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“Its very illuminating to think about the fact that some — at most four hundred — years
ago, professors at European universities would tell the brilliant students that if they were
very diligent, it was not impossible to learn how to do long division. You see, the poor guys
had to do it in Roman numerals. Now, here you see in a nutshell what a difference there is
in a good and bad notation.”

– Edsger W. Dijkstra
DatamationVol.23, No.5, p.164, 1977

“Make it as simple as possible. But no simpler.”

– Albert Einstein
(paraphrase)

Lecture II
RECURRENCES

This chapter provides a thoroughgoing treatment of solvingrecurrences as
they arise in algorithmics. We begin with some working rulesfor solving
recurrences, stressing the use of real recurrences andΘ-order analysis. The
latter emphasis leads to elementary (non-calculus) tools.The highlight of this
chapter are two Master Theorems.

Recurrences arise naturally in the complexity analysis of recursive algorithms and in probabilistic
analysis. We introduce some basic techniques for solving recurrences. A recurrence is a recursive
relation for a complexity functionT (n). Here are two examples:

Fibonacci in nature

F (n) = F (n− 1) + F (n− 2) (1)

and
T (n) = n+ 2T (n/2). (2)

The reader may recognize the first as the recurrence for Fibonacci numbers, and the second as the
complexity of the Mergesort, described in Lecture 1. These recurrences have1 the following “separable
form”:

T (n) = G(n, T (n1), . . . , T (nk)) (3)

whereG(x0, x1, . . . , xk) is a function ink + 1 variables and eachni (i = 1, . . . , k) is a function ofn
that is strictly less thann. E.g., in (1), we havek = 2 andn1 = n− 1, n2 = n− 2 while in (2), we have
k = 1 andn1 = n/2.

What does it mean to “solve” recurrences such as equations (1) and (2)? The Fibonacci and Merge-
sort recurrences have the following well-known solutions:

F (n) = Θ(φn)

whereφ = (1 +
√
5)/2 = 1.618 . . . is the golden ratio, and Solve up toΘ-order

T (n) = Θ(n logn).

1 Non-separable recurrences looks likeG(n, T (n), T (n1), . . . , T (nk)) = 0, but these are rare.
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In this book, we generally estimate complexity functionsT (n) only2 up to itsΘ-order. The reason
goes back to Lecture I, where we saw the importance of robustness properties in complexity results. If
only an upper bound or lower bound is needed, and we determineT (n) up to itsO-order or toΩ-order.
In rare cases, we may be able to derive the exact solution (in fact, this is possible forT (n) andF (n)
above). One benefit ofΘ-order solutions is this — most of the recurrences we treat inthis book can be
solved by purely elementary methods, without assuming differentiability or using calculus tools.

The variable “n” is called thedesignated variableof the recurrence (3). If there are non-designated
variables, they are supposed to be held constant. In mathematics, we usually reserve “n” for natural
numbers or perhaps integers. In the above examples, this is the natural interpretation forn. But one of
the first steps we take in solving recurrences is to re-interpretn (or whatever is the designated variable) to
range over the real numbers. The corresponding recurrence equation (3) is then called areal recurrence.
For this reason, we may prefer the symbol “x” as our designated variable, sincex is normally viewed get real!
as a real variable.

What does an extension to real numbers mean? In the Fibonaccirecurrence (1), what isF (2.5)? In
Mergesort (2), what doesT (π) = T (3.14159 . . .) represent? The short answer is, we don’t really care.

In addition to the recurrence (3), we generally need theboundary conditionsor initial values of the
functionT (n). They give us the values ofT (n) beforethe recurrence (3) becomes valid. Without initial
values,T (n) is generally under-determined. For our example (1), if n ranges over natural numbers, then
the initial conditions

F (0) = 0, F (1) = 1

give rise to the standard Fibonacci numbers,i.e., F (n) is thenth Fibonacci number. ThusF (2) =
Some initial conditions

may yield trivial
solutions...1, F (3) = 2, F (4) = 3, etc. On the other hand, if we use the initial conditionsF (0) = F (1) = 0,

then the solution is trivial:F (n) = 0 for all n ≥ 0. Thus, our assertion earlier thatF (n) = Θ(φn)
is the solution to (1) is not3 really true without knowing the initial conditions. On the other hand,
T (n) = O(n log n) can be shown to hold for (2) regardless of the initial conditions. For the typical
recurrence from complexity analysis, this will be the case.

EXERCISES

Exercise 0.1: Consider the non-homogeneous version of Fibonacci recurrenceF (n) = F (n − 1) +
F (n− 2)+ f(n) for some functionf(n). If f(n) = 1, show thatF (n) = Ω(cn) for somec > 1,
regardless of the initial conditions. Try to find the largestvalue forc. Does your bound hold if we
havef(n) = n instead? ♦

Exercise 0.2: Let φ = (1 +
√
5)/2 ≈ 1.618 andφ̂ = (1 −

√
5)/2 ≈ −0.618. If F (n) satisfies the

Fibonacci recurrenceF (n) = F (n− 1)+ F (n− 2), we said in the text thatF (n) = Θ(φn). Let
us now give the exact solution for this recurrence.
(a) Use induction to show thatF (n) = φn/

√
5− φ̂n/

√
5 is the solution with the initial conditions

F (n) = n for n = 0, 1.
(b) Some authors like to begin withF (n) = 1 for n = 0, 1. Find the constantsa, b such that
F (n) = aφn + bφ̂n for all n ∈ N.

2 In recurrences of non-complexity functions, we sometimes solve recurrences more accurately than just determining itsΘ-
order. E.g.,µ(h) = µ(h− 1) + µ(h− 2) + 1 for minimum size AVL trees in Lecture III. Even for complexity functions, some
exceptions arise: in the comparison model, sharp bounds forthe complexity of sortingS(n) or medianM(n) can be meaningful
(Lecture I).

3 The reason behind this is that (1) is a homogeneous recurrence while (2) is non-homogeneous. For instance,F (n) =
F (n− 1) + F (n− 2) + 1 would be non-homogeneous and itsΘ-solution would not depend on the initial conditions.
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(c) In general, how can you give an exact formula forF (n) given that you know the value of
F (n) at two consecutive values ofn (sayn = n0 andn = n0 + 1)? Is it strictly necessary for
n0 = 0, and ♦

Exercise 0.3: Let T (n) = aT (n/b) + n, wherea > 0 andb > 1. How sensitive is this recurrence to
the initial conditions? More precisely, ifT1(n) andT2(n) are two solutions corresponding to two
initial conditions, what is the strongest relation you can infer betweenT1 andT2? ♦

Exercise 0.4: (Aho and Sloane, 1973) Consider recurrences of the form

T (n) = (T (n− 1))2 + g(n). (4)

For this exercise, we assumen is a natural numbers and use explicit boundary conditions.
(a) Show that the number of binary trees of height at mostn is given by this recurrence with
g(n) = 1 and the boundary conditionT (1) = 1. Show that this particular case of (4) has solution

T (n) =
⌊
k2

n
⌋
. (5)

(b) Show that the number of Boolean functions onn variables is given by (4) with g(n) = 0 and
T (1) = 2. Solve this. ♦

Exercise 0.5: Let T, T ′ be binary trees and|T | denote the number of nodes inT . Define the relation
T ∼ T ′ recursively as follows: (BASIS) If|T | = 0 or 1 then |T | = |T ′|. (INDUCTION) If
|T | > 1 then|T ′| > 1 and either (i)TL ∼ T ′

L andTR ∼ T ′
R, or (ii) TL ∼ T ′

R andTR ∼ T ′
L. Here

TL andTR denote the left and right subtrees ofT .
(a) Use this to give a recursive algorithm for checking ifT ∼ T ′.
(b) Give the recurrence satisfied by the running timet(n) of your algorithm.
(c) Give asymptotic bounds ont(n). ♦

END EXERCISES

§1. Simplification

In the real world, when faced with an actual recurrence to be solved, there are usually some sim-
plifications steps to be taken. Here are three general simplifications that should be automatically taken:

Taking a cue from
Einstein...

• Initial Condition. In this book, we normally state recurrencewithout initial conditions. In this
case, we expect the student to supply the initial conditionsof the following form: DIC for convenience

Default Initial Condition (DIC):
There is somen1 > 0 such that
(1) the recurrence forT (n) holds forn > n1,
(2) T (n) is assigned arbitrary values forn ≤ n1.

(6)

Our favorite form of DIC is the “constant DIC”, namely, thereis some constantC such that
T (n) = C for all n < n1. Why would one choose any other form of DIC? Mainly to simplify
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the form of the solution (see (18) in §3 below). In using DIC, we need not specifyn1 or the
initial values ofT (n) in advance: instead, we can just proceed to solve the recurrence and, at the
appropriate moments, introduce these values.

What is the justification for this approach? It frees us to focus on the recurrence itself rather than
the initial conditions. In many cases, this arbitrariness does not affect the asymptotic behavior of
the solution. Even if our choice of DIC affects the solution,we might have learned something
about the recurrence. We have seen in the Fibonacci that the initial condition can lead to the
trivial solutionF (n) = 0 or an exponential solution. In typical recurrences, when weinvoke the
“constant DIC” (T (n) = C for n < n1), the solution is unique up toΘ-order provided we ensure
C > 0.

• Extension to Real Functions.Even if the functionT (n) is originally defined for natural num-
bersn, we will now treatT (n) as a real function (i.e., n is viewed as a real variable), and defined
for n sufficiently large. See the Exercise for a standard approach(“ample domain”) that avoids
extensions to real functions. It is important to realize that even if we have no interest in real
recurrences, some solution techniques below will transform our recurrences into non-integer re-
currences. So we might as well take the plunge from the start.But the best recommendation for
our approach is its simplicity and naturalness.

• Converting Recurrence Inequality into a Recurrence Equation. If we begin with a recur-
rence inequality such asT (n) ≤ G(n, T (n1), . . . , T (nk)), we simply rewrite this as an equal-
ity relation: T (n) = G(T (n1), . . . , T (nk)). Because of this change, our eventual solution
for T (n) is only an upper bound on the original function. Similarly, if we had started with
T (n) ≥ G(n, T (n1), . . . , T (nk)), the eventual solution is only a lower bound.

¶1. Special Simplifications. Suppose the running time of an algorithm satisfies the following in-
equality:

T (n) ≤ T (⌈n/2⌉) + T (⌊n/2⌋) + 6n+ lg n− 4, (7)

for integern > 100, with boundary condition

T (n) = 3n2 − 4n+ 2 (8)

for 0 ≤ n ≤ 100. Such arecurrence in-equationmay arises in some imagined implementation of
Mergesort, with special treatment forn ≤ 100. Our general simplification steps tells us to (a) discard
the specific boundary conditions (8) in favor of DIC, (b) treatT (n) as a real function, and (c) write the
recurrence as a equation.

What other simplifications might apply here? Let us convert (7) into the following

T (n) = 2T (n/2) + n. (9)

This represents two additional simplifications: (i) We replaced the term “+6n + lgn − 4” by some
simple expression (“+n”) with sameΘ-order. (ii) We have removed the ceiling and floor functions.
Step (i) is justified because this does not affect theΘ-order (if this is not clear, then you can always
come back to verify this claim). Step (ii) exploits the fact that we now treatT (n) as a real function, so
we need not worry about non-integral arguments when we remove the ceiling or floor functions. Also,
it does not affect the asymptotic value ofT (n) here.

The justifications for these steps are certainly not obvious, but they should seem reasonable. Ulti-
mately, one ought to return to such simplifications to justify them.

EXERCISES
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Exercise 1.1: Show that our above simplifications of the the recurrence (7) (with its initial conditions)
cannot affect the asymptotic order of the solution. [Show this for ANY choice of Default Initial
Condition.] ♦

Exercise 1.2: We seek counter-examples to the claim that we can replace⌈n/2⌉ byn/2 in a recurrence
without changing theΘ-order of the solution.
(a) Construct a functiong(n) that provides a counter example for the following recurrence:
T (n) = T (⌈n/2⌉) + g(n). HINT: makeg(n) depend on the parity ofn.
(b) Construct a different counter example of the formT (n) = h(n)T (

⌈
n
2

⌉
) for a suitable function

h(n). HINT: makeh(n) grow very fast. ♦

Exercise 1.3: Show examples where the choice of initial conditions can change theΘ-order of the
solutionT (n). HINT: ChooseT (n) to increase exponentially. ♦

Exercise 1.4: Supposex, n are positive numbers satisfying the following “non-separable recurrence”
equation,

2x = x2n.

Solve forx as a function ofn, showing

x(n) = [1 + o(1)]2n log2(2n).

HINT: take logarithms. This is an example of a bootstrappingargument where we use an ap-
proximation ofx(n) to derive yet a better approximation. See, e.g., Purdom and Brown [16].

♦

Exercise 1.5: [Ample Domains] Our approach of considering real functionsis non-standard. The stan-
dard approach to solving recurrences in the algorithms literature is the following. Consider the
simplification of (7) to (9). Suppose, instead of assumingT (n) to be a real function (so that (9)
makes sense for all values ofn), we continue to assumen is a natural number. It is easy to see
thatT (n) is completely defined by (9) iff n is a power of2. We say that (9) is closed over the set
D0:={2k : k ∈ N} of powers of2. In general, we say a recurrence is “closed over a setD ⊆ R”
if for all n ∈ D, the recurrence forT (n) depends only on smaller valuesni that also belong inD
(unlessni lies within the boundary condition).
(a) Let us call a setD ⊆ R an “ample set” if, for someα > 1, the setD ∩ [n, α · n] is non-empty
for all n ∈ N. Here[n, αn] is closed real interval betweenn andαn. If the solutionT (n) is
sufficiently “smooth”, then knowing the values ofT (n) at an ample setD gives us a good ap-
proximation to values wheren 6∈ D. In this question, our “smoothness assumption” is simply:
T (n) is monotonic non-decreasing.Suppose thatT (n) = nk for n ranging over an ample setD.
What can you say aboutT (n) for n 6∈ D? What ifT (n) = cn overD? What ifT (n) = 22

n

over
D?
(b) SupposeT (n) is recursively expressed in terms ofT (n1) wheren1 < n is the largest prime
smaller thann. Is this recurrence defined over an ample set? ♦

Exercise 1.6: Consider inversions in a sequence of numbers.
(a) The sequenceS0 = (1, 2, 3, 4) has no inversions, but sequenceS1 = (2, 1, 4, 3) has two
inversions, namely the pairs{1, 2} and{3, 4}. Now, the sequenceS2 = (2, 3, 1, 4) also has two
inversions, namely the pairs{1, 2} and{1, 3}. Let I(S) be the number of inversions inS. Give
anO(n lg n) algorithm to computeI(S). Hint: this is a generalization of Mergesort.
(b) We next distinguish between the quality of the inversions ofS1 andS2. The inversions{1, 2}
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and{3, 4} in S1 are said to have weight of 1 each, so theweighted inversionof S1 is W (S1) =
2 = 1 + 1. But forS2, the inversion{1, 2} has weight2 while inversion{1, 3} has weight1. So
the weighted inversion isW (S2) = 3 = 2 + 1. Thus the “weight” measures how far apart the
two numbers are. In general, ifS = (a1, . . . , an) then a pair{ai, aj} is an inversion if i < j
andai > aj . The weight of this inversion isj − i. Let W (S) be the sum of the weights of all
inversions. Give anO(n lg n) algorithm for weighted inversions. ♦

Exercise 1.7: We might consider following form of DIC where we assume that there exists0 < n0 <
n1, and constants0 < C0 ≤ C1 such that

(∀ n0 ≤ n < n1)[C0 ≤ T (n) ≤ C1]. (10)

Solve the Fibonacci and mergesort recurrences using this version of DIC. Your solutions should
be stated in terms of the parametersC1, C2. ♦

END EXERCISES

§2. Divide-and-Conquer Algorithms

In this section, we see some other interesting recurrences that arise in a divide-and-conquer algo-
rithms. First, we look at Karatsuba’s classic algorithm formultiplying integers [10]. Then we consider
a modern problem arising in searching for key words.

¶2. Example from Arithmetic. To motivate Karatsuba’s algorithm, let us recall the classic “high-
OK, you learned it in

gradeschool
school algorithm” for multiplying integers. Given positive integersX,Y , we want to compute their
productZ = XY . This algorithm assumes you know how to do single-digit multiplication and multi-
digit additions (“pre-high school”). The algorithm multiplesX by each digit ofY . If X andY haven
digits each, then we now haven products, each having at mostn+1 digits. After appropriate left-shifts
of thesen products, we add them all up. It is not hard to see that this algorithm takesΘ(n2) time. Can
we improve on this?

Usually we think ofX,Y in decimal notation, but the algorithm works equally well inany base.

Not Roman numerals,
please. Recall the

Dijkstra’s remark on
the importance of

notations.
We shall assume base2 for simplicity. For instance, ifX = 19 then in binaryX = 10011. To avoid the
ambiguity from different bases, we indicate4 the base using a subscript,X = (10011)2. The standard
convention is that decimal base is assumed when no base is indicated. Thus a plain “100” without any
base represents one hundred, but(100)2 represents four.

AssumeX andY has length exactlyn wheren is a power of2 (we can pad with0’s if necessary).
Let us split upX into a high-order halfX1 and low-order halfX0. Thus

X = X0 + 2n/2X1

whereX0, X1 aren/2-bit numbers. Similarly,

Y = Y0 + 2n/2Y1.

4 By the same token, we may writeX = (19)10 for base10. But now the base “10” itself may be ambiguous — after all
“10” in binary is equal to two. The convention is to write the basein decimal.
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Then

Z = (X0 + 2n/2X1)(Y0 + 2n/2Y1)

= X0Y0 + 2n/2(X1Y0 +X0Y1) + 2nX1Y1

= Z0 + 2n/2Z1 + 2nZ2,

whereZ0 = X0Y0, etc. Clearly, each of theseZi’s have at most2n bits. Now, if we compute the 4
products

X0Y0, X1Y0, X0Y1, X1Y1

recursively, then we can put them together (“conquer step”)in O(n) time. To see this, we must make
an observation: in binary notation, multiplying any numberX by 2k (for any positive integerk) takes
O(k) time, independent ofX . We can view this as a matter of shifting left byk, or by appending a
string ofk zeros toX .

Hence, ifT (n) is the time to multiply twon-bit numbers, we obtain the recurrence

T (n) ≤ 4T (n/2) + Cn (11)

for someC > 1. Given our simplification suggestions, we immediately rewrite this as

T (n) = 4T (n/2) + n.

As we will see, this recurrence has solutionT (n) = Θ(n2), so we have not really improved on the
high-school method.

Karatsuba observed that we can proceed as follows: we can computeZ0 = X0Y0 andZ2 = X1Y1

first. Then we can computeZ1 using the formula

Z1 = (X0 +X1)(Y0 + Y1)− Z0 − Z2.

ThusZ1 can be computed with one recursive multiplication plus someadditionalO(n) work. From
Z0, Z1, Z2, we can again obtainZ in O(n) time. This gives us theKaratsuba recurrence,

T (n) = 3T (n/2) + n. (12)

We shall show thatT (n) = Θ(nα) whereα = lg 3 = 1.58 · · · . This is clearly an improvement of the
high school method.

first improvement in
1000 years? According

to Wikipedia, high
school multiplication is

equivalent to the
“lattice method”

which is at least 1000
years old.There is an even faster multiplication algorithm from Schönhage and Strassen (1971)

that runs in timeO(n log n log log n). There is an increasing need for multiplication
of arbitrarily large integers. In cryptography or computational number theory, for ex-
ample. These are typically implemented in software in a “biginteger” package. For
instance,Java has aBigInteger class. A well-engineered big integer multipli-
cation algorithm will typically implement the High-Schoolalgorithm forn ≤ n0,
and use Karatsuba forn0 < n ≤ n1, and use Schönhage-Strassen forn > n1.
Typical values forn0, n1 are30, 200 digits. One of the oldest questions in theoret-
ical computer science concerns the inherent complexity of multiplication. In partic-
ular, isO(n log n log log n) the best possible? Most computer scientists believe that
O(n log n) is the right answer. After more than 30 years, finally M. Fürer (2007)
breached thelog log n factor. He achieved anO(n log n log∗ n) multiplication algo-
rithm. In 2008, A. De, C. Saha, P. Kurur and R. Saptharish achieved the same bound
by a different method.
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¶3. A Google Problem. The Google Phenomenon is possible because of efficient algorithms: every
files on the web can be searched and indexed. Searching is by keywords. Let us suppose that Google
pre-processes every file in its database for keywords. However, a user may ask to search files for two or
more keywords. We will reduce this multi-keyword search to aprecomputed single-keyword index.

Let F be a file, viewed as a sequence of words (ignoring punctuation, capitalization, etc). We first
pre-processF for the occurrences of keywords. For each keywordw, we precompute anindex which
amounts a sorted sequenceP (w) of positions indicating wherew occurs inF . E.g.,

P (divide) = (11, 16, 42, 101, 125, 767)

means that the keyworddivide occurs6 times inF , at positions11, 16, etc. Suppose we want to
search the file using a conjunction ofk keywords,w1, . . . , wk. An intervalJ = [s, t] is called acover
for w1, . . . , wk if eachwi occurs at least once within the positions inJ . The size of a cover[s, t] is
just t − s. A cover isminimal if does contain in some smaller cover; it isminimum if its size is
smallest among all covers. Note that if[si, ti] are minimal covers fori = 1, 2, . . ., and if si < si+1

thenti < ti+1. Thekeyword cover problem is this: given the indicesP (w1), . . . , P (wk) for a set
W = {w1, . . . , wk} of keywords in a file, to compute a minimum cover forW .

3002

11 42

44

767

P (divide)

P (conquer)

positions
16 101 125

289

Figure 1: Minimal Covers

E.g., letk = 2 with w1 = divide andw2 = conquer. With P (divide) as before, letP (conquer) =
(2, 44, 289, 300). Then the minimal covers are[2, 11], [42, 44], [44, 101], [125, 289], [300, 767]. This is
illustrated in Figure1. The minimum cover is[42, 44].

Before attempting to solve this problem, consider how Google might use the minimum cover so-
lutions: suppose a user wants to search for a setW = {w1, . . . , wk} of key words. For each filefj
(j = 1, 2, . . .) we use the algorithm to compute a minimum cover[cj , dj ] (if one exists) forW in fj.
The indicesP (wi) for each key wordwi are assumed to have been precomputed. The search results
will be a list of all files for which covers exist, but we order these files in order of non-decreasing cover
sizedj − cj. The actual cover[cj , dj ] can be used by Google to display a snippet of the filefj .

Let us now consider algorithms. Letni be the length of listP (wi) (i = 1, . . . , k) andn = n1 +
· · ·+nk. The casek = 2 is relatively straightforward, and we leave it for an exercise. Consider the case
k = 3. First, mergeP (w1), P (w2), P (w3) into the arrayA[1..n]. Recall that in Lecture I, we discussed
the merging of sorted lists. Merging takes timeO(n1 + n2 + n3) = O(n). To keep track of the origin
of each number inA, we may also construct an arrayB[1..n] such thatB[i] = j ∈ {1, 2, 3} iff A[i]
comes from the listP (wj).

We use a divide-and-conquer approach. Recursively, compute a minimum cover ofA[1..(n/2)]
andA[(n/2) + 1..n] (for simplicity, assumen is a power of2). Let C1,n/2 andC(n/2)+1,n be these
minimum covers. We now need to find a minimal cover that straddlesA[(n/2)] andA[(n/2) + 1]. Let
C = [A[i], A[j]] be such a minimal cover, wherei ≤ (n/2) andj ≥ (n/2) + 1. There are 6 cases. One
case is whenC = C′ ∪ C′′, whereC′ = [A[i], A[n/2]] is the rightmost cover forw1 in A[1..(n/2)],
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andC′′ = [A[(n/2) + 1], A[j]] is the leftmost cover forw2, w3 in A[(n/2) + 1, n]. We can findC′ and
C′′ in O(n) time. The remaining 5 cases can similarly be found inO(n) time. ThenC is the cover that
has minimum size among these 6 cases. Hence, the overall complexity of the algorithm satisfies

T (n) = 2T (n/2) + n.

We have seen this recurrence before, as the Mergesort recurrence (2). The solution isT (n) =
Θ(n logn). See exercise for a general solution inO(n log k) time.

¶4. Master Recurrence and Divide-and-Conquer Algorithms. The recurrences (2) and (12) are
instances of theMaster Recurrencewhich has the form:

T (n) = aT (n/b) + d(n) (13)

wherea > 0 and b > 1 are constants andd is any function, usually called thedriving or forcing
function. Below, we shall solve this recurrence under fairly generalconditions.

The idea of solving a problem by reducing it to smaller subproblems is a very general one. In
this chapter, we mainly focus on reductions from problems ofsizen to subproblems of size≤ cn for
some fixedc < 1. If there are a finite number of such subproblems, the runningtimes can be bounded
using solutions to the Master recurrence (13). In other problems, we reduce a problem of sizen to
several subproblems that of size≤ n − c for some fixedc ≥ 1. Such solutions would be exponential
time without additional properties; we study these under the topic of dynamic programming (Chapter
7). In applications, we haved(n) > 0, representing the cost of merging solutions of subproblemsin
divide-and-conquer algorithms.

EXERCISES

Exercise 2.1: Carry out Karatsuba’s algorithm forX = 6 = (0110)2 andY = 11 = (1011)2. It is
enough to display the recursion tree with the correct arguments for each recursive call, and the
returned values. ♦

Exercise 2.2: Suppose an implementation of Karatsuba’s algorithm achievesT (n) ≤ Cn1.58 where
C = 1000. Moreover, the High School multiplication isT (n) = 30n2. Beyond what value ofn
does Karatsuba definitely becomes competitive with the HighSchool method? ♦

Exercise 2.3: Consider the recurrenceT (n) = 3T (n/2)+n andT ′(n) = 3T ′(⌈n/2⌉) + kn (for some
constantk > 1). Show thatT (n) = Θ(T ′(n)). HINT: Use the fact that

⌈⌈
n/2i

⌉
/2
⌉
=
⌈
n/2i+1

⌉
.

Thus, this question shows that the presence of⌈·⌉ andk in T ′ does not matter. ♦

Exercise 2.4: The following is a programming exercise. It is best done using a programming language
such as Java that has a readily available library of big integers.
(a) Implement Karatsuba’s algorithm using such a programming language and using its big integer
data structures and related facilities. The only restriction is that you must not use the multipli-
cation, squaring, division or reciprocal facility of the library. But you are free to use its addi-
tion/subtraction operations, and any ability to perform left/right shifts (multiplication by powers
of 2).
(b) Let us measure the running time of your implementation ofKaratsuba’s algorithm. For in-
put numbers, use a random number generator to produce numbers of any desired bit length. If
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NumBits AvgTime Exponent

4000 4.358 0.0
4200 4.696 1.531002145103799
4400 5.194 1.841260577604784
4600 5.517 1.6873048110254347
4800 5.983 1.7381865504999572
5000 6.51 1.7985113947251763
5200 6.988 1.7997159663026001
5400 7.509 1.812998128928515
5600 8.01 1.8089977665618309
5800 8.684 1.85558837393382
6000 9.183 1.838236378924439
6200 9.769 1.8418523402197153
6400 10.365 1.8434357852847953
6600 11.088 1.864808884276074
6800 11.717 1.8638802969571109
7000 12.413 1.8704459319724756
7200 13.092 1.8714070696035303
7400 13.843 1.8787279477010768
7600 14.532 1.8763458534440565
7800 15.297 1.8801860861195574
8000 16.054 1.8811947011507577
8200 16.905 1.8884383570994894
8400 17.644 1.8847717474449632
8600 18.498 1.8885827751677746
8800 19.283 1.8862283707110576
9000 20.225 1.8927722703240168
9200 21.17 1.8976522229154338
9400 22.063 1.8982439890258536

NumBits AvgTime Exponent

9600 23.034 1.9017905239616146
9800 24.055 1.9064306092855452
10000 24.986 1.905838802838669
10200 25.987 1.9074840762036238
10400 26.948 1.9067232067781992
10600 28.108 1.912700793571853
10800 29.111 1.9120055203582398
11000 30.221 1.9143159996069712
11200 31.534 1.922120988851413
11400 31.542 1.8898795547030012
11600 32.67 1.8920105894497778
11800 33.703 1.8908891117429292
12000 34.67 1.8877101089855162
12200 36.082 1.8955269064390694
12400 37.218 1.8956825843907563
12600 38.049 1.8884930574030907
12800 39.242 1.8894663931349043
13000 40.553 1.892493164635265
13200 41.696 1.8915733844170872
13400 42.951 1.8925738155123988
13600 44.159 1.8923271871808227
13800 45.533 1.8947617307075215
14000 46.816 1.8951803717241376
14200 48.1 1.8953182704475686
14400 49.401 1.8954588786790316
14600 50.873 1.8979435636574864
14800 52.364 1.9002856600816482
15000 53.537 1.8977482007273088

Figure 2: Timing as a function of number of bits

T (n) ≤ Cnα thenlg T (n) ≤ lgC + α lgn. Theexponentα is thus the slope of the curve ob-
tained by plottinglg T (n) againstlgn, we should get a slope of at mostα. Plot the running time
of your implementation to verify that its exponent is< 1.58.
(c) What is the exponent in Java’s native implementation? Explain your data.
(d) My 1999 undergraduate class in algorithms did the preceding exercise, using the
java.math.BigInteger package. One timing from this class is shown in Table2. The
“exponent” in this table is computing with a crude formulalg(avgTime)−avgTime0

lg(numBits)−numBits0
where

numBits0 = 4000 and avgT ime0 = 4.358 (the initial trial). This crude exponent hovers
around1.9. What would be the empirical exponent if you do a proper regression analysis? This
data suggests that in 1999, the library only implemented theHigh School algorithm. By 2001, the
situation appeared to have improved. ♦

Exercise 2.5: Suppose the running time of an algorithm is an unknown function of the formT (n) =
Ana + Bnb wherea > b andA,B are arbitrary positive constants. You want to discover the
exponenta by measurement. How can you, by plotting the running time of the algorithm for
variousn, finda with an error of at mostǫ? Assume that you can do least squares line fitting.♦

Exercise 2.6: Try to generalize Karatsuba’s algorithm by breaking up eachn-bit number into3 parts.
What recurrence can you achieve in your approach? Does your recurrence improve upon Karat-
suba’s exponent oflg 3 = 1.58 · · ·? ♦

Exercise 2.7: To generalize Karatsuba’s algorithm, consider splitting an n-bit integerX into m equal
parts (assumingm dividesn). Let the parts beX0, X1, . . . , Xm−1 whereX =

∑m−1
i=0 Xi2

in/m.
Similarly, letY =

∑m−1
i=0 Yi2

in/m. Let us defineZi =
∑i

j=0 XjYi−j for i = 0, 1, . . . , 2m− 2.
In the formula forZi, assumeXℓ = Yℓ = 0 whenℓ ≥ m.
(i) Determine theΘ-order off(m,n), defined to be the time to compute the productZ = XY
when you are givenZ0, Z1, . . . , Z2m−2. Remember thatf(m,n) is the number of bit operations.
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(ii) It is known that we can compute{Z0, Z1, . . . , Z2m−2} from the Xi’s and Yj ’s using
O(m logm) multiplications andO(m logm) additions, all involving(n/m)-bit integers. Us-
ing this fact with part (i), give a recurrence relations for the timeT (n) to multiply two n-bit
integers.
(iii) Conclude that for everyε > 0, there is an algorithm for multiplying any twon-bit integers
in time T (n) = Θ(n1+ε). NOTE: part (iii) is best attempted after you have studied the Master
Theorem in the subsequent sections. ♦

Exercise 2.8: In the Google problem, we need to merge several sorted lists.Recall from Lecture I that
we can merge a two lists of sizesm andn in timeΘ(m + n). SupposeX1, . . . , Xn aren ≥ 1
sorted lists, each withk ≥ 1 elements. Here,n andk are independent parameters.
(a) We want to analyze the complexityT (n, k) of sorting the setX =

⋃n
i=1 Xi. At each phase,

we merge pairs of lists. Withn lists of sizek, we takeO(nk) time to merge, and producen/2
lists each of size2k. Set up the recurrence forT (n, k) based on this repeated merging algorithm.
(b) Show thatT (n, k) = O(nk lgn)) HINT: you could use domain transformation (see§7) but
this is not necessary.
(c) Use the Information Theoretic Lower Bound from Lecture Ito show a lower bound of
Ω(nk lg n). ♦

Exercise 2.9: Recall the Google multi-keyword search. This was reduced tocomputing a minimum

Adapted from a Google
interview question (the

interviewed student
Z. was hired)

cover for a setW = {w1, . . . , wk} of key words in a file. For each key wordwi ∈ W , we are
given an indexP (wi) which is just a sorted list of positions wherewi occurs in the file. Let
n =

∑k
i=1 ni whereP (wi) has lengthni. The text solves the casek = 3 in O(n log n) time.

(a) Solve the minimum cover fork = 2 in linear time.
(b) SupposeP (wi) = (si, ti) for eachi = 1, . . . , k, i.e., each keyword has just two positions.
Give anO(k log k) algorithm to find the minimum coverC for w1, . . . , wk. HINT: suppose the
minimal covers areC1, . . . , Cm for somem ≥ 1. Give an algorithm to list all the minimal covers.
If Ci = [ci, di] and assumingc1 < c2 < · · · < cm, how do you findC1? How do you findCi+1

givenCi?
(c) Solve the general Google problem (k is arbitrary and each word can have arbitrarily many
occurrences in the file). HINT: if you used the hint from (b), it should be possible to generalize
your solution. ♦

Exercise 2.10:Write a program to solve the Google multi-keyword for the casek = 3 as described in
the text. Use your favorite programming language (C or Java without any Object-Oriented fanfare
is recommended). Initially, assumen is a power of2. Indicate how to adapt your algorithm when
n is not a power of2. ♦

Exercise 2.11:Consider the following problem: we are given an arrayA[1..n] of numbers, possibly
with duplicates. Letf(x) be the number of times (“frequency”) a numberx occurs. Given a
numberk ≥ 1, we want to know whether there arek distinct numbersx1, . . . , xk such that∑k

i=1 f(xi) > n/2. Call {x1, . . . , xk} ak-majority set.
(a) Solve this decision problem fork = 1.
(b) Solve this decision problem fork = 2.
(c) Instead of the previous decision problem, we consider the optimization version: find the small-
estk such that there arek numbersx1, . . . , xk with

∑k
i=1 f(xi) > n/2. ♦

END EXERCISES
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§3. Rote Method

We are going to introduce two “direct methods” for solving recurrences: rote method and induction.
They are “direct” as opposed to other transformation methods which we will introduce later. Although
fairly straightforward, these direct methods may call for some creativity (educated guesses). We begin
with the rote method, as it appears to require somewhat less guess work.

“ ...at last, a method
named after me!” —
Günter Rote (2010)

¶5. What is rote? The “rote method” refers to the idea of solving a recurrence by repeated expansion
of a recurrence. Since such expansions can be done mechanically, this method has been characterized
as rote.

Let us illustrate this method using the merge-sort recurrence (9): T (n) = 2T (n/2) + n. The
important thing is that we can replacen in this by any expression: pluggingn/2 for n in the recurrence,
we getT (n/2) = 2T (n/4) + n/2. If we plug this back into the original recurrence, we get oursecond
expansion in the following derivation:

T (n) = 2 T(n/2) + n (first expansion)

= 2 2T(n/4)+(n/2) + n (second expansion)

= 4 T(n/4) + 2n (simplify)

= 4 2T(n/8) + (n/4) + 2n (third expansion)

= 8T (n/8) + 3n (simplify)





(14)

This is the expansion step. At this point, we may guess that the ith expansion, the formula is

(G)i : T (n) = 2iT (n/2i) + in. (15)

To verify our guess, we use natural induction. Note that the formula (15) is true for i = 1 (it also
holds fori = 2 and3, but this is not logically necessary). We need an induction step: This amounts to
expanding the formula once more:

T (n) = 2i T (n/2i) + in (guessedith expansion)

= 2i 2T (n/2i+1) + n/2i + in (i+ 1st expansion)

= 2i+1T (n/2i+1) + (i+ 1)n, (simplify)





(16)

and noting that this confirms that the formula holds fori+ 1 (cf. formula(G)i+1 in (15)).

Finally, we must choose a value ofi at which to stop this expansion. First consider the ideal situation
wheren is a power of2 and we choosei = lg n. Then (15) yields T (n) = 2iT (n/2i) + in =
nT (1) + (lgn)n. Invoking DIC to makeT (1) = 0, we obtain the solutionT (n) = n lgn. This is a
beautiful solution, except for one problem:i must be an integer, and it will not work whenn is not a
power of2. It makes no sense to pretend thati is a real variable (as we did forn). In general, we may
choose an integer close tolg n: ⌈lg n⌉ or ⌊lg n⌋ will do. Let us choose

i = ⌊lg n⌋ (17)

as our stopping value. With this choice, we obtain1 ≤ n/2i < 2. Under DIC, we can freely choose the
initial condition to be

T (n) = n ⌊lgn⌋ , for 0 < n < 2. (18)

This yields theexactsolution that forn > 0,
Why not choose our
usualT (n) = 0 for

0 < n < 2?
T (n) = n ⌊lg n⌋ . (19)
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¶6. Is is really rote? To recap, there are four distinct stages in the rote method:

(E) Expansion steps as in (14). This is the rote part. You can expand as many times as you like until
you see the general pattern.

(G) Guessing of a formula for theith expansion, as in (15). This guess may require some creativity.
Indeed, if we had not re-arranged the terms in our example in the suggestive manner, one might
not see the pattern readily. So perhaps “rote” is a misnomer.

(V) Verification of the formula as in (16). This step should be mechanical, and amounts to one more
expansion step and re-arranging the terms into the desired form. One problem is that students
sometimes do not do this step “honestly” (they jump to the expected conclusion).

(S) Stopping criteria choice as in (17). You need to know when to stop expansion! Note you must

Child’s dilemma:I
can’t spellbanana

because I don’t know
when to stop!

choosei to be a natural number. Thus, you cannot pick “i = lgn” in (17), but need something like
i = ⌈lg n⌉ or i = ⌊lg n⌋. According to DIC, you can pick anyi large enough that the recursive
termT (k) has an argumentk that is below some fixed constant (e.g.,k < 1). Using DIC, you can
declareT (k) to be any value you like (usuallyT (k) = 0 is good).

In general, your guess for thei-th expansion is in the form of a summation
∑i−1

j=0 f(j) for some

functionf . If you stop atm-th expansion, you are left with the sum
∑m−1

i=0 f(j). It just happens
that for Mergesort,f(i) is identically equal ton, and so the

∑m−1
i=0 n is justmn (m = ⌊lg n⌋).

Unfortunately, in general, you cannot leave the answer as a sum, and you will need some summa-
tion techniques. Summation techniques will be taken up in its own section below. In view of this
additional feature, the fourth and last stage might be called the Stop-and-Sum stage.

Since the four stages are Expand, Guess, Verify and Stop-and-Sum, we may also refer to the Rote
Method as theEGVS method. When the method works, it can give you the exact solution. How can
this method fail? It is clear that you can always perform expansions, but you may be stuck at the next
step. For instance, try to expand the recurrenceT (n) = 2T (⌈n/2⌉)+n in an exact form. The only way
out is to give up exact solution, and guess reasonable upper and/or lower bounds.

¶7. On simple solutions. You may think of a recurrence as specifying an infinite familyof problems:
each problem corresponds to a choice of initial conditions.The nice part of DIC is that you get to choose
your problem. We suggest that you exploit DIC to make your solution (not your problem) as simple as
possible. Let us illustrate this. In our rote solution of themerge-sort recurrence (9), we choose the initial as Einstein said...
condition:T (n) = 0 for n < 2 for its simplicity. But we ended up with the solutionT (n) = n ⌊lg n⌋.
This is admittedly simple, but the appearance of the floor function is a small annoyance. It also makes
T (n) discontinuous whenevern is a power of2.

Suppose that by DIC, we choose instead the following initialcondition:

T (n) = n lgn, (1 ≤ n < 2).

It is a more “complicated” initial condition than before, but let us see the payoff. As before, after the
ith expansion, we obtain

T (n) = 2iT (n/2i) + in, (i ≥ 1).

Plugging ini = ⌊lg n⌋, we obtain
the “ultimate” in

simplicity?
T (n) = 2iT (n/2i) + in

= 2i
( n

2i
lg
( n

2i

))
+ in

= n (lg n− i) + in

= n lgn
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for all n ≥ 1. The solution is now continuous and even simpler.

EXERCISES

Exercise 3.1: No credit work: Rote is discredited word in pedagogy, so we would like a more dignified
name for this method. We could call this the “4-Fold Path”. Suggest your own name for this
method. In a humorous vein, what could EGVS stand for? ♦

Pronounce “EGVS” as
“egg-us” (like the

Romans, treat V as U).

Exercise 3.2: Solve the following recurrence by the EGVS Method:T (n) = 4T (n/2) + n2. ♦

Exercise 3.3: Use the EGVS Method to solve the following recurrences
(a)T (n) = n+ 8T (n/2).
(b) T (n) = n+ 16T (n/4).
(c) Can you generalize your results in (a) and (b) to recurrences of the formT (n) = n+aT (n/b)
whena, b are in some special relation? ♦

Exercise 3.4: Solve the Karatsuba recurrence (12) using the Rote Method. HINT: You may want to
look ahead to Section 5 on Geometric series. ♦

Exercise 3.5: Give the exact solution forT (n) = 2T (n/2) + n for n ≥ 1 under the initial condition
T (n) = 0 for n < 1. ♦

Exercise 3.6: Solve (13) assuming thatd(n) = nβ for some realβ. NOTE: there will be three different
cases, depending on the relationships betweenβ, a, b. ♦

Exercise 3.7: Let us consider the following form of DIC, where we assume that

C0 ≤ T (n) ≤ C1

for 0 < n ≤ n1, with the recurrence operative forn > n1. Here,C0, C1, n1 are positive
constants. Solve the Mergesort Recurrence under this initial condition, and show how the solution
depends onn1, C0, C1. ♦

END EXERCISES

§4. Real Induction

The rote method, when it works, is a very sharp tool in the sense that as it gives us the exact solution
to recurrences. Unfortunately, it does not work for most recurrences: while you can always expand, you
may not be able to guess a simple and general formula for thei-th expansion. We now introduce a more
widely applicable method, based on the idea of “real induction”.
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To illustrate this idea, we use a simple example: consider the recurrence

T (x) = T (x/2) + T (x/3) + x. (20)

The student is encouraged to attempt the rote method on this recurrence. Let us use real induction to Try rote first!
prove an upper bound: suppose we guess thatT (x) ≤ Kx (ev.), for someK > 1. Then we verify it
“inductively”:

T (x) = T (x/2) + T (x/3) + x (By definition)
≤ K x

2 +K x
3 + x (Inductive hypothesis)

= Kx
(
1
2 + 1

3 + 1
K

)

≤ Kx (ProvidedK ≥ 6)

In the following, we will rigorously justify this method of proof.

How did we guess the upper boundT (x) ≤ Kx? What if we had guessedT (x) ≤ Kx2? Well, we
would have succeeded as well. In other words, this argument confirms a particular guess; it does not
tell us anything about the optimality of the guess (in reality, the proof does yield hints on how tight the
inequality is). We could likewise use real induction to confirm a guessed lower bound. The combined
upper and lower bound can often lead to optimal bounds.

¶8. Natural Induction. Real induction is not a familiar in computing or even mathematics, so let
us begin by recalling the related but well-known method ofnatural induction . The latter is a proof
method based on induction over natural numbers. In brief, supposeP (·) is a natural number predicate,
i.e., for eachn ∈ N, P (n) is a proposition.

For example,P (n) might be “There is a prime number betweenn andn+ 10 inclusive”. A propo-
sition is either true or false. Thus, we may verify5 thatP (100) is true because101 is prime, butP (200)
is false because211 is the smallest prime larger than200. A similar predicate isP (n) ≡“there is prime
betweenn and2n− 1”, called Bertrand’s Postulate (1845).

We simply write “P (n)” or, for emphasis, “P (n) holds” when we want to assert that “proposition
P (n) is true”. Natural induction is aimed at proving propositions of the form

(∀n ∈ N)[P (n) holds]. (21)

When (21) holds, we say the predicateP (·) is valid. For instance, Chebyshev proved in 1850 that
Bertrand’s PostulateP (n) is valid. A “proof by natural induction” has three steps:
(i) [Natural Basis Step] Show thatP (0) holds.
(ii) [ Natural Induction Step] Show that ifn ≥ 1 andP (n− 1) holds thenP (n) holds:

(n ≥ 1) ∧ P (n− 1) ⇒ P (n). (22)

(iii) [ Principle of Natural Induction] Invoke the principle of natural induction, which simply says that
(i) and (ii) imply the validity ofP (·), i.e., (21).

Since step (iii) is independent of the predicateP (·), we only need to show the first two steps. A
variation of natural induction is the following: for any natural number predicateP (·), introduce a new
predicate (the “star version ofP ”) denotedP ∗(·), defined via

P ∗(n) : (∀m ∈ N)[m < n ⇒ P (m)]. (23)

The “Strong Natural Induction Step” replaces (22) in step (ii) by

(n ≥ 1) ∧ P ∗(n) ⇒ P (n). (24)

5 The smallestn such thatP (n) is false isn = 114.
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It is easy to see that if we carry out the Natural Basis Step andthe Strong Natural Induction Step, we
have shown the validity ofP ∗(n). Moreover,P ∗(·) is valid iff P (·) is valid. Hence, a proof of the
validity of P ∗(·) is called astrong natural induction proof of the validity ofP (·).

¶9. Real Induction. Now we introduce the real analogue of strong natural induction. Unlike natural
induction, real induction is rarely discussed in standard mathematical literature, except possibly as a
form of transfinite induction. Nevertheless, this topic holds interest in areas such as program verification
[2], timed logic [13], and real computational models [4]. We believe is should become an important
technique in analysis of algorithms.

Real induction is applicable toreal predicates, i.e., a predicateP (·) such that for eachx ∈ R,
we have a proposition denotedP (x). For example, supposeT (x) is a total complexity function that
satisfies the Karatsuba recurrence (12) subject to the initial conditionT (x) = 1 for x ≤ 10. Let us
define the real predicate

P (x) : [x ≥ 10 ⇒ T (x) ≤ x2]. (25)

As in (21), we want to prove thevalidity of the real predicateP (·), i.e.,

(∀x ∈ R)[P (x) holds]. (26)

In analogy to (23), we transformP (·) into a “star-version ofP ”, defined as follows:

P ∗
δ (x) : (∀y ∈ R)[y ≤ x− δ ⇒ P (y)] (27)

whereδ is any positive real number. Note thatδ plays the role of the constant1 in natural induction:
the natural numbers are discrete and two distinct number differ by at least1. But real numbers are
continuous, and the goal ofδ in to divide the real number line into intervals of lengthδ. We then do
induction, on an interval by interval basis.

Assuming the truth ofP ∗
δ (x) is called theReal Induction Hypothesis(RIH). Whenδ is understood,

we may simply writeP ∗(x) instead ofP ∗
δ (x).

THEOREM 1 (Principle of Real Induction).Let P (x) be a real predicate. Suppose there exist real
numbersδ > 0 (gap constant) andx1 (cutoff constant) such that

(I) [Real Basis Step]For all x < x1, P (x) holds.

(II) [Real Induction Step]For all x ≥ x1, P ∗
δ (x) ⇒ P (x).

ThenP (x) is valid: for all x ∈ R, P (x) holds.

The proof of this principle is left as an exercise. It amountsto a reduction to Natural Induction.
The principle behind this reduction is a very intuitive property of real numbers:Given anyδ > 0, for
every real numberx there is a smallest natural numbern(x) such thatx ≤ n(x)δ. E.g., if δ = 0.2 and
x = 19.9 thenn(x) = 100. This is also known as theArchimedean Property of the reals. We can

“Give me a lever long
enough and I can move

the earth” –
Archimedes

divideR into the set{Q(k) : k ∈ N} of intervals where each intervalQ(k) comprises all thosex with
n(x) = k. This is illustrated in Figure3. We then prove that the Principle of Real Induction holds over
eachQ(k) for k, using natural induction.

Let us apply real induction to real recurrences. Note that its application requires the existence of
two constants,x1 andδ, making it somewhat harder to use than natural induction.
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0

Q(−1) Q(1) Q(2) Q(3) · · ·

δ 2δ−δ
x

x1

Figure 3: Discrete steps in real induction

¶10. Example. SupposeT (x) satisfies the recurrence

T (x) = x5 + T (x/a) + T (x/b) (28)

wherea ≥ b > 1 are real constants. Givenx0 ≥ 1 andK > 0, letP (x) be the proposition

x ≥ x0 ⇒ T (x) ≤ Kx5. (29)

LEMMA 2. Letk0:=a−5+ b−5. If k0 < 1 then for allx0 ≥ 1, there is aK > 0 such thatP (x) is valid.

Proof.For anyx1, if x1 > x0 then our Default Initial Condition says that there is aC > 0 such that

T (x) ≤ C

for all x0 ≤ x < x1. If we chooseK such thatK ≥ C/x5
0 then for allx0 ≤ x < x1, we have

T (x) ≤ C ≤ Kx5
0 ≤ Kx5 (sincex ≥ x0 ≥ 1). HenceP (x) holds. This establishes the Real Basis

Step (I) forP (x) relative tox1.

To establish the Real Induction Step (II), we need more properties forx1 and must choose a suitable
δ. First choose

x1 = ax0. (30)

Thus forx ≥ x1, we havex0 ≤ x/a ≤ x/b. Next choose

δ = x1 − (x1/b) = x1
b− 1

b
. (31)

This ensures that forx ≥ x1, we havex/a ≤ x/b ≤ x− δ. The Real Induction HypothesisP ∗
δ (x) says

that for ally ≤ x− δ, P (y) holds, i.e.,y ≥ x0 ⇒ P (y). Supposex ≥ x1 andP ∗
δ (x) holds. We need to

show thatP (x) holds:

T (x) = x5 + T (x/a) + T (x/b)

≤ x5 +K · (x/a)5 +K · (x/b)5, (byP ∗
δ (x) andx0 ≤ x/a ≤ x/b ≤ x− δ) (32)

= x5(1 +K · k0)
≤ Kx5 (33)

where the last inequality is true provided our choice ofK above further satisfies1 + K · k0 ≤ K or
K ≥ 1/(1− k0). This proves the Real Induction Step (II). Invoking the Principle of Real Induction, we
conclude thatP (·) is valid. Q.E.D.

In a similar vein, we can use real induction to prove a lower bound: there is a constantk > 0 such
thatT (x) ≥ kx5 (ev.). Hence, we have shownT (x) = Θ(n5) for the recurrence (28).
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¶11. Default Real Basis. The last example shows that the direct application of the Principle of Real
Induction can be tedious, as we have to track constants such as δ, x1 andK. But this tedium is only
associated with justifying the Real Basis (RB); in contrast, the proof of the Real Induction (RI) is not
tedious but highly instructive. Our goal is this subsectionis to seek ways to avoid RB, so that you can
focus on the interesting part (RI).

There is a simple way out, by fiat! Letf(x) be a complexity function andT satisfies some recur-
rence. Suppose we want to show that

T (x) � f(x)

by real induction. This amounts to showing that there existsK > 0 andx1 such that

(∀x ≥ x1)T (x) ≤ Kf(x). (34)

We ask you to assume (34) holds providedK andx1 is sufficiently large.Call this theDefault Real
Basis(DRB). In the next subsection, we will formally justify thisfor a large class of situations (enough
to cover most of the applications in this book).

¶∗ 12. Growth Functions and Automatic Real Basis. We now show that under some general condi-
tions, the Real Basis (RB) of Real Induction Principle is automatic. The idea is to exploit the following
property that most natural complexity functions satisfy. Skip on first reading!

A real functionf : Rk → R is said to be agrowth function if f is eventually defined, eventually
non-decreasing and is unbounded in each of its variables. For instance,f(x) = x2 − 3x andf(x, y) =
xy + x/ log x are growth functions, butf(x) = −x andf(x, y, z) = xy/z are not.

THEOREM 3. AssumeT (x) satisfies the real recurrence

T (x) = G(x, T (g1(x)), . . . , T (gk(x)))

and

• G(x, t1, . . . , tk) and eachgi(x) (i = 1, . . . , k) are growth functions.

• There is a constantδ > 0 such that eachgi(x) ≤ x− δ (ev.x).

Supposef(x) is a growth function such that

G(x,Kf(g1(x)), . . . ,Kf(gk(x))) ≤ Kf(x)) (ev.K,x). (35)

Under the Default Initial Condition, we conclude

T (x) = O(f(x)).

Proof. Pick x0 > 0 andK > 0 large enough so that all the “eventual premises” of the theorem
are satisfied. In particular,f(x), G(x, t1, . . . , tk) andgi(x) are all defined, non-decreasing and positive
when their arguments are≥ x0. Also,gi(x0) ≤ x0 − δ for eachi. LetP (x) be the predicate

P (x) : x ≥ x0 ⇒ T (x) ≤ Kf(x).

Pick
x1 = max{g−1

i (x0) : i = 1, . . . , k}. (36)
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The inverseg−1
i of gi is undefined atx0 if there does not existyi such thatgi(yi) = x0, or if there exists

more than one suchyi. In this case, takeg−1
i (x0) in (36) to be anyyi such thatgi(yi) ≥ x0. We then

conclude that for allx ≥ x1,
x0 ≤ gi(x) ≤ x− δ.

By the Default Initial Condition (DIC), we conclude that forall x ∈ [x0, x1], P (x) holds. Thus, the
Real Basis Step is verified. We now verify the Real Induction Step. Assumex ≥ x1 andP ∗

δ (x). Then,

T (x) = G(x, T (g1(x)), . . . , T (gk(x)))
≤ G(x,Kf(g1(x), . . . ,Kf(g1(x))) (byP ∗

δ (x))
≤ Kf(x) (by (35)).

ThusP (x) holds. By the Principle of Real Induction,P (x) is valid. This impliesT (x) = O(f(x)).
Q.E.D.

To apply this theorem, the main property to verify is the inequality (35), since the other properties
are usually routine to check. Let us see this in action on the example (28). We basically need to verify
that

1. f(x) = x5, G(x, t1, t2) = x5 + t1 + t2, g1(x) = x/a andg2(x) = x/b are growth functions

2. g1(x) ≤ x− 1 andg2(x) ≤ x− 1 whenx is large enough.

3. The inequality (35) holds whenK ≥ 1/(1− k0). This is just the derivation of (33) from (32).

From theorem3 we conclude thatT (x) = O(f(x)). The step (35) is the most interesting step of
this derivation.

It is clear that we can give an analogous theorem which can be used to easily establish lower bounds
onT (x). We leave this as an Exercise.

• One phenomenon that arises is that one often has to introducea stronger induction hypothesis
than the actual result aimed for. For instance, to prove thatT (x) = O(x log x), we may need to
guess thatT (x) = Cx log x+Dx for someC,D > 0. See the Exercises below.

• A real predicateP can be identified with a subsetSP of R comprising thosex such thatP (x)
holds. The statementP (x) can be generically viewed as asserting membership ofx in SP , viz.,
“x ∈ SP ”. Then a principle of real induction is just one that gives necessary conditions for a set
SP to be equal toR. Similarly, a natural number predicate is just a subset ofN.

In the rest of this chapter, we indicate other systematic pathways; similar ideas are in lecture notes
of Mishra and Siegel [14], the books of Knuth [11], Greene and Knuth [8]. See also Purdom and Brown
[16] and the survey of Lueker [12].

EXERCISES

Exercise 4.1: Prove theorem1, by reduction to natural induction. You can also use a proof by contra-
diction. ♦
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Exercise 4.2: Consider the recurrenceT (x) = T (x/2) + T (x/3) + x. In the text, we guessed and
proved thatT (x) ≤ Kx (ev.) for someK > 0. But suppose we had guessed (by the analogy
to Mergesort recurrence) thatT (x) ≤ Kx lg x (ev.). Prove this by real induction. Remember:
in this course, we do not ask you to justify the basis of real induction. Just carry out the “Real
Induction Step”. ♦

Exercise 4.3: SupposeT (x) = 5T (x/2) + x. Show by real induction thatT (x) = Θ(xlg 5). ♦

Exercise 4.4: Similar to previous problem, but consider the recurrenceT (x) = 5T (x/2) + x2. ♦

Exercise 4.5: Show by real induction thatT (x) = 9T (x/2) + x3 thatT (x) ≤ K9lgx −K ′x3. What
is the smallest value ofK ′ you can use? ♦

Exercise 4.6: Consider equation (9), T (n) = 2T (n/2) + n. Fix anyk > 1. Show by induction that
T (n) = O(nk). Which part of your argument suggests to you that this solution is not tight? ♦

Exercise 4.7: Consider the recurrenceT (n) = n + 10T (n/3). Suppose we want to showT (n) =
O(n3).
(a) Give a proof by real induction.
(b) SupposeT (n) = n + 10T ((n + K)/2) for some constantK. How does your proof in (b)
change? ♦

Exercise 4.8: Let T (n) = 2T (n2 + c) + n for somec > 0.
(a) By choosing suitable initial conditions, prove the following bounds onT (n) by induction, and
notby any other method:

(a.1)T (n) ≤ D(n− 2c) lg(n− 2c) for someD > 1. Is there a smallestD that depends only
onc? Explain. Similarly, showT (n) ≥ D′(n− 2c) lg(n− 2c) for someD′ > 0.

(a.2)T (n) = n lgn− o(n).
(a.3)T (n) = n lgn+Θ(n).

(b) Obtain the exact solution toT (n).
(c) Use your solution to (b) to explain your answers to (a). ♦

Exercise 4.9: Generalize our principle of real induction so that the constant δ is replaced by a real
functionδ : R → R>0. ♦

Exercise 4.10: (Gilles Dowek, “Preliminary Investigations on Induction over Real Numbers”,
manuscript 2002).
(a) A setS ⊆ R is closed if every limit point ofS belongs toS. Let P (x) be a real predicate
P (x). Assume{x ∈ R : P (x)holds} is a closed set. Suppose

P (a). ∧ .(∀c ≥ a)[P (c). ⇒ .(∃ε)(∀y)[c ≤ y ≤ c+ ε ⇒ P (y)]]

Conclude that(∀x ≥ a)P (x).
(b) Let a, b ∈ R andα, β : R → R such that for allx, α(x) ≥ 0 andα(x) > 0. Supposef is a
differentiable function satisfying

f(a) = bf ′(x) = −α(x)f(x) + β(x)

then for allx ≥ a, f(x) > 0. Intuition: If f(x) is the height of an object at timex, then the object
will never reach the ground,i.e., f(x) > 0. ♦
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END EXERCISES

§5. Basic Sums

In this section, we discuss some well-known basic sums and their role in solving recurrences.

¶13. Rote expansion of the Master Recurrence. As motivation, let us return to the rote or EGVS
method. We have used it for the Mergesort recurrence (9). We now try apply the technique to the more
general Master Recurrence (13) which is

T (n) = aT (n/b) + f(n)

for a > 0 andb > 1. Expanding, guessing and verifying yields:

T (n) = a T (n/b) + f(n)

= a2 T (n/b2) + af(n/b) + f(n)

= · · ·

= ai T (n/bi) +

i−1∑

j=0

ajf(n/bj).

Let us stop wheni = ⌊logb n⌋. Thenn/bi < b. We may assume DIC withT (n) = 0 for n < b. This
gives us

T (n) =

⌊logb n⌋∑

j=0

ajf(n/bj). (37)

This solution, unlike in the Mergesort case, is anopen sum, i.e., a sum with an unbounded number of
summands depending onn. We do not regard an open sum as a satisfactory solution. Thusthe last step
in the EGVS method is really stop-and-sum. This summing partis the topic of this section.

¶14. The Standard Recurrence and Descending Sums.Basically, the EGVS method has trans-
formed the Master Recurrence into a recurrence of the form

T (n) = T (n− 1) + f(n). (38)

We shall call this thestandard recurrence. Our goal in the following sections is to show systematic
ways to reduce many recurrences into this standard form. Trivially, (38) has the following open sum as
solution

T (n) =

n∑

i=1

f(i), (39)

assumingT (0) = 0 andn is integer.

In the solution (39) we have assumed thatn is integer. But what ifn is an arbitrary real value? Let
us introduce some general notations that befits our intention of “going totally real”. In general, for any
real numbersa, b, we define two kinds of sums off -values over this real interval[a, b]: So

∑π
x≥1 x = 3π − 3

whereπ = 3.1415 . . ..
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∑b
i≥a f(i) = f(b) + f(b− 1) + f(b− 2) + · · ·+ f(b− ⌊b− a⌋) (descend)∑b
i=a f(i) = f(a) + f(a+ 1) + f(a+ 2) + · · ·+ f(a+ ⌊b− a⌋) (ascending)

}
(40)

We call these thedescendingandascendingf -summations. Note that the last term in the ascending
sum isf(a+ ⌊b− a⌋), which is not necessarily equal tof(b). Such sums are defined to be0 if a > b.
The difference between these two notations lies in a minute detail – in the way we write the initial value
of the summation variablei: “

∑b
i≥a” versus “

∑b
i=a”. We shall mainly focus on the descending sums,

Henceforth, pay close
attention to this
‘minute’ detail!but sometimes we it is better to use ascending sums. There is asimple connection between these two

sums:

b∑

i≥a

f(i) =

b−a∑

i=0

f(b− i). (41)

The right-hand side is also equal to
∑⌊b−a⌋

i=0 f(b− i). Even whenf(x) is a partial function, these sums
are well-defined using the convention thatundefined summands are replaced by0. In recognition of

convention for
summing over partial

functionsour interest in descending sums, we introduce a convenient notation: for any complexity functionf , let

Sf (n):=

n∑

i≥1

f(i). (42)

and thus the solution to our standard recurrence (38) is

T (n) = Sf (n). (43)

¶15. What Does It Mean to Solve a Recurrence? If the open sum in the RHS of (39) is unsatisfac-
tory, what is satisfactory? Let us get a hint using a simple example. Supposef(n) = n in (39). Then
we know how to convert the open sum into aclosed sum:

T (n) =

n∑

i=1

f(i) =

n∑

i=1

i =

(
n+ 1

2

)
=

n(n+ 1)

2
= Θ(n2).

Indeed, we would be perfectly happy with the answer “T (n) = Θ(n2)” even though the answer is really(
n+1
2

)
— remember that we are generally interested inΘ-order answers in this book. The reason we

are happy with the answerΘ(n2) is becausen2 is a “familiar function”. So this section is about how
I see! “Solving”

means relate to known
functionswe can write some “basic sums” in terms of such familiar functions. These sums are the ones you must

know. You will not be responsible for summations outside this small repertoire of basic sums.

¶16. On Familiar Functions. So we conclude that “solving a recurrence” is relative to theform of
solution we allow. This we interpret to mean a finite sum or finite product involving only “familiar”
functions. For our purposes, we may define familiar functions to be constants functionsf(n) = c
(c ∈ R) or the identityf(n) = n, or obtained from familiar functionf, g using one of the following
operations:

sum f + g
product fg
logarithm log f
exponentiation fg

functional composition f ◦ g
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Thus, familiar functions include polynomialsf(n) = nk, iterated logarithmsf(n) = log(k) n, sim-
ple exponentialsf(n) = cn (c > 0). It turns out to be useful to extend this class even further. Func-
tions such as factorialsn!, binomial coefficients

(
n
k

)
and harmonic numbersHn (see below) are tightly

bounded by familiar functions, and therefore may be considered familiar in an extended sense. For in-
stance, letf(n) be the number of ways an integern can be written as the sum of two integers. Number
theorists have shown thatf(n) is (log n)O(logn), and thus considered familiar in the extended sense. In
addition to the above functions, two very slow growing functions arise naturally in algorithmic analysis.
These are the log-star functionlog∗ x (see Appendix) and the inverse Ackermann functionα(n) (see
Lecture XII). We will consider them familiar, although functional compositions involving such strange
functions are only “familiar” in our very technical sense!

We refer the reader to Appendix A in this lecture for basic properties of the exponential and loga-
rithm function. A useful relation is the following:

LEMMA 4. For all real a < b andc > 1, and for all integerk ≥ 1:

1 ≺ lg(k+1) n ≺ lg(k) n
(∗)
≺ na ≺ nb ≺ cn

where the relation (∗) also requiresa > 0.

What follows is a brief introduction to some common familiarfunctions,expressed as solutions to
summations. The vast majority of the summations in this book can be reduced to one of these.

¶17. Arithmetic series. The basic arithmetic series is

Sn :=
n∑

i=1

i =

(
n+ 1

2

)
. (44)

In proof,

2Sn =

n∑

i=1

i+

n∑

i=1

(n+ 1− i) =

n∑

i=1

(n+ 1) = n(n+ 1).

There is a well-known “proof by picture” where you draw two congruent staircases, each representing
the desired sum; you can put these two staircases together toget a rectangle of area2Sn = n(n+ 1).

More generally, for fixedk ≥ 1, we have the “arithmetic series of orderk”,

Sk
n:=

n∑

i=1

ik = Θ(nk+1). (45)

In proof, we have

nk+1 > Sk
n >

n∑

i=⌈n/2⌉
(n/2)k ≥ (n/2)k+1.

For more precise bounds, we boundSk
n by integrals,

nk+1

k + 1
=

∫ n

0

xkdx < Sk
n <

∫ n+1

1

xkdx =
(n+ 1)k+1 − 1

k + 1
,

yielding

Sk
n =

nk+1

k + 1
+Ok(n

k). (46)

Don’t worry about the
integrals here — we
provide alternatives

below. Our approach
is to replace calculus

through elementary
Θ-bounds.
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¶18. Geometric series. Forx 6= 1 andn ≥ 1,

Sn(x) :=

n−1∑

i=0

xi

=
xn − 1

x− 1
. (47)

In proof, note thatxSn(x)− Sn(x) = xn − 1. Next, lettingn → ∞, we get the series

S∞(x) :=

∞∑

i=0

xi

=





∞ if x ≥ 1
↑ (undefined) ifx ≤ −1
1

1−x if |x| < 1.

Why isS∞(−1) (say) considered undefined? For instance, writing

S∞(−1) = 1− 1 + 1− 1 + 1− 1 + · · ·
= (1− 1) + (1− 1) + (1− 1) + · · ·
= 0 + 0 + 0 + · · · ,

we concludeS∞(−1) = 0. But writing

S∞(−1) = 1− 1 + 1− 1 + 1− · · ·
= 1− (1− 1) + (1 − 1)− · · ·
= 1 + 0 + 0 + · · · ,

we concludeS∞(−1) = 1. So that we must consider this sum as having no definite value,i.e., unde-
fined. Again,

S∞(−1) = 1− 1 + 1− 1 + 1− · · ·
= 1− S∞(−1),

and we conclude thatS∞(−1) = 1/2. In fact,S∞(−1) can take infinitely many possible values in this

19th century
Mathematicians

learned:handle infinite
sums with great care

way. This provides a strong case whyS∞(−1) should be regarded as undefined.

Viewing x as a formal6 variable, the simplest infinite series isS∞(x) =
∑∞

i=0 x
i. It has a very

simple closed form solution,
∞∑

i=0

xi =
1

1− x
. (48)

Viewed numerically, we may regard this solution as a specialcase of (47) whenn → ∞; but avoiding The one infinite series
to know!numerical arguments, it can be directly derived from the formal identityS∞(x) = 1+xS∞(x). We call∑∞

i=0 x
i themother of seriesbecause7 from the formal solution to this series, we can derive solutions

for many related series, including finite series. In fact, for |x| < 1, we can derive equation (47) by
plugging equation (48) into

Sn(x) = S∞(x)− xnS∞(x) = (1− xn)S∞(x).

6 I.e., as an uninterpreted symbol rather than as a numerical value. Thereby, we avoid questions about the sum converging to
some unique numerical value.

7 This terminology arose in 1990, during the Gulf War when Saddam Hussein declared the “mother” of all battles. Suddenly,
many things are declared the “mother of ...”.
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By differentiating both sides of the mother series with respect tox, we get:

1

(1 − x)2
=

∞∑

i=1

ixi−1

x

(1 − x)2
=

∞∑

i=1

ixi (49)

This process can be repeated to yield formulas for
∑∞

i=0 i
kxi, for any integerk ≥ 2. Differentiating

both sides of equation (47), we obtain the finite summation analogue:

n−1∑

i=1

ixi−1 =
(n− 1)xn − nxn−1 + 1

(x − 1)2
,

n−1∑

i=1

ixi =
(n− 1)xn+1 − nxn + x

(x− 1)2
, (50)

(51)

Combining the infinite and finite summation formulas, equations (49) and (50), we also obtain

∞∑

i=n

ixi =
nxn − (n− 1)xn+1

(1 − x)2
. (52)

We may verify by induction that these formulas actually holdfor all x 6= 1 when the series are finite. In
general, for anyk ≥ 0, we obtain formulas for thegeometric series of orderk:

n−1∑

i=1

ikxi. (53)

The infinite series have finite values only when|x| < 1.

¶19. Harmonic series. For natural numbersn ≥ 1, thenth harmonic number is defined as

Hn:=1 +
1

2
+

1

3
+ · · ·+ 1

n
. (54)

We can give easy estimates ofHn using calculus (see margin):

Hn < 1 +

∫ n

1

dx

x
< 1 +Hn.

But
∫ n

1
dx
x = lnn. This proves that

Hn = lnn+ g(n), where0 < g(n) < 1. (55)

Note thatln is the natural logarithm (appendix A).

Does your architecture
friends know about this

one?
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(a)n = 2 (b) n = 3 (c) n = 5

Figure 4: Stacking bricks with maximum overhang: forn = 5, overhang is more than one brick length!

Harmonic numbers arise naturally in the analysis of algorithms. But here is a
“physical” application of harmonic numbers: Suppose you have a set ofn ≥ 2
bricks. The bricks are identical and have unit length. We want to stack the bricks
so that the overhang is as large as possible. For instance, ifn = 2, the overhang is
1/2 since we can put one brick over the other such that the center of gravity of the
top brick is above the edge of the bottom brick. This is illustrated in Figure4(a).
The case ofn = 3, we may check that the overhang is3/4 (Figure4(b)). An ob-
vious question is whether we can make the overhang arbitrarily large (providedn
is large enough)? Somewhat surprisingly, the answer is ‘yes’. See Figure4(c) for
the casen = 5: in this case, the overhang is25/24, already exceeding the length
of a single brick! How many bricks do we need to have an overhang exceeding
two brick lengths? In general, the overhang is1

2Hn−1 (Exercise). AsHn is about
lnn, the overhang goes to infinity (albeit very slowly) asn → ∞.
For more information, see the fascinating book “How Round isYour Circle?
Where Engineering and Mathematics Meet”, by John Bryant andChris Sangwin
(Princeton University Press, 2008). This solution is basedon an assumption that
you stack at most one brick on another. What if you allow more than one? You
can do a lot better than the above classical solution! Mike Paterson and Uri Zwick
(2009, American Math. Monthly) have investigated the case of multiple stacking.
The maximum overhang for 8 bricks are illustrated in the margin here.

We can view (55) as a special case of our descending sumsSf (n) wheref(n) = 1/n. Then for all
realn, Hn = Sf (n) =

∑n
i≥1

1
i . Here is a more precise estimate forg(n): for n ≥ 1,

γ +
1

2n
− 1

8n2
< g(n) < γ +

1

2n
(56)

whereγ = 0.577... is Euler’s constant. See Polya and Szego, Problems and Theorems in Analysis,
Volume I, Springer-Verlag, Berlin (1972).

We can also deduce asymptotic properties ofHn without calculus: ifn = 2N (for someN ≥ 1),
then the terms in the defining summation ofHn can be put intoN groups as follows

Hn =
∑

1

+
∑

2

+ · · ·+
∑

N

+
1

n
(57)

where thekth group
∑

k is defined as
∑2k−1

i=2k−1
1
i . Notice that the last term1/n is not in any group. For

example

H8 =
1

1︸︷︷︸
Σ1

+
1

2
+

1

3︸ ︷︷ ︸
Σ2

+
1

4
+

1

5
+

1

6
+

1

7︸ ︷︷ ︸
Σ3

+
1

8
.
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Since
∑

k has2k−1 terms, and each term is between1/2k and1/2k−1, we obtain

2k−11 1

2k
≤
∑

k

≤ 2k−1 1

2k−1

1/2 ≤
∑

k

≤ 1. (58)

This proves8 that

1

2
N ≤ Hn ≤ N +

1

n
1

2
lgn ≤ Hn ≤ lgn+

1

n
(59)

whenn is a power of2. Extrapolating to all values ofn, we obtain

1

2
⌊lgn⌋ ≤ Hn ≤ ⌈lgn⌉+ 1

n

Since we may chooseN as big as we like, we have proved the following:

LEMMA 5.
(a)Hn = Θ(lg n).
(b) lgn is eventually unbounded, i.e.,lg(n) ≻≻ 1.

The technique in this demonstration is extended in the proofof Theorem9. These ideas are fully
developed in [19].

¶20. Stirling’s Approximation. So far, we have treated open sums. If we have an open product such
as the factorial functionn!, we can convert it into an open sum by taking logarithms. Thismethod of
estimating an open product may not give as tight a bound as we wish (why?). For the factorial function,
there is a family of more direct bounds that are collectivelycalled Stirling’s approximation . The
following Stirling approximation is from Robbins (1955) and it may be committed to memory:

n! =
(n
e

)n √
2πn eαn

where
1

12n+ 1
< αn <

1

12n
.

Sometimes, the boundαn > (12n)−1 − (360n3)−1 is useful [5]. Up toΘ-order, Stirling’s approxima-
tion simplifies to

n! = Θ

((n
e

)n+ 1
2

)
.

¶21. Binomial theorem.

(1 + x)n = 1 + nx+
n(n− 1)

2
x2 + · · ·+ xn

=
n∑

i=0

(
n

i

)
xi.

8 ForN ≥ 3, the term1/n could be ignored because we can count it as part ofΣ2. Note that1
2
≤ Σ2 ≤ 1 still hold true

after absorbing this extra term.

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011



§5. BASIC SUMS Lecture II Page 28

For solving real recurrences, it is useful to generalize this theorem to(1+ x)p for any real numberp. In
general, the binomial function

(
n
i

)
may be extended to all realp and integeri as follows:

(
p

i

)
=





0 if i < 0

1 if i = 0

p(p−1)···(p−i+1)
i(i−1)···2···1 if i > 0.

We use Taylor’s expansion for a functionf(x) atx = a:

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + · · ·

wheref (n)(x) = dnf
dnx . This expansion is defined provided all derivatives off exist and the series

converges. Applied tof(x) = (1+x)p for any realp atx = 0, we get the desired binomial theorem for
real exponents:

(1 + x)p = 1 + px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · ·

=
∑

i≥0

(
p

i

)
xi.

See [11, p. 56] for Abel’s generalization of the binomial theorem.

EXERCISES

Exercise 5.1: Show Lemma4. For logarithms, please use direct inequalities (no calculus). ♦

Exercise 5.2: The Mother of Series is very important, and you should recognize it in its many forms.
For this problem, you must not directly use the formula for the geometric series.
(a) LetS4 = 1

4 + 1
16 + 1

64 + 1
256 + 1

1024 + · · · =∑∞
i=1(1/4)

i. Use Figure5(a) to determine the
value ofS4. (b) LetS3 = 1

3 + 1
9 + 1

27 + 1
81 + · · · = ∑∞

i=1(1/3)
i. Again, use Figure5(b) to

(b) S3(a)S4

Figure 5:

determine the value ofS3.
(c) Generalize the arguments of (a) and (b) toSk =

∑∞
i=1 k

−i. ♦
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Exercise 5.3: Let n = 2N for N ≥ 1. Sharpen (59) to 1 + (N/2) ≤ Hn ≤ N + 1
n . HINT: breakHn

intoN sums of the formΣk =
∑2k

i=2k−1+1
1
i . ♦

Exercise 5.4: LetS(27) denote the minimal height of a tree program to sort27 elements (Lecture I§3).
Describe how you would go about computing this number, armedwith only a pocket calculator.
Mention any pitfalls, numerical errors, etc. ♦

Exercise 5.5: Strengthen the lower bounds in Lemma4 from 6= Ω(f(n)) to= o(f(n)). ♦

Exercise 5.6: Let h(n) denote the maximum overhang forn bricks. Prove thath(n) =
∑n−1

i=1
1
2i =

1
2Hn−1. Thus,h(2) = 1/2, h(3) = h(2) + 1/4 = 3/4, h(4) = h(3) + 1/6 = 11/12, and
h(5) = h(4) + 1/8 = 25/24. HINT: Let the right edge of theith brick be at positionxi where
theith brick is stacked on thei+ 1st brick withxi > xi+1. Inductively, assume that the optimal
configuration forh(n) is (x1, x2, . . . , xn) wherexi − xi+1 = 1/2i. Moreover, the C.G. of the
optimal configuration forh(n− 1) is atxn. Extend this induction hypothesis toh(n+ 1). ♦

Exercise 5.7: Let c > 0 be any real constant.
(a) Show thatln(n+ c)− lnn = O(c/n).
(b) Show that|Hx+c −Hx| = O(c/n) whereHx is the generalized Harmonic function.
(c) Bound the sum

∑n
i=1+⌊c⌋

1
i(i−c) . ♦

Exercise 5.8: ConsiderS∞(x) as a numerical sum.
(a) Prove that there is a unique value forS∞(x) when|x| < 1.
(b) Prove that there are infinitely many possible values forS∞(x) whenx ≤ −1.
(c) Are all real values possible as a solution toS∞(−1)? ♦

Exercise 5.9: Show the following useful estimate:ln(n)− (2/n) < ln(n− 1) < (lnn)− (1/n). ♦

Exercise 5.10:
(a) Give the exact value of

∑n
i=2

1
i(i−1) . HINT: use partial fraction decomposition of1i(i−1) .

(b) Conclude thatH(−2)
∞ ≤ 2. ♦

Exercise 5.11: (Basel Problem) The goal is to give tight bounds forH
(−2)
n :=

∑n
i=1

1
i2 (cf. previous

exercise).
(a) LetS(n) =

∑n
i=2

1
(i−1)(i+1) . Find the exact bound forS(n).

(b) LetG(n) = S(n)−H
(−2)
n + 1. Now γ′ = G(∞) is a real constant,

γ′ =
1

1 · 3 · 4 +
1

2 · 4 · 9 +
1

3 · 5 · 16 + · · ·+ 1

(i− 1) · (i+ 1) · i2 + · · · .

Show thatG(n) = γ′ − θ(n−3).

(c) Give an approximate expression forH
(−2)
n (involving γ′) that is accurate toO(n−3). Note

thatγ′ plays a role similar to Euler’s constantγ for harmonic numbers.
(d) What can you say aboutγ′, given thatH(−2)

∞ = π2/6? Use a calculator (and a suitable
approximation forπ) to computeγ′ to 6 significant digits. ♦
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Exercise 5.12:Let k ≥ 1 be a integer. We have the general formula(1 − x)−k =
∑

i≥0 x
i
(
i+k−1
k−1

)
.

Note that ifk = 1, this is just the mother of series. Show this formula fork = 2 andk = 3.
Generalize to allk. ♦

Exercise 5.13:Solve exactly (choose your own initial conditions):
(a)T (n) = 1 + n+1

n T (n− 1).
(b) T (n) = 1 + n+2

n T (n− 1). ♦

Exercise 5.14:Show that
∑n

i=1 Hi = (n+ 1)Hn − n. More generally,

n∑

i=1

(
i

m

)
Hi =

(
n+ 1

m+ 1

)[
Hn+1 −

1

m+ 1

]
.

♦

Exercise 5.15: (J.van de Lune, 1980) Above, we definedHn:=
∑n

i≥1 1/i (descending sum). A variant
that is neither a descending nor an ascending sum is to defineH(a, b):=

∑
a≤i≤b 1/i where the

summation is over all integer values ofi in the range[a, b]. Then this sum is bounded by

∑

a≤x≤b

1

x
≤ ln(b/a) + min {1, 1/a}

♦

Exercise 5.16:Give a recurrence forSk
n (see (45)) in terms ofSi

n, for i < k. Solve exactly forS4
n. ♦

Exercise 5.17:Derive the formula for the “geometric series of order2”, k = 2 in (53). ♦

Exercise 5.18: (a) Use Stirling’s approximation to give an estimate of the exponentE in the expression
2E =

(
2n
n

)
.

(b) (Feller) Show
(
2n
n

)
=
∑n

k=0

(
n
k

)2
. ♦

Exercise 5.19:Your architecture friend said that your brick tower design to achieve maximum overhang
(usingHn) is unrealistic (we admit this). Here is a sequence of numbers that tend to infinity but
slower:Gn =

∑n
i=1

1
i lg i . Design a overhanging tower based on this sequence. Convince your

architecture friend that this is stable enough to build. ♦

END EXERCISES

§6. Standard Form and Summation Techniques

Recall that our goal is to reduce all recurrences to thestandard form:

t(n) = t(n− 1) + f(n). (60)
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We have noted that the solution is the descending sum

t(n) = Sf (n) =
n∑

i≥1

f(i) (61)

assume DIC witht(n) = 0 for n < 1. It is perhaps instructive to see this derived in another stylized
way known as “telescopy”. Assuming the recurrence is valid for all n ≥ 1, we have

t(n− i+ 1)− t(n− i) = f(n− i+ 1), (i = 1, . . . , ⌊n⌋).

Adding these⌊n⌋ equations together, all but two terms on the left-hand side cancel, leaving us

t(n)− t(n− ⌊n− 1⌋) =
n∑

i≥1

f(i).

(We say the left-hand side is a “telescoping sum”.)

¶22. Polynomial-type and Exponential-type Sums. Let us consider what is to be done if the open
sum (61) does not readily reduce to one of the basic sums we discussedin the previous section. Tra-
ditionally, the sumSf (n) (for n ∈ N) is solved using the Euler-Maclaurin summation formula. The
formula is for ascending sums:

n−1∑

i=1

f(i) =

∫ n

i

f(x)dx +

( ∞∑

i=1

Bif
(i−1)(x)

i!

)x=n

x=1

whereBi is theith Bernoulli number. See [7, p. 217]. But in this book, we emphasize the solution of
recurrences using purely elementary arguments, preferring to avoid calculus. This is possible because

No calculus please, we
are computer

scientists!we seek onlyΘ-order solutions. We now introduce two elementary summation techniques for this
purpose. They are based on the following “growth classification” of real functions:

Polynomial Type: A real functionf is polynomial-type if f is non-decreasing (ev.) and there is some
C > 1 such that

f(x) ≤ C · f(x/2) (ev.).

For example, the functionf(x) = x2 is polynomial-type becausex2 ≤ C · (x/2)2 if we choose
C ≥ 4. Note thatf(x) ≤ Cf(x/2) ≤ C2f(x/4) ≤ · · · ≤ Ckf(x/2k) = O(nlgC). HENCE,
each polynomial-type function is bounded by a polynomial. Here are more examples: assume
a ≥ 0 in the following.

f0(x) = xa, f1(x) = log x, f2(x) = f0(x)f1(x), f3(x) = (f0(x))
a. (62)

Exponential Type: The functionf is exponential-type if it increases exponentially or it decreases
exponentially:
(a)f increases exponentiallyif there exists real numbersC > 1 andk > 0 such that

f(x) ≥ C · f(x− k) (ev.).

For example, the functionf(x) = 2x increases exponentially because2x ≥ C2x−1 if we choose
k = 1 andC = 2. Again, f(x) = 22

x

increases exponentially because22
x ≥ C22

x−1

=
C(22

x

)1/2 if we chooseC = 2. Here are more examples: assumeb > 1 in the following:

g0(x) = bx, g1(x) = x!, g2(x) = g0(x)g1(x), g3(x) = bg0(x) (63)
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(b) f decreases exponentiallyif there exists real numbersC > 1 andk > 0 such that

C · f(x) ≤ f(x− k) (ev.).

For example, the functionf(x) = 2−x decreases exponentially becauseC2−x ≤ 2−(x−1) if we
choosek = 1 andC = 2. Here are more examples: assumeb > 1 in the following:

h0(x) = b−x, h1(x) = x−x, h2(x) = h0(x)h1(x), h3(x) = bh0(x) (64)

In proofs, we can usually takek = 1 in the definition of exponential-types: i.e., ifg(n) is increasing
exponentially,g(n) ≥ Cg(n− 1) and ifh(n) is decreasing exponentially,h(n) ≤ ch(n− 1).

We say that the descending sumS(n) = Sf (n):=
∑n

x≥1 f(x) is polynomial-type or exponential-
type, following the above classification off . The following theorem gives a simple rule for bounding
such sums. We are interested in functions that satisfy two simple properties:

• f is “eventually bounded away from0” : this meansf � 1. For instance,f(x) = 1/x does not
satisfy this property sincef(x) → 0 asx → ∞.

• f is “bounded from above”: this means, for allx0, there existsC > 0 such that for allx < x0,
f(x) ≤ C. The functionf(x) = 1/x is9 not bounded from above becausef(x) → ∞ asx
approaches0.

THEOREM6 (Summation Rules).If f is eventually bounded away from0, andf is bounded from above,
then

Sf (n) = Θ





nf(n) if f is polynomial-type,
f(n) if f is increasing exponentially,
1 if f is decreasing exponentially.

Proof. CASE (i): For a polynomial-type sum, using the fact thatf is non-decreasing, we get the
upper boundSf (n) ≤

∑n
x≥1 f(n) = ⌊n⌋ f(n). For lower bound, we also need thatf(x) ≤ Cf(x/2)

(ev.) for someC > 0:

Sf (n) ≥
n∑

x≥n/2

f(x)

≥
n∑

x≥n/2

f(n/2) ≥ ⌈n/2⌉ f(n/2)

≥ ⌈n/2⌉ f(n)
C

= Ω(nf(n)).

CASE (ii-a): For an increasing exponential sum, there is someC > 1, k > 0 andm > 0 such that for
all n ≥ m, we havef(n) ≥ Cf(n−k). Without loss of generality, assumem > k andf(x) ≥ 0 for all
x ∈ [m−k,m]. For anyn ≥ m, let j = ⌈(n−m)/k⌉. Note thatm− jk lies in the interval[m,m−k)
andSf (m− jk) = O(1), sincef is local bounded. Then

Sf(n) = [f(n) + f(n− k) + f(n− 2k) + · · ·+ f(n− (j − 1)k)] + Sf (n− jk)
≤ f(n)

[
1 + 1

C + 1
C2 + · · ·

]
+ Sf (n− jk)

= f(n) C
C−1 + Sf(m− jk)

= O(f(n)) (sincef(n) � 1).

9 Basically, we do not wantf(x) to blow up at any finite value ofx. This essentially says that “f has no poles” (except
possibly at infinity).
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SinceSf (n) = Ω(f(n)), we conclude thatSf (n) = Θ(f(n)).
CASE (ii-b): For a decreasing exponential sum, there is someC > 1, k > 0 andm > 0 such that for
all n ≥ m, we haveCf(n) ≤ f(n− k). Again wlog, assumem > k andf(x) ≥ ε for all x ≥ m− k
(for someε > 0). Let j = ⌈(n−m)/k⌉. ThenSf (m− jk) = O(1) and

Sf(n) = Sf (n− jk) + [f(n− (j − 1)k) + f(n− (j − 2)k) + · · ·+ f(n− k) + f(n)]
≤ Sf (n− jk) + f(n− (j − 1)k)

[
1 + 1

C + 1
C2 + · · ·

]

� f(n− (j − 1)k) (sincef(n− (j − 1)k) ≥ ǫ).

SinceSf (n) ≥ f(n− (j − 1)k) ≥ ǫ, we conclude thatSf (n) = Θ(1). Q.E.D.

Let us apply this theorem to determine theΘ-order of various sum. Once we know the type of the
sum, it is a simple matter of writing down the solution:

• Polynomial Sums (recall (62))

n∑

i≥1

i log i = Θ(n2 logn),

n∑

i≥1

log i = Θ(n logn)

n∑

i≥1

ia = Θ(na+1) (wherea ≥ 0).

(65)

• Exponentially Increasing Sums (recall (63))

n∑

i≥1

bi = Θ(bn),

n∑

i≥1

i−522
i

= Θ(n−522
n

),

n∑

i≥1

i! = Θ(n!) . (66)

• Exponentially Decreasing Sums (recall (64))

n∑

i≥1

b−i = Θ(1),

n∑

i≥1

i2i−i = Θ(1),

n∑

i≥1

i−i = Θ(1) . (67)

¶23. Reducing to summations we can bound. Summation that does not fit the framework of The-
orem6 can sometimes be reduced to one that does. A simple case is when summation does not begin
from i = 1. As another example, consider

S:=
n∑

i≥1

i!

lgi n
, (68)

which has terms depending oni as well as on the limitn. WriteS =
∑n

i≥1 f(i, n) where

f(i, n) =
i!

lgi n
.

We note thatf(i, n) is increasing exponentially fori ≥ 2 lgn (ev.n), sincef(i, n) = i
lgnf(i− 1, n) ≥

2f(i − 1, n). Hence we may split the summation into two parts,S = A + B whereA comprise the
terms for whichi < 2 lgn andB comprising the rest. SinceB is an exponential sum, we haveB =
Θ(f(n, n)). We can easily use Stirling’s estimate forA to see thatA = O(log3/2 n) = O(f(n, n)).
ThusS = Θ(f(n, n)).
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¶24. A Counter Example. Most common functions we encounter will be either polynomial-type or
exponential-type. We now show a function that is neither:

LEMMA 7. The functionf(n) = nlnn is neither polynomial-type nor exponential-type.

Proof.Showing thatf(n) is not polynomial-type is easy: the ratio

f(n)/f(n/2) = nlg(n)/n(lg(n/2)) · 2lgn/2 = n2/2

is unbounded, sof is not polynomial-type.

To show that it is not exponential-type, assume by way of contradiction that there existsC0 > 1
such that

f(n) ≥ C0f(n− 1) (ev.). (69)

We use a well-known bound (see Appendix) says that for|x| < 1,

ln(1 + x) < x. (70)

Also from (55) and (56), we conclude that

lnn+ γ ≤ Hn ≤ lnn+ γ + (1/n) (ev.). (71)

The following inequalities hold eventually:

lnn ≤ Hn − γ

≤ (1/n) + ln(n− 1) + (1/n)

= ln(n− 1) + (2/n). (72)

We now get a contradiction:

f(n) =
[
(n− 1)(1 + 1

n−1 )
]lnn

≤ (n− 1)ln(n−1)+(2/n)(1 + 1
n−1 )

lnn (by (72))

= f(n− 1) · (n− 1)2/n · 2ln(1+ 1
n−1 ) lnn

≤ f(n− 1) · 22 ln(n−1)/n · 2 lnn
n−1 (by (70))

= f(n− 1) · C1(n)

whereC1(n):=22 ln(n−1)/n ·2 lnn
n−1 . SincelnC1(n) = (2 ln(n−1)/n)+(lnn/(n−1)) → 0 asn → ∞,

we conclude thatC1(n) ≤ C0 (ev.). This showf(n) ≤ f(n− 1)C0 (ev.), contradicting (69). Q.E.D.

How do we estimate the sumSf (n):=
∑n

x≥0 f(x) since we cannot apply Theorem6 whenf is nei-
ther polynomial- nor exponential-type? In this case, techniques similar to polynomial and exponential
sums still give reasonably tight bounds (but notΘ-order):f(n) ≤ Sf (n) ≤ nf(n) ≤ f(n)1+ε for any
ε > 0.

¶25. Closure Properties: How to recognize growth types To apply the summation rules Theorem6,
we want to rapidly classify functions according to their growth types. For this purpose, we can use our
next lemma which shows that these growth types are closed under various operations.

LEMMA 8. Leta ∈ R.
(a) Polynomial-type functions are closed under addition, multiplication, and raising to any positive
powera > 0.
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(b) Exponential-type functionsf are closed under addition, multiplication and raising to any powera.
In casea > 0, the functionfa will not change its subtype (increasing or decreasing). In casea < 0,
the functionfa will change its subtype.
(c) If f is polynomial-type andf > 1 (ev.) thenlg f is also polynomial-type. Iff is exponential-type
anda > 1 then so isaf .

Proof.All the inequalities in the following proofs are assumed to hold eventually:
(a) Assumef(n) ≤ Cf(n/2) andg(n) ≤ Cg(n/2) for someC > 1. Thenf(n)+g(n) ≤ C(f(n/2)+
g(n/2)), f(n)g(n) ≤ C2f(n/2)g(n/2), and for anye > 0, f(n)e ≤ Cef(n/2)e.
(b) Assumegi(n) ≥ Cgi(n − 1) andhi(n) ≤ chi(n − 1). for someC > 1, c < 1, and fori = 0, 1.
Also, let g = g0, h = h0. Closure under addition:g0(n) + g1(n) ≥ C(g0(n − 1) + g1(n − 1)) and
h0(n)+h1(n) ≤ c(h0(n−1)+h1(n−1)). Closure under product:g0(n)g1(n) ≥ C2g0(n−1)g1(n−1))
andh0(n)h1(n) ≤ c2h0(n − 1)h1(n − 1). Closure under raising to powere: If e > 0, thenge(n) ≥
Cege(n− 1) andhe(n) ≤ cehe(n− 1) whereCe > 1 andce < 1. If e < 0, thenge(n) ≤ Cege(n− 1)
andhe(n) ≥ cehe(n− 1) whereCe < 1 andce > 1.
(c) If f is polynomial-type, thenlog(f(n)) ≤ (logC) + log(f(n/2)) ≤ (1 + (logC)/c) log(f(n/2)),
wherelog(f(n/2)) ≥ c > 0 for some constantc. This proveslog f to be polynomial-type. Ifg, h is
exponential type as in (b), then note thatCg(n) ≥ (C − 1) + g(n) sinceg(n) ≥ 1. Thus

bg(n) ≥ bCg(n−1) ≥ b(C−1)+f(n−1)

≥ bC−12f(n−1).

Q.E.D.

¶∗ 26. Generalization of Harmonic Numbers. For alln, α ∈ R, define thegeneralized harmonic
number

H(α)(n) :=

n∑

x≥1

xα

= nα + (n− 1)α + (n− 2)α + · · ·+ ({n}+ 1)α, (73)

using the descending sum notation (40). Note thatH(α)(n) = 0 for n < 1. The harmonic numbers
Hn is justH(−1)(n) whenn is integer. The arithmetic series in¶17 corresponds toH(α)(n) where
α ∈ N. Whenα ≤ −1, the sumH(α)(n) is bounded asn → ∞; the limiting valueH(α)(∞)
is the value of the Riemann zeta function at−α: ζ(α):=

∑∞
i=1 n

−α = H(−α)(∞). For instance,
ζ(2) = H(−2)(∞) = π2/6. An Exercise estimates the sumH(−2)(n). Just as Euler’s constantγ arise
in estimates ofH(−1)(n), an analogous constant arise in estimatingH(−2)(n). The following lemma
determines theΘ-order ofH(α)(n) for fixedα:

THEOREM 9. For all α ∈ R,

H(α)(n) = Θ





1 if α < −1
lg n if α = −1
nα+1 if α > −1

(74)
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Proof. It is best to initially assumen+ 1 is a power of2. Then

H(α)(n) =

lg(n+1)∑

k=1




2k−1∑

i=2k−1

iα




=

lg(n+1)∑

k=1

2k ·Θ
(
2kα
)

=

lg(n+1)∑

k=1

Θ
(
2k(1+α)

)
.

The first summation is a direct analogy with (57). Note that the slick use ofΘ in this derivation is
capturing upper and lower bounds simultaneously. If explicitly spelled out, you would need to consider
the casesα ≥ 0 andα < 0 separately. Now we notice that if1 + α = 0 then the sum Exercise: spell it out!

lg(n+1)∑

k=1

Θ
(
2k(1+α)

)
= Θ(lg(n+ 1)).

If 1 + α < 0, then the sum is decreasing exponentially and Theorem6 yields

lg(n+1)∑

k=1

= Θ(1).

If 1 + α > 0, then the sum is increasing exponentially and Theorem6 yields

lg(n+1)∑

k=1

= Θ
(
2lg(n+1)(1+α)

)
= Θ

(
n1+α

)
.

Whenn + 1 is not a power of2, we can replacen by n = 2⌈lg(n+1)⌉ − 1 andn = 2⌊lg(n+1)⌋ − 1 for
upper and lower bounds (Exercise). Q.E.D.

This result has two significance. First, up toΘ-order, the summation (74) unifies the standard
bounds for the arithmetic series (45), harmonic numbers (55), and geometric sums (47). Second, Remember trichotomy
the solution to the summationH(α)(n) is based on a trichotomy: this pattern will be repeated in the
Master Theorem below. Although the formula (74) theorem has an analogue in calculus, our proof uses
only elementary arguments. The proof method can be generalize to boundSf wheref belongs to the
class of “exponential-logarithmic functions” (called EL-functions in [19]). We can show that iff is an
EL-function, thenSf isΘ-order of another EL-function.

Application of generalized harmonic numbers: to solve the recurrence
T (n) = 2T (n/2) + (n/ lgn), we convert it to the standard form

t(N) = t(N − 1) + 1/N (75)

using the substitutiont(N) = T (2N)/2N , whereN = lgn is a real variable.
According to (43), t(N) = H(−1)(N). Back solving, the original recurrence
has solutionT (n) = nH(−1)(lg n) = Θ(n ln lg n).

¶27. Grouping: Breaking Up into Big and Small Parts. The above example (68) illustrates the
technique of breaking up a sum into two parts, one containingthe “small terms” and the other containing
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the “big terms”. This is motivated by the wish to apply different summation techniques for the 2 parts,
and this in turn determines the cutoff point between small and big terms. Suppose we want to show

Hn =

n∑

i≥1

1

i
= O(

√
n).

BreakHn into two summations,Hn = An +Bn where

An =

n−⌊n−√
n⌋∑

i≥1

1

i

comprises the “big terms” (there are at most
√
n terms inAn), andBn contains the remaining⌊n−√

n⌋
“small terms”. Then

An ≤
n−⌊n−√

n⌋∑

i≥1

1

i
≤

√
n

and

Bn =
n∑

i≥n−⌊n−√
n⌋

1

i
≤

n∑

i=1

1√
n
=

√
n.

ThusSn ≤ 2
√
n = O(

√
n) as desired.

We can generalize the grouping idea to prove the following:

Hn < kn1/k (76)

for any integerk ≥ 2. We break the summationHn intok subsums,Hn = An(1)+An(2)+· · ·+An(k)
whereAn(1) comprises the first

⌈
n1/k

⌉
terms ofHn, An(2) comprises the next

⌈
n2/k

⌉
−
⌈
n1/k

⌉
terms,

etc, where in general,An(j) comprises the next
⌈
nj/k

⌉
−
⌈
n(j−1)/k

⌉
terms. It is easy to see that each

An(j) is bounded byn1/k and this proves (76). This proves thatHn is O(nc) for anyc > 0. This also
implies

Hn = o(nc), logb n = o(nc).

EXERCISES

Exercise 6.1: For each function, determine its growth type (this could mean “neither polynomial-type
nor exponential-type”). You may use any known closure properties mentioned in the text, or argue
from first principles:
(a)2n

2

, (b) (lg lg n)2 (c) n/ logn, ♦

Exercise 6.2: Verify that the examples in (65), (66) and (67) are, indeed, as claimed, polynomial type
or exponential type. ♦

Exercise 6.3: Let Tn be a complete binary tree withn ≥ 1 nodes. Son = 2h+1 − 1 whereh is the
height ofTn. Suppose an algorithm has to visit all the nodes ofTn and at each node of height
i ≥ 0, expend(i + 1)2 units of work. LetT (n) denote the total work expended by the algorithm
at all the nodes. Give a tight upper and lower bounds onT (n). ♦
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Exercise 6.4: (a) Show that the summation
∑n

i≥2(lg n)
lgn is neither polynomial-type nor exponential-

type.
(b) Estimate this sum. ♦

Exercise 6.5: For this problem, please use elementary estimates (arguments from first principles). Do
not use calculus, properties oflog x such asx/ log x → ∞, etc. Show thatHn = o(nα) for any
α > 0. HINT: Generalize the argument in the text. ♦

Exercise 6.6: Use the method of grouping to show thatS(n) =
∑n

i=1
lg i
i isΩ(lg2 n). ♦

Exercise 6.7: Give theΘ-order of the following sums: if you use our summation rules,then you must
show that the terms has the appropriate growth types.
(a)S =

∑n
i=1

√
i.

(b)S =
∑n

i=1 lg(n/i). ♦

Exercise 6.8: Let f(i) = fn(i) = i−1
n−i+1 . The sumF (n) =

∑n
i=1 fn(i) is neither polynomial-type

nor exponential-type. Give aΘ-order bound onF (n). HINT: transform this into something
familiar. ♦

Exercise 6.9: Can our summation rules forS(n) =
∑n

i=1 f(i) be extended to the case wheref(i) is
“decreasing polynomially”, suitably defined? NOTE: such a definition must somehow distinguish
betweenf(i) = 1/i andf(i) = 1/(i2), since in one caseS(n) diverges and in the other it
converges asn → ∞. ♦

END EXERCISES

§7. Domain Transformation

So our goal for a general recurrence is to transform it into the standard form. You may think of
change of domain as a “change of scale”. Transforming the domain of a recurrence equation may
sometimes bring it into standard form. Consider

T (N) = T (N/2) +N. (77)

We define
t(n):=T (2n), N = 2n.

This transforms the originalN -domain into then-domain. The new recurrence is now in standard form,

t(n) = t(n− 1) + 2n.

By DIC, we may choose the boundary conditiont(n) = 0 for all n < 0, we get the descending sum
t(n) =

∑n
i≥0 2

i. If b = n − ⌊n⌋ = {n} we turn this into an ascending sumt(n) =
∑n−b

j=0 2
n−j =

2b
∑n−b

j=0 2
j which we know how to sum:t(n) = 2b(2n+1−b−1) = 2n+1−2b; hence,T (N) = 2N−2b.

Hey, choose
t(x) = T (2x) = 21+x

for −1 ≤ x < 0 to
achieve the simpler

solution:T (N) = 2N
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¶28. Logarithmic transform. More generally, consider the recurrence

T (N) = T

(
N

c
− d

)
+ F (N), c > 1, (78)

andd is an arbitrary constant. It is instructive to begin with thecased = 0. Consider the “logarith-
mic transformation” of the argumentN to the new argumentn:= logc(N). ThenN/c transforms to SoN = cn

logc(N/c) = n− 1. ThenT (N) = T (N/c) + F (N) transforms into the new recurrence

t(n) = t(n− 1) + f(n)

where we define
t(n):=T (cn) = T (N), f(n):=F (N).

The preceding manipulation exploits some implicit conventions:N ↔ n, T ↔ t, F ↔ f . This might
be confusing in more complicated situations, so let us make the connection betweent andT more
explicit. Letτ denote thedomain transformation function ,

τ(N):= logc(N), τ−1(n) = cn

Thent(τ(N)) is defined to beT (N), valid for large enoughN . In order for this to be well-defined, we
“ n” is a short-hand for

“ τ(N)”
needτ to have an inverse for large enoughn. Then we can write

t(n):=T (τ−1(n)).

We now return to the general case whered is an arbitrary constant. Note that ifd < 0 then we
must assume thatN is sufficiently large (how large?) so that the recurrence (78) is meaningful (i.e.,
(N/c)− d < N ). The following “generalized logarithmic transformation”

n:=τ(N) = logc(N +
cd

c− 1
) (79)

will reduce the recurrence to standard form. To see this, note that the inverse transformation is

N := cn − cd

c− 1

= τ−1(n)

(N/c)− d = cn−1 − d

c− 1
− d

= cn−1 − cd

c− 1

= τ−1(n− 1).

Writing t(n) for T (τ−1(n)) andf(n) for F (τ−1(n)), we convert equation (78) to

t(n) = T (τ−1(n)) (by definition oft(n))
= T (N) (N = τ−1(n))
= T ((N/c)− d) + F (N) (expansion)
= T (τ−1(n− 1)) + F (τ−1(n)) (domain transform)
= t(n− 1) + f(n) (definition oft(n) andf(n))
=

∑n
i≥1 f(i) (telescopy and by DIC)

To finally “solve” for t(n) we need to know more about the functionF (N). For example, ifF (N) is a
polynomially bounded function, thenf(n) = F (cn− cd

c−1 ) would beΘ(F (cn)). This is the justification
for ignoring the additive term “d” in the equation (78).
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¶29. Division transform. Notice that the logarithmic transform case does not quite capture the fol-
lowing closely related recurrence

T (N) = T (N − d) + F (N), d > 0. (80)

It is easy to concoct the necessary domain transformation: replaceN by n = N/d and substituting

t(n) = T (dn)

will transform it to the standard form,

t(n) = t(n− 1) + F (dn).

Again, we can explicitly introduce the “division transform” function τ(N) = N/d, etc.

¶30. General Pattern. In general, we considerT (N) = T (r(N))+F (N) wherer(N) < N is some
function. We want a domain transformn = τ(N) so that

τ(r(N)) = τ(N) − 1. (81)

The generalized logarithm transform (79) is of this type. Here is another example: ifr(N) =
√
N we

may choose
τ(N) = lg lg(N). (82)

Then we see that

τ(
√
N) = lg(lg(

√
N)) = lg(lg(N)/2) = lg lgN − 1 = τ(N) − 1.

Applying this transformation to the recurrence

T (N) = T (
√
N) +N, (83)

we may definet(n):=T (τ−1(n)) = T (22
n

) = T (N), thereby transforming the recurrence (83) to to
t(n) = t(n− 1) + 22

n

.

Note that the transformation (82) may be regarded as two applications of the logarithmic transform.
Domain transformation can be confusing because of the difficulty of keeping straight the similar-looking
symbols, ‘n’ versus ‘N ’ and ‘t’ versus ‘T ’. Of course, these symbols are mnemonically chosen. When
properly used, these conventions reduce clutter in our formulas. But if they are confusing, you can
always fall back to the use of the explicit transformation functions such asτ .

EXERCISES

Exercise 7.1: Solve recurrence (78) in these cases:
(a)F (N) = Nk.
(b)F (N) = logN . ♦

Exercise 7.2: (a) Solve the following four recurrences using domain transformation:

T (N) = T (N/2) +





lgN
1
1/ lgN

1/ lg2 N

.

(b) Generalize the above result: solve the recurrenceT (N) = T (N/2)+ lgcN for all real values
of c. ♦
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Exercise 7.3: Justify the simplification step (iv) in§1 (where we replace⌈n/2⌉ by n/2). ♦

Exercise 7.4: Construct examples where you need to compose two or more of the above domain trans-
formations. ♦

END EXERCISES

§8. Range Transformation

A transformation of the range is sometimes called for. For instance, consider

T (n) = 2T (n− 1) + n.

To put this into standard form, we could define

t(n):=
T (n)

2n

and get the standard form recurrence

t(n) = t(n− 1) +
n

2n
.

Telescoping gives us a series of the type in equation (49), which we know how to sum. Specifically,
t(n) =

∑n
x≥1

x
2x = Θ(1) asf(x) = x/2x is exponentially decreasing. HenceT (n) = Θ(2n).

We have transformed the range ofT (n) by introducing a multiplicative factor2n: this factor is
called thesummation factor. The reader familiar with linear differential equations will see an analogy
with “integrating factor”. (In the same spirit, the previous trick of domain transformation is simply a
“change of variable”.)

In general, a range transformation converts a recurrence ofthe form

T (n) = cnT (n− 1) + F (n) (84)

into standard form. Herecn is a constant depending onn. Let us discover which summation factor will
work. If C(n) is the summation factor, we get

t(n):=
T (n)

C(n)
,

and hence

t(n) =
T (n)

C(n)

=
cn

C(n)
T (n− 1) +

F (n)

C(n)

=
T (n− 1)

C(n− 1)
+

F (n)

C(n)
, (providedC(n) = cnC(n− 1))

= t(n− 1) +
F (n)

C(n)
.
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Thus we needC(n) = cnC(n− 1) which expands into

C(n) = cncn−1 · · · c1.

EXERCISES

Exercise 8.1: Solve the recurrenceT (n) = 5T (n−1)+f(n) for f(n) = 1, f(n) = lgn andf(n) = n.
♦

Exercise 8.2: Z.H. proposed to transform the recurrenceT (n) = 100T (n− 1) + f(n) by using range
transformationt(n) = T (n)/100. Convince Z.H. that this is futile. ♦

Exercise 8.3: Solve the recurrence (84) in the case wherecn = 1/n andF (n) = 1. ♦

Exercise 8.4: SolveT (N) = 100T (N/10) +N2/
√
logN using transformations. AssumelogN is to

the base10.

♦

Exercise 8.5: (a) Reduce the following recurrence

T (n) = 4T (n/2) +
n2

lgn

to standard form. Then solve it exactly whenn is a power of2.
(b) Extend the solution of part(a) to generaln using our generalized Harmonic numbersHx for
realx ≥ 2 (see§2). You may choose any suitable initial conditions, but please state it explicitly.

♦

Exercise 8.6: Repeat the previous question for the following recurrences:
(a)T (n) = 4T (n/2) + n2

lg2 n

(b) T (n) = 4T (n/2) + n2
√
lgn

. ♦

END EXERCISES

§9. Differencing and QuickSort

Summation is the discrete analogue of integration. Extending this analogy, we now introduce the
differencing as the discrete analogue of differentiation. Thus differencing is the inverse of summation.
The differencing operation∇ applied to any complexity functionT (n) yields another function∇T
defined by

(∇T )(n) = T (n)− T (n− 1).
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Differentiation often simplifies an equation: thus,f(x) = x2 is simplified to the linear equation
(Df)(x) = 2x, using the differential operatorD. Similarly, differencing a recurrence equation for
T (n) may lead to a simpler recurrence for(∇T )(n). Indeed, the “standard form” (60) can be rewritten
as

∇t(n) = f(n).

This is just an equation involving a difference operator — the discrete analogue of a differential equa-
tion.

For example, consider the recurrence

T (n) = n+

n−1∑

i=1

T (i).

This recurrence does not immediately yield to the previous techniques. But note that

(∇T )(n) = 1 + T (n− 1).

HenceT (n) − T (n − 1) = 1 + T (n − 1) andT (n) = 2T (n − 1) + 1, which can be solved by the
method of range transformation. (Solve it!)

¶31. QuickSort. A well-known application of differencing is the analysis ofthe QuickSort algorithm
of Hoare. We remark that the QuickSort paradigm is extremelypowerful and is capable to a profound
generalization to many problems in Computational Geometry. Hence it is worthwhile grasping the key
ideas of this algorithm and its analysis.

In QuickSort, we randomly pick a “pivot” elementp. If p is theith largest element, this subdivides
the n input elements intoi − 1 elements less thanp andn − i elements greater thanp. Then we
recursively sort the subsets of sizei− 1 andn− i. For a detailed description of QuickSort, including a
different analysis, see Lecture VIII. The recurrence is

T (n) = n+
1

n

n−1∑

i=0

(T (i− 1) + T (n− i)), (85)

since for eachi, the probability that the two recursive subproblems in QuickSort are of sizesi andn−i is
1/n. The additive factor of “n” indicates the cost (up to a constant factor) to subdivide the subproblems,
and there is no cost in “merging” the solutions to the subproblems. The recurrence (85) is an example
of a full-history recurrence , so-called becauseT (n) depends onT (m) for all smaller values ofm.

Simplifying (85),

T (n) = n+ 2
n

∑n−1
i=0 T (i)

nT (n) = n2 + 2
∑n−1

i=0 T (i) [Multiply by n]
(n− 1)T (n− 1) = (n− 1)2 + 2

∑n−2
i=0 T (i) [Substituten by n− 1]

nT (n)− (n− 1)T (n− 1) = 2n− 1 + 2T (n− 1) [Differencing operator fornT (n)]
nT (n) = 2n− 1 + (n+ 1)T (n− 1) [Simplify]
T (n)
n+1 = 2

n+1 − 1
n(n+1) +

T (n−1)
n [Divide by n(n+ 1) (range transform)]

t(n) = 2
n+1 − 1

n(n+1) + t(n− 1) [Definet(n) = T (n)/(n+ 1)]
= 2(Hn+1 − 1)−∑n

i=1
1

i(i+1) + t(0) [Telescoping a standard form]

Thus we see thatt(n) ≤ 2Hn+1 (assumingt(0) = 0) and hence we conclude

T (n) = 2n lnn+O(n).

It is also easy to get the exact solution fort(n), by evaluating the sum
∑n

i=1
1

i(i+1) (in a previous
Exercise).
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¶32. QuickSelect. The following recurrence is a variant of the QuickSort recurrence, and arises in
the average case analysis of the QuickSelect algorithm:

T (n) = n+
T (1) + T (2) + · · ·+ T (n− 1)

n
(86)

In the selection problem we need to “select thekth largest” wherek is given (This problem is studied
in more detail in Lecture XXX). Recursively, after splitting the input set into subsets of sizesi− 1 and
n− i (as in QuickSort), we only need to continue one one of the two subsets (unless the pivot element
is already thekth largest that we seek). This explains why, compared to (), the only change in (86) is
to replace the constant factor of2 to 1. To solve this, let us first multiply the equation byn (a range
transform!). Then, on differencing, we obtain

nT (n)− (n− 1)T (n− 1) = 2n− 1 + T (n− 1)

nT (n)− nT (n− 1) = 2n− 1

T (n)− T (n− 1) = 2− 1

n
T (n) = 2n− lnn+Θ(1).

Again, note that we essentially obtain an exact solution.

¶33. Improved QuickSort. We further improve the constants in QuickSort by first randomly choos-
ing three elements, and picking the median of these three to be our pivot. The resulting recurrence is
slightly more involved:

T (n) = n+
n−1∑

i=2

pi[T (i− 1) + T (n− i)] (87)

where

pi =
(i− 1)(n− i)(

n
3

)

is the probability that the pivot element gives rise to subproblems of sizesi− 1 andn− i.

See Lecture 8 on Probabilistic Analysis where we further discuss QuickSort.

EXERCISES

Exercise 9.1: Solve the following recurrences toΘ-order:

T (n) = n+
2

n

n−1∑

i=⌊n/2⌋
T (i).

HINT: Because of the upper bound⌊n/2⌋, the function∇T (n) has different behavior depending
on whethern is even or odd. Simple differencing does not seem to work wellhere. Instead, we
suggest the guess and verify-by-induction approach. ♦

Exercise 9.2: Generalize the previous question. Consider the recurrence

T (n) = n+
c

n

n−1∑

i=1+⌊αn⌋
T (i)
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wherec > 0 and0 ≤ α < 1 are constants.
(a) Solve the recurrence forc = 2.
(b) SolveT (n) whenc = 4 andα = 0.
(c) Fix c = 4. Determine the range ofα such thatT (n) = Θ(n). You need to argue whyT (n) is
notΘ(n) for α outside this range.
(d) Determine the solution of this recurrence for generalc, α. ♦

Exercise 9.3: (a) Suppose that in the base case of QuickSort, we do nothing whenever the size of the
subarray to be sorted has10 or less keys. Call this “QuirkSort”.
(i) Describe the nature of the output fromQuirkSort.
(ii) Describe a linear time method to take the output ofQuirkSort and make it into a sorted
array.
(iii) Explain why your method in (ii) takes linear time. ♦

Exercise 9.4:
(a) Show that every polynomialp(X) of degreed can be written as a sum of binomial coefficients
with suitable coefficientsci:

p(X) = cd

(
X

d

)
+ cd−1

(
X

d− 1

)
+ · · ·+ c1

(
X

1

)
+ c0.

(b) Assume the above form forp(X), express(∇p)(X) as a sum of binomial coefficients. HINT:
what is∇

(
m
n

)
? ♦

END EXERCISES

§10. The Master Theorem

We first look at a recurrence that does fall under our transformation techniques: themaster recur-
rence is

T (n) = aT (n/b) + f(n) (88)

wherea > 0, b > 1 are real constants andf(n) is the “forcing” (or driving) function. Our goal is to
prove the so-calledMaster Theoremwhich provides a “cookbook” formula for solutions of the master
recurrence. one highlight of this

chapter!

THEOREM 10 (Master Theorem).The master recurrence (88) has solution:

T (n) = Θ





nlogb a, if f(n) = O(n−ǫ+logb a), for someǫ > 0, CASE(−)
nlogb a logn, if f(n) = Θ(nlogb a), CASE(0)
f(n), if af(n/b) ≤ cf(n) for somec < 1. CASE(+)

We have already seen several instances of this theorem. The solution to the mergesort recurrence
T (n) = 2T (n/2) + n falls under CASE(0) of this theorem. Another famous one is Strassen’s 1969
algorithm for multiplying twon×n matrices in subcubic time. Strassen’s recurrenceT (n) = 7T (n/2)+
n2, has solutionT (n) = Θ(nlg 7) which falls under CASE(−).

Evidently, the Master recurrence is the recurrence to solveif we manage to solve a problem of size
n by breaking it up intoa subproblems each of sizen/b, and merging thesea sub-solutions in time
f(n). The recurrence was systematically studied by Bentley, Haken and Saxe [1]. Solving it requires a
combination of domain and range transformation.
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¶34. Proof of the Master Theorem. First apply a domain transformation by defining a new function
t(k) from T (n), wherek = logb(n):

t(k):=T (bk) (for all k ∈ R). (89)

Then (88) transforms into
t(k) = a t(k − 1) + f(bk).

Next, transform the range by using the summation factor1/ak. This defines a functions(k) from t(k):

s(k):=t(k)/ak. (90)

Now s(k) satisfies a recurrence in standard form:

s(k) =
t(k)

ak
=

t(k − 1)

ak−1
+

f(bk)

ak

= s(k − 1) +
f(bk)

ak

Telescoping, we get

s(k) = s({k}) +
k∑

i≥1

f(bi)

ai
=

k∑

i≥1

f(bi)

ai
. (91)

where{k} is the fractional part ofk (recall thatk is real), and by DIC, we choses(x) = 0 for x < 1.
We now back substitute this solution to determine the solution in terms of the original functionT (n):

T (n) = t(logb n) (by (89))
= alogb ns(logb n) (by (90))

= nlogb a
∑logb n

i≥1
f(bi)
ai . (by (91))

This is the general solution to the master recurrence. It is instructive to notice that our derivation is
completely rigorous thanks to our use of descending sums. But T (n) is expressed as an open sum, and
we need a closed formula.Now, we cannot proceed further without knowing the nature ofthe function
f .

We need another important insight. Let us call the function

W (n) = nlogb a (92)

the watershed function for our recurrence, andlogb a the watershed exponent. The Master Theo-
rem considers three cases forf . These cases are obtained by comparingf to W (n). The easiest

The Master Theorem is
a trichotomy!

case is wheref andW have the sameΘ-order (CASE(0)). The other two cases are wheref grows
“polynomially slower” (CASE(−)) or “polynomially faster” (CASE(+)) than the watershed function.

CASE(0) This is whenf(n) satisfies

f(n) = Θ(nlogb a) = Θ(alogb n). (93)

Thenf(bi) = Θ(ai) and hence

s(k) =

k∑

i≥1

f(bi)/ai = Θ(k). (94)
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CASE(−) This is whenf(n) grows polynomially slowerthan the watershed function:

f(n) = O(n−ǫ+logb a), (95)

for someǫ > 0. Thenf(bi) = O(bi(logb a−ǫ)) = O1(a
ib−iǫ) (using the subscripting notation for

O). Sos(k) =
∑k

i≥1 f(b
i)/ai =

∑
O1(b

−iǫ) = O2(1), sinceb > 1 impliesb−ǫ < 1. Hence

s(k) = Θ(1). (96)

CASE(+) This is whenf(n) satisfies theregularity condition

af(n/b) ≤ cf(n) (ev.) (97)

for somec < 1. Expanding this,

f(n) ≥ a

c
f
(n
b

)
≥ a2

c2
f
( n

b2

)
≥ · · ·

≥
(a
c

)⌊logb n⌋
f(C)

= Ω(nǫ+logb a),

whereǫ = − logb c > 0, andC = n/b⌊logb n⌋. We have just proven that the regularity condition
implies thatf(n) grows polynomially faster than the watershed function:

f(n) = Ω(nǫ+logb a). (98)

It follows from (97) thatf(bk−i) ≤ (c/a)if(bk). So

s(k) =
∑k

i≥1 f(b
i)/ai =

∑⌊k−1⌋
i=0 f(bk−i)/ak−i (by (41), switch to ascending sum!)

≤ ∑⌊k−1⌋
i=0 (c/a)if(bk)/ak−i (by regularity off )

= f(bk)/ak
(∑⌊k−1⌋

i=0 ck−i
)

= O
(

f(bk)
ak

)
,

sincec < 1. But clearly,s(k) ≥ f(bk)/ak. Hence we have

s(k) = Θ(f(bk)/ak). (99)

Summarizing,

s(k) = Θ





1, CASE(−), see (96),
k, CASE(0), see (94),
f(bk)/ak, CASE(+), see (99).

Back substituting usings(k) = t(k)/ak, we get

t(k) = aks(k) = Θ





ak, CASE(−)
akk, CASE(0)
f(bk), CASE(+).

Further back substitution usingT (n) = t(logb n) yields

T (n) = t(logb n) = Θ





nlogb a, CASE(−)
nlogb a logn, CASE(0)
f(n), CASE(+)

This concludes our proof of the Master Theorem (Theorem10).
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¶35. Uses of the Master Theorem. Informally, we describe CASE(+) as the case when the driving
function f(n) is polynomially faster thanW (n). But the actual requirement is somewhat stronger,
namely the regularity condition (97). In applications of the Master Theorem, this case is usually the
least convenient to check.

We can take advantage of the fact that checking if a functionf(n) is polynomially faster (or slower)
thanW (n) is usually easier to check (just by “inspection”). Hence we normally begin by first verifying
the polynomially faster condition, equation (98). If so, we then check the stronger regularity condition
(97). To illustrate this process, consider the recurrence

T (n) = 3T (n/10) +
√
n/ lgn.

We note thatα = log10 3 < log9 3 = 1/2 and sonα+ǫ ≤ √
n/ lgn (ev.), confirming equation (98). We

now suspect that CASE(+) holds, and must verify that

cf(n) ≥ 3f(n/10) (100)

for some0 < c < 1. This holds, provided

c
√
n

lgn ≥ 3

√
n/10

lg(n/10)

⇐ c ≥
√
9/10 lgn

lg(n/10) .

Since(lg n)/(lg(n/10)) → 1 asn → ∞, it is sufficient to choose anyc satisfying1 > c >
√
9/10.

The polynomial version of the theorem is perhaps most useful:

COROLLARY 11. Leta > 0, b > 1 andk be constants. The solution toT (n) = aT (n/b) + nk is given
by

T (n) = Θ





nlogb a, if logb a > k
nk, if logb a < k
nk lg n, if logb a = k

What if the valuesa, b in the master recurrence are not constants but depends onn? For instance,
attempting to apply this theorem to the recurrence

T (n) = 2nT (n/2) + nn

(with a = 2n andb = 2), we obtain the false conclusion thatT (n) = Θ(nn log n). See Exercises.
The paper [18] treats the caseT (n) = a(n)T (b(n)) + f(n). For other generalizations of the master
recurrence, see [17].

¶36. How important is the regularity condition? In other words, if we remove the regularity condi-
tion, what do we need in order to conclude CASE(+)? Naturally, the requirementf(n) = Ω(nǫ+logb a)
must be assumed; CLAIM: theadditional assumption thatf(n) is polynomial-type is sufficient.This
is an advantage over requiring the regularity condition because we know many polynomial-type func-
tions, usually by application of closure properties of polynomial-type functions. Incidentally, note that
f(n) =

√
n/ lgn in the above example is polynomial-type, it does not come from our closure proper-

ties.

We now prove the CLAIM. First recall thats(k) =
∑k

i=⌊k−1⌋ f(b
k−i)/ak−i after the switch to

ascending sum. Also,k = logb n. It is clear that iff is polynomial-type, thenf(n) ≤ Kf(n/b) (ev.)
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for someK > a. It follows thatf(n) ≤ Kif(n/bi) (ev.) for someK > a. Therefore:

s(k) =

k∑

i=⌊k−1⌋
f(bk−i)/ak−i

≤ f(bk)

ak

k∑

i=⌊k−1⌋

f(bk−i)

f(bk)
ai

≤ f(bk)

ak

k∑

i=⌊k−1⌋

ai

Ki

= Θ(f(bk)/ak).

¶37. Graphic Interpretation of the Master Recurrence. We imagine a recursion tree with branch-
ing factor ofa at each node, and every leaf of the tree is at levellogb a. We further associate a “size”
of n/bi and “cost” off(n/bi) to each node at leveli (root is at leveli = 0). ThenT (n) is just the sum
of the costs at all the nodes. The Master Theorem says this: Incase (0), the total cost associated with
nodes at any level isΘ(nlogb a) and there arelogb n levels giving an overall cost ofΘ(nlogb a logn). In
case (+1), the cost associated with the root isΘ(T (n)). In case (−1), the total cost associated with the
leaves isΘ(T (n)). Of course, this “recursion tree” is not realizable unlessa andlogb a are integers:

Draw the recursion
tree with a grain of

salt!but it is a useful heuristic for remembering how the Master Theorem works.

¶38. Beyond the Master Theorem. Time to make a confession: this section is located deep in
this Chapter. In reality, we could have proven the Master Theorem using a direct argument, after we
introduced Basic Sums in§5. But the detour through summation techniques, domain and range trans-
formations has its value: it would allow us to obtain tight bounds even when the driving function has
forms such asn logn or n2/ logn.

Indeed, several authors have extended the Master Theorem todriving functions of the formf(n) =
nk logc n for all k, c ∈ R. Indeed, ifk is not equal to the watershed constant, we already know the
answer from the Master Theorem. So the interesting case is when k = logb a. Then there are four
possible cases: no more trichotomy!

T (n) = Θ





f(n) if f(n)satisfies the regularity condition CASE(+)
W (n) logc+1 n if c > −1 CASE(0)
W (n) log logn if c = −1 CASE(1)
W (n) else. CASE(−)

Note that CASE(1) is new. But we remark that even this generalization does notcapture the recurrence
that comes from the Schönhage-Strassen recurrence for integer multiplication. For this, we need fur-
ther generalizations. The idea is to considerf(n) to be any product of powers of iterated logarithms
(which we callEL-functions). Such an “ultimate” theorem is proved in [19] with infinitely many cases
(CASE(0) and CASE(1) are just special instances).

In the next section, however, we consider generalizations of a different nature – we look at a gener-
alization of the Master Recurrence itself.

EXERCISES
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Exercise 10.1:Which is the faster growing function:T1(n) or T2(n) where

T1(n) = 6T1(n/2) + n3, T2(n) = 8T2(n/2) + n2.

♦

Exercise 10.2:SupposeT (n) = n+ 3T (n/2) + 2T (n/3). Joe claims thatT (n) = O(n), Jane claims
thatT (n) = O(n2), John claims thatT (n) = O(n3). Who is closest to the truth? You must
justify your answer by appeal to the standard Master Theoremonly. ♦

Exercise 10.3:Use the Master Theorem to solve the following recurrences arising from matrix multi-
plication. Be sure to justify the case you choose.
(a) It is easy to see how to recursively multiply twon × n matrices asymptoticallyT (n) =
8T (n/2) + n2 time:

[
a b
c d

] [
a′ b′

c′ d′

]
=

[
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

]

What is the solutionT (n) using Master theorem?
(b) Strassen (1969) showed that you can actually save one sub-matrix multiplication, giving the
recurrenceS(n) = 7S(n/2) + n2. Use the Master theorem to determineS(n).
(c) Coppersmith and Winograd (1990) has the current fastestalgorithm for matrix multiplication,
achieving a bound ofO(n2.376) time. Suppose you read in Scientific American that someone has
discovered a marvelous way of multiplying2 × 2 matrices using onlya multiplications, and the
recurrenceT (n) = aT (n/2) + n2 yields a faster algorithm than Coppersmith-Winograd. What
is the largest possible value ofa? What do you think is the likelihood of such a result? ♦

Exercise 10.4:State theΘ-order solution to the following recurrences:
“State” means: no

proofs needed

T (n) = 10T (n/10)+ log10 n.

T (n) = 100T (n/10)+ n10.

T (n) = 10T (n/100)+ (logn)log log n.

T (n) = 16T (n/4) + 4lgn.

♦

Exercise 10.5:Solve the following using the Master’s theorem.
(a)T (n) = 3T (n/25) + log3 n
(b) T (n) = 25T (n/3) + (n/ logn)3

(c) T (n) = T (
√
n) + n.

HINT: in the third problem, the Master theorem is applicableafter a simple transformation. ♦

Exercise 10.6:Sometimes the Master Theorem is not applicable directly. But it can still be used to
yield useful information. Use the Master Theorem to give as tight an upper and lower bound you
can for the following recurrences:
(a)T (n) = n3 log3 n+ 8T (n/2)
(b) T (n) = n2/ log logn+ 9T (n/3)
(c) T (n) = 4T (n/2) + 3T (n/3) + n. ♦
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Exercise 10.7:We want to improve on Karatsuba’s multiplication algorithm. We managed to subdivide
a problem of sizen into a ≥ 2 subproblems of sizen/4. After solving thesea subproblems, we
could combine their solutions inO(n) time to get the solution to the original problem of sizen.
To beat Karatsuba, what is the maximum valuea can have? ♦

Exercise 10.8:Suppose algorithmA1 has running time satisfying the recurrence

T1(n) = aT (n/2) + n

and algorithmA2 has running time satisfying the recurrence

T2(n) = 2aT (n/4) + n.

Here,a > 0 is a parameter which the designer of the algorithm can choose. Compare these two
running times for various values ofa. ♦

Exercise 10.9:Say whetherT1(n) ≺≺ T2(n) or T1(n) ≻≻ T2(n) where

T1(n) = 8T1(n/4) + n1.5, T2(n) = 6T2(n/3) + n2.

Briefly justify using Master Theorem; do not use calculators. ♦

Exercise 10.10:Suppose
T0(n) = 18T0(n/6) + n1.5

and
T1(n) = 32T1(n/8) + n1.5.

Which is the correct relation:T0(n) = Ω(T1(n)) or T0(n) = O(T1(n))? Do this exercise
without using a calculator or its equivalent; instead, use inequalities such aslog8(x) < log6(x)
(for x > 1) andlog6(2) < 1/2. ♦

Exercise 10.11:How is the regularity condition onf(n) and the condition thatf(n) is polynomial-type
related? What can you say about the sum

∑n
i=1 f(i) whenf satisfies the regularity condition for

somea, b, c? ♦

Exercise 10.12:Solve the master recurrence whenf(n) = nlogb a logk n, for all k ∈ R. You need to
use the transformation methods in order to determine theΘ-order correctly. (Be careful when
k = −1.) ♦

Exercise 10.13:Show that the master theorem applies to the following variation of the master recur-
rence:

T (n) = a · T (n+ c

b
) + f(n)

wherea > 0, b > 1 andc is arbitrary. ♦

Exercise 10.14:
(a) SolveT (n) = 2nT (n/2) + nn by direct expansion.
(b) To what extent can you generalize the Master theorem to handle some cases ofT (n) =
anT (n/bn) + f(n) wherean, bn are both functions ofn? ♦
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Exercise 10.15:Let W (n) be the watershed function of the master recurrence. In what sense is the
“watershed function” of the next order equal toW (n)/ lnn? ♦

Exercise 10.16:
(a) Let

s(n) =

n∑

i=1

lg i

i

Prove thats(n) = Θ(lg2 n) directly (without using our theory of growth types). For thelower
bound, we want you to use real induction, and the fact that forn ≥ 2, we have

ln(n)− (2/n) < ln(n− 1) < (lnn)− (1/n).

(b) Using the domain/range transformations to solve the following recurrence:

T (n) = 2T (n/2) + n
lg lg n

lg n
.

♦

Exercise 10.17:Consider the recurrenceT (n) = aT (n/b) + n4

log n wherea > 0 andb > 1. Describe
the setS of all pairs(a, b) for which the Master Theorem gives a solution for this recurrence. Do
not describe the solutions. You must describe the setS in the simplest possible terms. ♦

Exercise 10.18:The following recurrences arises in the analysis of a parallel algorithm for hidden-
surface removal (Reif and Sen, Proc. ACM Symp. on Comp. Geometry, 1988):

T (n) = T (2n/3) + lg n lg lg n

Another version of the algorithm [18] leads to

T (n) = T (2n/3) + (lg n)/ lg lgn.

Solve forT (n) in both cases. ♦

END EXERCISES

§11. The Multiterm Master Theorem

The Master recurrence (88) can be generalized to the followingmultiterm master recurrence:

T (n) = f(n) +

k∑

i=1

aiT

(
n

bi

)
(101)

wherek ≥ 1, ai > 0 (for all i = 1, . . . , k) andb1 > b2 > · · · > bk > 1. Whenk = 2, we have the
following examples of2-term master recurrences:

T (n) = T (c1n) + T (c2n) + n, (c1 + c2 < 1). (102)

T (n) = T (n/2) + T (n/4) + logn. (103)

The first recurrence (102) arise in linear time selection algorithms (see Chapter XI). There are many
versions of this algorithm with different choices for the constantsc1, c2. E.g.,c1 = 7/10, c2 = 1/5.
The second recurrence arose in Computational Geometry. Edelsbrunner and Welzl [3] introduced a data
structure calledconjugation tree for solving thepoint retrieval problem . The exercises will go over
this data structure.
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¶39. Reducing multiterm to single term master recurrence. Before providing the general solution,
let us see how our previous techniques would fare here. Firstof all, rote expansion seems hopeless, even
for a two-term master recurrence. On a more positive note, the method of real induction can provide

The student is invited
to expand the 2-term

recurrences...

us with confirmations of guessed upper and lower bounds – we had already seen such examples. The
catch is how do we go about guessing these bounds. But here is an interesting method to use the Master
Theorem to provide upper and lower bounds. The idea is to convert our multiterm recurrence into
a master recurrence: leta:=

∑k
i=1 ai, b:=min {bi : i = 1, . . . , k}, andc:=max {bi : i = 1, . . . , k}.

This defines two master recurrences

U(n) = f(n) + aU(n/b), (104)

L(n) = f(n) + aL(n/c). (105)

Clearly,T (n) = O(U(n)) andT (n) = Ω(L(n)). Then the Master Theorem implies the bound

T (n) =

{
O(f(n) logn+ nlogb a),
Ω(f(n) + nlogc a).

(106)

Applying this to the conjugation tree recurrence (103), we obtain

T (n) =

{
O(n),
Ω(

√
n).

But suppose we first expand our recurrence once:

T (n) = T (n/2) + T (n/4) + logn

= T (n/4) + T (n/8) + log(n/2) + T (n/4) + logn

= 2T (n/4) + T (n/8) + Θ(logn).

Now the application of (106) yields the sharper bound:

T (n) =

{
O(nlog4 3),
Ω(nlog8 3).

It is clear that this trick can be repeated. We remark that thelower bound can sometimes be improved by
omitting terms before taking the maximum to formc. E.g., forT (n) = T (n/2)+T (n/3)+T (n/9)+1,
the above scheme yieldsT (n) = Ω(

√
n), but if we first drop the termT (n/9), we get the improvement

T (n) = Ω(nlog3 2).

¶40. Multiterm Generalization of Master Theorem. To state the multiterm analogue of the Master
Theorem, we must generalize two concepts from the Master Theorem: (a) Associated with the recur-
rence (101) is thewatershed constant, a real numberα such that

k∑

i=1

ai
bαi

= 1. (107)

Clearlyα exists and is unique since the sum (107) tends to0 asα → ∞, and tends to∞ asα → −∞.
As usual, letW (n) = nα denote the watershed function. (b) The recurrence (101) gives rise to a
generalized regularity conditionon the driving (or forcing) functionf(n), namely,

k∑

i=1

aif(n/bi) ≤ cf(n) (ev..) (108)

for some0 < c < 1.
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THEOREM 12 (Multiterm Master Theorem).

T (n) = Θ





nα logn if f(n) = Θ(nα)
nα if f(n) = O(nα−ε), for someε > 0,
f(n) if f satisfies the regularity condition (108).

Before proving this result, let us see its application to theconjugation tree recurrence (103). The
watershed constantα satisfies the equation12α + 1

4α = 1. Writing x = 1
2α , we get the equation

x + x2 = 1. The positive solution to this quadratic equation isx = 2−α = (−1 +
√
5)/2. This yields

α = 1 − lg(−1 +
√
5) ∼ 0.695. Edelsbrunner and Welzl said that they obtained thisα by “an analogy

with Fibonacci recurrences”; but we now know that it can be systematically derived. They proved that
T (n) = O(nα); our theorem further shows that their bound isΘ-tight.

Proof of Multiterm Master Theorem.We use real induction.

CASE(0): Assume thatf(n) = Θ1(W (n)). We will show thatT (n) = Θ2(W (n) log n). We have

T (n) = f(n) +
∑k

i=1 aiT
(

n
bi

)

= Θ1(n
α) +

∑k
i=1 aiΘ2

((
n
bi

)α
log
(

n
bi

))
(by induction)

= Θ1(n
α) + Θ2(n

α)
[∑k

i=1
ai

bαi
log
(

n
bi

)]

= Θ1(n
α) + Θ2(n

α) [logn−D] , (whereD =
∑k

i=1
ai

bαi
log(bi) and using (107))

= Θ2(n
α logn).

Let us elaborate on the last equality. Supposef(n) = Θ1(n
α) amounts to the inequalitiesc1W (n) ≤

f(n) ≤ C1W (n) (ev.). We must choosec2, C2 such thatc2W (n) logn ≤ T (n) ≤ C2W (n) logn (ev.).
The following choice suffices:

C2 = C1/D, c2 = c1/D.

CASE(−): Assume0 ≤ f(n) ≤ D1n
α−ε for someε > 0. The lower bound is easy: assume

T (n/bi) ≥ c1(n/bi)
α (ev.) for eachi. Then10

T (n) = f(n) +
∑k

i=1 aiT
(

n
bi

)

≥ ∑k
i=1 aic1(

n
bi
)α (sincef(n) ≥ 0 and by induction)

= c1n
α.

The upper bound needs a slightly stronger hypothesis: assumeT (n/bi) ≤ C1n
α(1 − n−ε) (ev.). Then

T (n) = f(n) +
∑k

i=1 aiT
(

n
bi

)

≤ D1n
α−ε +

∑k
i=1 aiC1

(
n
bi

)α [
1−

(
n
bi

)−ε
]

(by induction)

= C1n
α − C1n

α−ε
[∑k

i=1
ai

bα−ε
i

−D1/C1

]

≤ C1n
α − C1n

α−ε

provided
∑k

i=1 ai/b
α−ε
i ≥ 1 + (D1/C1). Since

∑k
i=1 ai/b

α−ε
i > 1, we can certainly choose a large

enoughC1 to satisfy this.

CASE(+): The lower boundT (n) = Ω(f(n)) is trivial. As for upper bound, assumingT (m) ≤
10 The factf(n) ≥ 0 (ev.) is a consequence of “f ∈ O(nα−ε)” and the definition of the big-Oh notation.
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D1f(m) (ev.) wheneverm = n/bi,

T (n) = f(n) +
∑k

i=1 aiT
(

n
bi

)

≤ f(n) +
∑k

i=1 aiD1f(n/bi) (by induction)
= f(n) +D1cf(n) (by regularity)
≤ D1f(n) (if D1 ≥ 1/(1− c))

This concludes the proof of the Multiterm Master Theorem.

The use of real induction appears to be necessary in this proof: unlike the master recurrence, the
multiterm version does not yield to transformations. Again, the generalized regularity condition implies
thatf(n) = Ω(nα+ε) for someε > 0. This is shown by induction:

f(n) ≥ 1
c

∑k
i=1 aif(n/bi)

≥ 1
c

∑k
i=1 aiD(n/bi)

α+ε (by induction, for someD > 0)
= D

c n
α+ε

∑k
i=1

ai

bα+ε
i

= Dnα+ε (if we choosec =
∑k

i=1
ai

bα+ε
i

)

Since
∑k

i=1
ai

bαi
= 1, we should be able to choose aε > 0 to satisfy the last condition. Note that this

derivation imposes no condition onD, and soD can be determined based on the initial conditions. The
above Multiterm Master Theorem in this generality, including an additional fourth case, is first stated
and proved in [19].

EXERCISES

Exercise 11.1: It is important to have some method to approximate the watershed constants in multi-
term recurrences. Let us explore the 2-term case, as the technique clearly generalizes. Letα be
the watershed constant for the recurrenceT (n) = aT (n/b) + cT (n/d) + 1 wherea, c > 0 and
b, d > 1. SupposeP (x) = 1 − a

bx − c
dx By evaluating the sign ofP (x) (for any real number

x), we can decide whetherx > α or x = α or x < α. Call the evaluation of the sign ofP (x) a
probe.
(a) How many probes do you need to determine the first digit ofα? What about two digits? Three
digits? Ten digits?
(b) Supposea = 3, b = 2, c = 2, d = 3. Using your calculator, computeα to two digits.
(c) Write a program in your favorite language (scripting language is fine) to computeα to m
digits, for any inputa, b, c, d. ♦

Exercise 11.2:Using the Master Theorem (notMultiterm Master Theorem) to provide upper and lower
bounds on these recurrence functions. No proofs needed.
(a) state upper and lower bounds onT (n) where

T (n) = T (n/2) + T (n/4) +
√
n.

(b) State improved upper and lower bounds over part(a), by first expanding the recurrenceone
step and then invoking Master Theorem. ♦

Exercise 11.3:Prove tight upper and lower bounds onT (n) where:
(a)T (n) = n3 log3 n+ 9T (n/3).
(b) T (n) = n2 log3 n+ 9T (n/3). Using only the Master Theorem (not Multiterm Master Theo-
rem). Be sure to justify the cases used in the Master Theorem. ♦
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Exercise 11.4:Use the Master Theorem (not the Multiterm Master Theorem) to derive a sublinear
upper bound onT (n) = 2T (n/3) + T (n/10) + 1. Recall some tricks in the text. ♦

Exercise 11.5:Recall the 2-term recurrence from the analysis of conjugation tree:

T (n) = T (n/2) + T (n/4) + lg n.

Numerically determine the watershed constantα in this recurrence. Showα up to 5 decimal
places. We don’t presume any particular way to do this, except that you can only use an ordinary
scientific calculator. Tell us how you obtained your constant. ♦

Exercise 11.6:To understand the recurrenceT (n) = T (n/2)+T (n/3)+T (n/4)+n, we will explore
numerically the functionh(x) = 2−x + 3−x + 4−x. We want to determine theα such that
h(α) = 1. For a simple way to do this, use a user-friendly, powerful software likeMATLAB. For
instance, consider the following two lines ofMATLAB code:

>> h = @(x) 2.ˆ (-x) + 3.ˆ (-x) + 4.ˆ (-x);
>> for x = 0.9 : 0.1 : 1.2, display([x, h(x)]), end

The first line defines the functionh(x). The second line is a for-loop wherex begins with the value
0.9 and each iteration increases the value ofx by 0.1 until x = 1.2. Each iteration simply prints
the pair(x, h(x)) of values. This loop produces the values shown in the first of the following four
tables:

x h(x)

0.9000 1.1951
1.0000 1.0833
1.1000 0.9828
1.2000 0.8923

x h(x)

1.0700 1.0119
1.0800 1.0021
1.0900 0.9924
1.1000 0.9828

x h(x)

1.0810 1.0011
1.0820 1.0001
1.0830 0.9992
1.0840 0.9982

x h(x)

1.0820 1.0001
1.0821 1.0000
1.0822 0.9999
1.0823 0.9998

By changing the stepsize and limits of the for-loop, we can get more correct digits with run of
the for-loop. Each successive table above is obtained this way, each time giving us an extra digit
in the decimal expansion ofα. Thus,α ≈ 1.0821. How would you continue this experiment to
determine the first100 digits ofα? ♦

Exercise 11.7:Let M(n, k) be the number of worst case number of comparisons (in the comparison-
tree model) to find the rankk element amongn elements (for anyk = 1, . . . , n). Note that the
rank of an element in a set is the number of elements that are greater than or equal to it. When
k = ⌈n/2⌉, we call this themedian problem. Also, letM(n) = max {M(n, k) : k = 1, . . . , n}.
(i) It can be shown thatM(n) = M(n/5)+M(7n/10)+Cn for some constantC. Determine the
watershed constantα for this recurrence. We suggest you use a pocket calculator and determine
α up to 2 digits, using a simple binary search (one digit at a time).
(ii) Conclude from the Multiterm Master Theorem thatM(n) = Θ(n). ♦

Exercise 11.8:We return to the previous median problem with recurrenceM(n) = M(n/5) +
M(7n/10) + Cn. In this question, we are interested in constant factors, not just asymptotics.
(a) Determine the value ofC in this algorithm. For this purpose, use the fact that we can find the
median of five elements with6 comparisons (Exercise in Lecture I§3).
(b) Using Real Induction, show thatM(n) ≤ Kn (ev.). Determine the optima value ofK as a
function ofC. ♦

do not use our usual
simplification rule to
replaceC by1 here!
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Exercise 11.9:Jack has an algorithm whose complexity satisfies this recurrence:

Ja(n) = 2Ja(n/3) + Ja(2n/5) + n.

Jill’s algorithm satisfies
Ji(n) = Ji(2n/3) + 2Ji(n/5) + n.

Use the Multiterm Master Theorem to decide who has the more efficient algorithm. Here is
Willa Wong’s Python Script for doing these constants:

#!/usr/bin/python

from decimal import *
import math
def getValue(a1,b1,a2,b2):
i = Decimal(’1’)
while(i < 2):
value = Decimal(a1)/Decimal(math.pow(b1,i))

+ Decimal(a2)/Decimal(math.pow(Decimal(b2),i)) - Decimal(’1’)
if value < Decimal(’0.00001’):
return i
else:
i += Decimal(’0.00001’)

def main():
Tjack = getValue(Decimal(’2’), Decimal(’3’), Decimal(’1’), Decimal(’5’)/Decimal(’2’))
Tjill = getValue(Decimal(’1’), Decimal(’3’)/Decimal(’2’), Decimal(’2’), Decimal(’5’))
print Tjack, Tjill

if __name__ == "__main__":
main()

♦

Exercise 11.10:Let Jack and Jill functions of the previous question beJa(n) = Θ(nα) andJi(n) =
Θ(nβ). Instead of approximatingα andβ numerically to compare them, Ravi suggests the fol-
lowing more geometric method of comparison (which he thinksis more insightful and avoids the
use of calculators): Let

f(x) = 2(5x) + 6x, g(x) = 10x + 2(3x)4, h(x) = 15x.

Thenf(α) = h(α) andg(β) = h(β). It is easy to check thatα, β both lies between1 and2.
(a) Ravi claimed thath′(x) > g′(x) > f ′(x), whereh′(x) denotes derivative with respect tox.
Note thath(x) = ex ln(15) and thereforeh′(x) = ln(15)ex ln(15) = ln(15)15x.
(b) From this we can conclude thatg(x) will intersecth(x) at some value ofx that is greater than
that value of at whichf(x) intersectsh(x). In other words,β > α. That is, Jack’s algorithm is
faster than Jill’s.

Your job is to make all of Ravi’s arguments rigorous. Do you agree with Ravi that this is more
insightful and avoid calculators? ♦

Exercise 11.11:Let T (n) = 2T (n/3) + T (n/10) + 1. Use the Master Theorem to derive a sublinear
upper bound onT (n). ♦

Exercise 11.12:In the text, we sharpened our bounds for the conjugation treerecurrence functionT (n)
by expanding the recurrence (103) just once, and then applying (106),
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(a) Let us now expand (103) twice before applying (106). Verify that the new bounds are further
improvements.
(b) Show that this improvement be repeated indefinitely? ♦

Exercise 11.13:ConsiderT (n) = T (n/b1)+T (n/b2)+T (n/b3)+ 1 where1 < b1 ≤ b2 ≤ b3. What
is the lower bound onT (n) using (106)? Under what conditions onb1, b2, b3 can you obtain a
better bound by omitting the smallest term? ♦

END EXERCISES

§12. Other Recurrences

There is a wide variety of recurrences which we have barely hinted at. For instance, the typical
recurrences arising in counting combinatorial structureshave an exponential (e.g.,T (n) = 2T (n−1)+
f(n)) or double exponential growth (e.g.,T (n) = T (n − 1)2 + f(n)). We refer to Knuth for such
examples. In this section, we focus on some other types of recurrences.

§12.1.Recurrences with Max or Min

Many recurrences in computer science involve the Max or Min operation. Here we give three ex-
amples.

¶41. QuickSort Variant. Consider the following variant of QuickSort: each time after we partition
the problem into two subproblems, we will solve the subproblem that has the smaller size first (if their
sizes are equal, it does not matter which order is used). We want to analyze the depth of the recursion
stack. If a problem of sizen is split into two subproblems of sizesn1, n2 thenn1 + n2 = n − 1.
Without loss of generality, letn1 ≤ n2. So0 ≤ n1 ≤ ⌊(n− 1)/2⌋. If the stack contains problems of
sizes(n1 ≥ n2 ≥ · · · ≥ nk ≥ 1) wherenk is the problem size at the top of the stack, then we have

ni−1 ≥ ni + ni+1.

Sincen1 ≤ n, this easily impliesn2i+1 ≤ n/2i or k ≤ 2 lgn. A tighter bound isk ≤ logφ n where
φ = 1.618 . . . is the golden ratio. This is not tight either.

The depth of recursion satisfies

D(n) =
⌊(n−1)/2⌋
max
n1=0

[max{1 +D(n1), D(n2)}]

This recurrence involving max is actually easy to solve. AssumingD(n) ≤ D(m) for all n ≤ m, and
for any realx, D(x) = D(⌊x⌋), it is easy to see thatD(n) = 1+D(n/2). Using the fact thatD(1) = 0,
we obtainD(n) ≤ lg n. [Note:D(1) = 0 means that all problems on the stack has size≥ 2.
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¶42. Solving a Problems on a Binary Tree. Consider this recurrence which involves both Max and
Min:

C(n) = max
m=0,...,n−1

{C(m) + C(n−m− 1) + min {m+ 1, n−m}} (109)

This represent the cost to solve a recursive problem represented by a binary treeT onn nodes, where
the left and right subtrees have sizesm andn − m − 1, respectively. To solve the problem onT , we
recursively solving the problem on the left and right subtrees, and then marry the two sub-solutions at a
cost ofmin {m+ 1, n−m}. We claim that

C(n) ≤ KnHn (110)

whereHn is thenth Harmonic number andK ≥ 1 is sufficiently large. By DIC, we can assume (110)
is true for alln ≤ n0 (for somen0 ≥ 1). Inductively, forn > n0, we have

C(n) ≤ KmHm +K(n−m− 1)Hn−m−1 +min {m+ 1, n−m} (111)

for somem = 0, . . . , n− 1. Note thatm ↔ n−m− 1 are interchangeable in the RHS of (111). Hence
wlog, assumem ≥ n−m−1. ThenT (n) < KnHm+n−m. Butn(Hn−Hm) =

∑n−m
i=1

n
i+m ≥ n−m.

ThereforeT (n) ≤ KnHm + n(Hn −Hm) ≤ KnHn (sinceK ≥ 1).

This provesC(n) = O(n log n). This bound exploits the Min in (109). For instance, if we replace
the Min by a Max, then the solution isC(n) = Θ(n2) (Exercise). We find thisO(n log n) solution
instructive: in effect, it says that the worst case value ofm in (109) is whenm ∼ n/2, thus reducing
the recurrence to look likeC(n) = 2C(n/2) + n, yielding theΘ(n logn) solution. So the Min has the
effect of ensuring that the balanced binary treeT is the worst case solution.

Fredman [6] considered the general class of recurrences of the form

M(n) = g(n) + min
0≤k≤n−1

{αM(k) + βM(n− k − 1)}

which arises from analysis of binary search trees.

¶43. Analysis ofǫ-Nets. The following recurrence arise in the analysis of a class of data structures
calledǫ-nets, first studied by Haussler and Welzl. Assuming0 < ǫ < 1 andm ≥ 2 are fixed,

T (n) = 1 + max
(n1,...,nm)

m∑

i=1

T (ni) (112)

where the maximum ranges over all(n1, . . . , nm) satisfyingni ≥ 0 and
∑m

i=1 ni ≤ ǫn. There is a
trivial solution to this: the constant function

T (n) = 1/(1−m)

for all n. But T (n) < 0 in this case and we seek a non-negative solution. Assuming that T (n) is a
convex cap11, it is easy to see that

T (n) = 1 +mT (ǫn/m) = Θ(nlogm/ǫ m).

To showT (n) is a convex cap, we note that it is continuous (Exercise) and amonotonic non-decreasing
function. Then it suffices (Exercise) to prove that

T (x) + T (y) ≤ 2T ((x+ y)/2) (113)

where we now regardT (x) as a real function defined for allx ≥ 0. This turns out to be easy to show
inductively, assuming the base case whereT (x) = x (or T (x) = 0) for all 0 ≤ x ≤ 1.

11 We say a real functionf(x) is convex capif for all 0 < α < 1, f(x) + f(y) ≤ 2f(αx + (1 − α)y). For completeness,
we sayf(x) is convex cupif for all 0 < α < 1, f(x) + f(y) ≥ 2f(αx + (1− α)y).
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§12.2.A Log-square Solution

Consider the recurrence
T (n) = 1 + T (n− n

logn
). (114)

This does not yield to our standard techniques. To probe deeper, note some simple bounds. It is easy
to see thatT (n) ≤ n since this is the solution to the recurrenceT (n) ≤ 1 + T (n − 1). Likewise
T (n) ≥ lg n since this is the solution toT (n) ≥ 1 + T (n/2).

To get a better upper bound, we note that

T (n) = 1 + T

(
n

(
1− 1

logn

))

≤ 2 + T

(
n

(
1− 1

logn

)2
)
, (why?)

...

≤ k + T

(
n

(
1− 1

logn

)k
)

using monotonicity ofT (n). HenceT (n) = k if we assumeT (n) = 0 for n ≤ 1 andk is chosen so
that (

1− 1

logn

)k

≤ 1/n <

(
1− 1

logn

)k+1

.

Taking natural logs, and assuming for simplicity thatlog = ln in (114), we see that

(k + 1) ln

(
1− 1

lnn

)
> − lnn,

(k + 1)

(
− 1

lnn

)
> − lnn, (since ln(1 + x) ≤ x for |x| < 1),

k + 1 < ln2 n.

Up to a constant factor, this is also the lower bound: we show thatT (n) ≥ C ln2 n by induction:

T (n) ≥ 1 + C ln2
(
n

(
1− 1

logn

))

= 1 + C(lnn+ ln

(
1− 1

logn

)
)2

≥ 1 + C(lnn− 2

lnn
)2, sinceln(1 + x) ≥ x− x2/2 for |x| < 1

≥ C ln2 n.

ThusT (n) = Θ(ln2 n).

REMARK: If we were told from the beginning to verify thatT (n) = Θ(ln2 n), this would be
routine. What we are demonstrating here is the process of discovering thatΘ(ln2 n) is the correct
answer.

EXERCISES
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Exercise 12.1:Solve forC(n) where

C(n) = max
m=0,...,n−1

{C(m) + C(n−m− 1) + max {m+ 1, n−m}} .

Note that this is similar to (109) except that the Min has been replaced by a Max. ♦

Exercise 12.2:Try to obtain tight constants for the recurrence (114). What if log is not the natural
logarithm in the original equation? ♦

Exercise 12.3:Show thatT (x) in (113) is continuous by exploiting the fact that the addition and max-
imum functions are continuous. ♦

Exercise 12.4:Prove that ifT (x) is continuous and satisfies equation (113) then it is a convex cap.♦

Exercise 12.5:Bound the solution to the recurrenceT (n) = T (n − 1) + 2T (n/2) + n. This is an
interesting mixture of linear recurrence and the master recurrence. ♦

Exercise 12.6: (Leighton 1996) Show thatT (n) = 2T (n2 − n
lgn ) has solutionT (n) = Θ(n logΘ(1) n).

Assume thatT (n) = 1 for n ≤ 5, and the recurrence holds forn > 5. ThusT (5 + ε) = 2, so
this function is discontinuous. ♦

Exercise 12.7:Analyze the behavior of the functionT (n) defined by the recurrenceT (n) =
nT (logn). Give upper and lower bounds forT (n) using “closed form expressions” in terms
of the functionslog(i) n, i ≥ 0. Note: This recurrence arises in an early version of the fast integer
multiplication algorithm of Schönhage and Strassen. ♦

Exercise 12.8:Solve the recurrenceT (n) = 1+max(n1,n2,n3,n4){T (n1)+T (n2)+T (n3)+T (n4)}
where(n1, . . . , n4) ranges over all non-negative numbers such that

∑4
i=1 ni = 3n

2 and each
ni ≤ n/2. ♦

Exercise 12.9:Solve the following recurrences toΘ-order:
(a)T (n) = 1 + 2T (n− n

logn ).
(b) T (n) = 2nT (n/2) + nn.
(c) T (n) = 1 + T ( n

logn ).
HINT: these recurrences are considerably harder than most of what we encounter. First guess
non-tight upper and lower bounds and verify by induction. Then try to tighten these bounds.♦

END EXERCISES

§12.3.Multivariable Recurrences
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So far, our recurrences involve only one variable. But multivariable recurrences arise in several
ways: one source of such recurrences is multidimensional problems in computational geometry (one of
the variable is the dimension).

The pre-processing problem ofpoint dominance queriesin d-dimensions is as follows: given a set
S ⊆ R

d of n points, construct a data structureD(S) such that for any query pointp ∈ R
d, we can

quickly determine if there is any pointx ∈ S thatdominatesp (this meansx ≥ p, componentwise).
One solution is to pick somec ∈ R such thatS splits into two subsetsS1, S2 of sizen/2 each, where
the first component of eachx ∈ S1 is ≤ c, and the first component of eachx′ ∈ S2 is ≥ c. To answer
the query forp, begin by comparing the first componentp1 of p to c: if p1 > c then it is sufficient to
recursively check if somex ∈ S2 dominatesp. If p1 ≤ c, we must do two searches: (i) check if some
x ∈ S1 dominatesp and (ii) check if somex ∈ S2 dominatesp. The search in (i) is, however, done
in d − 1 dimensions since we may ignore the first components. Thus thetime for answering queries
satisfies the recurrence

T (n, d) = 1 + T (n/2, d) + T (n/2, d− 1).

It is not hard to see thatT (n, 1) = O(1). Then we may verify the solutionT (n, d) = Θ(logd−1 n).

¶44. Output-sensitive algorithms. Multivariable recurrences arise in the analysis of “output-
sensitive” algorithms. Such algorithms has, besides the traditional input parameter n, an (implicit)
output parameter h, which is the measures the size of the output for the given input instance. The
computational complexity of such algorithms depends on both n andh. An example is the problem of
computing the convex hull of a set ofn points in the plane. The output size is just the number of points
in the actual convex hull. There are well-knownO(n log n) algorithms for this problem. Kirkpatrick
and Seidel has given an algorithm whose time complexity satisfies the following recurrence:

T (n, h) = O(n) + max
h1+h2=h−1

{
T (

n

2
, h1) + T (

n

2
, h2)

}
.

Here,hi are positive integers. We may assumeT (n, h) = O(n) for h ≤ 3. To see thatT (n, h) =
O(n log h), we could of course just substitute and verify. But it is moreinstructive to argue as follows:
consider a “recursion tree” corresponding to a possible expansion of the recurrence relation forT (n, h).
There are exactlyh nodes in this binary tree, where each internal node at depthi (the root is depth0)
carries a “cost” ofn/2i. The “cost” of the tree just the sum of these costs at the internal nodes. So
T (n, h) is the maximum cost over all possible recursion trees. TheclaimT (n, h) = O(n log h) follows
if we prove that the maximum cost occurs when the tree has depth at mostlog2 h (since the total cost
of all nodes at any depthi is invariablyn). For the sake of contradiction, suppose we have a maximum
cost tree with depthd > log2 h. Then there is a node at depthd− 1 whose children are leaves at depth
d. We can transfer these two children to become the children ofsome other node at depth≤ d− 2. This
would increase the cost for the tree, contradiction.

EXERCISES

Exercise 12.10:Show that ifS(n, d) is the space requirement for the above data structure, then
S(n, d) = 1 + 2S(n/2, d) + S(n/2, d− 1). Solve this recurrence. What isS(n, 1)? ♦

Exercise 12.11:Consider the following recurrence

T (n, h) = O(n) + max
h1+h2=h−1;c1+c2=1

{T (c1n, h1) + T (c2n, h2)} .

(a) Solve forT (n, h) with only the assumptionhi ≥ 1, ci > 0 in the above.
(b) Solve forT (n, h) with the additional assumption thatci ≤ α where0 < α < 1 is fixed.
Generalize the above argument about the shape of the maximumcost recursion tree. ♦
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Exercise 12.12:(Sharir-Welzl) The following recurrence arises in analyzing the diameter ofn-
dimensional polytopes withm facets:

f(n,m) = f(n− 1,m− 1) +
2

m

m∑

i=1

f(n− 1, i).

Solve the recurrence. ♦

END EXERCISES

§13. Orders of Growth

Jack: My algorithm has time complexityO((lg n)n).

Jill: Oh, with a new tweak, mine now runs inO(nlgn).

Who has the faster algorithm – Jack or Jill? Most students would not be able to tell the answer right
away. This section is a practical one, designed to help you make such comparisons, systematically. But
students can quickly tell you thatn lg lg n growsfasterthanlg2 n. Since these are the logs of the time
complexities of Jack and Jill (respectively), we might wishto conclude that Jack’s complexity grows
faster than Jill’s.

Now be careful – an algorithm whose running time isn lg lg is actuallyslowerthan one with running
time lg2 n. Using our asymptotic notations, we can say this precisely:“n lg lg n � lg2 n” (domination)

How about that...
faster algorithm =

slower running time!Of course, a more accurate answer isn lg lg n ≻ lg2 n (strict domination). Better yet,n lg lg n ≻≻ lg2 n
(super-domination). You might want to review these notations from Lecture I.

now is a good time to
review exponentials

and logarithms in the
Appendix!

¶∗ 45. On L-functions. The functions(lg n)n andnlgn of Jack and Jill are examples of the so-called
logarithmico-exponential functions(L-functionsfor short). Such a functionf(x) is real and defined
for all x ≥ x0 for somex0 depending onf . TheL-functions are inductively defined as either the
identity functionx or a constantc ∈ R, or else obtained as a finite composition of the functions

A(x), ln(x), ex

whereA(x) denotes12 a real branch of an algebraic function. For instance,A(x) =
√
x is the function

that picks the real square-root ofx. But we could also have taken the negative branch of the square-root.

We say a set of functions istotally ordered if, for any f, g in the set, eitherf � g or g � f . A
theorem13 of Hardy [9] says that the set ofL-functions is totally ordered:if f andg areL-functions then
f ≤ g (ev.) or g ≤ f (ev.). In particular, eachL-functionf is eventually non-negative,0 ≤ f (ev.),
or non-positive,f ≤ 0 (ev.). This is a very nice property ofL-functions. Unfortunately, many common
functions that are notL-functions. For instance, the sine function is not anL-function because neither
sinx ≥ 0 (ev.) norsinx ≤ 0 (ev.) holds. Here are some categories ofL-functions you often encounter:

12 An algebraic functionA(x) satisfies a polynomial equationP (x,A(x)) = 0 whereP (x, y) is a bivariate polynomial with
integer coefficients.

13 In the literature onL-functions, the notation “f � g” actually meansf ≤ g (ev.). There is a deep theory involving such
functions, with connection to Nevanlinna theory.
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CATEGORY SYMBOL EXAMPLES
vanishing term o(1) 1

n , 2−n

constants Θ(1) 1, 2− 1
n

polylogs logk n (for anyk > 0) Hn, log2 n
polynomials nk (for anyk > 0) n3,

√
n

super-polynomials nΩ(1) n!, 2n, nlog logn

Note thatn! andHn are notL-functions, but they can be closely approximated byL-functions. The
last category forms a grab-bag of anything growing faster than polynomials. These 5 categories form a
hierarchy of strictly increasinglyΘ-order.

¶46. The Heuristic of Taking Logs. An effective way to compare twoL-functions is to take their
logarithms. To compare the running times of Jack and Jill,

(lg n)n versus nlgn, (115)

let us compare their logs:

n lg lgn versus lg2 n. (116)

Perhaps you already see that the former dominates the latter. If not, you could take logs again:

lg n+ lg lg lg n versus 2 lg lg n. (117)

It is now clear that the left-hand side super-dominates the right-hand side, since

lg n ≻≻ lg lg n. (118)

Working backwards to the original comparison, we conclude that

(lgn)n ≻≻ nlgn. (119)

Thus Jack’s complexity is growing faster than Jill’s (i.e.,Jack’s algorithm is slower than Jill’s). But
is this argument rigorous? Well, the idea of taking logs amounts to an application of the following
“backwards” inference rule:

(f ≻≻ g) ⇐ (lg f ≻≻ lg g). (120)

Here, “A ⇐ B” reads “A holdsprovidedB holds”. Logically,A ⇐ B andB ⇒ A are equivalent, but
the backwards formulation seems more natural in proofs of (super-)dominance, such as in (119). See
Lecture I (Appendix A) for discussion of logical proofs.

Unfortunately, the rule (120) is not sound. Here is a counter example: letg = 1 andf = 2. Then Close, but not quite!
1 = lg f ≻≻ lg g = 0, but it is not true thatf ≻≻ g. What is needed is some additional guarantee that
lg f is growing fast enough. We now prove this:

LEMMA 13. Let f, g be complexity functions. Iflg f super-dominates both1 and lg g, thenf super-
dominatesg. In symbols,

(f ≻≻ g) ⇐ (lg f ≻≻ 1) ∧ (lg f ≻≻ lg g).

Proof.

(f ≻≻ g) ⇔ (∀C > 0)[Cf ≥ g (ev.)]
⇔ (∀C > 0)[lgC + lg f ≥ lg g (ev.)]
⇐ (∀C > 0)[lgC + 1

2 lg f ≥ 0 (ev.)] ∧ (12 lg f ≥ lg g (ev.)) (Split lg f in half!)
⇐ (lg f ≻≻ 1) ∧ (lg f ≻≻ lg g).

c© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version October 31, 2011



§13. ORDERS OFGROWTH Lecture II Page 65

Q.E.D.

Returning to our heuristic argument that Jill’s algorithm is better than Jack’s, we see that the heuristic
rule (120) just needs an additional precondition that “lg f ≻≻ 1” holds. These preconditions amount to
n lg lg n ≻≻ 1 for (116), andlgn ≻≻ 1 for (117). But we knew these to be true. In general, you can use
the following fact:

LEMMA 14. For all k ≥ 1,
lg(k) n ≻≻ lg(k+1) n ≻≻ 1.

Actually, this lemma holds for all integerk, provided we interpret

lg(k) n =

{
n if k = 0,

2lg
(k+1) n if k ≤ −1.

¶47. Some rules for comparing functions. When functions falls outside these well-known cate-
gories, we would general rules to help us compare them. Here are two simple rules for comparing
functions up toΘ-order:

(SR) Sum: In a “direct” comparison involving a sumf(n)+ g(n), ignore the smaller term in this sum.
E.g., in comparingn2 +n logn+5, you should ignore the “n logn+5” term. Beware that if the
sum appears in an exponent (so the comparison is no longer direct), the neglected part may turn
out be decisive when the dominant terms are identical.

(PR) Product: If 0 � f � f ′ and0 � g � g′ thenfg � f ′g′.
E.g., this rule impliesnb ≺ nc whenb < c (since1 ≺ nc−b, by the logarithm rule next).

Another way to compare functions is to look compare their exponents instead:
(ER1) If f � g then2f � 2g.
(ER2) If f ≺≺ g then2f ≺≺ 2g.
These two rules are immediate since exponentiation is a monotone increasing function. Instead of “2”,
we can use any baseb > 1. The converse of these two rules is more interesting. Consider this rule:
(LR1) If 1 ≤ f � g thenlog f � log g. [Proof: the premise implies∃C > 1 such that1/C ≤ f ≤ Cg
(ev.). Sincef > 0(ev.), we may take logs and solog f ≤ logC + log g ≤ 2 log g (ev..).] Be careful,
because many students think the converse is also true. Most comparisons of interest to us can be

Counter example:
f = n, g =

√
n

reduced to repeated applications of the following rules:

(LR) Logarithm: 1 ≺ log(k+1) n ≺≺ log(k) n for any integerk ≥ 0. Herelog(k) n refers to thek-fold
application of the logarithm function andlog(0) n = n.

(ER) Exponentiation: We have two versions: assume0 ≤ f .
(ER1) If f � g then2f � 2g.
(ER2) If f ≺≺ g then2f ≺≺ 2g.
The constant2 can be replaced by anyd > 1.

¶48. Example. Suppose we want to comparenlogn versus(logn)n. According to the Exponential
Rule (ER),nlog n ≺ (log n)n follows if we take logs and show that1 ≤ log2 n ≤ 0.5n log logn (ev.)
(i.e., choosec = 0.5 in (ER)). In fact, we show the strongerlog2 n ≺≺ n log logn. Taking logs again,
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and by the rule of sum, it is sufficient to show2 log logn ≺ logn. Taking logs again, and by the rule of
sum again, it is suffices to showlog(3) n ≺ log(2) n. But the latter follows from the rule of logarithms.

EXERCISES

Exercise 13.1:Consider the expressionE(x):=f(x)g(h(x)) where{f, g, h} = {2n, 1/n, lgn}. There
are6 = 3! possibilities forE(x). Determine the fastest and slowest functions among the six.Of
coursef(x) is growing faster thang(x) meansf(x) dominatesg(x). ♦

Exercise 13.2: (i) Simplify the following expressions: (a)n1/ lg n, (b) 22
lg lg n−1

, (c)
∑k−1

i=0 2i, (d)
2(lgn)2 , (e)4lgn, (f) (

√
2)lg n.

(ii) Re-do the above, replacing each occurrence of “2” (explicit or otherwise) in the previous ex-
pressions by some constantb > 2. Note thatlg is log2, 4 = 22 and

√
n = n1/2. So when we

replace these implicit2’s by c, we getlogb, c
c andn1/b in the above expressions. ♦

Exercise 13.3:Order these in increasing big-Oh order:

n lg n, n−1, lg n, nlgn, 10n+ n3/2, πn, 2n, 2lgn.

♦

Exercise 13.4:Order the following 5 functions in order of increasingΘ-order: (a)log2 n, (b)n/ log4 n,
(c)

√
n, (d)n2−n, (e) log log n. ♦

Exercise 13.5:Order the following functions (be sure to parse these nestedexponentiations correctly):
(a)n(lgn)lg n

, (b) (lg n)n
lg n

, (c) (lg n)(lgn)n , (d) (n/ lgn)n
n/(lg n)

. (e)nn(lg n)/n

. ♦

Exercise 13.6:Order the following set of36 functions in non-increasing order of growth. Between con-
secutive pairs of functions, insert the appropriate ordering relationship:�, ≍, ≤ (ev.), =.

a b c d e f

1. lg lg n (lg n)lgn 2n 2lgn 2lg
∗ n 22

n+1

2. (1/3)n n2n nlg lgn en n1/ lg n ⌈lg n⌉!
3. 2

√
2 lgn (3/2)n 2 lg(n!) n

√
lgn

4. 2(lgn)2 22
n

n2 n lg n (n+ 1)! 4lgn

5. lg(lg∗ n) lg2 n (1 + 1
n )

n nlgn n! 2(lgn)/n

6. (
√
2)lgn lg∗ n (n/ lgn)2

√
n) lg∗(lg n) 1/n

NOTE: to organize of this large list of functions, we ask thatyou first order each row. Then the
rows are merged in pairs. Finally, perform a 3-way merge of the 3 lists. Show the intermediate
lists of your computation (it allows us to visually verify your work). ♦

Exercise 13.7:Order the following functions:

n, ⌈lgn⌉!, ⌈lg lg n⌉!, n⌈lg lgn⌉!, 2lg
∗ n, lg∗(2n), lg∗(lg n), lg(lg∗ n).

♦
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Exercise 13.8: (Purdom-Brown) Our summation rules already gives theΘ-order of the summations
below. This exercise is interested in sharper bounds:
(a) Show that

∑n
i=1 i! = n![1 +O(1/n)].

(b)
∑n

i=1 2
i ln i = 2n+1[lnn− (1/n)+O(n−2)]. HINT: useln i = lnn− (i/n)+O(i2/n2) for

i = 1, . . . , n. ♦

Exercise 13.9: (Knuth) What is the asymptotic behavior ofn1/n? ofn(n1/n − 1)?
HINT: take logs. Alternatively, expand

∏n
i=1 e

1/(in). ♦

Exercise 13.10:Estimate the growth behavior of the solution to this recurrence:T (n) = T (n/2)2+1.
♦

END EXERCISES

§A. APPENDIX: Exponential and Logarithm Functions

Next to the polynomials, the two most important functions inalgorithmics are theexponential
function and its inverse, thelogarithm function . Many of our asymptotic results depend on their basic
properties. For the student who wants to understand these properties, the following will guide them
through some exercises. We define thenatural exponential function to be

exp(x):=

∞∑

i=0

xi

i!

for all realx. This definition is also good for complexx, but we do not need it. Thebase of the

exponential function

natural logarithm is defined to be the number

e:= exp(1) =

∞∑

i=0

1

i!
= 2.71828...

The next Exercise derives some asymptotic properties of theexponential function.

Exercise A.1: (a)exp(x) is continuous.
(b) dexp(x)

dx = exp(x) and henceexp(x) has all derivatives.
(c) exp(x) is positive and strictly increasing.
(d) exp(x) → 0 asx → −∞, andexp(x) → ∞ asx → ∞.
(e)exp(x+ y) = exp(x) exp(y). ♦

We often need explicit bounds on exponential functions (notjust its asymptotic behavior). Derive
the following bounds:

Exercise A.2:
(a)exp(x) ≥ 1 + x for all x ≥ 0 with equality iff x = 0.
(b) exp(x) > xn+1

(n+1)! for x > 0. Henceexp(x) grow faster than any polynomial inx.
(c) For all realn ≥ 0, (

1 +
x

n

)n
≤ ex ≤

(
1 +

x

n

)n+(x/2)

.
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It follows that an alternative definition ofex is

ex = lim
n→∞

(
1 +

x

n

)n
.

(d) exp(x)
(
1− x2

n

)
≤
(
1 + x

n

)n
for all x, n ∈ R, n ≥ 1 and|x| ≤ n. See [15]. ♦

The natural logarithm function ln(x) is the inverse ofexp(x): ln(x) is defined14 to be the real
numbery such thatexp(y) = x. Note that this is a partial function because it is defined forall and

graph oflnx (+ inverseex)

only positivex.

Exercise A.3: Show that
(a) dln(x)

dx = 1
x ,

(b) ln(xy) = ln(x) + ln(y),
(c) ln(x) increases monotonically from−∞ to +∞ asx increases from0 to+∞. ♦

These two functions now allow us to definegeneral exponentiationto any baseb: any realα, we
define

expb(α):= exp(α ln(b)). (121)

Usually, we writeexpb(α) asbα. Note that ifb = e then we obtaineα, a familiar notation forexp(α).

We see from (121) that b must be positive sinceln(b) is otherwise undefined. Moreover, the case
b = 1 is highly degenerate sincebα is identically equal to1. It is easy to check that(1/b)α = b−α,
and hence it is not necessary to explicitly consider the caseb < 1 (since we can replace such ab by 1/b
which would be> 1.

Once we have the definition ofexpb(x) = bx, thegeneral logarithm for any baseb can be defined:
logb(x) is defined to be the inverse of the functionexpb(x) = bx: logb(x) is defined to be they such

Soba andlogb a are
derived from the

special cases,ea and
ln a!

that by = x. Note that forb > 1, logb(x) is well-defined for allx > 0. But for b < 1, logb(x) is
undefined forx > 1. This gives another reason for avoiding basesb < 1.

Unless otherwise noted, the baseb of our general logarithm and exponentia-
tion is assumed to satisfyb > 1.

Exercise A.4: We show some familiar properties: the baseb is omitted if it does not affect the stated
property.
(a) The most basic properties are the following two:

log(ab) = (log a) + (log b), logb x = (logc x)/(logc b).

(b) log 1 = 0, logb b = 1, y = xlogx y, log(xy) = y log x.
(c) log(1/x) = − log x, logb x = 1/(logx b), alog b = blog a.
(d) dx

dx(x
α) = αxα−1.

(e) Forb > 1, the functionlogb(x) increases monotonically from−∞ to+∞ asx increases from
0 to∞. At the same time, for0 < b < 1, logb(x) decreases monotonically from+∞ to−∞. ♦
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¶49. Varieties of logarithm and their notations. When the actual value of the baseb of a logarithm
is immaterial, we simple write ‘log’ without specifying the base. E.g.,log(xy) = log(x) + log(y). But log x:= logb x
there are three important bases:b = e, b = 2, b = 10, and we have a special notation for each: Clearly lnx:= loge x
lnx:= loge x is clearly the most important, as we saw above that all the other logarithms are defined in
terms of the natural logarithm. But in computer science, we mainly uselg x:= log2 x. Solg x is often lg x:= log2 x
called theComputer Science Logarithm. In engineering or finance, base10 is most important, and
this logarithm is often denotedLog := log10. Log x:= log10 x

We shall writelog(k) x for thek-fold application of the logarithm function tox. Thuslog(2) x =
log log x, and by definition,log(0) x = x. This is to be distinguished from “logk n” which equals
(logn)k. On the black board, it is convenient to writeℓℓogn for log logn, andℓℓℓogn for log log logn log(k) x 6= logk x
(it does not pay to continue this process).

Finally, we have thelog-star function. Starting from a valuex > 0, we can keep taking logarithms
log∗ x is very, very

slow growing
until we get a value that is negative. If we can take logarithms at mostk times, thenlog∗ x is defined to
bek. By definition of log-star, ifk = log∗ x thenlog(k) x ≤ 0 andlog(k+1) x is undefined. Notice that
we have not specified the base of the logarithm. In most applications, the base of the log-star function
is assumed to be2. With this base, we see thatlog∗(x) = 0 (resp.,1 and2) iff x ≤ 0 (resp.,0 < x ≤ 1
and1 < x ≤ 2). So the range of log-star is15 the set of natural numbers.

¶50. Bounds on logarithms. For approximations involving logarithms, it is useful to recall a funda-
mental series for logarithms:

ln(1 + x) = x− x2

2
+

x3

3
− · · · = −

∞∑

i=1

(−x)i

i
(122)

valid for |x| < 1. From this, we obtain the useful bound:x − x2/2 < ln(1 + x) < x. To see that
ln(1+x) < x we must show thatR =

∑∞
i=2(−x)i/i > 0. This follows because if we pair up the terms

in R we obtain
R = (x2/2− x3/3) + (x4/4− x5/5) + · · · ,

which is clearly a sum of positive terms. A similar argument showsln(1 + x) > x− x2/2.

The formula (122) allows us to computeln(y) for anyy ∈ (0, 2). How do we evaluateln(y) for
y ≥ 2? Assume that we have good approximations toln(2). Then we can writey = 2n(1 + x) (i.e.,n
is the number of times we must dividey by 2 until its value is less than2). Then we can evaluateln(y)
asn ln(2) + ln(1 + x). This procedure depends on having a good approximation toln(2). Can we do
this? Indeed,

ln 2 =

∞∑

k=1

1

k2k
(123)

Using this rapidly converging series, we can quickly compute ln 2 to any desired accuracy. To derive
this series, note that11−x =

∑
i≥0 x

i and so
∫

dx
1−x =

∑
i≥0 x

i+1/(i + 1) =
∑

i≥1 x
i/i. Putting

Mother of Series
again!

y = 1 − x,
∫

dx
1−x = −

∫
dy
y = − ln y = ln(1/y). This showsln 1

1−x =
∑

i≥1 x
i/i, and (123) is just

the special case wherex = 1/2.

Alternatively, to computeln y, we can writey = n(1 + x) wheren ∈ N and write ln(y) =
ln(n)+ ln(1+x). To evaluateln(n) we use the factln(n) = Hn− γ− (2n)−1−O(n−2) (see§5). Of

14 This real valuey is called the principal value of the logarithm. That is because if we viewexp(·) as a complex function,
thenln(x) is a multivalued function that takes all values of the formy + 2nπ, n ∈ Z.

15 We could have extended log-star to take all integer-values:log∗(x) is undefined forx ≤ 0. For0 < x < 1, let log∗(x):=−

k iff k ≥ 0 is the number of times we must raisex to the power of2 until the result lies in the range[1/2, 1).
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course, this method requires approximations Euler’s constantγ instead ofln 2. Again, there are rapid
approximations ofγ.
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