n (first expansion)
= 2 +n (second expansion
= 4T(nA4)]+2n (simplify) (14)
= + 2n  (third expansion)
= 8T (n/8)+3n (simplify)

This is the expansion step. At this point, we may guess tleathhexpansion, the formula is
(@)i: T(n)=2T(n/2") +in. (15)

To verify our guess, we use natural induction. Note that tirentila (L5) is true fori = 1 (it also
holds fori = 2 and3, but this is not logically necessary). We need an inducttep:sThis amounts to
expanding the formula once more:

T(n) = QiW +in (guessedth expansion)
22T (n/27"1) + n/2" |+ in (i + 1st expansion) (16)
= 20717 (n/27Y) + (i + 1)n,  (simplify)

and noting that this confirms that the formula holdsifer 1 (cf. formula(G);+1 in (15)).

Finally, we must choose a valuedit which to stop this expansion. First consider the ideaasion
wheren is a power of2 and we choosé = lgn. Then (L5) yields T'(n) = 2!T(n/2%) + in =
nT(1) + (Ign)n. Invoking DIC to makeT'(1) = 0, we obtain the solutio(n) = nlgn. Thisis a
beautiful solution, except for one problemmust be an integer, and it will not work whenis not a
power of2. It makes no sense to pretend thé a real variable (as we did far). In general, we may
choose an integer closelgn: [lgn] or [lgn| will do. Let us choose

i=|lgn] 17)

as our stopping value. With this choice, we obtaig n/2! < 2. Under DIC, we can freely choose the
initial condition to be
T(n)=n|lgn], for0 <mn < 2. (18)

This yields theexactsolution that fom > 0,

T(n)=nllgn]. (19)
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96. Isisreally rote? To recap, there are four distinct stages in the rote method:

(E) Expansion steps as ii4). This is the rote part. You can expand as many times as yeuwliiktil
you see the general pattern.

(G) Guessing of a formula for thé&h expansion, as inlf). This guess may require some creativity.
Indeed, if we had not re-arranged the terms in our exampledrstiggestive manner, one might
not see the pattern readily. So perhaps “rote” is a misnomer.

(V) Verification of the formula as in1). This step should be mechanical, and amounts to one more
expansion step and re-arranging the terms into the desired fOne problem is that students
sometimes do not do this step “honestly” (they jump to theeexgd conclusion). Child’s dilemma:l
can't spellbanana
because | don't know
when to stop!

(S) Stopping criteria choice as il{). You need to know when to stop expansion! Note you must
choose to be a natural number. Thus, you cannot pick="1gn” in (17), but need something like
i = [lgn] ori = |lgn]. According to DIC, you can pick anilarge enough that the recursive
termT (k) has an argumeritthat is below some fixed constant (e/g<< 1). Using DIC, you can
declarel’(k) to be any value you like (usuall(k) = 0 is good).

In general, your guess for thieth expansion is in the form of a summati@;;t f(y) for some
function f. If you stop atm-th expansion, you are left with the suE?;Bl f(4). Itjust happens

that for Mergesortf(¢) is identically equal ta:, and so theZ;’:Ol nis justmn (m = |lgn|).
Unfortunately, in general, you cannot leave the answer asraand you will need some summa-
tion techniques. Summation techniques will be taken ugsiovtn section below. In view of this

additional feature, the fourth and last stage might be ddlie Stop-and-Sum stage.

Since the four stages are Expand, Guess, Verify and Stofsand we may also refer to the Rote
Method as th&aGVS method When the method works, it can give you the exact solutionw idan
this method fail? It is clear that you can always perform @égi@ns, but you may be stuck at the next
step. For instance, try to expand the recurrefige) = 27'([n/2]) + n in an exact form. The only way
out is to give up exact solution, and guess reasonable uppérrdower bounds.

97. On simple solutions. You may think of a recurrence as specifying an infinite faroflproblems:

each problem corresponds to a choice of initial conditidie nice part of DIC is that you get to choose

your problem. We suggest that you exploit DIC to make youutsoh (not your problem) as simple as

possible. Letusillustrate this. In our rote solution of therge-sort recurrenc8), we choose the initial as Einstein said...
condition: T'(n) = 0 for n < 2 for its simplicity. But we ended up with the solutidi(n) = n |lgn|.

This is admittedly simple, but the appearance of the flooction is a small annoyance. It also makes

T(n) discontinuous wheneveris a power of2.

Suppose that by DIC, we choose instead the following inttoaddition:
T(n) =nlgn, (1<n<2).

It is a more “complicated” initial condition than before,that us see the payoff. As before, after the
ith expansion, we obtain _ _

T(n)=2"T(n/2") +in, (i>1).
Plugging ini = |lgn|, we obtain

T(n) = 2'T(n/2") +in

D(Pag (2)) 4
=2 (2i ! (2)) o

= n(lgn—1)+in

the “ultimate” in
simplicity?

= nlgn
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for all n > 1. The solution is now continuous and even simpler.

EXERCISES

Exercise 3.1: No credit work: Rote is discredited word in pedagogy, so welddike a more dignified
name for this method. We could call this the “4-Fold Path”.g&est your own name for this Pronounce “EGVS” as
method. In a humorous vein, what could EGVS stand for? & “egg-us” (like the
Romans, treat V as U).

Exercise 3.2: Solve the following recurrence by the EGVS Meth@dn) = 4T (n/2) + n?. O

Exercise 3.3: Use the EGVS Method to solve the following recurrences
(@)T(n) =n+8T(n/2).
(b) T'(n) =n + 16T (n/4).
(c) Can you generalize your results in (a) and (b) to recuwesiof the forn?’(n) = n+aT'(n/b)
whena, b are in some special relation? &

Exercise 3.4: Solve the Karatsuba recurrencd&) using the Rote Method. HINT: You may want to
look ahead to Section 5 on Geometric series. &

Exercise 3.5: Give the exact solution fof (n) = 27'(n/2) + n for n > 1 under the initial condition
T(n)=0forn < 1. O

Exercise 3.6: Solve (L3) assuming thai(n) = n” for some reaB. NOTE: there will be three different
cases, depending on the relationships betw&enb. &

Exercise 3.7: Let us consider the following form of DIC, where we assume tha
Co <T(n) <Cy

for 0 < n < ny, with the recurrence operative far > n;. Here,Cy, C1,n, are positive

constants. Solve the Mergesort Recurrence under thiglingndition, and show how the solution
depends omy, Cy, C . &

END EXERCISES

4. Real Induction

The rote method, when it works, is a very sharp tool in the sémat as it gives us the exact solution
to recurrences. Unfortunately, it does not work for mostireences: while you can always expand, you
may not be able to guess a simple and general formula fartfhexpansion. We now introduce a more
widely applicable method, based on the idea of “real inauncti
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To illustrate this idea, we use a simple example: considereburrence
T(z)=T(x/2) +T(x/3) + . (20)

The student is encouraged to attempt the rote method onettisrence. Let us use real induction to
prove an upper bound: suppose we guessitia) < Kz (ev.), for someK > 1. Then we verify it
“inductively”:

T(x) = T(z/2)+T(x/3)+« (By definition)
< Kg+K3+x (Inductive hypothesis)
= Ke(3+35+%)
< Kz (ProvidedK > 6)

In the following, we will rigorously justify this method ofrpof.

How did we guess the upper bouiidz) < K? What if we had guesseéli(z) < Kz2? Well, we
would have succeeded as well. In other words, this argun@arfirms a particular guess; it does not
tell us anything about the optimality of the guess (in rgathie proof does yield hints on how tight the
inequality is). We could likewise use real induction to canfa guessed lower bound. The combined
upper and lower bound can often lead to optimal bounds.

98. Natural Induction. Real induction is not a familiar in computing or even math8osa so let
us begin by recalling the related but well-known methodhafural induction. The latter is a proof
method based on induction over natural numbers. In brigipeseP(-) is a natural number predicate,
i.e., foreachm € N, P(n) is a proposition.

For example P(n) might be “There is a prime number betweeandn + 10 inclusive”. A propo-
sition is either true or false. Thus, we may vetiflat P(100) is true becaus#01 is prime, butP(200)
is false becausel 1 is the smallest prime larger th&A0. A similar predicate is?(n) ="there is prime
betweem and2n — 17, called Bertrand’s Postulate (1845).

We simply write “P(n)” or, for emphasis, P(n) holds” when we want to assert that “proposition
P(n) is true”. Natural induction is aimed at proving proposisaf the form
(Vn € N)[P(n) holds. (21)

When @1) holds, we say the predicafe(-) is valid. For instance, Chebyshev proved in 1850 that
Bertrand’s Postulat®(n) is valid. A “proof by natural induction” has three steps:

(i) [Natural Basis StejpShow thatP(0) holds.

(i) [ Natural Induction StepShow that ifn > 1 and P(n — 1) holds thenP(n) holds:

(n>1)A P(n—1)= P(n). (22)
(iii) [ Principle of Natural Inductiohlnvoke the principle of natural induction, which simplyysathat

(i) and (i) imply the validity of P(-), i.e., @1).

Since step (iii) is independent of the predic#té), we only need to show the first two steps. A
variation of natural induction is the following: for any maal number predicat®(-), introduce a new
predicate (the “star version @t”) denotedP*(-), defined via

P*(n): (Ym e N)jm <n = P(m)]. (23)
The “Strong Natural Induction Step” replace®)in step (ii) by
(n>1)A P*(n) = P(n). (24)

5 The smallest such thatP(n) is false isn = 114.
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It is easy to see that if we carry out the Natural Basis Steptlh@dbtrong Natural Induction Step, we
have shown the validity of*(n). Moreover,P*(-) is valid iff P(-) is valid. Hence, a proof of the
validity of P*(-) is called astrong natural induction proof of the validity of P(-).

99. Real Induction. Now we introduce the real analogue of strong natural indactUnlike natural
induction, real induction is rarely discussed in standaedhmatical literature, except possibly as a
form of transfinite induction. Nevertheless, this topicdsihterest in areas such as program verification
[2], timed logic [L3], and real computational modelg][ We believe is should become an important
technique in analysis of algorithms.

Real induction is applicable treal predicates i.e., a predicateP(-) such that for each € R,
we have a proposition denotd®{ ). For example, supposE(z) is a total complexity function that
satisfies the Karatsuba recurrendg)(subject to the initial conditiod’(x) = 1 for x < 10. Let us
define the real predicate

P(x): [z >10 = T(x) < 2?]. (25)

As in (21), we want to prove thealidity of the real predicat®(-), i.e.,
(Vz € R)[P(x) holdg. (26)
In analogy to 23), we transformP(+) into a “star-version of”, defined as follows:
Py(z): (Vg eR)ly <a—0= P(y)] (27)

where/d is any positive real number. Note thaplays the role of the constamtin natural induction:
the natural numbers are discrete and two distinct numbésrdify at leastl. But real numbers are
continuous, and the goal &fin to divide the real number line into intervals of lengthWe then do
induction, on an interval by interval basis.

Assuming the truth oF; () is called theReal Induction Hypothesis(RIH). Whend is understood,
we may simply writeP*(z) instead ofP; ().

THEOREM 1 (Principle of Real Induction)Let P(z) be a real predicate. Suppose there exist real
numbers) > 0 (gap constant) and; (cutoff constant) such that

() [Real Basis Stepfor all z < z1, P(x) holds.
(I1) [Real Induction StepFor all x > 1, Py (z) = P(x).

ThenP(x) is valid: for all z € R, P(z) holds.

The proof of this principle is left as an exercise. It amounts reduction to Natural Induction.
The principle behind this reduction is a very intuitive peoty of real numbersGiven anys > 0, for
every real number: there is a smallest natural numbetz) such that: < n(z)d. E.g., ifé = 0.2 and
z = 19.9 thenn(z) = 100. This is also known as th&rchimedean Property of the reals. We can
divide R into the set{ Q(k) : k € N} of intervals where each intervél(k) comprises all those with
n(x) = k. This is illustrated in Figur&. We then prove that the Principle of Real Induction holdsrove
eachQ (k) for k, using natural induction.

“Give me a lever long
enough and | can move
the earth —
Archimedes

Let us apply real induction to real recurrences. Note tlgaajiplication requires the existence of
two constantsy; andd, making it somewhat harder to use than natural induction.
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Figure 3: Discrete steps in real induction

910. Example. Supposd’(z) satisfies the recurrence
T(x) =2° + T(x/a) + T(z/b) (28)
wherea > b > 1 are real constants. Givery > 1 andK > 0, let P(x) be the proposition
x> w0 = T(x) < Kab. (29)

LEMMA 2. Letko:=a%+b7%. If kg < 1 then forallzg > 1, there is aK > 0 such thatP(z) is valid.

Proof. For anyz1, if 21 > x¢ then our Default Initial Condition says that there i§'a> 0 such that
Tx)<C

for all z9p < x < z;. If we chooseK such thatK > C/zj then for allzg < x < 1, we have
T(z) < C < Kz§ < Kz (sincex > z¢ > 1). HenceP(x) holds. This establishes the Real Basis
Step (1) forP(z) relative toz;.

To establish the Real Induction Step (), we need more ptassfor2; and must choose a suitable
0. First choose
r1 = axg. (30)

Thus forz > z1, we havery < z/a < z/b. Next choose

b—1
5:I1—(I1/b):£€1

(31)

This ensures that far > x;, we haver/a < /b < « — 6. The Real Induction Hypothesig' (z) says
that forally < x — 4§, P(y) holds, i.e.y > z¢o = P(y). Suppose: > z; andP; (x) holds. We need to
show thatP(z) holds:

T(z) = 2°+T(x/a)+T(x/b)
< 2+ K- (v/a)’ + K - (z/b)°, (by Pj(z) andzg < z/a < x/b <z —4) (32)
= 2°(1+ K - ko)
< Ka° (33)

where the last inequality is true provided our choicgsofibove further satisfies + K - kg < K or
K >1/(1— ko). This proves the Real Induction Step (II). Invoking the EBifte of Real Induction, we
conclude tha?(-) is valid. Q.E.D.

In a similar vein, we can use real induction to prove a lowerrub there is a constaht> 0 such
thatT'(x) > ka® (ev.). Hence, we have showi(z) = ©(n®) for the recurrence2g).
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911. Default Real Basis. The last example shows that the direct application of thediylie of Real
Induction can be tedious, as we have to track constants sughraand K. But this tedium is only
associated with justifying the Real Basis (RB); in contréts¢ proof of the Real Induction (RI) is not
tedious but highly instructive. Our goal is this subsect®to seek ways to avoid RB, so that you can
focus on the interesting part (RI).

There is a simple way out, by fiat! Lgt{z) be a complexity function an@ satisfies some recur-
rence. Suppose we want to show that

T(x) = f(x)
by real induction. This amounts to showing that there exiSts 0 andx; such that
(Vo > 21)T(z) < K f(x). (34)

We ask you to assuma4) holds providedK and x; is sufficiently large.Call this theDefault Real
Basis(DRB). In the next subsection, we will formally justify thisr a large class of situations (enough
to cover most of the applications in this book).

9* 12. Growth Functions and Automatic Real Basis. We now show that under some general condi-
tions, the Real Basis (RB) of Real Induction Principle isomodtic. The idea is to exploit the following
property that most natural complexity functions satisfy. Skip on first reading!

A real functionf : R* — R is said to be ayrowth function if f is eventually defined, eventually
non-decreasing and is unbounded in each of its variablesnE@ance f(r) = 22 — 3z and f(z,y) =
a¥ + x/ log x are growth functions, but(z) = —z andf(x, y, z) = xy/z are not.

THEOREM3. Assuméd’(z) satisfies the real recurrence
T(z) = Gz, T(91(x)),- -, T(gr(x)))

and

e G(x,t1,...,tx) and eachy;(x) (i = 1, ..., k) are growth functions.

e There is a constant > 0 such that eacly; (z) < x — § (ev.z).

Suppos¢ (x) is a growth function such that
Gz, K f(g1(2)), ... Kf(ge(x))) < K f(x)) (ev. K, x). (35)

Under the Default Initial Condition, we conclude

Proof. Pick zp > 0 and K > 0 large enough so that all the “eventual premises” of the tmor
are satisfied. In particulaf,(x), G(z,t1, . .., t;) andg;(z) are all defined, non-decreasing and positive
when their arguments ate xy. Also, g;(zo) < xo — ¢ for eachi. Let P(x) be the predicate

Pz): x> x0=T(z) < K f(x).

Pick
xy = max{g; *(vo) :i=1,...,k}. (36)
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The inverseyi_1 of g; is undefined at if there does not exisf; such thay;(y;) = o, or if there exists
more than one such. In this case, takg; ' (z¢) in (36) to be anyy; such thaiy; (y;) > zo. We then
conclude that for alk > x4,

x0 < gi(z) <z —0.

By the Default Initial Condition (DIC), we conclude that fell = € [z, x1], P(x) holds. Thus, the
Real Basis Step is verified. We now verify the Real Inducti@pSAssume: > z; andP; (x). Then,

T(l‘) = G(xaT(gl(x))avT(gk(x))
< Gz, Kf(gi(2),.... Kf(g1(x))) (by Py (x))
< Kf(z) (by (39)).

Thus P(z) holds. By the Principle of Real Inductio®(z) is valid. This impliesT’(z) = O(f(z)).
Q.E.D.

To apply this theorem, the main property to verify is the ua@dy (35), since the other properties
are usually routine to check. Let us see this in action on xaenple £8). We basically need to verify
that

1. f(z) = 2%, G(x,t1,t2) = 2° +t1 + t2, g1(x) = x/a andge(z) = x/b are growth functions
2. ¢1(z) <x —1landgy(z) < 2z — 1 whenz is large enough.

3. The inequality §5) holds whenK > 1/(1 — kg). This is just the derivation of3@) from (32).

From theorenB we conclude thaf’(z) = O(f(x)). The step 85) is the most interesting step of
this derivation.

Itis clear that we can give an analogous theorem which caisée to easily establish lower bounds
onT(x). We leave this as an Exercise.

e One phenomenon that arises is that one often has to intradst®nger induction hypothesis
than the actual result aimed for. For instance, to prove®ta) = O(xlogx), we may need to
guess thai'(z) = Czlogx + Dz for someC, D > 0. See the Exercises below.

e A real predicateP can be identified with a subsst- of R comprising those: such thatP(z)
holds. The statemer®(x) can be generically viewed as asserting membershipinfSp, viz,
“x € Sp”. Then a principle of real induction is just one that gives@gsary conditions for a set
Sp to be equal tR. Similarly, a natural number predicate is just a subsé¥.of

In the rest of this chapter, we indicate other systematibyeays; similar ideas are in lecture notes
of Mishra and Siegell4], the books of Knuth]1], Greene and Knuth]. See also Purdom and Brown
[16] and the survey of Luekeri]].

EXERCISES

Exercise 4.1: Prove theoren, by reduction to natural induction. You can also use a prgafdntra-
diction. &
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Exercise 4.2: Consider the recurrencB(x) = T'(x/2) + T'(xz/3) + «. In the text, we guessed and
proved thatl’(z) < Kz (ev.) for someK > 0. But suppose we had guessed (by the analogy
to Mergesort recurrence) that(z) < Kz lgz (ev). Prove this by real induction. Remember:
in this course, we do not ask you to justify the basis of redugtion. Just carry out the “Real
Induction Step”. &

Exercise 4.3: Supposd’(z) = 5T (x/2) + . Show by real induction thaf(z) = ©(z'8°). o
Exercise 4.4: Similar to previous problem, but consider the recurrefice) = 57'(x/2) + 2. &

Exercise 4.5: Show by real induction théf'(z) = 97 (x/2) + 23 thatT(z) < K9'8* — K'23. What
is the smallest value ok’ you can use? &

Exercise 4.6: Consider equatiordj, T'(n) = 27(n/2) + n. Fix anyk > 1. Show by induction that
T(n) = O(n*). Which part of your argument suggests to you that this smiut not tight? <

Exercise 4.7: Consider the recurrencE(n) = n + 107'(n/3). Suppose we want to shoW(n) =
O(n?).
(a) Give a proof by real induction.
(b) Supposél’(n) = n + 10T ((n + K)/2) for some constank’. How does your proof in (b)
change? &

Exercise 4.8: LetT'(n) = 2T(3 + c) + n for somec > 0.
(a) By choosing suitable initial conditions, prove the éaling bounds ofT'(») by induction, and
notby any other method:
(@.1)T(n) < D(n — 2c¢)lg(n — 2¢) for someD > 1. Is there a smalledd that depends only
on¢? Explain. Similarly, showW'(n) > D’(n — 2¢) lg(n — 2¢) for someD’ > 0.
(@.2)T(n) =nlgn — o(n).
(@.3)T'(n) =nlgn+ 6(n).
(b) Obtain the exact solution B(n).
(c) Use your solution to (b) to explain your answers to (a). &

Exercise 4.9: Generalize our principle of real induction so that the cansf is replaced by a real
functiond : R — R. &

Exercise 4.10: (Gilles Dowek, “Preliminary Investigations on Inductionves Real Numbers”,
manuscript 2002).
(a) A setS C R is closed if every limit point ofS belongs toS. Let P(z) be a real predicate
P(z). Assume{z € R : P(x)holds} is a closed set. Suppose

P(a). A (Ve > a)[P(c). = .(F)(Wy)[c <y < c+ ¢ = P(y)]]

Conclude thatVz > a)P(x).
(b) Leta,b € Randa, 8 : R — R such that for allz, a(x) > 0 anda(z) > 0. Supposef is a
differentiable function satisfying

fla) =bf'(z) = —a(x)f(z) + B(x)

then for allz > a, f(z) > 0. Intuition: If f(z) is the height of an object at time then the object
will never reach the grounde., f(z) > 0. &
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END EXERCISES

65. Basic Sums

In this section, we discuss some well-known basic sums agidrble in solving recurrences.

913. Rote expansion of the Master Recurrence. As motivation, let us return to the rote or EGVS
method. We have used it for the Mergesort recurreBeife now try apply the technique to the more
general Master Recurrence3 which is

T(n) = aT (n/b) + f(n)

fora > 0 andb > 1. Expanding, guessing and verifying yields:

T(n) = a+f(n)
= T/ |+af(n/b)+ f(n)

-
ai—i— Zajf(n/bj).
=0

Let us stop when = [log, n|. Thenn/b? < b. We may assume DIC witf#'(n) = 0 for n < b. This
gives us

[logy, n]
T(n)= ) dof(n/¥). (37)
=0
This solution, unlike in the Mergesort case, isagpen sum i.e., a sum with an unbounded number of
summands depending @n We do not regard an open sum as a satisfactory solution. thledast step
in the EGVS method is really stop-and-sum. This summingipdhte topic of this section.

914. The Standard Recurrence and Descending SumsBasically, the EGVS method has trans-
formed the Master Recurrence into a recurrence of the form

T(n)=T(n—-1)+ f(n). (38)

We shall call this thestandard recurrence Our goal in the following sections is to show systematic
ways to reduce many recurrences into this standard formiallyi, (38) has the following open sum as
solution

T(n) = F0), (39)
assumingdl’(0) = 0 andn is integer.

In the solution 89) we have assumed thatis integer. But what if. is an arbitrary real value? Let
us introduce some general notations that befits our intetidgoing totally real”. In general, for any

71' — —
real numbers, b, we define two kinds of sums gfvalues over this real intervid, b): S0> ;> % =3m—3

wherer = 3.1415. . ..
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Yoo f@) = JO) + S -1+ -2+ +f(b—|b-a]) (descend) (40)
Yiaf@) = f@+fla+1)+fla+2)+-+flat[b—al) (ascending)
We call these thelescendingandascendingf-summations Note that the last term in the ascending

sumisf(a + |b — a]), which is not necessarily equal f@b). Such sums are defined to bé& a > b.
The difference between these two notations lies in a minetaild- in the way we write the initial value Henceforth, pay close

of the summation variable “z;;a" versus ‘Zf:a”. We shall mainly focus on the descending sums, attention to this
but sometimes we it is better to use ascending sums. Thersinspe connection between these two ‘minute’ detail!
sums:
b b—a
S ri)=> fb—i). (42)
i>a 1=0
The right-hand side is also equalj(:)}ig“J f(b—1). Even whenf(z) is a partial function, these sums convention for
are well-defined using the convention thetdefined summands are replacedOby In recognition of  summing over partial
our interest in descending sums, we introduce a convenggatian: for any complexity functioff, let functions
n
Sp(n)=7_ f(0). (42)
i>1

and thus the solution to our standard recurre3&gi6

T(n) = S;(n). (43)

915. What Does It Mean to Solve a Recurrence? If the open sum in the RHS 080) is unsatisfac-
tory, what is satisfactory? Let us get a hint using a simpbgxe. Supposé¢(n) = n in (39). Then
we know how to convert the open sum intclased sum

n n

) =3 f) =Y i= <”;“1) _ @ — o(n?).

i=1 =1

Indeed, we would be perfectly happy with the answif) = ©(n?)” even though the answer is really

("‘2”) — remember that we are generally intereste®uorder answers in this book. The reason we | see! “Solving”
are happy with the answé¥ (n?) is because? is a “familiar function”. So this section is about how means relate to known
we can write some “basic sums” in terms of such familiar fiord. These sums are the ones you must functions

know. You will not be responsible for summations outside #mall repertoire of basic sums.

916. On Familiar Functions. So we conclude that “solving a recurrence” is relative toftren of
solution we allow. This we interpret to mean a finite sum ontdiggroduct involving only “familiar”
functions. For our purposes, we may define familiar functitm be constants functiongn) = ¢
(c € R) or the identityf(n) = n, or obtained from familiar functiorf, g using one of the following
operations:

sum f+yg
product fg
logarithm log f
exponentiation 19

functional composition fog
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Thus, familiar functions include polynomiaf§n) = n*, iterated logarithmg (n) = log'®) n, sim-

ple exponentialg' (n) = ¢™ (¢ > 0). It turns out to be useful to extend this class even furthancF
tions such as factorials!, binomial coefficients{z) and harmonic numbetd,, (see below) are tightly
bounded by familiar functions, and therefore may be comediéamiliar in an extended sense. For in-
stance, leff(n) be the number of ways an integercan be written as the sum of two integers. Number
theorists have shown thgtn) is (log n)?(°¢™) and thus considered familiar in the extended sense. In
addition to the above functions, two very slow growing fuoies arise naturally in algorithmic analysis.
These are the log-star functidog™ = (see Appendix) and the inverse Ackermann functidn) (see
Lecture XlI). We will consider them familiar, although fumanal compositions involving such strange
functions are only “familiar” in our very technical sense!

We refer the reader to Appendix A in this lecture for basicpemies of the exponential and loga-
rithm function. A useful relation is the following:

LEMMA 4. Forallreal a < bandc > 1, and for all integerk > 1:

()
1<1g® Y <1g™n < no <nb <

where the relation«) also requires: > 0.

What follows is a brief introduction to some common familianctions,expressed as solutions to
summationsThe vast majority of the summations in this book can be reduc one of these.

917. Arithmetic series. The basic arithmetic series is

Sy = Zn:z_(”‘;l) (44)

i=1

In proof,

n

QS’nZi;i—l—i;(n—l—l—i):Z(n—i-l):n(n—i-l).

i=1
There is a well-known “proof by picture” where you draw twangouent staircases, each representing
the desired sum; you can put these two staircases togetfet torectangle of arexs,, = n(n + 1).

More generally, for fixed: > 1, we have the “arithmetic series of order,
Shi=Y i =emF). (45)
=1

In proof, we have

nft > gk s N (n/2)F > (n/2)M
i=[n/2]
For more precise bounds, we bousifl by integrals,

k+1 n n+1 1 k+1 _ 1
" :/ xkdx<5’7]§</ :vkdac:u,

yielding Don’t worry about the
k+1 .

E_ N k integrals here — we

Sn = kE+1 + Ok(n?). (46) provide alternatives

below. Our approach

is to replace calculus
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918. Geometric series. Forx # 1 andn > 1,

n—1

Sp(x) = Z !
=0
" —1
= 1 (47)

In proof, note that:S,, () — S, () = 2™ — 1. Next, lettingn — oo, we get the series

Soo(x) = Z !
i=0

00 if 2>1
= 1 (undefined) ifx < —1
-+ if |z <1.

Why is S (—1) (say) considered undefined? For instance, writing

Se(=1) = 1—-1+41—141—-1+---
= I-D+(1-D+1—1)+-
0+0+0+---,

we concludeS,(—1) = 0. But writing

See(=1) = 1—-1+1—-1+1—--.
= 1-(1-1)+(1—1)—--
140404,

we concludeS..(—1) = 1. So that we must consider this sum as having no definite vatugepunde-
fined. Again,

Seo(-1) = 1—-1+1—-1+41—--.

= 1-S.(-1), 19th century

and we conclude thaft. (—1) = 1/2. Infact,S.(—1) can take infinitely many possible values in thi?earneg{lr?éztejzgailgfilrﬁtnes

way. This provides a strong case why, (—1) should be regarded as undefined. sums with great care

Viewing z as a formdl variable, the simplest infinite series $.(z) = > ;- z'. It has a very
simple closed form solution,
E ' = . (48)
=0 I—w

The one infinite series

Viewed numerically, we may regard this solution as a speeiaé of 47) whenn — oo; but avoiding 10 Know!

numerical arguments, it can be directly derived from thenf@ridentity S, (z) = 1+ 2S5 (x). We call
Yoo,z themother of seriesbecauséfrom the formal solution to this series, we can derive sohsi
for many related series, including finite series. In fact,|fd < 1, we can derive equatiort() by
plugging equation48) into

Sp(x) = Soo () — 2" Seo () = (1 — 2™) S ().

6 |.e., as an uninterpreted symbol rather than as a numesbag vThereby, we avoid questions about the sum converging t
some unique numerical value.

7 This terminology arose in 1990, during the Gulf War when $ewldHussein declared the “mother” of all battles. Suddenly,
many things are declared the “mother of ...".
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By differentiating both sides of the mother series with extpgox, we get:

oo

1 e
7(1 — $)2 = ; 1T !
T = .

i=1

This process can be repeated to yield formulasyt ik, for any integerk > 2. Differentiating
both sides of equatior{), we obtain the finite summation analogue:

n—1

Z i1 (n—1)a" —na" ' +1
1T =
P (x —1)2 ’
n—1
L (n—1)a" ™t —na™ +x
Z it = EEE , (50)
=1
(51)
Combining the infinite and finite summation formulas, equadi@9) and 60), we also obtain
=, na"—(n—1)z"t!
Z ixt = L . (52)

We may verify by induction that these formulas actually Holdall = ## 1 when the series are finite. In
general, for any: > 0, we obtain formulas for thgeometric series of orderk:

n—1
> ikt (53)
=1

The infinite series have finite values only wheh < 1.

919. Harmonic series. For natural numbers > 1, thenth harmonic number is defined as

1 1 1
Hy=14+-4+-+ -4+ —. (54)
2 3 n

We can give easy estimatesf, using calculus (see margin):

" g
Hn<1+/ Y14 H,.
1

€T

But /" ££ = Inn. This proves that
H, =lnn+ g(n), where0 < g(n) < 1. (55)

Note thatln is the natural logarithm (appendix A).

Does your architecture
friends know about this
one?

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011



§5. BAsIC Sums Lecture Il Page 26

5
1 :
\
@n=2 b)yn=3 (c)n=>5

Figure 4: Stacking bricks with maximum overhang: foe= 5, overhang is more than one brick length!

D

Harmonic numbers arise naturally in the analysis of alparg. But here is

“physical” application of harmonic numbers: Suppose youveha set ofn > 2
bricks. The bricks are identical and have unit length. Wettaustack the brick
so that the overhang is as large as possible. For instance; i2, the overhang i
1/2 since we can put one brick over the other such that the cehgeawaity of the
top brick is above the edge of the bottom brick. This is ilattd in Figurei(a).

The case ofi = 3, we may check that the overhangigt (Figure4(b)). An ob-
vious question is whether we can make the overhang arlyjttarge (providech
is large enough)? Somewhat surprisingly, the answer is. & Figurei(c) for
the caser = 5: in this case, the overhang1s,/24, already exceeding the lendth
of a single brick! How many bricks do we need to have an oveglexteeding
two brick lengths? In general, the overhanéJHn,l (Exercise). AdH, is about
Inn, the overhang goes to infinity (albeit very slowly)as+ oc.

For more information, see the fascinating book “How Round/asir Circle?
Where Engineering and Mathematics Meet”, by John BryantGmds Sangwir
(Princeton University Press, 2008). This solution is basedn assumption that
you stack at most one brick on another. What if you allow mbentone? You
can do a lot better than the above classical solution! MikerBan and Uri Zwick
(2009, American Math. Monthly) have investigated the cdsaultiple stacking
The maximum overhang for 8 bricks are illustrated in the nmelngre.

(2 )

We can view §5) as a special case of our descending s$m®) wheref(n) = 1/n. Then for all| B
realn, H, = Sy(n) = 315, 1. Here is a more precise estimate fn): forn > 1,
1 1 1
7+%—8?<g(n)<7+% (56)

wherey = 0.577... is Euler's constant See Polya and Szego, Problems and Theorems in Analysis,
Volume |, Springer-Verlag, Berlin (1972).

We can also deduce asymptotic propertiegigf without calculus: ifn = 2%V (for someN > 1),
then the terms in the defining summationf6f can be put intaV groups as follows

IL1::§:—F§:—+~~4—§:—+% (57)
1 2 N

where thekth group)_, is defined aifi;il 1. Notice that the last terr/n is not in any group. For
example

. Lol 11 1
57 1 T9"3T4 5Ty
~N e e/

P o 33
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Since}", has2*~! terms, and each term is betwegf2* and1/2*~1, we obtain

1 1
k—11 k—1

2R s E =27 o

k

1/2<y <1 (58)
k

This prove$ that
IN<m, <Nyl
2 n
1 1
slgn < H, <lgn+ — (59)
2 n
whenn is a power of2. Extrapolating to all values of, we obtain
EU n] < H, <[l n]—i—l
B gn] =~ fip > |18 n

Since we may choos¥ as big as we like, we have proved the following:

LEMMA 5.
(@) H, = ©(lgn).
(b) lgn is eventually unbounded, i.ég(n) > 1.

The technique in this demonstration is extended in the ppbdheorem9. These ideas are fully
developed in]9.

920. stirling’s Approximation.  So far, we have treated open sums. If we have an open prodifct su
as the factorial functiom!, we can convert it into an open sum by taking logarithms. Tiéshod of
estimating an open product may not give as tight a bound asiste(why?). For the factorial function,
there is a family of more direct bounds that are collectivedyled Stirling’s approximation. The
following Stirling approximation is from Robbins (1955)&it may be committed to memory:

n

n! = (—) 2mn e
e

where

1
ntl - o

Sometimes, the bound, > (12n)~! — (360n3) ! is useful f]. Up to ©-order, Stirling’s approxima-

tion simplifies to
n\"tz
| — it
nl=0 <(e) ) .

921. Binomial theorem.

-1
I+z)" = 1+nx+M12+---+x"

> (1)~

i=0

8 For N > 3, the terml/n could be ignored because we can count it as pa¥of Note that% < ¥o < 1 still hold true
after absorbing this extra term.
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For solving real recurrences, it is useful to generalize theorem td1 + «)? for any real numbep. In
general, the binomial functio@l) may be extended to all repland integet as follows:

0 if <0

<7?>_ 1 if i=0
(3

W if > 0.

We use Taylor's expansion for a functigiiz) atz = a:

1@,

f™(a
o), (a)

n!

fl@) = fa)+ =~ (z—a) + —a)? et (@—a)"+

where (") (z) = an This expansion is defined provided all derivativesfoéxist and the series

converges. Applied t¢(z) = (1 + «)? for any realp atz = 0, we get the desired binomial theorem for
real exponents:
plp—1) » pp—-1)(p-2) ;

ol * 3! SR

(I+x)P 1+ px+

=()-

i>0

See [L1, p. 56] for Abel's generalization of the binomial theorem.

EXERCISES

Exercise 5.1: Show Lemmal. For logarithms, please use direct inequalities (no cakjul &

Exercise 5.2: The Mother of Series is very important, and you should recit in its many forms.
For this problem you must not directly use the formula fer geometric series.
(@LetSy=1+4&+4+ Qéﬁ + 102% = ZZ L(1/4)". Use Figures(a) to determine the
value ofS;. (b) Let53 =++gs+3+a T =2 q(1/3)". Again, use Figuré(b) to

(@) S, (b) S5

Figure 5:

determine the value dfs.
(c) Generalize the arguments of (a) and (byto= >~ k" O
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Exercise 5.3: Letn = 2V for N > 1. Sharpen§9) to1 + (N/2) < H, < N + % HINT: breakH,,
into N sums of the fornt, = ¥°2,, 1, L. o

Exercise 5.4: Let S(27) denote the minimal height of a tree program to &Grélements (Lecturej3).
Describe how you would go about computing this number, arwigdonly a pocket calculator.
Mention any pitfalls, numerical errors, etc. &

Exercise 5.5: Strengthen the lower bounds in Lemeh&om # Q(f(n)) to = o(f(n)). O

Exercise 5.6: Let h(n) denote the maximum overhang forbricks. Prove thab(n) = Z?;ll 3 =

1H, 1. Thus,h(2) = 1/2, h(3) = h(2) + 1/4 = 3/4, h(4) = h(3) + 1/6 = 11/12, and
h(5) = h(4) + 1/8 = 25/24. HINT: Let the right edge of théth brick be at position:; where
theith brick is stacked on the+ 1st brick withx; > ;1. Inductively, assume that the optimal
configuration forh(n) is (z1,x2, ..., z,) wherez; — z;;1 = 1/2i. Moreover, the C.G. of the
optimal configuration foh.(n — 1) is atx,,. Extend this induction hypothesistdn + 1).

Exercise 5.7: Let ¢ > 0 be any real constant.
(@) Show thain(n + ¢) — Inn = O(c/n).
(b) Show thatH,. — H,| = O(c/n) whereH,, is the generalized Harmonic function.
(c) Bound the sumy_ | ) sy &

Exercise 5.8: ConsiderS..(x) as a numerical sum.
(a) Prove that there is a unique value f (z) when|z| < 1.
(b) Prove that there are infinitely many possible valuesstofx) whenz < —1.
(c) Are all real values possible as a solutiorbtg (—1)? O

Exercise 5.9: Show the following useful estimat&i(n) — (2/n) <In(n — 1) < (Inn) — (1/n). <&

Exercise 5.10:
(a) Give the exact value of’,"_, ﬁ HINT: use partial fraction decomposition %ﬁ_n

(b) Conclude that7s? < 2. &

Exercise 5.11:(Basel Problem) The goal is to give tight bounds fﬁ,&’z):: S }2 (cf. previous
exercise).
(@) LetS(n) =1, m Find the exact bound fof(n).

(b) LetG(n) = S(n) — H? 4+ 1. Nowy/ = G(0) is a real constant,

1 1 1 1
!/ __
L S B R SO T R s oy e Dol

Show thatG'(n) = v — 0(n=3).
(c) Give an approximate expression thfo) (involving ) that is accurate t@(n~3). Note
thaty’ plays a role similar to Euler’s constanfor harmonic numbers.

(d) What can you say about, given thatHégQ) = 72/6? Use a calculator (and a suitable
approximation forr) to computey’ to 6 significant digits. &
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Exercise 5.12:Let k > 1 be a integer. We have the general form@ila- z)=" = >, z*(
Note that ifk = 1, this is just the mother of series. Show this formula o= 2 and
Generalize to alk.

it+k—
k—1
k =

w.
3.
¢

Exercise 5.13: Solve exactly (choose your own initial conditions):
@T(n)=1+2T(n—1).
(b)T(n) =1+ 22T (n —1). $

Exercise 5.14:Show thaty""" , H; = (n + 1)H,, — n. More generally,

S (3= (00 [ - 2]

i=1

&

Exercise 5.15:(J.van de Lune, 1980) Above, we defindg:= """ | 1/i (descending sum). A variant
that is neither a descending nor an ascending sum is to défineb):=>" ..., 1/i where the
summation is over all integer valuesidh the rang€a, b]. Then this sum is bounded by

> é < In(b/a) +min{1,1/a}

a<z<b

O

Exercise 5.16: Give a recurrence fo$” (see ¢5)) in terms ofS?, fori < k. Solve exactly fois:. ¢

Exercise 5.17: Derive the formula for the “geometric series of ord&rk = 2 in (53). &

Exercise 5.18: (a) Use Stirling’s approximation to give an estimate of tkganentZ in the expression
28 = (?m).

n

(b) (Feller) Show(*") = S0 (7)*. o

Exercise 5.19: Your architecture friend said that your brick tower desigathieve maximum overhang
(using H,,) is unrealistic (we admit this). Here is a sequence of nusitiet tend to infinity but
slower:G,, = Y| “1 .. Design a overhanging tower based on this sequence. Cenyowr

=1 7lg7

architecture friend that this is stable enough to build. &

END EXERCISES

66. Standard Form and Summation Techniques

Recall that our goal is to reduce all recurrences tostaedard form:

t(n) =t(n—1)+ f(n). (60)
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We have noted that the solution is the descending sum

t(n) = Sp(n) =Y f(i) (61)

i>1

assume DIC withi(n) = 0 for n < 1. Itis perhaps instructive to see this derived in anothdizetyt
way known as “telescopy”. Assuming the recurrence is valicl n > 1, we have

th—i+1)—tln—1i)=fn—i+1), (@E=1...,|n)).

Adding thesg n | equations together, all but two terms on the left-hand siheel, leaving us
t(n) —t(n—[n—1]) =Y f(i).

(We say the left-hand side is a “telescoping sum”.)

922. Polynomial-type and Exponential-type Sums. Let us consider what is to be done if the open
sum G1) does not readily reduce to one of the basic sums we disciisskd previous section. Tra-
ditionally, the sumS¢(n) (for n € N) is solved using the Euler-Maclaurin summation formulaeTh

formula is for ascending sums:
1— 1 r=n
/ f(x)dx + ( Bi f ( )>
=1

whereB; is theith Bernoulli number. See’[ p. 217]. But in this book, we emphasize the solution oo calculus please, we
recurrences using purely elementary arguments, prefetoiavoid calculus. This is possible because are computer
we seek onlyo-order solutions. We now introduce two elementary summatézhniques for this scientists!
purpose. They are based on the following “growth classifcdof real functions:

Polynomial Type: A real functionf is polynomial-typeif f is non-decreasing (ev.) and there is some
C > 1 such that

f(x) <C- f(x/2) (ev).
For example, the functiofi(z) = 22 is polynomial-type because€ < C - (x/2)? if we choose
C > 4. Note thatf(z) < Cf(z/2) < C%f(x/4) < --- < C*f(z/2F) = O(n'2“). HENCE,
each polynomial-type function is bounded by a polynomiaérédare more examples: assume
a > 0in the following.

fo(z) =2 fi(x) =logz, fa(z) = fo(x)fi(z), f3(z)= (fo(x))". (62)

Exponential Type: The functionf is exponential-typeif it increases exponentially or it decreases
exponentially:
(a) f increases exponentiallyf there exists real numbets > 1 andk > 0 such that

f(z) > C- f(x—k) (ev).

For example, the functiofi(z) = 2% increases exponentially becai$e> €2~ if we choose
k= 1andC = 2. Again, f(z) = 22" increases exponentially becauge > 22" =
C(2%")'/2 if we chooseC' = 2. Here are more examples: assubre 1 in the following:

go(z) =b", gi(x) =a!, ga(z) = go(a)g1(x), gs(z) = 0" (63)
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(b) f decreases exponentiallif there exists real numbers > 1 andk > 0 such that

C- f(a) < fla — k) (ev).

For example, the functiofi(z) = 2~* decreases exponentially becadgz* < 2~ =1 if we
chooset = 1 andC = 2. Here are more examples: assubme 1 in the following:

ho(x) =b7%, hi(z) =27% ha(z) = ho(z)hi(z), hg(x) = bho@ (64)

In proofs, we can usually take= 1 in the definition of exponential-types: i.e.dfn) is increasing
exponentiallyg(n) > Cg(n — 1) and if h(n) is decreasing exponentially(n) < ch(n — 1).

We say that the descending sifftn) = Sy(n):=>_"., f(x) is polynomial-type or exponential-
type, following the above classification gf. The following theorem gives a simple rule for bounding
such sums. We are interested in functions that satisfy tmplsi properties:

e fis “eventually bounded away froi : this means > 1. For instancef(z) = 1/« does not
satisfy this property sincé(z) — 0 asz — oo.

e fis “bounded from above”this means, for alkq, there exists”' > 0 such that for allz < x,
f(z) < C. The functionf(x) = 1/z is? not bounded from above becaugér) — oo asz
approaches.

THEOREM6 (Summation Rules)lf f is eventually bounded away frdimand f is bounded from above,
then

f(n) if f is increasing exponentially,

nf(n) if fis polynomial-type,
Sf (n) =0
1 if fis decreasing exponentially.

Proof. CASE (i): For a polynomial-type sum, using the fact tifals non-decreasing, we get the
upper boundss(n) < 3", f(n) = |n] f(n). For lower bound, we also need thét) < Cf(z/2)
(ev.) for someC > 0: B

Si(n) > > f(x)

x>n/2

> Y F/2) = /2 fnf2)
x>n/2

> /2 22— g,

CASE (ii-a): For an increasing exponential sum, there isess6h> 1, £ > 0 andm > 0 such that for
alln > m, we havef(n) > C f(n — k). Without loss of generality, assume > k andf(x) > 0 for all
x € [m—k,m]. Foranyn > m, letj = [(n —m)/k]. Note thatn — jk lies in the interva[m, m — k)
andS¢(m — jk) = O(1), sincef is local bounded. Then

Sy(n) [f(n) + f(n = k) + f(n—2k) + -+ f(n—(j = DE)] + Sf(n — jk)
f)[1+&+ a3+ + Spn—jk)
f(n) C(il + Sf(m - ]k)
= 0O(f(n)) (sincef(n) = 1).

9 Basically, we do not wanf(z) to blow up at any finite value af. This essentially says thaff“has no poles” (except
possibly at infinity).

Al
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SinceSy(n) = Q(f(n)), we conclude that';(n) = O(f(n)).

CASE (ii-b): For a decreasing exponential sum, there is séme 1, £ > 0 andm > 0 such that for
alln > m, we haveC'f(n) < f(n — k). Again wlog, assumex > kandf(x) > eforallx > m — k
(for somes > 0). Letj = [(n —m)/k]. ThenS;(m — jk) = O(1) and

Spn) = S —gk) +[f(n =G —=Dk) +f(n—=(G=2)k)+ -+ f(n— k) + f(n)]
< Sfn—jk)+ fln—(G-Dk)[1+45+ &+ ]
= fln=0G-1k) (sincef(n—(j —1)k) = e).
SinceSy(n) > f(n— (j — 1)k) > ¢, we conclude tha$';(n) = O(1). Q.E.D.

Let us apply this theorem to determine tBeorder of various sum. Once we know the type of the
sum, it is a simple matter of writing down the solution:

e Polynomial Sums (recalb@))

n

Zilogz’ = O(n%logn), Zlogz’ = O(nlogn) Zi“ = O(n*™!) (wherea > 0).

i>1 i>1 i>1
(65)
e Exponentially Increasing Sums (recail3)
Svi=oepm), Y i =em %),  Yi=e@m) . (66)
i>1 i>1 i>1
e Exponentially Decreasing Sums (rec&l))
dovt=e1), Y iFTt=e1), Y it=e@1) . (67)
i>1 i>1 i>1

923. Reducing to summations we can bound. Summation that does not fit the framework of The-
orem6 can sometimes be reduced to one that does. A simple case issuhemation does not begin
fromi = 1. As another example, consider

“L !
Si=Y ——, (68)
=1 lg'n
which has terms depending oas well as on the limit. Write S = Y77, f(i,n) where
. i!
fli,n) = i
lg'n
We note thatf (i, n) is increasing exponentially far> 21gn (ev.n), sincef (i,n) = ﬁf(i —1,n)>

2f(i — 1,n). Hence we may split the summation into two pads= A + B whereA comprise the
terms for whichi < 21gn and B comprising the rest. SincB is an exponential sum, we have =
O(f(n,n)). We can easily use Stirling’s estimate fdrto see thatd = O(log®*n) = O(f(n,n)).
ThusS = O(f(n,n)).
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924. A Counter Example. Most common functions we encounter will be either polyndrtype or
exponential-type. We now show a function that is neither:

LEMMA 7. The functionf(n) = n'™ is neither polynomial-type nor exponential-type.

Proof. Showing thatf (n) is not polynomial-type is easy: the ratio
F(n)/f(n)2) = n'e jple/2) olen/2 — 2 /9

is unbounded, s¢ is not polynomial-type.

To show that it is not exponential-type, assume by way of realittion that there existSy > 1
such that

f(n) = Cof(n—1) (ev,). (69)
We use a well-known bound (see Appendix) says thatfpk 1,

In(l+z) < z. (70)
Also from (55) and £6), we conclude that
Inn+~y<H,<lnn+~vy+(1/n) (ev). (71)

The following inequalities hold eventually:

Inn < H,—7v
< (I/n)+In(n—1)+ (1/n)
= In(n—1)+ (2/n). (72)

We now get a contradiction:

) = -+ 2]
(n _ 1)1n(n71)+(2/n)(1 + ﬁ)lnn (by (72))

IN

_ f(n _ 1) . (n _ 1)2/71 . 2ln(1+ﬁ)lnn
< f(n—1)-22m0/m g (by (70))
= f(n—1) Ci(n)

whereC, (n):=22(=1/n. 23 Sinceln C; (n)

=(2In(n—-1)/n)+(lnn/(n—1)) - 0asn — oo,
we conclude that’; (n) < Cy (ev.). This showf(n) <

f(n—1)Cy (ev), contradicting 69). Q.E.D.

How do we estimate the sufy(n):=>_"., f(x) since we cannot apply Theorehwhen is nei-
ther polynomial- nor exponential-type? In this case, tégi@s similar to polynomial and exponential
sums still give reasonably tight bounds (but @ebrder): f(n) < S¢(n) < nf(n) < f(n)'** for any
e >0.

925. Closure Properties: How to recognize growth types To apply the summation rules Theorém
we want to rapidly classify functions according to theirwti types. For this purpose, we can use our
next lemma which shows that these growth types are closeerwadous operations.

LEMMA 8. Leta € R.
(a) Polynomial-type functions are closed under additiomtiplication, and raising to any positive
powera > 0.
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(b) Exponential-type functionsare closed under addition, multiplication and raising toygmowera.
In casea > 0, the functionf® will not change its subtype (increasing or decreasing). dsexn < 0,
the functionf* will change its subtype.

(c) If f is polynomial-type and > 1 (ev) thenlg f is also polynomial-type. If is exponential-type
anda > 1then sois/.

Proof. All the inequalities in the following proofs are assumed tddheventually:
(@) Assumef(n) < Cf(n/2)andg(n) < Cg(n/2) forsomeC > 1. Thenf(n)+g(n) < C(f(n/2)+
g(n/2)), f(n)g(n) < C2f(n/2)g(n/2), and for anye > 0, f(n)® < C*f(n/2)".
(b) Assumey;(n) > Cg;(n — 1) andh;(n) < ch;(n — 1). for someC > 1,c¢ < 1, and fori = 0, 1.
Also, letg = go, h = ho. Closure under additioryo(n) + g1(n) > C(go(n — 1) + g1(n — 1)) and
ho(n)+hi(n) < e(ho(n—1)-+hi(n—1)). Closure under produciy(n)g: (n) > C?go(n—1)g1(n—1))
andho(n)hi(n) < c*ho(n — 1)h1(n — 1). Closure under raising to power If e > 0, theng®(n) >
C°g°(n—1)andh®(n) < c°h(n—1)whereC® > 1 andc® < 1. If e < 0, theng®(n) < C°g°(n—1)
andht(n) > c¢¢h¢(n — 1) whereC® < 1 andc® > 1.
(c) If f is polynomial-type, thetog(f(n)) < (logC) + log(f(n/2)) < (1 + (logC)/c)log(f(n/2)),
wherelog(f(n/2)) > ¢ > 0 for some constant. This provedog f to be polynomial-type. Ifj, h is
exponential type as in (b), then note tigj(n) > (C — 1) + g(n) sinceg(n) > 1. Thus

po(n) pCon=1) > p(C=D+f(n—1)

>
> bC*12f(n71)'

Q.E.D.

9* 26. Generalization of Harmonic Numbers. For alln, « € R, define thegeneralized harmonic
number

H(® (n) = i z®

r>1
= T (= )T (=2 e () 1) (73)

using the descending sum notatiatd) Note thatH (*)(n) = 0 for n < 1. The harmonic numbers
H, is just H(-Y)(n) whenn is integer. The arithmetic series 1.7 corresponds tdZ(*)(n) where
a € N. Whena < —1, the sumH(®(n) is bounded as: — oo; the limiting value H () (cc)
is the value of the Riemann zeta function-at: ¢(a):=3° n~* = H%(c0). For instance,
¢(2) = H=?)(c0) = 72/6. An Exercise estimates the suffl—2)(n). Just as Euler’s constamtarise
in estimates of7(—1)(n), an analogous constant arise in estimatihg 2 (n). The following lemma
determines th@-order of H(*) (n) for fixed a:

THEOREMY9. Forall o € R,

1 if a<—1
HYMn)=06{ lgn if a=-1 (74)
notl if o> —1
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Proof. It is best to initially assume + 1 is a power of2. Then

lg(n+1) ok _1

H(n) = Z Z i

k=1 i=2k—1
lg(n+1)

> 2k e (2%

k=1

lg(n+1)

K(1+a)
; @(2 1+ )

The first summation is a direct analogy with7]. Note that the slick use @ in this derivation is
capturing upper and lower bounds simultaneously. If eitplispelled out, you would need to consider
the casesr > 0 anda < 0 separately. Now we notice thatlif+ oo = 0 then the sum Exercise: spell it out!

lg(n+1)

k(lte)) — n .
; @(2 + ) O(lg(n + 1))

If 1+ a < 0, then the sum is decreasing exponentially and Thedrgialds

lg(n+1)

> =e).

k=1
If 1+ a > 0, then the sum is increasing exponentially and Thedemelds

lg(n+1)

Z -0 (2lg(n+1)(1+a)) -0 (7’Ll+a) .

k=1

Whenn + 1 is not a power o2, we can replace by 7 = 2/'8(»*D1 _ 1 andpn = 2>+ _ 1 for
upper and lower bounds (Exercise). Q.E.D.

This result has two significance. First, up @order, the summation7é) unifies the standard
bounds for the arithmetic seried5), harmonic numberssf), and geometric sumsi{). Second, Remember trichotomy
the solution to the summatioH(*) (n) is based on a trichotomy: this pattern will be repeated in the
Master Theorem below. Although the formul&lf theorem has an analogue in calculus, our proof uses
only elementary arguments. The proof method can be geretaliboundS; where f belongs to the
class of “exponential-logarithmic functions” (called Elnctions in [L9]). We can show that if is an
EL-function, thenS; is ©-order of another EL-function.

Application of generalized harmonic numbers: to solve teeurrence
T(n) =2T(n/2)+ (n/lgn), we convert it to the standard form

HN)=t(N —1)+1/N (75)

using the substitution N) = T'(2") /2", whereN = Ign is a real variable.
According to ¢3), t(N) = H(-Y(N). Back solving, the original recurrence
has solutiorl’(n) = nH Y (Ign) = O(nInlgn).

927. Grouping: Breaking Up into Big and Small Parts. The above example&@) illustrates the
technique of breaking up a sum into two parts, one contaithi@gsmall terms” and the other containing
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the “big terms”. This is motivated by the wish to apply difet summation techniques for the 2 parts,
and this in turn determines the cutoff point between smalllaig terms. Suppose we want to show

Break H,, into two summationsH,, = A,, + B,, where

comprises the “big terms” (there are at mg&t terms in4,,), andB,, contains the remaining: — /n|
“small terms”. Then
n—|_ Vn

v
1
i>1

IN

and

n

B= Y

i>n— Lnf\/ﬁJ i
ThusS,, < 2y/n = O(y/n) as desired.

S| =

gznj ! =/n.

n
1

S

We can generalize the grouping idea to prove the following:
H, < kn'/* (76)

for any integek > 2. We break the summatiaff,, into k subsumsH,, = A, (1)+ A4, (2)+- - -+ A, (k)
whereA,, (1) comprises the firstn!/*| terms ofH,,, A,,(2) comprises the next?/*| — [n'/*] terms,
etc, where in general,, (j) comprises the nexta’//*] — [nU=1/k] terms. It is easy to see that each
A, (j) is bounded by:'/* and this proves76). This proves thatf,, is O(n°) for anyc > 0. This also
implies

H, = o(n°), log, n = o(n®).

EXERCISES

Exercise 6.1: For each function, determine its growth type (this could m&either polynomial-type
nor exponential-type”). You may use any known closure prigementioned in the text, or argue
from first principles:

(a)2", (b) (1glgn)? (c) n/logn, %

Exercise 6.2: Verify that the examples in66), (66) and ©7) are, indeed, as claimed, polynomial type
or exponential type. &

Exercise 6.3: Let T}, be a complete binary tree with > 1 nodes. So = 2"*! — 1 whereh is the
height ofT;,. Suppose an algorithm has to visit all the node§’pfand at each node of height
i > 0, expendi + 1)? units of work. LetT’(n) denote the total work expended by the algorithm
at all the nodes. Give a tight upper and lower bound% 6m). &
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Exercise 6.4: (a) Show that the summati(ﬁ?ZQ(lg n)'e" is neither polynomial-type nor exponential-

type.
(b) Estimate this sum. &

Exercise 6.5: For this problem, please use elementary estimates (argarftem first principles). Do
not use calculus, properties oy = such asc/logxz — oo, etc. Show thafi,, = o(n®) for any
a > 0. HINT: Generalize the argument in the text. &

Exercise 6.6: Use the method of grouping to show th#tn) = > | % is Q(1g%n). &

Exercise 6.7: Give the®-order of the following sums: if you use our summation ruteen you must
show that the terms has the appropriate growth types.
@s=>r, Vi
(b) S =" 1g(n/i). O

Exercise 6.8: Let f(i) = fu(i) = 75517. The sumF(n) = Y7, fu(i) is neither polynomial-type
nor exponential-type. Give &-order bound onF'(n). HINT: transform this into something
familiar. &

Exercise 6.9: Can our summation rules faf(n) = Y. ; f(i) be extended to the case whefg) is
“decreasing polynomially”, suitably defined? NOTE: sucleéiition must somehow distinguish
betweenf (i) = 1/i and f(i) = 1/(i?), since in one cas&(n) diverges and in the other it
converges ag — oo. &

END EXERCISES

7. Domain Transformation

So our goal for a general recurrence is to transform it ineogtandard form. You may think of
change of domain as a “change of scale”. Transforming theaitof a recurrence equation may
sometimes bring it into standard form. Consider

T(N)=T(N/2)+ N. (77)
We define
t(n):=T(2"), N =2".

This transforms the origind/’-domain into the:-domain. The new recurrence is now in standard form,
t(n) =t(n—1)+2".

By DIC, we may choose the boundary conditign) = 0 for all n < 0, we get the descending sum

t(n) = 321502% If b =n —|n| = {n} we turn this into an ascending sutfn) = Z?;é’ 2" = Hey, choose

2b Z}:g 27 which we know how to sum(n) = 2°(2" 1= —1) = 2n+1 2 hencel(N) = 2N —2°.  t(z) = T(2%) = 2'*=
for—1<ax<0to
achieve the simpler

solution:T'(N) = 2N
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928. Logarithmic transform. More generally, consider the recurrence

T(N)=T (% —d> +F(N), e>1, (78)

andd is an arbitrary constant. It is instructive to begin with tesed = 0. Consider the “logarith-
mic transformation” of the argumem¥ to the new argument:=log.(N). ThenN/c transforms to SoN =¢"
log.(N/c) =n—1. ThenT(N) = T(N/c) + F(N) transforms into the new recurrence

t(n) =t(n—1)+ f(n)
where we define
t(n):=T(c") =T(N), f(n):=F(N).

The preceding manipulation exploits some implicit coni@md: N <> n, T < t, F' < f. This might
be confusing in more complicated situations, so let us mhkecbnnection betweenand T more
explicit. LetT denote thelomain transformation function,

7(N):=1log.(N), 7 n)=c"

Thent(7(V)) is defined to b&’(V), valid for large enougtV. In order for this to be well-defined, we nsa short-?i?]t\j[;‘?r

needr to have an inverse for large enoughThen we can write

t(n):=T (1" (n)).

We now return to the general case wheéris an arbitrary constant. Note thatdf < 0 then we
must assume thay¥ is sufficiently large (how large?) so that the recurrend® (s meaningful (e,
(N/¢) — d < N). The following “generalized logarithmic transformatfon

cd
c—1

n:=7(N) = log.(N + ) (79)

will reduce the recurrence to standard form. To see thi® th@it the inverse transformation is

d
N = - C
c—1
= )
d
Nje)—d = "' - —
(N/e) s
1 cd
c—1
= 77n-1).

Writing ¢(n) for T(7—1(n)) andf(n) for F(7~1(n)), we convert equatior7g) to

tn) = T(r'(n)) (by definition oft(n))
= T(NV) (N =71(n))
= T((N/c)—d)+ F(N) (expansion)
= T(r *n—-1))+ F(r~'(n)) (domain transform)
= tin—1)+ f(n) (definition oft(n) and f(n))
S, () (telescopy and by DIC)

To finally “solve” for t(n) we need to know more about the functifitV'). For example, ifF(N) is a
polynomially bounded function, thef(n) = F(c" — L) would be©(F(c")). This is the justification
for ignoring the additive termd” in the equation (8).
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929. Division transform. Notice that the logarithmic transform case does not quipgure the fol-
lowing closely related recurrence

T(N)=T(N —d)+ F(N),d > 0. (80)
Itis easy to concoct the necessary domain transformatéptaceN by n = N/d and substituting
t(n) =T (dn)
will transform it to the standard form,
t(n) =t(n — 1) + F(dn).

Again, we can explicitly introduce the “division transfdhfanction 7(N) = N/d, etc.

930. General Pattern. In general, we considéf(N) = T(r(N))+ F(N) wherer(N) < N is some
function. We want a domain transform= 7(N) so that

T(r(N)) =7(N) — 1. (81)

The generalized logarithm transformgj is of this type. Here is another exampler{fV) = v/ N we
may choose
T(N) = 1glg(N). (82)

Then we see that
7(VN) = 1g(Ilg(VN)) = lg(lg(N)/2) = lglg N — 1 = 7(N) - 1.
Applying this transformation to the recurrence
T(N)=T(VN)+ N, (83)
we may defing(n):=T(r—(n)) = T'(2%") = T(N), thereby transforming the recurren@s to to
t(n) =t(n —1) + 22",

Note that the transformatio®®) may be regarded as two applications of the logarithmicsti@m.
Domain transformation can be confusing because of the dliffiof keeping straight the similar-looking
symbols, i’ versus ‘N’ and ‘t’ versus T". Of course, these symbols are mnemonically chosen. When
properly used, these conventions reduce clutter in our ditama But if they are confusing, you can
always fall back to the use of the explicit transformationdtions such as.

EXERCISES
Exercise 7.1: Solve recurrencer/@) in these cases:
(@ F(N) = N*.
(b) F(N) =log N. &

Exercise 7.2: (a) Solve the following four recurrences using domain tfarmsation:

lg N

1
1/1gN
1/1g® N

T(N) =T(N/2) +

(b) Generalize the above result: solve the recurr@ic€) = T(N/2) +1g° N for all real values
of c. &
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Exercise 7.3: Justify the simplification step (iv) ifl (where we replacén/2] by n/2). O

Exercise 7.4: Construct examples where you need to compose two or more alttbve domain trans-
formations. &

END EXERCISES

8. Range Transformation

A transformation of the range is sometimes called for. Fetance, consider
T(n)=2T(n—1)+n.

To put this into standard form, we could define

_T(n)
t(n):= o
and get the standard form recurrence
t(n) = t(n — 1) + 2%

Telescoping gives us a series of the type in equati®), (vhich we know how to sum. Specifically,
t(n) = 241 5= = ©(1) asf(x) = x/2" is exponentially decreasing. Henfgn) = ©(2").

We have transformed the range Bfn) by introducing a multiplicative facto2™: this factor is
called thesummation factor. The reader familiar with linear differential equationdlsee an analogy
with “integrating factor”. (In the same spirit, the previotrick of domain transformation is simply a
“change of variable”.)

In general, a range transformation converts a recurrentteedbrm
T(n)=c,T(n—1)+ F(n) (84)

into standard form. Here, is a constant depending an Let us discover which summation factor will
work. If C(n) is the summation factor, we get

t(n):%,
and hence
w - I
— CC(’;L)T(n 1)+ %
_ gEZ - 3 n g (3 (providedC(n) = ¢,C(n — 1))
= tln—1)+ %
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Thus we need’(n) = ¢,C(n — 1) which expands into

C(n) = cpCp—1---c1.

EXERCISES

Exercise 8.1: Solve the recurrencB(n) = 5T (n—1)+ f(n) for f(n) =1, f(n) =1lgnandf(n) = n.
¢

Exercise 8.2: Z.H. proposed to transform the recurrefitier) = 1007 (n — 1) + f(n) by using range
transformatiort(n) = T'(n)/100. Convince Z.H. that this is futile. &

Exercise 8.3: Solve the recurrenc&{) in the case where, = 1/n andF(n) = 1. &

Exercise 8.4: SolveT'(N) = 1007 (N/10) + N?/+/log N using transformations. Assurhez N is to
the basd0.

O

Exercise 8.5: (a) Reduce the following recurrence

712
T(n)=4T(n/2 —
(n) = AT (n/2) +
to standard form. Then solve it exactly wheris a power of2.
(b) Extend the solution of part(a) to generalising our generalized Harmonic numbéfsg for

realz > 2 (see§2). You may choose any suitable initial conditions, but péestate it explicitly.

¢
Exercise 8.6: Repeat the previous question for the following recurrences
(@)T(n)=4T(n/2) + lg"Tn
(b)T(n) = 4T(n/2) + . o

Vign

END EXERCISES

69. Differencing and QuickSort

Summation is the discrete analogue of integration. Extenthis analogy, we now introduce the
differencing as the discrete analogue of differentiation. Thus diffeiegis the inverse of summation.
The differencing operatiolv applied to any complexity functiofi'(n) yields another functio’vT
defined by

(VT)(n) =T(n) —T(n—1).
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Differentiation often simplifies an equation: thug(z) = 22 is simplified to the linear equation
(Df)(x) = 2z, using the differential operatdd. Similarly, differencing a recurrence equation for
T'(n) may lead to a simpler recurrence {&r7")(n). Indeed, the “standard form&() can be rewritten
as

Vit(n) = f(n).
This is just an equation involving a difference operator -e dliscrete analogue of a differential equa-
tion.

For example, consider the recurrence
n—1
T(n)=n+ Y T(i).
=1
This recurrence does not immediately yield to the previeahniques. But note that
(VT)(n) =1+T(n—1).

HenceT'(n) —T(n—1) = 1+ T(n—1) andT(n) = 2T(n — 1) + 1, which can be solved by the
method of range transformation. (Solve it!)

931. QuickSort. A well-known application of differencing is the analysistb& QuickSort algorithm
of Hoare. We remark that the QuickSort paradigm is extremelyerful and is capable to a profound
generalization to many problems in Computational Geomeétgnce it is worthwhile grasping the key
ideas of this algorithm and its analysis.

In QuickSort, we randomly pick a “pivot” elemept If p is theith largest element, this subdivides
the n input elements inta — 1 elements less thap andn — i elements greater thgn Then we
recursively sort the subsets of size 1 andn — i. For a detailed description of QuickSort, including a
different analysis, see Lecture VIII. The recurrence is

T(n) = n+— Z (t—1)+T(n—1)), (85)

since for each, the probability that the two recursive subproblems in @Birt are of sizesandn—i is
1/n. The additive factor of” indicates the cost (up to a constant factor) to subdivigestibproblems,
and there is no cost in “merging” the solutions to the subljemis. The recurrenc&p) is an example
of afull-history recurrence, so-called becausg(n) depends ofi’(m) for all smaller values ofn.

Simplifying (85),
T(n) = n+ 2300 T()
nT(n) = 223 T() [Multiply by 7]
(n—1)T(n—1) = (n—1)24+23072T0) [Substituten by n — 1]
nT(n)—(n—1)Tn-1) = 2n—142T(n—1) [Differencing operator fonT'(n)]
nT(n) = 2n—1+n+1)T(n—-1) [Simplify]
% = % — n(nlﬂ) + Tl [Divi.de by n(n + 1) (range transform)]
t(n) = TH- n(n+1) +t(n 1) [Definet(n) = T'(n)/(n + 1)]

2(Hpy1 — 1) =30, 7,(1+1) +t(0) [Telescoping a standard form]

Thus we see tha(n) < 2H,,4+1 (assuming(0) = 0) and hence we conclude
T(n) =2nlnn+ O(n).

It is also easy to get the exact solution f¢r.), by evaluating the sum_" , - z+1) (in a previous
Exercise).
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932. QuickSelect. The following recurrence is a variant of the QuickSort reeace, and arises in
the average case analysis of the QuickSelect algorithm:

T +T@2)+-+T(n—1)

n

T(n)=n+ (86)

In the selection problem we need to “select thle largest” wherek is given (This problem is studied
in more detail in Lecture XXX). Recursively, after splittjthe input set into subsets of sizes 1 and

n — i (as in QuickSort), we only need to continue one one of the wssts (unless the pivot element
is already thekth largest that we seek). This explains why, compared td€) ohly change ing6) is

to replace the constant factor ®fto 1. To solve this, let us first multiply the equation hy(a range
transform!). Then, on differencing, we obtain

nT(n)—(n—1)Tn-1) = 2n—14+T(n—-1)
nT(n)—nT(n—1) = 2n-1
Tn)—Tn-1) = 2—%

T(n) = 2n—Inn+0(1).

Again, note that we essentially obtain an exact solution.

933. Improved QuickSort. We further improve the constants in QuickSort by first rantjochoos-
ing three elements, and picking the median of these three twwub pivot. The resulting recurrence is
slightly more involved:

T(n)=n+ i:pi[T(z’ —1)+T(n—1)] (87)
=2
where (- 1)( )
T

is the probability that the pivot element gives rise to solyems of sizes — 1 andn — 7.

See Lecture 8 on Probabilistic Analysis where we furtheruis QuickSort.

EXERCISES

Exercise 9.1: Solve the following recurrences t-order:

n—1

T(n)=n+ 2 > T().

n
i=[n/2)

HINT: Because of the upper bound /2, the functionVT'(n) has different behavior depending
on whethem is even or odd. Simple differencing does not seem to work helé. Instead, we
suggest the guess and verify-by-induction approach. &

Exercise 9.2: Generalize the previous question. Consider the recurrence
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wherec > 0 and0 < « < 1 are constants.
(a) Solve the recurrence for= 2.
(b) SolveT (n) whenc = 4 anda = 0.

(c) Fix c = 4. Determine the range ef such that’(n) = ©(n). You need to argue why'(n) is

not©(n) for a outside this range.
(d) Determine the solution of this recurrence for general

Exercise 9.3: (a) Suppose that in the base case of QuickSort, we do notHiegever the size of the

subarray to be sorted has or less keys. Call thisQui r kSort .
(i) Describe the nature of the output fraQui r kSort .

(ii) Describe a linear time method to take the outputi r kSort and make it into a sorted

array.
(iii) Explain why your method in (ii) takes linear time.

Exercise 9.4:

(a) Show that every polynomial X) of degreel can be written as a sum of binomial coefficients

with suitable coefficients;:

0= (%) s, %) v (V) e

(b) Assume the above form fef X'), expresgVp)(X) as a sum of binomial coefficients. HINT:

whatisV ("")?

510. The Master Theorem

O

&

O

END EXERCISES

We first look at a recurrence that does fall under our transétion techniques: theaster recur-

renceis
T(n) = aT(n/b) + f(n)

recurrence.

THEOREM 10 (Master Theorem)The master recurrenc&g) has solution:

n'os» @, if f(n) = O(n=ct1°8 ) for somee > 0, CASE(-)
T(n) =01 n°®alogn, if f(n)=0(nle2), CASE(Q)
f(n), if af(n/b) <cf(n)forsomec < 1. CASE®R)

We have already seen several instances of this theorem. olin@s to the mergesort recurrence
T(n) = 2T(n/2) + n falls under CASHEY) of this theorem. Another famous one is Strassen’s 1969

(88)
wherea > 0,b > 1 are real constants anf{n) is the “forcing” (or driving) function. Our goal is to
prove the so-calleMaster Theoremwhich provides a “cookbook” formula for solutions of the rreas

algorithm for multiplying twon x n matrices in subcubic time. Strassen’s recurréige) = 77'(n/2)+

n2, has solutio’(n) = ©(n'87) which falls under CASE().

Evidently, the Master recurrence is the recurrence to sblve manage to solve a problem of size
n by breaking it up intaz subproblems each of size/b, and merging these sub-solutions in time
f(n). The recurrence was systematically studied by BentleyeHad Saxel]. Solving it requires a

combination of domain and range transformation.
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934. Proof of the Master Theorem. First apply a domain transformation by defining a new functio
t(k) fromT'(n), wherek = log,(n):

t(k):=T(b*) (forallk € R). (89)

Then @8) transforms into
t(k) = at(k — 1)+ f(b").

Next, transform the range by using the summation fatfer. This defines a functioa(k) from¢(k):
s(k):=t(k)/a". (90)

Now s(k) satisfies a recurrence in standard form:

SRR RS 10
— se-n+ L0
Telescoping, we get
(k) = sty + 30 L0 - 5100, (o1)

where{k} is the fractional part ok (recall thatk is real), and by DIC, we chos€z) = 0 for z < 1.
We now back substitute this solution to determine the smiiti terms of the original functiof'(n):

T(n) = t(log,n) (by (89))
= d°&"s(logyn)  (by (90))
nlogs @ Ziozgf n f0), (by (91))

al

This is the general solution to the master recurrence. hsguctive to notice that our derivation is
completely rigorous thanks to our use of descending sums7Bu) is expressed as an open sum, and
we need a closed formul&low, we cannot proceed further without knowing the natuheffunction

/-
We need another important insight. Let us call the function
W(n) = nl°&r@ (92)

the watershed function for our recurrence, antbg, a the watershed exponent The Master Theo-
rem considers three cases ffor These cases are obtained by compaying W(n). The easiest
case is wherg andW have the sam@®-order (CASE0)). The other two cases are whefeggrows

“polynomially slower” (CASE —)) or “polynomially faster” (CASE+)) than the watershed function.

The Master Theorem is
a trichotomy!

CASE(0) Thisis whenf(n) satisfies
f(n) = ©(n'*® ) = ©(a*®"). (93)
Thenf(b') = ©(a’) and hence

k
s(k) =Y f(b')/a’ = O(k). (94)

i>1
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CASE(—) This is whenf(n) grows polynomially slowerthan the watershed function:
f(n) = O(n=ctloen ), (95)

for somee > 0. Thenf(b') = O(b*(°8: 9=9)) = O, (a’b~) (using the subscripting notation for
0). Sos(k) = Zf21 f(b")/at =5 01(b7) = Os(1), sinceb > 1 impliesb—¢ < 1. Hence

s(k) = ©(1). (96)
CASE(+) This is whenf(n) satisfies theegularity condition
af(n/b) < cf(n) (ev) 97)

for somec < 1. Expanding this,
2

o oz 2 (3) 2 Sr(n) 2

c c?

> (9" s

_ Q(neJrlogb a)7

Y

wheree = —log, ¢ > 0, andC = n/bll°& ") We have just proven that the regularity condition
implies thatf (n) grows polynomially faster than the watershed function:

f(n) = Qnerioee). (98)
It follows from (97) that f (b¥—%) < (¢/a)? f(b¥). So

s(k) =0, f(0))/at = SN R /et (by (41), switch to ascending sum!)
o (e/a) F(bF) /ak—i (by regularity off)

= N/t (S )

= o(42),

sincec < 1. But clearly,s(k) > f(b*)/a*. Hence we have

IN

s(k) = ©(f(b*)/a"). (99)
Summarizing,
1, CASE(—), see 96),
s(k)=01< k, CASE(0), see94),
f(b*)/a*, CASE+), see p9).

Back substituting using(k) = t(k)/a*, we get

a”, CASE(—)
t(k) = a*s(k) = © { a*k,  CASE0)
f(0), CASE+).

Further back substitution usifg(n) = t(log, n) yields

nlogs @, CASE(-)
T(n) = t(log,n) = ©{ n'°&%logn, CASE()
f(n), CASE(+)

This concludes our proof of the Master Theorem (Theot€m
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935. Uses of the Master Theorem. Informally, we describe CASE-) as the case when the driving
function f(n) is polynomially faster thari¥’(n). But the actual requirement is somewhat stronger,
namely the regularity conditior®{). In applications of the Master Theorem, this case is ugub#
least convenientto check.

We can take advantage of the fact that checking if a funcfier) is polynomially faster (or slower)
than¥ (n) is usually easier to check (just by “inspection”). Hence wenmally begin by first verifying
the polynomially faster condition, equatio®d]. If so, we then check the stronger regularity condition
(97). Toillustrate this process, consider the recurrence

T(n) = 3T(n/10) + /n/lgn.

We note thaty = log,, 3 < logg 3 = 1/2 and son“*¢ < /n/lgn (ev.), confirming equatiord@). We
now suspect that CASE-) holds, and must verify that

cf(n) > 3f(n/10) (100)

for some0 < ¢ < 1. This holds, provided

Cﬁ > \/n/10
lgn = lg(n/10) len
< c Z \/9/10W

Since(lgn)/(1g(n/10)) — 1 asn — oo, it is sufficient to choose anysatisfyingl > ¢ > 1/9/10.

The polynomial version of the theorem is perhaps most useful

COROLLARY 11. Leta > 0,b > 1 andk be constants. The solution#(n) = aT'(n/b) + n* is given
by
nlogsa if log,a >k
T(n)=0<{ n*, if logya <k
n*lgn, if log,a =k

What if the values:, b in the master recurrence are not constants but depend8 dfor instance,
attempting to apply this theorem to the recurrence

T(n)=2"T(n/2)+n"

(with @ = 2™ andb = 2), we obtain the false conclusion tH&{n) = ©(n™logn). See Exercises.
The paper [d] treats the casé&'(n) = a(n)T'(b(n)) + f(n). For other generalizations of the master
recurrence, seé. f].

936. How important is the regularity condition?  In other words, if we remove the regularity condi-
tion, what do we need in order to conclude CAS$#? Naturally, the requiremerft(n) = Q(n<t1og: @)
must be assumed; CLAIM: thadditional assumption that(n) is polynomial-type is sufficienThis

is an advantage over requiring the regularity conditioralnse we know many polynomial-type func-
tions, usually by application of closure properties of palgnial-type functions. Incidentally, note that
f(n) = v/n/lgn in the above example is polynomial-type, it does not commfour closure proper-
ties.

We now prove the CLAIM. First recall that(k) = Zf:[kflj f(b*=%) /a*—" after the switch to
ascending sum. Alsd; = log, n. Itis clear that iff is polynomial-type, therf(n) < K f(n/b) (ev.)
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for someK > a. It follows thatf(n) < K®f(n/b%) (ev.) for someK > a. Therefore:

k
s(k) = Y, fOY/a"

i=|k—1]

SO~ FOE
= z-—%-u 7F)
bk b at
= fék) Z i

i=|k—1]
= O(f(th)/a").

937. Graphic Interpretation of the Master Recurrence. We imagine a recursion tree with branch-

ing factor ofa at each node, and every leaf of the tree is at l&wg) . We further associate a “size”

of n/b* and “cost” of f(n/b) to each node at level(root is at level = 0). ThenT'(n) is just the sum

of the costs at all the nodes. The Master Theorem says thisada (0), the total cost associated with

nodes at any level i®(n!°8» @) and there arég, n levels giving an overall cost & (n'°% @ logn). In

case 1), the cost associated with the roo9$7'(n)). In case £1), the total cost associated with the  Draw the recursion
leaves iSO (T'(n)). Of course, this “recursion tree” is not realizable unlesmdlog, « are integers: tree with a grain of
but it is a useful heuristic for remembering how the Masteediem works. salt!

938. Beyond the Master Theorem. Time to make a confession: this section is located deep in
this Chapter. In reality, we could have proven the Masteroféia using a direct argument, after we
introduced Basic Sums irg5. But the detour through summation techniques, domain angertrans-
formations has its value: it would allow us to obtain tighubds even when the driving function has
forms such as logn orn?/logn.

Indeed, several authors have extended the Master Theorerivitoy functions of the formy (n) =
n*log®n for all k,c € R. Indeed, ifk is not equal to the watershed constant, we already know the
answer from the Master Theorem. So the interesting case e Wwh= log, a. Then there are four

possible cases: no more trichotomy!
f(n) if f(n)satisfies the regularity condition CASE)
B Wi(n)log®™n if ¢>—1 CASE()
T(n)=0 W(n)loglogn if ¢c=—1 CASE(1)
W(n) else CASE(-)

Note that CASEI) is new. But we remark that even this generalization doesapture the recurrence
that comes from the Schdonhage-Strassen recurrence égeinultiplication. For this, we need fur-
ther generalizations. The idea is to considén) to be any product of powers of iterated logarithms
(which we callEL-functions). Such an “ultimate” theorem is proved ing] with infinitely many cases
(CASE() and CASE() are just special instances).

In the next section, however, we consider generalizatibasdifferent nature — we look at a gener-
alization of the Master Recurrence itself.

EXERCISES
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Exercise 10.1: Which is the faster growing functiorf?; (n) or T>(n) where

Ti(n) = 6T1(n/2) +n?, To(n) = 8Tx(n/2) + n?.

Exercise 10.2: Supposé’(n) = n + 3T (n/2) + 2T (n/3). Joe claims thal'(n) = O(n), Jane claims
that7'(n) = O(n?), John claims tha'(n) = O(n®). Who is closest to the truth? You must
justify your answer by appeal to the standard Master Theansn &

Exercise 10.3: Use the Master Theorem to solve the following recurrencsgarfrom matrix multi-
plication. Be sure to justify the case you choose.
(a) It is easy to see how to recursively multiply twox n matrices asymptoticall{f’(n) =
8T (n/2) + n? time:

a b a b | | ad +0bd ab+0d
c d cd d | | cd+dd b +dd

What is the solutio’(n) using Master theorem?

(b) Strassen (1969) showed that you can actually save onmatrix multiplication, giving the
recurrences(n) = 75(n/2) + n?. Use the Master theorem to determisie:).

(c) Coppersmith and Winograd (1990) has the current faatgstithm for matrix multiplication,

achieving a bound ab(n2376) time. Suppose you read in Scientific American that someose ha

discovered a marvelous way of multiplyi2gx 2 matrices using only. multiplications, and the
recurrence’(n) = aT'(n/2) + n? yields a faster algorithm than Coppersmith-Winograd. What
is the largest possible value @ What do you think is the likelihood of such a result? <

Exercise 10.4: State thed-order solution to the following recurrences:

T(n) = 10T(n/10)+ log'®n.
T(n) = 1007 (n/10)+ n'O.
T(n) = 10T (n/100)+ (logn)elos™.
T(n) = 16T (n/4)+ 4",

Exercise 10.5: Solve the following using the Master’s theorem.
(@)T(n) = 3T(n/25) + log* n
(b) T'(n) = 25T (n/3) + (n/logn)3
(©T(n) =T(yn)+n.

HINT: in the third problem, the Master theorem is applicaddier a simple transformation. ¢

Exercise 10.6: Sometimes the Master Theorem is not applicable directlyt iBean still be used to
yield useful information. Use the Master Theorem to givegisttan upper and lower bound you
can for the following recurrences:

(@) T(n) = n®log®n + 8T (n/2)
(b) T'(n) = n?/loglogn + 97 (n/3)
(©)T(n) =4T(n/2) + 3T (n/3) + n. &
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Exercise 10.7:We want to improve on Karatsuba’s multiplication algorithiie managed to subdivide
a problem of sizer into a > 2 subproblems of size/4. After solving these: subproblems, we
could combine their solutions i@(n) time to get the solution to the original problem of size
To beat Karatsuba, what is the maximum vaiugan have? &

Exercise 10.8: Suppose algorithml; has running time satisfying the recurrence
Ti(n) =aT(n/2)+n
and algorithmAs has running time satisfying the recurrence
Ts(n) = 2aT(n/4) + n.

Here,a > 0 is a parameter which the designer of the algorithm can chd@smpare these two
running times for various values af &

Exercise 10.9: Say whethefl’ (n) << T>(n) orT1(n) > T>(n) where
Ti(n) = 8Ty (n/4) +n'?>, Ty(n) = 6Tz(n/3) + n?.

Briefly justify using Master Theorem; do not use calculators &

Exercise 10.10:Suppose
To(n) = 18Ty(n/6) 4+ n'>

and
Ty (n) = 32T1(n/8) + n'o.

Which is the correct relationTy(n) = Q(T1(n)) or To(n) = O(Ti(n))? Do this exercise
without using a calculator or its equivalent; instead, usualities such aegg (z) < logg(x)
(for x > 1) andlogg(2) < 1/2.

Exercise 10.11:How is the regularity condition ofi(n) and the condition thaf(n) is polynomial-type
related? What can you say about the spiifi , /(i) when satisfies the regularity condition for
somea, b, ¢? %

Exercise 10.12:Solve the master recurrence whgfn) = n'°% @log® n, for all k € R. You need to
use the transformation methods in order to determinetfwrder correctly. (Be careful when

k=—1) &

Exercise 10.13:Show that the master theorem applies to the following viarabf the master recur-
rence:

n-+c
)+ f(n)

wherea > 0,b > 1 andc is arbitrary. &

Tn)=a-T(

Exercise 10.14:
(a) SolveT'(n) = 2"T'(n/2) + n™ by direct expansion.
(b) To what extent can you generalize the Master theorem malleasome cases df (n)
a,T(n/by) + f(n) wherea,, b, are both functions of?

<l
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Exercise 10.15:Let W (n) be the watershed function of the master recurrence. In wéredesis the
“watershed function” of the next order equallié(n)/ Inn? &

Exercise 10.16:
(a) Let

" g
s(n) = Z -
i=1

Prove thats(n) = ©(Ig”n) directly (without using our theory of growth types). For tloaver
bound, we want you to use real induction, and the fact that fer2, we have

In(n) — (2/n) <In(n —1) < (Inn) — (1/n).

(b) Using the domain/range transformations to solve theviehg recurrence:

gl
T(n) = 2T(n/2) +n glggn".
¢
Exercise 10.17:Consider the recurren&(n) = aT'(n/b) + % wherea > 0 andb > 1. Describe
the setS of all pairs(a, b) for which the Master Theorem gives a solution for this reence. Do
not describe the solutions. You must describe the&datthe simplest possible terms. &

Exercise 10.18:The following recurrences arises in the analysis of a palrallgorithm for hidden-
surface removal (Reif and Sen, Proc. ACM Symp. on Comp. Gagnmi€88):

T(n)=T(2n/3)+1gnlglgn
Another version of the algorithm. ] leads to
T(n)=T(2n/3)+ (Ign)/lglgn.
Solve forT'(n) in both cases. O

END EXERCISES

611. The Multiterm Master Theorem

The Master recurrenc&g) can be generalized to the followimgultiterm master recurrence:

T(n)=f(n)+ iaiT (bﬁ) (101)

wherek > 1,a; > 0 (foralli = 1,...,k) andb; > by > --- > by > 1. Whenk = 2, we have the
following examples oP-term master recurrences:

T(n) = T(cin)+ T(can) + n, (c14+c2 < 1). (102)
T(n) = T(n/2)+T(n/4)+logn. (103)
The first recurrencel(Q2 arise in linear time selection algorithms (see Chapter Xhere are many
versions of this algorithm with different choices for thenstantsc;, co. E.g.,c1 = 7/10,¢0 = 1/5.
The second recurrence arose in Computational Geometrisiitdaner and Welzlg] introduced a data

structure calledonjugation tree for solving thepoint retrieval problem. The exercises will go over
this data structure.
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939. Reducing multiterm to single term master recurrence. Before providing the general solution,

let us see how our previous techniques would fare here. dfigdl, rote expansion seems hopeless, even

for a two-term master recurrence. On a more positive nogeptathod of real induction can provide S

us with confirmations of guessed upper and lower bounds — wehaady seen such examples. The The studentis invited
catch is how do we go about guessing these bounds. But herériteaesting method to use the Master t0 €xpand the 2-term

Theorem to provide upper and lower bounds. The idea is toesbur multiterm recurrence into recurrences...
a master recurrence: let= Zle ai, bi=min{b; :i=1,...,k}, ande:=max {b; : i =1,...,k}.
This defines two master recurrences

Umn) = f(n)+aU(n/b), (104)

L(n) = f(n)+aL(n/c). (105)

Clearly, T(n) = O(U(n)) andT'(n) = Q(L(n)). Then the Master Theorem implies the bound

O(f(n)logn + n'oe @),

T(TL) = { Q(f(n) _|_nlogca). (106)

Applying this to the conjugation tree recurren@é@®, we obtain
O(n
T(n)= !
m={ ok
But suppose we first expand our recurrence once:

T(n) = |T(n/2)|+T(n/4)+logn

= ‘ T(n/4)+ T(n/8) + log(n/2) ‘—i— T(n/4) +logn
= 2T(n/4)+T(n/8) + ©(logn).

Now the application of106) yields the sharper bound:

n10g4
T(n) = { g((nlogg :))’

Itis clear that this trick can be repeated. We remark thalotiver bound can sometimes be improved by
omitting terms before taking the maximum to forrE.g., forT’(n) = T'(n/2)+T(n/3)+T(n/9) +1,

the above scheme yield¥n) = Q(y/n), but if we first drop the terri’(n/9), we get the improvement
T(n) = Q(n'oes2).

940. Multiterm Generalization of Master Theorem. To state the multiterm analogue of the Master
Theorem, we must generalize two concepts from the MasteorEne (a) Associated with the recur-
rence (01) is thewatershed constanta real numbes such that

k
a; o
; o =L (107)

Clearly « exists and is unique since the suh®{) tends ta) asa — oo, and tends teo asa — —oc.
As usual, letiW(n) = n® denote the watershed function. (b) The recurrerdds)(gives rise to a
generalized regularity condition on the driving (or forcing) functiorf (n), namely,

=Q

k
> aif(n/bi) < cf(n) (ev.) (108)

i=1

for some0 < ¢ < 1.
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THEOREM 12 (Multiterm Master Theorem).

n®logn if f(n)=0©(n*)
T(n)=0<¢ n“ if f(n)=0(n>"¢),for somes > 0,
f(n) if f satisfies the regularity conditiod@8).

Before proving this result, let us see its application to¢bajugation tree recurrencé@3. The
watershed constant satisfies the equatiogi; + 4% = 1. Writing z = 2% we get the equation
x + 2% = 1. The positive solution to this quadratic equatioris- 2= = (-1 4 /5)/2. This yields
a=1-1g(—1++/5) ~ 0.695. Edelsbrunner and Welzl said that they obtained thie/ “an analogy
with Fibonacci recurrences”; but we now know that it can b&teyatically derived. They proved that

T(n) = O(n®); our theorem further shows that their bouneigight.
Proof of Multiterm Master Theorenwe use real induction.
CASE(Q): Assume thaff (n) = ©1(W(n)). We will show thatT'(n) = ©2(W (n) logn). We have

T(n) = f(n)+X al (bﬂ)

— 0, + 2, 40, ((g)a log (bﬂ ) (by induction)

= Ou(n") + O:(n") [T, & los (2)

= 01(n%) + 6O3(n*) [logn — D], (whereD = Zle & log(b;) and using 107))
©2(n*logn)

Let us elaborate on the last equality. Suppp&e) = ©,(n*) amounts to the inequalities W (n) <
f(n) < C1W(n) (ev.). We must choose, Cs such that2 W (n)logn < T'(n) < CoW (n)logn (ev.).
The following choice suffices:

szcl/D, C2:C1/D.

CASE(-): Assume0 < f(n) < Dyn®"¢ for somes > 0. The lower bound is easy: assume
T(n/b;) > c1(n/b;)* (ev.) for each. Thent®

T() = J(n)+ 3L, a7 ()

g

S aicr(2)° (sincef(n) > 0 and by induction)
cin®.

v

The upper bound needs a slightly stronger hypothesis: as#inyb;) < Cin*(1 —n~¢) (ev.). Then

T(n)

fn) + 2, T ()
Din® + 3% a0 (g)“ [1 - (bﬂ)} (by induction)
= Cin® — Cyno—e [Z’“ e Dl/Cl}

=1 b;?tff
< Cin*—-Cin>¢

IN

providede:1 a; /b7 > 1+ (D1/Ch). Sincer:1 a;/b;™° > 1, we can certainly choose a large
enoughC to satisfy this.

CASE(+): The lower bound’(n) = Q(f(n)) is trivial. As for upper bound, assumifig(m) <

10 The factf(n) > 0 (ev.) is a consequence of ‘€ O(n®—<)" and the definition of the big-Oh notation.
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D, f(m) (ev.) whenevem = n/b;,

T(n) = f(n)+Xh, T (1)
< f(n)+ ¥ a;Dif(n/b;)  (byinduction)
= f(n)+ Dicf(n) (by regularity)
< Dif(n) (if D1 > 1/(1—¢))

This concludes the proof of the Multiterm Master Theorem.

The use of real induction appears to be necessary in thid:puotike the master recurrence, the
multiterm version does not yield to transformations. Agé#ie generalized regularity condition implies
that f(n) = Q(n**¢) for somes > 0. This is shown by induction:

fm) 22X aif(n/b)
15 a4 (n/b )**  (by induction, for someD > 0)
D a+s Zl L ba+€

— DnaJrE (If we choose: = Zl 1 ba+a)

v Iv

Smcezl 1 ga = 1, we should be able to choose a> 0 to satisfy the last condition. Note that this

derivation imposes no condition dn, and soD can be determined based on the initial conditions. The
above Multiterm Master Theorem in this generality, inchglan additional fourth case, is first stated
and proved in 9.

EXERCISES

Exercise 11.1:1t is important to have some method to approximate the wlagergonstants in multi-
term recurrences. Let us explore the 2-term case, as theitgehclearly generalizes. Latbe
the watershed constant for the recurrefﬁcﬁa) = aT'(n/b) + cI'(n/d) + 1 wherea, c > 0 and

b,d > 1. SupposeP(z) = 1 — % — 4= By evaluating the sign oP(x) (for any real number
x), we can decide whether > o or z = o orz < «. Call the evaluation of the sign d?(z) a
probe.

(a) How many probes do you need to determine the first digitfVhat about two digits? Three
digits? Ten digits?

(b) Suppose = 3,b = 2,c = 2,d = 3. Using your calculator, computeto two digits.

(c) Write a program in your favorite language (scriptingdaage is fine) to compute to m
digits, for any inputs, b, ¢, d. &

Exercise 11.2:Using the Master Theorem@tMultiterm Master Theorem) to provide upper and lower
bounds on these recurrence functions. No proofs needed.
(a) state upper and lower boundsBtr) where

T(n)=T(n/2)+T(n/4) + v/n.

(b) State improved upper and lower bounds over part(a), By éxpanding the recurrencee
step and then invoking Master Theorem. &

Exercise 11.3: Prove tight upper and lower bounds 6i(n) where:
(@) T(n) = n®log®n + 9T (n/3).
(b) T'(n) = n?log®n + 97 (n/3). Using only the Master Theorem (not Multiterm Master Theo-
rem). Be sure to justify the cases used in the Master Theorem. &
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Exercise 11.4:Use the Master Theorermd@t the Multiterm Master Theorem) to derive a sublinear

upper bound off’'(n) = 2T'(n/3) + T(n/10) + 1. Recall some tricks in the text. &

Exercise 11.5:Recall the 2-term recurrence from the analysis of conjogétiee:

T(n)=T(n/2)+T(n/4)+1gn.

Numerically determine the watershed constarin this recurrence. Show up to 5 decimal

places. We don’t presume any particular way to do this, extteh you can only use an ordinary

scientific calculator. Tell us how you obtained your constan

&

Exercise 11.6: To understand the recurreritén) = T'(n/2)+T(n/3)+ T (n/4) +n, we will explore

numerically the functiorh(z) = 27% + 37% + 47~

We want to determine the such that

h(a) = 1. For a simple way to do this, use a user-friendly, powerftiveare like MATLAB. For
instance, consider the following two linesATLAB code:

The firstline defines the functidn(z). The second line is a for-loop wherédegins with the value
0.9 and each iteration increases the value &y 0.1 until = 1.2. Each iteration simply prints

>>
>>

h=@(x) 2.”(-x) + 3.”(-x) + 4. (-x);
forx=0.9:0.1: 1.2, display([x, h(X)]), en

=

the pair(x, h(z)) of values. This loop produces the values shown in the firdi@fallowing four

tables:

0.9000| 1.1951}| 1.0700| 1.0119|| 1.0810| 1.0011|| 1.0820| 1.0001
1.0000| 1.0833|| 1.0800| 1.0021|| 1.0820| 1.0001|| 1.0821| 1.0000
1.1000| 0.9828(| 1.0900| 0.9924| 1.0830| 0.9992|| 1.0822| 0.9999
1.2000| 0.8923(| 1.1000| 0.9828|| 1.0840| 0.9982|| 1.0823| 0.9998

By changing the stepsize and limits of the for-loop, we canngere correct digits with run of
the for-loop. Each successive table above is obtained tiys ®ach time giving us an extra digit
in the decimal expansion ef. Thus,a ~ 1.0821. How would you continue this experiment to

determine the first00 digits of a?

&

Exercise 11.7:Let M (n, k) be the number of worst case number of comparisons (in the ansom-

tree model) to find the rank element among elements (for any: = 1,...,n). Note that the
rank of an element in a set is the number of elements that astagrthan or equal to it. When

k = [n/2], we call this themedian problem. Also, letM (n) = max{M (n, k) : k=1,...,n}.

(i) Itcan be shown that/ (n) = M (n/5)+ M (7n/10)+ Cn for some constan®'. Determine the
watershed constant for this recurrence. We suggest you use a pocket calculatbdatermine

« up to 2 digits, using a simple binary search (one digit at @}im
(i) Conclude from the Multiterm Master Theorem tht(n) = O(n).

&

Exercise 11.8:We return to the previous median problem with recurreiéén) = M(n/5) +
M(7n/10) + Cn. In this question, we are interested in constant factorsjusbasymptotics.
(a) Determine the value @ in this algorithm. For this purpose, use the fact that we aqzohtfie
median of five elements withh comparisons (Exercise in Lecturg3).
(b) Using Real Induction, show thdt (n) < Kn (ev.). Determine the optima value &f as a
function of C.

%
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Exercise 11.9:Jack has an algorithm whose complexity satisfies this renae:
Ja(n) = 2Ja(n/3) + Ja(2n/5) + n.

Jill's algorithm satisfies
Ji(n) = Ji(2n/3) + 2Ji(n/5) + n.

Use the Multiterm Master Theorem to decide who has the mdiaesft algorithm. Here is
Willa Wong's Python Script for doing these constants:

#!/ usr/ bi n/ pyt hon

fromdecimal inport *

import math

def getVal ue(al, bl, a2, b2):

i = Decimal ("1")

while(i < 2):

val ue = Deci mal (al)/ Deci mal (mat h. pow(b1,i))
+ Deci nal (a2)/ Deci mal (mat h. pow( Deci nal (b2),i)) - Decimal ('1")

if value < Decimal (' 0.00001"):

return i

el se:

i += Decinmal (" 0.00001")

def main():
Tj ack = getVal ue(Decimal ('2"), Decimal ("3 ), Decimal ('1"), Decimal (5 )/ Decimal (’2"))
Tjill = getValue(Decimal ("1"), Decinmal ('3 )/Decimal ('2"), Decimal ('2"), Decimal ('5"))
print Tjack, Tjill
if _name__ == "__min__

mai n()

Exercise 11.10:Let Jack and Jill functions of the previous questionfagn) = ©(n*) and.Ji(n) =
O(n”). Instead of approximating and 3 numerically to compare them, Ravi suggests the fol-
lowing more geometric method of comparison (which he thiskaore insightful and avoids the
use of calculators): Let

f(@) =2(5%)+ 6%, g(z)=10"+2(3%)4, h(z)=15".

Thenf(a) = h(a) andg(B) = h(B3). Itis easy to check that, 3 both lies betweet and2.

(a) Ravi claimed that'(z) > ¢'(z) > f/(z), whereh/(x) denotes derivative with respectto
Note thath(z) = ¢*"(15) and thereforé’(z) = In(15)e* (1% = In(15)15°.

(b) From this we can conclude thatx) will intersecth(x) at some value of that is greater than
that value of at whicty' (z) intersectsi(z). In other words > «. That is, Jack’s algorithm is
faster than Jill’s.

Your job is to make all of Ravi’s arguments rigorous. Do youesgwith Ravi that this is more
insightful and avoid calculators? &

Exercise 11.11:LetT'(n) = 2T(n/3) + T'(n/10) + 1. Use the Master Theorem to derive a sublinear
upper bound off’(n). O

Exercise 11.12:In the text, we sharpened our bounds for the conjugationé@arence functioff’(n)
by expanding the recurrenc&d?d just once, and then applying{6),

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011



§12. OTHER RECURRENCES Lecture Il Page 58

(a) Let us now expandLQ3) twice before applyingX06). Verify that the new bounds are further
improvements.
(b) Show that this improvement be repeated indefinitely? &

Exercise 11.13:ConsiderT'(n) = T'(n/by) +T(n/bs) + T'(n/b3) + 1 wherel < by < be < bs. What
is the lower bound off’(n) using (L06? Under what conditions oby, b2, b3 can you obtain a
better bound by omitting the smallest term? &

END EXERCISES

612. Other Recurrences

There is a wide variety of recurrences which we have bareiteliat. For instance, the typical
recurrences arising in counting combinatorial structhieage an exponential (e.g’(n) = 27 (n—1) +
f(n)) or double exponential growth (e.dl\(n) = T'(n — 1) + f(n)). We refer to Knuth for such
examples. In this section, we focus on some other types afrecces.

612.1.Recurrences with Max or Min

Many recurrences in computer science involve the Max or Miaration. Here we give three ex-
amples.

941. QuickSort Variant. Consider the following variant of QuickSort: each time aftee partition
the problem into two subproblems, we will solve the subpeabthat has the smaller size first (if their
sizes are equal, it does not matter which order is used). Wk toanalyze the depth of the recursion
stack. If a problem of size is split into two subproblems of sizes, n, thenn; + ny = n — 1.
Without loss of generality, let; < ns. S00 < n; < |(n —1)/2]. If the stack contains problems of
sizes(ny > ns > --- > ny > 1) whereny is the problem size at the top of the stack, then we have

Nj—1 2> Ny + Nit1.

Sincen; < n, this easily impliesiz; 1 < n/2% ork < 21gn. A tighter bound isk < log, n where
¢ = 1.618...is the golden ratio. This is not tight either.

The depth of recursion satisfies

[(n—1)/2]
= maX

ny =0

D(n) max{1+ D(n1), D(n2)}]

This recurrence involving max is actually easy to solve.uhsiig D(n) < D(m) for all n < m, and
foranyreak, D(x) = D(|z]), itis easy to see thd®(n) = 1+ D(n/2). Using the fact thaD(1) = 0,
we obtainD(n) < lgn. [Note: D(1) = 0 means that all problems on the stack has siz&
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942. Solving a Problems on a Binary Tree. Consider this recurrence which involves both Max and
Min:
C(n)= max {C(m)+Cn—-—m—1)+min{m+1,n—m}} (109)

m=0,...,n—1
This represent the cost to solve a recursive problem reptesdy a binary tre&” onn nodes, where
the left and right subtrees have sizasandn — m — 1, respectively. To solve the problem @n we
recursively solving the problem on the left and right sue$teand then marry the two sub-solutions at a
cost ofmin {m + 1,n — m}. We claim that

C(n) < KnH, (110)

whereH,, is thenth Harmonic number anél > 1 is sufficiently large. By DIC, we can assuntel()
is true for alln < nq (for someng > 1). Inductively, forn > ng, we have

Cn) <KmH,,+ K(n—m—1)H,_p—1 +min{m+1,n —m} (111)
forsomem = 0,...,n — 1. Note thatn <+ n —m — 1 are interchangeable in the RHS @&fi(l). Hence
wlog, assumen > n—m—1. ThenT'(n) < KnH,,+n—m. Butn(H,—H,,) = > " e > n—m.

Thereforel'(n) < KnH,,, + n(H,, — H,,) < KnH, (sinceK > 1).

This prove<”(n) = O(nlogn). This bound exploits the Min in109). For instance, if we replace
the Min by a Max, then the solution i§(n) = ©(n?) (Exercise). We find thi$)(nlogn) solution
instructive: in effect, it says that the worst case valueroh (109 is whenm ~ n/2, thus reducing
the recurrence to look liké€'(n) = 2C'(n/2) + n, yielding the©(n log n) solution. So the Min has the
effect of ensuring that the balanced binary t7ees the worst case solution.

Fredman §] considered the general class of recurrences of the form

M(n) = g(n) + min {aM(k)+BM(n —k—1)}

which arises from analysis of binary search trees.

943. Analysis ofe-Nets. The following recurrence arise in the analysis of a classabé dtructures
callede-nets, first studied by Haussler and Welzl. Assuniing ¢ < 1 andm > 2 are fixed,

T(n)=1+ max T(n; 112
(n) X Zj (n:) (112)
where the maximum ranges over &lly, ..., n,,) satisfyingn; > 0 and Z;’;l n; < en. Thereis a

trivial solution to this: the constant function
T(n)=1/(1-m)

for all n. ButT'(n) < 0 in this case and we seek a non-negative solution. Assumatd/tn) is a
convex cap!, it is easy to see that

T(n) =1+ mT(en/m) = O(n!8m/e™).

To showT'(n) is a convex cap, we note that it is continuous (Exercise) androtonic non-decreasing
function. Then it suffices (Exercise) to prove that

T(x)+T(y) <2T((z +y)/2) (113)

where we now regar@(x) as a real function defined for all > 0. This turns out to be easy to show
inductively, assuming the base case whEfe) = = (or T'(x) = 0) forall 0 < z < 1.

1 We say a real functiorf () is convex capif forall 0 < a < 1, f(z) + f(y) < 2f(az + (1 — «)y). For completeness,
we sayf(x) is convex cupif forall 0 < a < 1, f(z) + f(y) > 2f(az + (1 — a)y).
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§12.2.A Log-square Solution

Consider the recurrence n
Tn)=14+TMn——). (114)

logn

This does not yield to our standard techniques. To probeateapte some simple bounds. It is easy
to see thaf’(n) < n since this is the solution to the recurreritén) < 1+ T(n — 1). Likewise
T(n) > lgn since this is the solution t6'(n) > 1 + T'(n/2).

To get a better upper bound, we note that

T(n)

Il
/‘\
/\
6
09
3
~
~_

IN
/\
cT
o
3
l\’)
~
g
>
NS
=

IN

k
k+T< )
1ogn

using monotonicity off’'(n). HenceT'(n) = k if we assumel'(n) = 0 for n < 1 andk is chosen so

that k k+1
1 1
1- <1 1— .
( 1ogn) - /n<< logn)

Taking natural logs, and assuming for simplicity thaf = In in (114), we see that

1
(k+1)In (1—5) > —lnn,

(k+1) (—L) > —lnn, (since In(1 +z) <z for |z| < 1),

Inn

E+1 < In?n.

Up to a constant factor, this is also the lower bound: we sttt (n) > C In® n by induction:

1+ Cln? (n(l— ! ))
logn

1+C(Inn+1n <1— L >)2

logn

T(n)

Y

2 .
> 1+C(nn— 1—)2, sinceln(1 + z) > = — 2%/2for |z| < 1
nn

> Cln’n.

ThusT'(n) = ©(In?n).

REMARK: If we were told from the beginning to verify th&t(n) = ©(In*n), this would be
routine. What we are demonstrating here is the process obwlising thatO(In ) is the correct
answer.

EXERCISES
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Exercise 12.1: Solve forC(n) where

C(n) = max 1{C’(m)—|—C’(n—m—1)—|—maux{m—i—1,n—m}}.

Note that this is similar to1(09 except that the Min has been replaced by a Max. &

Exercise 12.2: Try to obtain tight constants for the recurrendd.4). What if log is not the natural
logarithm in the original equation? &

Exercise 12.3: Show thatl'(z) in (113 is continuous by exploiting the fact that the addition arekm
imum functions are continuous. &

Exercise 12.4: Prove that ifT'(z) is continuous and satisfies equatidi® then it is a convex cap.<$

Exercise 12.5:Bound the solution to the recurren€&n) = T(n — 1) + 27(n/2) + n. This is an
interesting mixture of linear recurrence and the mastarrreace. &

Exercise 12.6: (Leighton 1996) Show that(n) = 2T(% — Z.) has solutiorl’(n) = ©(nlog®" n).
Assume thafl'(n) = 1 for n < 5, and the recurrence holds far> 5. ThusT'(5 +¢) = 2, so

this function is discontinuous. O

Exercise 12.7: Analyze the behavior of the functioff’(n) defined by the recurrenc&(n) =
nT (logn). Give upper and lower bounds f@f(n) using “closed form expressions” in terms
of the functi0n§og(i) n, 1 > 0. Note: This recurrence arises in an early version of the fast imtege
multiplication algorithm of Schdonhage and Strassen. &

Exercise 12.8: Solve the recurrencE(n) = 1 +max(,, ny.ny,n )11 (n1) + T (n2) +T(n3) + T(n4) }
where(nq,...,n4) ranges over all non-negative numbers such ﬁé‘tzl n; = 37" and each
n; <n/2. ¢

Exercise 12.9: Solve the following recurrences &-order:
(@7T(n)=14+2T(n — ).

logn
(b) T (n) =2"T(n/2) + n™.
©T(n)=1+ T(log ).
HINT: these recurrences are considerably harder than niaghat we encounter. First guess

non-tight upper and lower bounds and verify by inductionef kry to tighten these bounds<)

END EXERCISES

§12.3.Multivariable Recurrences
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So far, our recurrences involve only one variable. But naatiable recurrences arise in several
ways: one source of such recurrences is multidimensioohl@ms in computational geometry (one of
the variable is the dimension).

The pre-processing problem pbint dominance queriesin d-dimensions is as follows: given a set
S C R? of n points, construct a data structuf¥.S) such that for any query point € R, we can
quickly determine if there is any point € S thatdominatesp (this meansc > p, componentwise).
One solution is to pick some e R such thatS splits into two subset$, S, of sizen/2 each, where
the first component of each € S, is < ¢, and the first component of each € S is > ¢. To answer
the query forp, begin by comparing the first componentof p to ¢: if p; > ¢ then it is sufficient to
recursively check if some € S, dominatew. If p; < ¢, we must do two searches: (i) check if some
x € S1 dominateg and (ii) check if somer € S, dominateg. The search in (i) is, however, done
in d — 1 dimensions since we may ignore the first components. Thusrtteefor answering queries
satisfies the recurrence

T(n,d)=1+T(n/2,d)+T(n/2,d—1).

Itis not hard to see th&(n, 1) = O(1). Then we may verify the solutiofi(n, d) = ©(log* ' n).

944. Output-sensitive algorithms. Multivariable recurrences arise in the analysis of “output
sensitive” algorithms. Such algorithms has, besides #ittonalinput parameter n, an (implicit)
output parameter h, which is the measures the size of the output for the giventimstance. The
computational complexity of such algorithms depends oh baindi. An example is the problem of
computing the convex hull of a set afpoints in the plane. The output size is just the number ofgoin
in the actual convex hull. There are well-kno@}{n log n) algorithms for this problem. Kirkpatrick
and Seidel has given an algorithm whose time complexitgfasi the following recurrence:
n n

T(n,h) = O(n)+, max {T(g,hl) + T(E,hQ)} .
Here, h; are positive integers. We may assuffie:, h) = O(n) for h < 3. To see thafl'(n,h) =
O(nlogh), we could of course just substitute and verify. But it is miogructive to argue as follows:
consider a “recursion tree” corresponding to a possibl@esion of the recurrence relation fBtn, h).
There are exactly nodes in this binary tree, where each internal node at defttfe root is deptid)
carries a “cost” ofn/2¢. The “cost” of the tree just the sum of these costs at therniatemodes. So
T'(n, h) is the maximum cost over all possible recursion trees.cl&ien7'(n, h) = O(nlog h) follows
if we prove that the maximum cost occurs when the tree hashdgphostlog, h (since the total cost
of all nodes at any depthis invariablyn). For the sake of contradiction, suppose we have a maximum
cost tree with deptd > log, h. Then there is a node at depth- 1 whose children are leaves at depth
d. We can transfer these two children to become the childreonmie other node at depthd — 2. This
would increase the cost for the tree, contradiction.

EXERCISES

Exercise 12.10:Show that if S(n,d) is the space requirement for the above data structure, then
S(n,d) =142S(n/2,d)+ S(n/2,d — 1). Solve this recurrence. What$§n, 1)? &

Exercise 12.11:Consider the following recurrence

T(n,h) = O(n) + . {T(c1n, h1) + T(can, ha)}.
(a) Solve forT'(n, h) with only the assumptioh; > 1,¢; > 0 in the above.
(b) Solve forT'(n, h) with the additionalassumption that; < « where0 < a < 1 is fixed.
Generalize the above argument about the shape of the maxamsimecursion tree. &
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Exercise 12.12:(Sharir-Welzl) The following recurrence arises in anatgrithe diameter ofn-
dimensional polytopes with: facets:

fln,m)=fn—1,m—1)+ %Z fln—1,4).

Solve the recurrence. &

END EXERCISES

13. Orders of Growth

Jack: My algorithm has time complexity((lgn)™).

Jill:  Oh, with a new tweak, mine now runs@rn's").

Who has the faster algorithm — Jack or Jill? Most studentdavoot be able to tell the answer right
away. This section is a practical one, designed to help ydiersach comparisons, systematically. But
students can quickly tell you thatlg lg n growsfasterthanlg® n. Since these are the logs of the time
complexities of Jack and Jill (respectively), we might wishconclude that Jack’s complexity grows
faster than Jill’s.

Now be careful —an algorithm whose running time ig lg is actuallyslowerthan one with running How about that...
timelg® n. Using our asymptotic notations, we can say this preciselyg lg n = 1g? n” (domination) faster algorithm =
Of course, a more accurate answer ig lg n. > 1g? n (strict domination). Better yet; lglg n = lg°n slower running time!
(super-domination). You might want to review these notetifrom Lecture I.

now is a good time to
€ 45. On L-functions. The functionglgn)™ andn'®™ of Jack and Jill are examples of the so-called review exponentials

logarithmico-exponential functions (L-functionsfor short). Such a functioffi(z) is real and defined gngd logarithms in the
for all x > xzy for somexy depending onf. The L-functions are inductively defined as either the Appendix!
identity functionz or a constant € R, or else obtained as a finite composition of the functions

A(z), In(z), e’

whereA(z) denote$” a real branch of an algebraic function. For instantge;) = /z is the function
that picks the real square-root:of But we could also have taken the negative branch of the sepomit.

We say a set of functions tetally ordered if, for any f, g in the set, eitheff < gorg < f. A
theorenm® of Hardy [9] says that the set di-functions is totally orderedf f andg are L-functions then
f<g(ev)org< f (ev). Inparticular, eact.-functionf is eventually non-negative,< f (ev.),
or non-positive,f < 0 (ev.). This is a very nice property di-functions. Unfortunately, many common
functions that are nat-functions. For instance, the sine function is not/afunction because neither
sinaz > 0 (ev.) norsinz < 0 (ev.) holds. Here are some categoriedefunctions you often encounter:

12 An algebraic functiond () satisfies a polynomial equatidf(z, A(z)) = 0 whereP(x, y) is a bivariate polynomial with
integer coefficients.

13 |n the literature onL-functions, the notationf < ¢” actually meansf < g (ev.). There is a deep theory involving such
functions, with connection to Nevanlinna theory.
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CATEGORY SYMBOL EXAMPLES
vanishing term o(1) o2
constants (1) 1, 2-4
polylogs log” n (foranyk > 0) | H,, log’n
polynomials n* (for anyk > 0) n?,  n
super-polynomialg| n?") nl, 2m, ploglogn

Note thatn! and H,, are notL-functions, but they can be closely approximatedbfunctions. The

last category forms a grab-bag of anything growing fasten gholynomials. These 5 categories form a

hierarchy of strictly increasingl§-order.

946. The Heuristic of Taking Logs. An effective way to compare twé-functions is to take their
logarithms. To compare the running times of Jack and Jill,

let us compare their logs:

(Ign)"

nlglgn versus lg?n.

versus n'8",

(115)

(116)

Perhaps you already see that the former dominates the lattet, you could take logs again:

lgn+1glglgn versus 2lglgn.

Itis now clear that the left-hand side super-dominatesitité-hand side, since

lgn = lglgn.

Working backwards to the original comparison, we conclund t

Thus Jack’s complexity is growing faster than Jill's (i.8ack’s algorithm is slower than Jill's). But
is this argument rigorous? Well, the idea of taking logs anteto an application of the following

“backwards” inference rule:

Here, “A < B” reads “A holdsprovidedB holds”. Logically,A < B andB = A are equivalent, but

(Ign)™ == n's™.

(f =g) <= (g f=lgg).

(117)

(118)

(119)

(120)

the backwards formulation seems more natural in proofsuggds)dominance, such as ihl9. See
Lecture | (Appendix A) for discussion of logical proofs.

Unfortunately, the rulel(20) is not sound. Here is a counter example:det 1 andf = 2. Then

1 =1gf = lgg =0, butitis not true thaf >~ ¢g. What is needed is some additional guarantee that

lg f is growing fast enough. We now prove this:

LEMMA 13. Let f, g be complexity functions. 1§ f super-dominates bothandlg g, then f super-
dominateg;. In symbols,

Proof.

(f = 9)

(f==g)<=lgf = DA(gf=lgg).

s (VC>0)Cf >
&
~=
~=

g (ev)]

(

(VC > 0)lgC +1g f >1gg (ev)]

(VC >0)lgC+ 3lgf >0 (ev)] A(5lgf >1gg (ev)) (Splitlg f in halft)
(lgf =1 A(gf=lgg)
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Q.E.D.

Returning to our heuristic argumentthat Jill's algoritrebetter than Jack’s, we see that the heuristic
rule (120 just needs an additional precondition thif f =~ 1” holds. These preconditions amount to
nlglgn > 1for (116), andlgn = 1 for (117). But we knew these to be true. In general, you can use
the following fact:

LEMMA 14. Forall k£ > 1,

k+1)

1g) p o 1g* Y e 1

Actually, this lemma holds for all integer, provided we interpret

ls ”_{ ™ n it g < 1,

947. Some rules for comparing functions. When functions falls outside these well-known cate-
gories, we would general rules to help us compare them. Heréwa simple rules for comparing
functions up to9-order:

(SR) Sum: In a “direct” comparison involving a surfi(n) 4+ g(n), ignore the smaller term in this sum.
E.g., in comparing? + nlogn + 5, you should ignore therflogn + 5” term. Beware that if the
sum appears in an exponent (so the comparison is no longet)lithe neglected part may turn
out be decisive when the dominant terms are identical.

(PR) Product: If 0 < f < f"and0 < g < ¢’ thenfg =< f'q’.
E.g., this rule implies® < n° whenb < ¢ (sincel < n°~?, by the logarithm rule next).

Another way to compare functions is to look compare theiroggnts instead:
(ER1) If f < g then2f < 29,
(ER2) If f << g then2/ << 29.
These two rules are immediate since exponentiation is a tooeancreasing function. Instead &
we can use any bage> 1. The converse of these two rules is more interesting. Cendiis rule:
(LR1) If 1 < f < g thenlog f < log g. [Proof: the premise implieSC > 1 such thatl/C' < f < Cyg
(ev.). Sincef > 0(ev.), we may take logs and dog f < logC + logg < 2logg (ev..).] Be careful,
because many students think the converse is also true. Maogparisons of interest to us can be
reduced to repeated applications of the following rules:

(LR) Logarithm: 1 < log* ™Y n << log™®) n for any integetk > 0. Herelog®) n refers to the-fold

application of the logarithm function aridg®) n = n.

(ER) Exponentiation: We have two versions: assure< f.
(ER1) If f < g then2f < 29,
(ER2) If f << g then2/ << 29.
The constan? can be replaced by any/> 1.

948. Example. Suppose we want to compans™ versus(logn)™. According to the Exponential
Rule (ER),n'°s™ < (logn)" follows if we take logs and show that< log*n < 0.5nloglogn (ev.)
(i.e., choose: = 0.5 in (ER)). In fact, we show the strongkrg® n << nloglogn. Taking logs again,
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and by the rule of sum, it is sufficient to sh@iog logn < logn. Taking logs again, and by the rule of
sum again, it is suffices to Sdeg(?’) n < log(g) n. But the latter follows from the rule of logarithms.

EXERCISES

Exercise 13.1: Consider the expressidi(z):=f (z)9"(#) where{f, g,h} = {2",1/n,lgn}. There
are6 = 3! possibilities forE(z). Determine the fastest and slowest functions among theXdix.
coursef(x) is growing faster thag(x) meansf(x) dominateg (). O

Exercise 13.2: (i) Simplify the following expressions: (a)!/'s”, (b) 22", (c) 1=, 2/, (d)

2051 (e)4'5m, () (V2)'e ",

(ii) Re-do the above, replacing each occurrence2dfexplicit or otherwise) in the previous ex-
pressions by some constant> 2. Note thatlg is log,, 4 = 2% and\/n = n'/2. So when we
replace these implicit’s by ¢, we getlog,, c© andn'/? in the above expressions. &

Exercise 13.3: Order these in increasing big-Oh order:
nlgn, n~t, lgn, n'8", 10n+n®?, 77, 2on 2ln

&

Exercise 13.4: Order the following 5 functions in order of increasi®gorder: (a)log” n, (b)n/ log* n,
(€)/n, (d)n2™™, (e)loglogn.

Exercise 13.5: Order the following functions (be sure to parse these nestpdnentiations correctly):
(@)n=W"™", (b) (1gn)™"", () (lgn) ™", (d) (n/1gn)™"" ™" (€)n""*""" 13

Exercise 13.6: Order the following set 036 functions in non-increasing order of growth. Between con-
secutive pairs of functions, insert the appropriate orgerelationship=, =, < (ev), =.

|2 | b [d e L f
1. | Iglgn (Ign)len | 2n olgn | olg"n 22"
2. (1/3)" n2" nlelen e” nl/len [lgn]!
3. | 2v2Er | (3/2)" |2 lg(n!) | n Vign
4. | 208m)’ 22" n? nlgn | (n+1)! | 4len
5. | 1g(lg*n) | 1g%n (L+L1)m | nlen | nl 2(lgn)/n
6. (vV2)&" | Ig"n (n/lgn)® | V) |lg"(Ign) | 1/n
NOTE: to organize of this large list of functions, we ask that first order each row. Then the

rows are merged in pairs. Finally, perform a 3-way merge ef3Hists. Show the intermediate
lists of your computation (it allows us to visually verify ypwork). &

Exercise 13.7: Order the following functions:

n, [lgn]!, [lglgn]l, nllelenlt ol™n jg=om)  1g*(Ign), lg(lg"n).
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Exercise 13.8: (Purdom-Brown) Our summation rules already gives @herder of the summations
below. This exercise is interested in sharper bounds:
(@) Show thal """ | il = n![1 + O(1/n)].
(b) >, 28Ini = 2" [Inn — (1/n) + O(n~?)]. HINT: uselni = Inn — (i/n) + O(i*/n?) for
i=1,...,n. O

Exercise 13.9: (Knuth) What is the asymptotic behavioref/*? ofn(n'/? — 1)?
HINT: take logs. Alternatively, expanf[}._, e'/(™). &

Exercise 13.10:Estimate the growth behavior of the solution to this requeee?’ (n) = T'(n/2)? + 1.

END EXERCISES

5A. APPENDIX: Exponential and Logarithm Functions

Next to the polynomials, the two most important functionsalgorithmics are thexponential
function and its inverse, thivgarithm function . Many of our asymptotic results depend on their basic
properties. For the student who wants to understand thegeegies, the following will guide them
through some exercises. We define tia¢ural exponential function to be

exp(x):= Z %

=0

for all realz. This definition is also good for complex but we do not need it. Thiease of the
natural logarithm is defined to be the number

=1
e=exp(l) =) 5 =271828...
i=0

exponential function
The next Exercise derives some asymptotic properties aéxpenential function.

Exercise A.1: (a) exp(z) is continuous.
(b) dc’;—‘;(””) = exp(x) and hencexp(x) has all derivatives.
(c) exp(x) is positive and strictly increasing.
(d) exp(z) — 0 asz — —oo, andexp(z) — oo asx — .
(€)exp(z + y) = exp(z) exp(y). ¢

We often need explicit bounds on exponential functions jmsttits asymptotic behavior). Derive
the following bounds:

Exercise A.2:
(@) exp(x) > 1 + « for all x > 0 with equality iffx = 0.

(b) exp(z) > 2" forz > 0. Henceexp(x) grow faster than any polynomial in

(n+1)!
(c) For all realn > 0,
T\ " x\ n+(z/2)
(1+2) <er<(1+2) .
n n
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It follows that an alternative definition ef* is

. T\
e’ = lim (1—1——) .
n

n—roo

(d) exp(z) (1 _ %) < (1+2)"forallz,n € R,n > 1 and|z| < n. See 4. &

B W
B m—

The natural logarithm functionln(z) is the inverse ofxp(z): In(x) is defined” to be the real
numbery such thaexp(y) = x.  Note that this is a partial function because it is definedafband

only positivez. el
S
+ 3
/// A
Exercise A.3: Show that Ty 5
dx z’
(b) In(zy) = In(z) + In(y), _
(c) In(z) increases monotonically fromoo to 400 asz increases from to +cc. ¢ graph oflnz (+ inversee™)

These two functions now allow us to defigeneral exponentiationto any basé: any reala, we
define
expy(a):= exp(aIn(b)). (121)

Usually, we writeexp, (o) asb®. Note that ifb = e then we obtair®, a familiar notation foexp(«).

We see from 121) thatb must be positive sinck(b) is otherwise undefined. Moreover, the case
b = 1 is highly degenerate sind¢' is identically equal tal. It is easy to check thdtl /b)* = b <,
and hence it is not necessary to explicitly consider the tasé (since we can replace such ay 1/b
which would be> 1.

Sob® andlog; a are

derived from the
special cases;” and
In a!

Once we have the definition efep, (2) = b”, thegeneral logarithm for any basé can be defined:
log, (x) is defined to be the inverse of the functiarp,(z) = b*: log,(z) is defined to be thg such
thatb? = x. Note that forb > 1, log,(x) is well-defined for allz > 0. But forb < 1, log,(z) is
undefined forr > 1. This gives another reason for avoiding balses 1.

Unless otherwise noted, the basef our general logarithm and exponentia-
tion is assumed to satisty> 1.

Exercise A.4: We show some familiar properties: the bass omitted if it does not affect the stated

property.
(a) The most basic properties are the following two:

log(ab) = (loga) + (logd), log,z = (log.z)/(log,b).

(b)logl =0, log,b=1, y=a"%Y log(x¥)=ylogx.

(c)log(1/x) = —logx, log,x=1/(log,b), a'°8® = ploea,

(d) Z—i(xa) = ar® 1,

(e) Forb > 1, the functionlog, (=) increases monotonically fromoo to +oo asz increases from
0 to co. Atthe same time, fob < b < 1, log, (z) decreases monotonically frofo to —co.
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949. Varieties of logarithm and their notations. When the actual value of the balsef a logarithm

is immaterial, we simple writdbg’ without specifying the base. E.dag(zy) = log(z) + log(y). But
there are three important basés= ¢, b = 2,b = 10, and we have a special notation for each: Clearly
In z:=log, x is clearly the most important, as we saw above that all therdtigarithms are defined in
terms of the natural logarithm. But in computer science, vaéniy uselg z:=log, . Solg x is often
called theComputer Science Logarithm In engineering or finance, ba$é is most important, and
this logarithm is often denotddbg := log; .

We shall writelog®) 2 for the k-fold application of the logarithm function te. Thuslog® z =
loglog z, and by definitionlog” z = 2. This is to be distinguished fromdg* n” which equals
(logn)*. Onthe black board, it is convenient to writéogn for log log n, andé¢¢ogn for log log log n

(it does not pay to continue this process).

Finally, we have théog-star function. Starting from a value > 0, we can keep taking logarithms
until we get a value that is negative. If we can take logargfainmost: times, therlog™ z is defined to
bek. By definition of log-star, ifc = log* z thenlog® 2 < 0 andlog**") z is undefined. Notice that
we have not specified the base of the logarithm. In most agwics, the base of the log-star function
is assumed to b2. With this base, we see thialg* () = 0 (resp.,1 and2) iff z <0 (resp.0 <z <1
andl < x < 2). So the range of log-star'isthe set of natural numbers.

950. Bounds on logarithms. For approximations involving logarithms, it is useful tc¢adl a funda-
mental series for logarithms:

i

(122)

2 28 = (—x)
ln(l—l-x)—x—?-i-?—---——; ;

valid for |z| < 1. From this, we obtain the useful bound:— 22/2 < In(1 + z) < z. To see that
In(1+ ) < z we must show thak = >~°°,(—z)*/i > 0. This follows because if we pair up the terms
in R we obtain

R=(2%/2—2%/3)+ (2*/4 — 2" /5) + -+,

which is clearly a sum of positive terms. A similar argumémwsin(1 + x) > z — 2%/2.

The formula (22 allows us to computén(y) for anyy € (0,2). How do we evaluatén(y) for
y > 2? Assume that we have good approximationkit@). Then we can writgy = 2™ (1 + z) (i.e.,n
is the number of times we must divigeby 2 until its value is less thaR). Then we can evaluaia(y)
asnln(2) + In(1 + z). This procedure depends on having a good approximatitn(®). Can we do
this? Indeed,

<1
In2 = — 123
n ,; o (123)

Using this rapidly converging series, we can quickly coregut2 to any desired accuracy. To derive
this series, note thag!~ = >_,. 2" and sof 2% = Y. a'"!/(i + 1) = Y., a'/i. Putting
y=1-uz [{& =—] % = —Iny = In(1/y). This showdn -1~ = >is1 @' /i, and (23 is just
the special case whete= 1/2.

Alternatively, to computdny, we can writey = n(1 + z) wheren € N and writeln(y) =
In(n) +In(1 + z). To evaluatén(n) we use the fadn(n) = H,, — v — (2n)~! — O(n~2) (see§5). Of

14 This real valuey is called the principal value of the logarithm. That is besgif we viewexp(-) as a complex function,
thenln(z) is a multivalued function that takes all values of the fayrt 2n7, n € Z.

15We could have extended log-star to take all integer-valligs: () is undefined for: < 0. For0 < x < 1, letlog* (z):=—
k iff k > 0is the number of times we must raiseo the power o until the result lies in the ranga /2, 1).
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log x:=log,
Inz:=log, x

lg z:=logy

Logx:=log gz

log(k) T # loglC x

log™ x is very, very
slow growing

Mother of Series
again!
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course, this method requires approximations Euler’s emtstinstead ofin 2. Again, there are rapid
approximations ofy.
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