§1. ALGORITHMICS Lecture | Page 1

“On two occasions | have been asked, If you put into the machirong figures, will the
right answers come out? | am not able rightly to apprehendkihd of confusion of ideas
that could provoke such a question.”
— Charles Babbage (1791-1871)
Inventor of the first mechanical computer

“In theory, theory and practice are the same. In practicettare not.”

— Yogi Berra

Lecture |
OUTLINE OF ALGORITHMICS

This first chapter is mostly informal. The rest of this book ha dependency
on this chapter, save the definitionséii concerning asymptotic notations.
Hence a light reading may be sufficient. We recommend reingdlis chap
ter after finishing the rest of the book, when many of the résmaere may
take on more concrete meaning.

An appendix collects useful mathematical concepts thatisee through
out the book.

In computer science, we study problems that can be solve@mpuaters. Such problems can be
roughly classified into problems-in-the-large and proldemthe-small. The former is associated with
large software systems such as an airline reservationrsystempilers or text editors. The latter
is identified with mathematically well-defined problemsiswas sorting, multiplying two matrices or
solving a linear program. The methodology for studying stiatge” and “small” problems are quite
distinct: Algorithmics is the study of the small problemslaheir algorithmic solution. In this intro-
ductory lecture, we present an outline of this enterprise.

Algorithmics is about
“small” problems

Throughout this bookzomputational problems (or simply “problems”) refer to problems-in-the-
small. It is the only kind of problem we address. We assumesthdent is familiar with computer
programming and has a course in data structures and somgrbaoki in discrete mathematics.

91. Book Organization. The chapters in this book are organized into sections, e€rnot 52, 3,
etc. Occasionally, we have subsections such3as 3.2, etc. But independent of the sections and
subsections, we haveumbered paragraphs denoted{ 1, 92, €3, etc. We indicate certain sections
or numbered paragraphs by an asterisk, as or §*37. These refers to optional and/or advanced
material; generally, you can skip them on a first reading.eNw¢ usé colored fonts; hyperlinks are
available in the pdf version of this book.

1. What is Algorithmics?

1 If problems-in-the-large is macro-economics, then thélems-in-the-small is micro-economics.
2 My students may request a no-color version.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§1. ALGORITHMICS Lecture | Page 2

Algorithmics is the systematic study of efficient algorithms for compotadl problems; it includes
techniques of algorithm design, data structures, and mradtieal tools for analyzing algorithms.

Why is algorithmics important? Because algorithms is aftcitve of all applications of computers.
These algorithms are the “computational engines” thatediavger software systems. Hence it is im-
portant to learn how to construct algorithms and to analigent Although algorithmics provide the
building blocks for large application systems, the corttan of such systems usually require additional
non-algorithmic techniques (e.g., database theory) wéieloutside our scope.

We can classify algorithmics according to its applicationsubfields of the sciences and mathe-
matics: thus we have computational geometry, computdtiopalogy, computational number theory,
computer algebra, computational statistics, computatifimance, computational physics, and compu-
tational biology, etc. More generally, we have “computaéibX” where X can be any discipline. But
another way to classify algorithmics is to look at the gemé&rbls and techniques that are largely in-
dependent any discipline. Thus, we have sorting technjgiraph searching, string algorithms, string
algorithms, dynamic programming, numerical techniqués, that cuts across individual disciplines.
Thus we have identified two dimensions along which the fieldlgbrithmics can be classified. Let us
represent these two orthogonal classification schemeg asimatrix:

=T
HERIFEE
S|l S22 |0
g|s| 8| 2|e|o
DL |E|a|a|®
sorting VIV IVIVI VY
graph searching v v v
string algorithms v Ve s
dynamic programming| v/ VIV
numerical methods VIV

So each computational X is represented by a column in thisixnand each computational tech-
nigue is represented by a row. Each check mark indicatesatipatticular computational technique
is used in a particular discipline X. Individual scientifissciplines take a column-oriented view, but
Computer Science (and also this book) takes the row-oderigav. These row labels can be grouped
into four basic themes:

(a) data-structures (e.qg, linked lists, stacks, search trees)
(b) algorithmic techniques (e.g., divide-and-conquer, dyicgrogramming)
(c) basic computational problems (e.g., sorting, graph-$e@ant location)

(d) analysis techniques (e.g., recurrences, amortizatiodoraized analysis)

These themes interplay with each other. For instance, s@taestructures naturally suggest certain
algorithmic techniques (e.g., graphs requires graphebe@chniques). Or, an algorithmic technique
may entail certain analysis methods (e.g., divide-andyaenalgorithms require recurrence solving).
The field of complexity theory in computer science providasie unifying concepts for algorithmics;

but complexity theory is too abstract to capture many finstimitions we wish to make. Thus algorith-
mics often makes domain-dependentassumptions. For egaimthe subfield of computer algebra, the
complexity model takes each algebraic operation as a pvanithile in the subfield of computational

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

Computer Science is
row-oriented

§2. COMPUTATIONAL PROBLEMS Lecture | Page 3

number theory, these algebraic operations are reducedrte bit-complexity model primitives. In this
sense, algorithmics is more like combinatorics (which Is@tc) than group theory (which has a unified
framework). Students may initially find this eclectic nawf algorithmics confusing. But ultimately,
we hope the student will develop an “algorithmic frame of diithat sees an over-arching unity in this
jumble of topics.

62. What are Computational Problems?

Despite its name, the starting point for algorithmics isadgbrithms, butomputational problems
But what are “computational problems”? We mention threemcaiegories.

92. (A) Input-output problems. Such problems are the simplest to understand:ofaputational

problem is a precise specification of input-and-output (1/0) forspand for each input instande Was Babbage thinking
a description of the set of possible output instanGes= O(I). The word “formats” emphasizes of /O problems in the
the fact the input and output representation is part andepaifcthe problem. In practice, standard opening quote?
representations may be taken for granted (e.g., numbeessatened to be in binary and set elements

are arbitrarily listed without repetition). Note that tmput-output relationship need not be functional:

a given input may have several acceptable outputs.

(A1) Sorting Problem. The input is a sequence of numbéss, . . ., a,,) and output is a rearrange-
ment of these numbers],...,a,) in non-decreasing order. An input instance2s5, 2,1, 7), with

r N

corresponding output instan¢e 2,2, 5, 7).

(A2) Primality Testing. Input is a natural number and output is either YES (if is prime) or NO
(if n is composite). Numbers are assumed to be encoded in dedip).if the input is123 then the
output is NO. But for the inpu23, the output is YES. This is an example oflecision or recognition
problem, where the output have only two possible answers (YESINO, Accept/Reject).

Simplest imaginable
type of problem?

° ® In
® Out
® On

Figure 1: Classifying points

One can generalize this to problems whose output comes fifiimteaset. For instance, in compu-
tational geometry, the decision problems tend to have thossible answers: Positive/Negative/Zero
or IN/OUT/ON. For instance, thgoint classification problemis where we are given a point and some
geometric object such as a triangle or a cell. The point ieeinside the cell, outside the cell or on the
boundary of the cell.

93. (B) Preprocessing problems. A generalization of input-output problems is what we gaéipro-

cessing problem given a setS of objects, construct a data structufe(S) such that for an arbitrary

‘query’ (of a suitable type) abouff, we can usé)(.9) to efficiently answer the queryhere are two dis-

tinct stages in such problems: preprocessing stage and&itne” stage. Usually, the sétis “static”

meaning that membership fidoes not change under querying. Two-staged problems

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§2. COMPUTATIONAL PROBLEMS Lecture | Page 4

(B1) Ranking Problem. The preprocessing input is a sebf numbers. A query o is a number
q for which we like to determine its rank ifi. The rank ofg in S is the number of items 1§ that are
smaller than or equal t@ E.g., if S = {2,3,5,7} then the rank of = 6 in S is 3. A standard solution
to this problem is théinary search treelata structuré(S) and the binary search algorithm @n.5).

(B2) Post Office Problem.Many problems in computational geometry and databaselsaagche
preprocessing type. The following is a geometric-datalihstration: given a sef' of points in the
plane, find a data structufe(S) such that for any query poipt we find an element i that is closest
to p. (Think of S as a set of post offices and we want to know the nearest post tdfeny positiorp).
Note that the 1-dimensional version of this problem is dipa#ied to the ranking problem.

Two algorithms are needed to solve a preprocessing probdemto construcD(S) and another
to answer queries. They correspond to the two stages of datimu an initialpreprocessing stage
to constructD(.S), and a subsequeqtierying stagein which the data structur®(S) is used. There
may be a tradeoff between tipeeprocessing complexityand thequery complexity: D, (.S) may be
faster to construct than an alternatitdg(.5), but answering queries usirdg; (S) may be less efficient
thanD4(S). But our general attitude to prefér,(S) over Dy (S) in this case: we prefer data structures
D(S) that support the fastest possible query complexity. Outudt is often justified because the
preprocessing complexity is a one-time cost, but query dexity is a recurring cost.

Preprocessing problems are a special caggdfal evaluation problems. In such problems, we
construct partial answers or intermediate structurescbasgart of the inputs; these partial answers or
intermediate structures must somehow anticipate all pessktensions of the partial inputs.

9* 4. (C) Dynamization and Online problems. Now assume the inpu§ is a set of objects. For
example, a database might be regarded as a sét.céin be modified under queries, then we have a
dynamization problem: with S and D(S) as above, we must now design our solution with an eye to
the possibility of modifyingS (and hence)(5)). Typically, we want to insert and delete elements$'in
while at the same time, answer queries/ofS) as before. A set whose members can vary over time
is called adynamic setand hence the name for this class of problems.

Here is another formulatiorwe are given a sequenc¢e, ro, . .., r,,) of requests where a request
is one of two types: either ampdate or a query. We want to ‘preprocess’ the requests in an online
fashion, while maintaining a time-varying data structupe for each update request, we modifyand
for each query request, we uskto compute and retrieve an answép (nay be modified as a result).

In the simplest case, updates are either “insert an obje¢tiaete an object” while queries are “is
objectz in S?”. This is sometimes called ttset maintenance problem The preprocessing problems
can be viewed as a set maintenance problem in which we fireepsa sequence of insertions (to build
up the sety), followed by a sequence of queries.

(C1) Dynamic Ranking Problem. Any preprocessing problem can be systematically convénted
a set maintenance problem. For instance, the ranking profid) turns into thedynamic ranking
problem in which we dynamically maintain the sét subject to intermittent rank queries. The data
structures in solutions to this problem are usually catlgdamic search trees

(C2) Graph Maintenance Problems. Dynamization problems on graphs are more complicated
than set maintenance problems (though one can still view ihaintaining a set of edges). One such
problem is thedynamic connected component problemupdates are insertion or deletion of edges
and/or vertices. Queries are pairs of vertices in the ctigiaph, and we want to know if they are in the
same component. The graphs can be directed or undirected.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§3. COMPUTATIONAL MODEL Lecture | Page 5

95. (D) Pseudo-problems. Let us illustrate what we regard to be a pseudo-problem fizenview-
point of our subject. Suppose your boss asks your IT depaittoe'build an integrated accounting
system-cum-employee database”. This may be a real worithsioebut it is not a legitimate topic for
algorithmics because part of the task is to figure out whairthat and output of the system should
be, and there are probably other implicit non-quantifiabieda (such as available technology and
economic realities).

63. Computational Model: How do we solve problems?

Once we agree on the computational problem to be solved, vat chwose the tools for solving
it. This is given by thecomputational model Any conventional programming languages suclCas
or Java (suitably abstracted, so that it does not have finite spaceds) etc) can be regarded as a
computational model. A computational model is specified by

(a) the kind of data objects that it deals with
(b) the primitive operations to operate on these objects

(c) rules for composing primitive operations into larger uc@fiedprograms.

Programs can be viewed as individual instances of a compngtmodel. For instance, the Turing
model of computation is an important model in complexitydtyeand the programs here are called
Turing machines.

96. Models for Comparison-based Problems. The sorting problem has been extensively studied

since the beginning of Computer Science (from the 19508jtilg) is just a representative of a whole

class of problems that can be solved using the primitive lgiéipaof comparing two elements. It turns

out that there are several distinct computational modelsifoh problems. We will next describe three

of them: thecomparison tree mode] the comparator circuit model, and thetape model In each

model, the data objects are elements from a linear order. 3 sorting models

The first model, comparison trees, has only one primitiver@jgen, viz., comparing the two ele-
mentsz, y resulting in one of two outcomes < y or x > y. Such a comparison is usually denoted
“x :y". We compose these primitive comparisons intivege program by putting them at the internal
nodes of binary tree. Tree programs only represent flow affoband are more generally they are called
decision treegwhere the decision can be based on predicates other thgmacsons). Figur@(a) il-
lustrates a comparison tree on inputg, z.

To use a comparison tree, we begin at the root, and perforindiated comparison, say: y. If
x < y, we proceed to the left child; otherwise, we proceed to thletrchild. We continue recursively in
this manner until we reach a leaf, and stop. Let us illustiatewith the comparison tree in Figu?éa)
(follow the thick path from root to a leaf). Suppose our inmx =7,y =9,z = 3}. Then the
comparisonz : y at the root tells us to compafe: 9. Since7 < 9, we move to the left child. The
comparison at the left child ig: z,i.e.,9 : 3. Since9 > 3, we move to the right child. We have reached
a leaf. This leaf specifies the elementi.e., 9) which is our output. The reason for this output is that
our comparison tree is supposed to be an algorithm to find annuem of , v, 2.

So the outputs of a comparison tree are specified at eachHeafnstance, if the tree is meant for
sorting, each leaf will output the sorted order of the inmit §hese examples of output only begs the

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§3. COMPUTATIONAL MODEL Lecture | Page 6

max max

€T x
min min_
Yy — ‘><* =Y
z 4
(a) Comparison Tree (b) Comparator Circuit

Figure 2: Two programs to find the maximumaafy, z.

qguestion: what exactly is the nature of the output at ead? |&aere is a precise answerhe output

at each leaf must be determined from the set of relationgciatl along the edges of the path to the
leaf. In other words, each edge of the comparison tree represaetatoonship of the forme < y

or x > y. The set of all these relationships along a path to adefsfrms a partial orde”(v) on
the input set. Then the answer to our problem must be detethiig P(v). For the comparison tree
Figure2(a), you may verify that the path taken by the input= 7,y = 9, z = 3} collected the partial
orderP(v) = {z < y,y > z} which does determing (the output) as a maximum. The output at the
remaining three leaves of the tree is likewise verified.

We come to the second computational model for sorting-likablems: in the comparator circuit
model, we also have one primitive operation which takes i elements:, y and returns two out-
puts: one output isnax{x,y}, the othermin{x,y}. These are composed intircuits which are
directed acyclic graphs with input nodes (in-degre@® andn output nodes (out-degré® and some
number of comparator nodes (in-degree and out-degjredn contrast to tree programs, the edges
(calledwires) in such circuits represent actual data movement. Fig(beshows a comparator circuit
on inputsz, y, z. Depending on the problem, the output of the comparatouitincay be the set of all
outputlines ¢, v, 2z’ in Figure2(b)) or perhaps some subset of these lines. In general,dnengnput
wireszy, . ..,x, andn output wiresz/, ..., x, in acircuit.

The third model for sorting is the tape model, studieddh [In this model, we assume a fixed
number of sequential tapes, where each tape can store anseqpfatems. At any moment, each tape
has a head position. We can read the item in this head pgsitiome can write an item into this head
position. We call this read/write operations ativance operation There is one other operation on a
tape, called theeset operation This puts the tape head in the initial position. We can asb if the
head position has moved past the last item on the tape. Belewjve a concrete example on how to
use these tape operations. It is important to understanditbadvance operation is cheap, but a reset
operation is expensive. Reset is expensive because to tet beginning of a physical tape, you need
to unwind the entire tape on to another initially empty spool

One model of how tapes work is the audio cassette tape (resreimbse?).
Each end of the cassette tape is attached to a separateasmbthie two spool
are positioned at a fixed distance apart. The tape is wounad @ach spoq
so that “free tape” between the two spools is held taut: theslhposition ig
placed somewhere on the free tape. Unwinding the tape onpmod iequired
a corresponding winding up on the other spool to keep thestipe taut. T
“reset” means to completely unwind one of the spools. Undikassette tap
a computer tape is wound up on one spool only. So to read/amitsuch 4
tape, we need to first physically attach the free end of thepcten tape tq
another spool, and operate it like a cassette tape.

)

= —p O ¢

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§3. COMPUTATIONAL MODEL Lecture | Page 7

The tape model was important in the early days of computingnanain memory was expensive
and physical tapes is the standard medium for storing laateb@dses. Interestingly, with the advent of
the web-age, a variant of this model calltdeaming data modelis coming back. Now we are faced
with huge amounts of real time data, and instead of sortirgeften need to compute some function of
the data. Because of the large volume of data, we do not wastbte this information but allow only
one pass over the data. For more information about the tagelnwee refer to Knuthd, Chap. 5.4],
under external sorting.

97. From Programs to Algorithms. We start with a problen® that we want to solve. Lefl be

a program in a moded . To useA to solve P, we must make sure there is a match between the
data objects in the problem specification and the data abjesmddled by moded. If not, we can
often specify some suitable encoding of the former objegthb latter. Similarly, the input and output
formats of the problem must be encoded in some way. After nga&uch encoding conventions, we
may call A analgorithm for P if, for each legal input of?, the program4 indeed computes a correct
output. Thus the term “algorithm” is a semantic concephigigng a programA in its relation to some
problemP. The program itself is a purely syntactic object, capable of more thanioterpretation.
E.g., the two programs in figuga,b) are interpreted as algorithms to compute the maxinfurmg z;

but it is also possible to view them as algorithms for othehiems (see Exercise).

98. The Merging Problem. A subproblem that arises in sorting is theerge problemwhere we
are given two sorted listérq, zo, . .., z,,) and(y1, yo, . . ., y,) and we want to produce a sorted list
(21,22, Zm4n) Where{z1, ..., zmin} = {21, .., Zm, Y1, .., yn}. ASSume these sorted lists are
non-decreasing.

The algorithmic idea for merging is as follows: what shouid first output element be? Well, it is
the minimum ofz; andy,, decided by one comparison. Assume this output iSNVhat is the next one?
Well, it must be either:s or y;, and another comparison will decide. So the general pidgsuiteat, for
somei, j > 1, we have already output;, . .., z;—1, and we have outpuf, ..., y;—1. The next output
element is eitheg; or y;, as is determined by a comparisaf,: y;. This invariant is easy to maintain.
When one list is exhausted, we simply output the remainiamehts in the other list. Here then is our
algorithm, written in a non-specific pseudo-programmimglaage:

MERGEALGORITHM
Input: (z1,...,2m,) and(yi, ..., yn), sorted in non-decreasing order.
Output: The mergelzy, ..., zm+n) Of these two lists, in non-decreasing order.
> Initialize:
11,7+ 1, k<« 1.
> Loop:
If (aci < yj)
Zp X t— i+ 1,k k+1.
else
24—y i+ 1L,k k+1.
> Terminate:
If : >m) < Thea's are exhausted, output the remaining
(Zky -+ Zman) < (Yjs -2 YUn).
else <« They’s are exhausted, output the remaining
(Zhy -+ oy Zman) < (Tiye ooy Tn)-

what is

The student should note the conventions used in our progrsuck as illustrated here. In nut- :
pseudo-programming?

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§3. COMPUTATIONAL MODEL Lecture | Page 8

shell,a pseudo-program provides a clear description of the flowasftiol of the algorithm, without
constraining the way the operations in non-control stepthefalgorithm are describedTypically, it
means we explain these operations in English or mathenhtgitas. Since the flow of control (loops,
branches, termination) must be explicit, the pseudo-pnoghould carefully specify how control vari-
ables such as Boolean flags or loop counter variables ardigthdif we iterate over elements in some
gueue, we need to specify how the queue is initialized, mexdidr tested. Of course, computers are not
smart enough to compile our programs. That is alright bexaus programs are intended for human
consumption, not computers.

Here are some guidelines for pseudo-programs. First, wendaglish and mathematical notations
over programming notations because the former are both nwwrgact and more flexible. Natural
languages (and English in particular) are highly effectarecommunication. Mathematics is perhaps
more compact but certainly more precise. In contrast, @mogning notations are optimized for com-

pilers and machines. In mathematics;™is a predicate, so we use—~" for assignment. Second, x <+ 1, notz = 1.
we use indentation for program blocks — this reduces cluttggroves readability. Third, like scripting = < y, notz <= y.
languages, we do not declare our variables. Developmeheiteit will usually tell you how to inter- etc.

pret these variables, which include their types. Finallg, wse two kinds of comments: (forward
commentsto describe what is coming up next, ard fackward commeniso briefly explain the code
just preceded (usually on the same line).

99. Uniform versus Non-uniform Models. The preceding merge algorithm should look more famil-
iar to students than our comparison trees. Formally, we egard this program as belonging to the
RAM (Random Access Machine) model. It is described in Apjpeigd but for now the student may
just identify a RAM program with program in any conventiopabgramming language likéava or
C++. Besides the familiarity factor, there is fundamentaletiéince between the RAM model and the
comparison tree model: the former isiaiform model and the latter is @aon-uniform model.

Before we explain this uniform/non-uniform distinctiort lus see how we can extract from the
merge algorithm of[8 an infinite set

T ={Tyn:m,neN} (1)

of comparison trees. Eadh, , € T is a comparison tree on the sorted input sequefices. ., T,)
and(yi,...,ys). The root ofT,, ,, has the comparison, : y; because the Merge Algorithm begins
with this comparison. lfz; < w1, then the Merge Algorithm will next compate, : y;. So we
install 25 : y; at the left child of the root. But if:; > v, the Merge Algorithm will next compare
x1 : yo. Accordingly, we installz; : y- at the right child of the root. We can proceed this way to
install a comparison at each of the node of an ever expandimgparison tree. But when there are no
more comparisons, we have reached a leaf. We could ins&Bdfted outpuz1,. .., z,+,) at the
leaf if we like (but formally, it is not necessary). Eagh, ,, is an algorithm for merging the sorted
list (z1,...,x,,) with the sorted list(y1,...,y,). The setl is called anon-uniform algorithm

for merging. This process of constructifiy, ,, is known as “unrolling” the Merge Algorithm (for the
indicated inputs). In the Exercise, we ask you to expligitiystructl 4 by this unrolling process.

Unrolling a uniform
algorithm

SupposeX is the input set for a problerR. Assume that we have a notioniaput size, which is a
function
size : X — N. (2)

wheresize(z) is known as thesizeof 2 € X. We assume there are inputs of arbitrarily large size.
E.g., for the sorting progranX is the set of all sequences of real numbers; & X is a sequence of
elements, themize(x) = n. Then we haveX = U,en X, whereX,,:={z € X : size(z) = n}. Note
that X,, might be empty for arbitrarily large value ef For instance, if our input are square matrices,
and we measure size of a matrix by the number of entries, laviisl that X, is empty unless: is a
square (i.e.n = m? for somem).

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§3. COMPUTATIONAL MODEL Lecture | Page 9

A uniform algorithm for P is one that accepts all € X. But algorithmA,, that accepts only
inputs from.X,, (for somen € N) is called afinite program. Putting together an infinite set of such
finite programs,

A={A4,:neN}. 3

If each A,, solves the problen® for inputs of sizen, then we callA a non-uniform algorithm for P.
Intuitively, A is “non-uniform” because priori, there need not be any systematic method of generating
the different4,,’s.

For our merging problem, the input s&t is now the set of all pairéx, y) wherez,y are sorted
sequences. We definéze : X — N? wheresize(x,y) = (m,n) if 2 has lengthn andy lengthn.
Clearly, the Merge Algorithm |8 is a uniform algorithm for merging. The RAM model is called a
“uniform model” because it permits the construction of onifi algorithms such as the Merge Algo-
rithm. Pointer machines (see Chapter 6) and Turing maclireesther examples of uniform models.
In contrast, each program in the comparison tree model atlanfixed size input. Thus the comparison
tree model can only provide non-uniform algorithms suchlasThe relationship between complexity
in uniform models and in non-uniform models is studied in ptarity theory.

910. Merging in Tape Model. Letus now illustrate how one can design algorithms in the tapdel.
We assume some conventional programming language (or RA§gMmdut augmented with fodape
primitive :

EOT(T), READ(T,z), WRITE(T,wz), RESET(T), ERASE(T) 4)
whereT is a tape and: is a variable storing an item. The first primitive is a pretkdz0T(T") that
returnst r ue iff the head is at the end-of-tape. The remaining primitiges operationsREAD(T',)
copies the item under the current head position of tBpeto variablex, and advance the head to the
next item. If the head is already at the end-of-tape, thisatpm is a “NO-OP” (nothing happens).
The operatioWRITE(T,) will write the value ofz into the current head position (which may or may
not be at the end of tape), and the head is advanced. AgasrnisthiNO-OP if the head is already at
the physical end of the tape (when head could no longer aéyaRESET(T") will rewind the tape to
the very beginning of the tape. Thus the head is positiondedfirst item, assuming the tape is non-
empty. Finally,ERASE(T") simply erases the contents of the tape from the current hesitign to the
end of the tape. There is no head movement, and the tape t®ritem the beginning of tape until the
position before the current head position, is unchangete M@tERASE(T") can be implemented easily
by writing a special “end-marker” on the tape. Here are twanegles of how to use these primitives.

E.g., to completely erase the contents of tdpgou doRESET(T') followed byERASE(T).
E.qg, to check if the tap& is empty, we first ARESET(7") and then check iEOT(T') is true.

We now provide a “tape algorithm” to do merging: assume tapés$T, 7> contains two lists of
sorted items (in non-decreasing order), and we want to ntemessult into tapd;. Here is the tape
model implementation of the Merge Algorithm9i8. We use the variables (i = 1, 2) to store an item
read from tapd’;. There are two Boolean variablég,andbs, whereb; = t r ue iff variable x; holds
an item that has not been output.

3 For this purpose, we say that the “input variables” for a carigon tree is the setvs, . .., v, } of variables that appear
in some comparison in the tree. A sequelieg, ...,z) of numbers is regarded as “input instance” under the assgtsn
v; < x; foreachi = 1,... n.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§3. COMPUTATIONAL MODEL Lecture | Page 10

TAPE MERGEALGORITHM:
> Initialization: set-upz;, b; (i = 1,2)
RESET(Tp), ERASE(Tp).
RESET(T}), RESET(T3).
b1 <+ by < true.
If EOT(77) then by + f al se
else READ(T1, z1).
If EOT(7») then by < f al se
else READ(T%, z2).
> Main Loop: bothb; andb, aret r ue
while (bl A bg)
If (.CCl S IQ)
WRITE(T(), 1‘1).
If EOT(77) then b, + f al se
else READ(T7, x1).
else
WRITE(T(), ZCQ).
If EOT(7») then by «+— f al se
else READ(T%, z2).
> Clean-Up: eithem; or by isf al se.
while (b1)
WRITE(T(), ZCl).
If EOT(77) then b, + f al se
else READ(T1, z1).
while (b2)
< Repeat the previous while-loop 6k

Note that this algorithm uses three tapes but in general aneise any finite number. Our program
can have any finite number of variables to store items: ingtkésnple, we use just two variables ().
In an Exercise, we ask you to design a tape algorithm forreprirhe goal is to minimize the number
of passes (i.e., number BESET’S).

911. Program Correctness. Recall our distinction between a “program” and an “algarith By
definition, an algorithm is a program thatderrectfor a given problem. There is an area of computer
science that formally studies program correctness, fradgical analysis of correctness concepts, to
the introduction of tools to prove correctness. Corredrneslso central for us, but we are less formal
in our approach. It is usual to divide correctness into twdaartial correctnessandhalting. The
partial correctness part says that the algorithm gives d¢ineect outputprovided it halts The halting
part simply asserts that the program always halt. Haltinghtrsometimes be trivial (e.g., in our Merge
algorithm above) but it can sometimes be highly nontriwek should say that there are some programs
in which the “halting part” requires that the program nevalt lfe.g., if the program is an operating
system). But our definition of “computational problem” pikete such kinds of algorithms.

EXERCISES

Exercise 3.1: We interpreted the programs in Figuzg) and (b) as “algorithms for finding the max-
imum of {x,y, 2}". But the notion of an “algorithm” is a semantical concepto the same
programs can be given different interpretations. Pleagegdifferent interpretation to these two
programs. l.e., view them as solving a different problem.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§3. COMPUTATIONAL MODEL Lecture | Page 11

NOTES: We regard the output at each leaf of a comparison §rpard of the “interpretation”. So
you may change the output at each leaf, but do not changedlgegons. However;, y, z remain
numbers that are being compared — we are not interestedniter@reting these numbers as time,
strings, number of apples, etc. &

Exercise 3.2: (a) Extend the comparison tree in Figu2éa) so that it sorts three input elements

{z,y,2}.
(b) Extend the comparator circuit in Figu?éa) so that it sorts three input elemerts, y, z}.

Exercise 3.3: Design tree programs for four element9, ¢, d:
(a) To find the second largest element. The height of yourstneelld bet (the optimum).
(b) To sort the four elements. The height of your tree shoeldl @the optimum). &

Exercise 3.4: (a) Show that the median dfelements can be computed witltomparisons in the worst
case. (b) Show that the median®élements can be computed witlcomparisons in the worst
case. HINT: you could use your solution in part(a) for thistpa
NOTE: the median of a set of elements is the element of rafik'| /2]. An element has rank
if it is smaller thank — 1 other elements and larger thaXi| — & other elements. Thus rarkis
the largest, and rank| is the smallest element. O

Exercise 3.5: Give an upper and a lower bound 8(1000), the complexity of sorting000 elements.
NOTE: we are asking for two numbers. You must justify how ybtain these two numbers. Your
numbers must bexplicit (in decimal notation like 234), not an expression like000? [1g 1000].
You may use computer programs or calculators, etc, but $efiaw you do it. Do worry about
rounding errors, etc, in your computation! &

Exercise 3.6: Design a tree program to merge two sorted listsy, z) and(a, b, ¢, d). The height of
your tree should bé (the optimum). &

Exercise 3.7: It is important to understand what we mean by “unwinding” &odthm into a com-
parison tree: draw the tree program corresponding to ungothe Merge Algorithm on input
(1, x2) and(y1,y2,ys, y4). Thisis calledl: 4 in the text. O

Exercise 3.8: Design a Tape Algorithm to sort. Assume that the input taffg isontaining a sequence
of n items. Finally, you must output the sorted items in tdpeBesidesly, it is sufficient to have
two other tapeq§’; andT5, but any additional number of tapes you like. Our goal is taimize
the number oRESET’s (O(log n) suffices).

HINT: Use some form of Merge Sort. One key concept is the matfcarun which is any longest

contiguous sequence of items in a tape that is non-decgedsio. (1, 8, 2, 5,9, 4) has three runs:
(1,8),(2,5,9), (4). You want to merge the runs. But first you need to “distribute runs in the

input tape into two other tapes, and then merge them: calpttuceduréistribute(To, T1,T3).

If you have another extra tafg, then as you merge froffi; and 75, you can put the merged
runs intoTy andT3 alternately. This saves half of the numbelRESET's. Detecting stopping is
only slightly more complicated.

But with 4 tapes, you can do a different trick to reduce the numb&ESET's, by doing a 3-way
merge. l.e., given that the tap&%, 75, T3 have “almost” equal number of runs each, you can
merge their contents intfy, with only 4 resets. The number of Merge Stepsis Hog, n. <

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. COMPLEXITY MODEL Lecture | Page 12

Exercise 3.9: In the text, we described a procedure callBdpe Merge(Ty1,T>,Tp) to merge items
in 77 and inTy into Ty, assumingthat the items irfly, T, are already sorted. Let us explore
what happens in casg andT, havemanyruns. In the previous exercise, you also designed a
procedureDistribute(Ty, Th, T>) to distribute the runs iffy into 77 and7% (alternately). For
this question, assume thatistribute(Ty, Ty, T>) returns the numbet > 1 of runs that was
originally in Ty. Consider the following algorithm:

Input: Items inTy. Initially 77, 75 empty.
k < Distribute(Ty, Ty, T2).
while (k > 1)
TapeMerge(Ty, T, Ty)
k < Distribute(To, Ty, T3)

Clearly, usingl’'ape M erge in this way is an abuse of our original intentidBut if this algorithm
halts it would have successfully sorted the items in the origiapeT,. Our goal is to prove that
it will, in fact, halt. REMARK: this algorithm was accidenfgdiscovered by my students when
asked to design a tape sorting algorithm in the previouscéser

HINT: Consider the runs that appeardy after T'ape Merge. When does a new run appear in
Ty? Can you bound the number of such events? &

Exercise 3.10:How you speed up your algorithm in the previous exercise if ave4 tapes? Note
that “reducing speed” here means using feRESET’s in your algorithm. What if you have
k > 4 tapes? %

Exercise 3.11:In the tape model, it is non-trivial to reverse the conteffits ape. For instance, if the
input tape containsa, b, ¢, d), we want the output tape to contgid, c, b, a). Give anO(logn)
pass algorithm to reverse a listoftems in a tape. HINT: the method is very similar to the tape
merge or tape sort algorithm. &

END EXERCISES

64. Complexity Model: How to assess algorithms?

We now have a suitable computational model for solving oabfam. What is the criteria to choose
among different algorithms within a model? For this, we nteidtroduce acomplexity model

In most computational models, there are usually naturabnstof time andspace These are
two examples otomputational resources Naturally, resources are scarce and algorithms consume
resources when they run. We want to choose algorithms thaizie the use of resources. For this
purpose, we shall focus on an algorithm’s usage of only os@uiee, ignoring its behavior on the other
resources. This resource is usually the time (occasiosalie) resource. Thus we avoid studying
the simultaneous usage of two or more resources, as thiv@s/the more delicate issues of trade-offs
between resources.

Next, for each primitive operation executing on a particaata, we need to know how much of
the time resource is consumed. For instancd,ama, we could define each execution of the addition

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. COMPLEXITY MODEL Lecture | Page 13

operation on two numbets b to use timdog(|a| + |b]). Or again, the comparisan: b of two integers

in the comparison tree model may be chartged|a| + |b|). But it would be simpler to say that these
operation takes unit time, independenta«b. This simpler version is our choice throughout these
lectures:each primitive operation takes unit time, independentefitttual arguments to the operation.

After assigning a (time) cost to each primitive operatiar,dach algorithnd, and for each input
instancel, we could now assign a numbey (1) which is the complexity of algorithmd on input!. If
X is the input domain, then

Ty: X >R (5)

is the corresponding complexity function. K is another algorithm, we havEg : X — R. Thus
allows us to comparel and B by comparingl’y andTz. E.g., A is at least as good aB if for all

x € X, Ta(x) > Tp(z). Still, we have no direct way to discuss the complexity obaithm A without
reference to other algorithms.

But suppose we have the notion of input “size”, as given byftinetion (2). Now we can measure
resource usage as a function of input size, using the fatigywrocedure. For any input instantelet
Ta(I) be the total time used byt on input/. Naturally,74(I) = oo if A does not halt od. Then we
define theworst case running timeof A to be the functiorf’s (n) where

Ta(n):=max{Ta(I) : size(I) = n}

Using “max” here illustrates one way to “aggregate” the $&t4 (1) : size(I) = n} of numbers.
Another possibility is to take the average. In general, wg agply some functioid,

Ta(n) = G{Ta(I): size(I) =n})

For instance, if7 is the average function and we gefterage time complexity

To summarize: @omplexity modelis a specification of
(a) The computational resource (e.g., time),
(b) The cost (in terms of the computational resource) of fikimoperations (e.g., unit cost),
(c) The input size functiorgize : X — N), and
(d) The method~ of aggregating (e.g., worst case).
Once the complexity model is fixed, we can associate to egahitim A acomplexity function

Ta:N—R (6)

We cannot overstate the theoretical advantage of the famd®) over 6). Complexity theory is
founded on functions such as$). Moreover, 6) is possible thanks to the size functid?).(

912. From Complexity of Algorithms to Inherent Complexity of Problems. Let A =
{A,, : n € N} be a non-uniform algorithm as i, We define thevorst case complexity function
of A is defined to b4 : N — N whereT's4(n) is the height of4,,. Recall that the height of a tree is
the length of a longest path from the root to a leaf.

The complexity functiong’s concerns a single algorithmd. But properly speakingComplexity
Theory is the study of the complexity of problems, not ofrétlyos per self P is a problem, we need
to consider the set dll T4 where A ranges over all algorithmg for P. Naturally, theA’s must be
programs in a fixed computational model. Among all theserélgos, it would be nice if there exists
an algorithmA* for P whose complexityl’,- is “optimal”. In general, optimal algorithms may not

4 In situations where there is no suitable size functions, éog X = R, only an impoverished complexity theory can be
developed.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. COMPLEXITY MODEL Lecture | Page 14

exist. But for non-uniform algorithms, we can always defimedptimal algorithmd* = {A* : n € N}
since each’, can be chosen to have minimal height. The complexity of snabpdimal algorithm may
be called thenherent complexity of the problemP (relative to the computational model). We next
introduce two such examples.

913. Example (T1). Inherent Complexity of Sorting. Consider the comparison tree model for
sorting. For eacln € N, let S(n):=inf, T4 where A ranges over all comparison trees that sort
elements (recall théi'y is the height of the treel). The functionS : N — N so defined is called
theinherent complexity of sorting For instance, it is easy to see thfitl) = 0 andS(2) = 1. ltis
“inherent” because it is not a function of a single algorittat speaks to all possible algorithms for
sorting. This is because even uniform algorithms can bell@daranto a non-uniform comparison tree
algorithm.

We now prove our first non-trivial result in this chapter. rtaith the simple observatiorany tree
programA to sortn elements must have at leadtleaves.This is becausel must have at least one leaf
for each possible sorting outcome, and thererdreutcomes when the input elements are all distinct.
But a binary treed of heighth has at mos2” leaves. Hence” > n! or h > Ig(n!). This proves:

LeMmMA 1 (Information-Theoretic Bound)Every tree program for sorting. elements has height at

leastlg(n!), i.e., “Never underestimate
S(n) > [lg(n!)]. (7) atheorem that counts
something”

The wise words of Fraleigh(margin) apply also to inequalities like ITB. This lower bralis called —J.B. Fraleigh

the Information Theoretic Bound (ITB) for sorting. For instance$(3) > [lg(3!)] = 3 andS(4) >
[lg(4!)] = 5. This deceptively simple result is quite deep: to apprediais fact, try to prove by direct
arguments that, in the worst case, you need more than foyp&asons to sort four elements.

How good is the ITB lower bound ofi(n)? Let us check this for the simplest case, where 3.
It is easy to see that you can sort three elements in at mostnPangsons: if you are given distinct
x,y, z then you can begin by comparing: y andx : z. If you are lucky, this might end up sorting the
elements (eithey > = > z orz > = > y). Otherwise one more comparisgn z will sort the input.
This provesS(3) < 3. Combined with the ITB, we conclude théit3) = 3.

OK, you ought to
checkn = 2

Note carefully how the proof of (3) = 3 requires two distinct arguments: an upper bound argume
S(3) < 3 amounts to providing an algorithm. The lower bound argun$f) > 3 comes from ITB.
In a small way, this is what complexity theory is all about +tige) good upper (by studying algorithms)
and lower bounds (by devising impossibility arguments) omputational problems. Incidentally, it is
known that the ITB bound is optimal fer < 31. .

%tomplexity Theory in
a nutshell!

Open problem:
determineS(32)

914. Example (T2). Inherent Complexity of Merging. We similarly define thénherent complexity

of merging to be the functionV/ : N*> — N whereM (m, n) is the minimum height of any comparison
tree for merging two sorted lists of sizes andn, respectively. Let us prove the following upper and
lower bounds:

M(m,n)
M(m,n)

m-+n-—1 (8)

<
> 2min{m,n} — d(m,n))

whered(m,n) = 1if m = n andd(m,n) = 0 otherwise. The upper bound comes from the Merge
Algorithm in 98. The idea of the proof is to associate one comparison for eaetoutput in the main

5 He was referring to Lagrange’s theorem on finite groupA ifirst Course in Abstract Algebra, Addison-Wesley 1969,
p. 93. | learned these words as an undergraduate, but itemikads grown on me over the years.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. COMPLEXITY MODEL Lecture | Page 15

loop. More formally, we devise a simpdarging schemewhereby each comparison that the algorithm
makes is “charged” to the element that is output as a restiteo€omparison. But you cannot charge
more than the number of output elements. This gives an upperdof< m + n comparisons. We
improve this bound by observing that the last element canubaubwithout any comparison. Hence we
obtain the sharper upper boundmaf+ n — 1. This charging argument is a very elementary example of
what we call aramortized analysisin Chapter 6.

The lower bound comes from the following input instanceuassthe inputis; < zo < -+ < x,,
andy; < --- < y, wherem > n and
1 <Y1 < X2 <Y <3<+ < Ty < Yn-
Let us rename thesa elements as
21 <2< 23<2p<2z5<-<2opo1< 22

wherezo; 1 = z; andze; = y; (i = 1,...,n). Note that the comparison : z;,1; must be made for
eachi=1,...,2n—1.

Why? Because these relationships< z;.; are primitive relationships. This |s
based on an important fact about partial orders (see Appdaddefinition). A
relationshipr < y in a partial orderP is primitive if it cannot be deduced from
other relationships i#. In the comparison model, every primitive relation must be
determined by a comparison.
These primitive relationships constitute the edges of actiéd graph called the
Hasse diagramof P. In practice, it is very helpful to draw such diagrams to
represenf’ for small examples.

This yields a lower bound ofn — 1 comparisons. In caser > n, there is at least one more
comparison to be made, betweghandz,, 1. So if m > n, we need at leastn comparisons. This
provesM (m,n) > 2n — §(m,n), wheren = min{m,n}. This method of proving lower bounds is
simple form of what are calleddversary argumentsin Lecture Xll, where you imagine a 2-player
game between the algorithm and an adversary.

As corollary of the upper and lower bounds, we obtain sometaxaunds for the complexity of
merging:
M(m,m)=2m—1
and
M(m,m+ 1) =2m.

Thus the uniform algorithm is optimal in these cases. Momegally, M (m,m + k) = 2m + k — 1
fork = 0,...,4andm > 6 (see B] and Exercise). These bounds are for inputs where- n| is a
small constant. Now consider the other extreme situatioeraji. — n| are large as possiblé/ (1, n).
In this case, the information theoretic bound says &t , n) > [lg(n + 1)] (why?). Also, by binary
search, this lower bound is tight. Hence we now know anotkactevalue:

M(1,n) = lg(n +1)].
A non-trivial result from Hwang and Lin says
M2,n)=[lg7(n+1)/12] + [lg14(n + 1)/17].

In analogy to (), we have thenformation-theoretic bound (ITB) for merging:

M(m,n) > g <an; ") . (10)

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§4. COMPLEXITY MODEL Lecture | Page 16

In proof, there are{m::") ways of merging the two sorted lists. To see this, imaginéwealready
have the sorted list af» + n elements, but which of these + n elements come from the list of size
m? There ard™*") ways of choosing these elements.

Thus we have two distinct methods for proving lower boundd&mn, n): the adversary method is
better wherjm — n| is small, and the information theoretic bound is better witengap is large. The
exact value of\f (m, n) is known for several other cases, but a complete descripfitiis complexity
function remains an open problem.

Student: thought
9* 15. Best Case Complexity. Although our main interest is in worst-case complexitysitiseful to lower bounds orf'(n)

briefly consider the notion of “best case complexity”. Ndtattcontrary to what some students think, is about the “best
lower bounds orf(n) is still about worst case complexity, not about best case complexity case” complexity of
sorting

Again, if A,, is a tree program that accepts inputs of sizeve define thébest case complexity
of A, to be the length of thehortest patifrom the root ofA,, to a leaf. We can apply this con-
cept to sorting and to merging. Defirt8(n) to be the best case complexity for sortingelements:

S’(n):=min {TAH} where A,, range over all tree programs that serelements. Similarly, define Student:l thought
M'(m,n) to be the best case complexity for mergingelements withn elements. We claim: M'(m,n) =
min {m,n} — §(m, n)
S'(n) =n—1, M'(m,n) = 1. (11)
To seeS’(n) = n — 1, we see that if the output of sorting(s;, . . ., z,), then we must have made the
comparisons; : z;+1 fori = 1,...,n — 1. To see thafl/’(m,n) = 1, note that on inputz1, . ..,)
and(yi, ..., yn), We may be able to get away with a single comparisgn y;.

9* 16. Other Complexity Measures. We briefly look at some other kinds of complexity measures.

e In computational geometry, it is often useful to take thepatisize into account. The complexity
function would now take at least two argumerif$y, k) wheren is the input size, buk is the
output size. This is theutput-sensitive complexity model

e Another kind of complexity measure is tls&ze of a program. In the RAM model, this can be
the number of primitive instructions. We can measure theptexity of a problemP in terms of
the sizes(P) of the smallest program that solvés This complexity measure assigns a single
numbers(P), not a complexity function, t@®. This program size measureis an instance of
static complexity measure in contrast, time and space are examplesiyofamic complexity
measures Here “dynamic” (“static”) refers to fact that the measuspdnds (does not depend)
on the running of a program. Complexity theory is mostly deped for dynamic complexity
measures.

e The comparison tree complexity model ignores all the otleenmutational costs except com-
parisons. In most situations this is well-justified. Butstpossiblé to conjure up ridiculous
algorithms which minimize the comparison cost, at an exarticost in other operations.

e The size measure is relative to representation. Perhap®yheroperty of size measures is that
there are only finitely many objects up to any given.siéthout this, we cannot develop any
complexity theory. If the input set are real numbésthen it is very hard to give a suitable size
function with this property. This is the puzzle of real cortgtion.

6 My colleague, Professor Robert Dewar gives the followingregle: givenn numbers to be sorted, we first search for all
potential comparison trees for sortimgelements. To make this search finite, we only evaluate casguatrees of height at
mostn [lgn]. Among those trees that we have determined to be able torg®gick one of minimum height. Now we run this
comparison tree on the given input.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§5. COMPLEXITY MODEL Lecture | Page 17

EXERCISES

Exercise 4.1: How many comparisons are required in the worst case td 8afements in the compar-
ison tree model? In other words, give a lower boundsdh0). HINT: to do this computation by
hand, it is handy to know than! = 3, 628, 800 and22® = 1,048, 576. O

Exercise 4.2: How good is the information theoretic lower bound? In otheras, can we find upper
bounds that matches the information-theoretic lower b8k know it is tight forS(3). What
aboutS(4)? What ofS(5)? &

Exercise 4.3: The following is a variant of the previous exercise. |s itajs possible to sortelements
using a comparison tree withl leaves? Check this out far = 3,4, 5. REMARK: | believe this
is an open problem, even far< 29. &

Exercise 4.4: (a) Consider a variant of the unit time complexity model foe integer RAM model,
called thelogarithmic time complexity model. Each operand takes time that is logarithmic in
the address of the register and logarithmic in the size @jiesands. What is the relation between
the logarithmic time and the unit time models?

(b) Is this model realistic in the presence of the arithmefierators (ADD, SUB, MUL, DIV).
Discuss. &

Exercise 4.5: Describe suitable complexity models for the “space” reseun integer RAM models.
Give two versions, analogous to the unit time and logarithtime versions. What about real
RAM models? &

Exercise 4.6: Justify the claim thab/ (1, n) = [lg(n + 1)]. $

Exercise 4.7: Give your best upper and lower bounds fa(2, 10). For upper bound, please give an
explicit method. &

Exercise 4.8: Prove thatM (m, m + i) = 2m + i — 1 fori = 2,3,4 form > 6. O

Exercise 4.9: Prove that\/ (k, m) > klg,(m/k) for k < m. HINT: split the list of lengthmn into three
sublists of roughly equal sizes. &

Exercise 4.10: Open problem: determink/ (m, 3) andM (m, m + 5) for all m. &

Exercise 4.11:Describe time and space complexity models for the compacatouit model in §6.
Then defineT'(n) and S(n) as the inherent time and inherent space to somumbers in this
model. HINT: “Time” is the maximum number of comparisonsrajaany path, and “space” is

the number of comparators. Derive boundsitm) andS(n). &
Exercise 4.12: SupposeX, .. ., X,, aren sorted lists, each with elements. Show that the complexity
of sorting the sefX = |J!"_, X; is ©(nklogn). O

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§5. ALGORITHMIC TECHNIQUES Lecture | Page 18

END EXERCISES

65. Algorithmic Techniques: How to design efficient algorithms

Now that we have some criteria to judge algorithms, we begimdsign algorithms that are
“efficient” according to such criteria. There emerges somregal paradigms of algorithms design:
(i) Divide-and-conquer (e.g., merge sort)
(ii) Greedy method (e.qg., Kruskal’s algorithm for minimugesining tree)
(iii) Dynamic programming (e.g., multiplying a sequencedtrices)
(iv) Incremental method (e.g., insertion sort)

Let us briefly outline the merge sort algorithm to illustrétie divide-and-conquer paradigm: Sup-
pose you want to sort an array of n elements. Here is thiglerge Sort (or Mergesort) algorithm on
input A:

MERGE SORT ALGORITHM

Input: An array A with n > 1 numbers.

Output: The sorted arrayl containing these numbers, but in non-decreasing order.

0. (Basis) Ifn = 1, return the arrayl.

1. (Divide) Divide the elements of into two subarray$3 andC of sizes|n/2] and[n/2] each,
2. (Recurse) Recursively, call the Merge Sort algorithnorDo the same fo€.

3. (Conquer) Merge the sorted arraysaandC' into the arrayA

It is important to note that this is a recursive algorithme #igorithm calls itself on smaller size
inputs. E.g., to Merge Sofu, b, ¢, d), you have to recursively Merge Sqt, b) and (¢, d). Besides
recursion, there is only one non-trivial step in this algon, the Conquer Step which merges two
sorted arrays. The subalgorithm for merging was alreadygorany8.

There are many variations or refinements of these paradigms.Kirkpatrick and Seidel] intro-
duced a form of divide-and-conquer (called “marriage-befdividing”) that leads to an output-sensitive
convex hull algorithm. There may be domain specific versmfithese methods. E.g., plane sweep is
an incremental method suitable for problems on points ifieie@n space.

Closely allied with the choice of algorithmic techniquetis thoice oflata structuresA data struc-
ture is a representation of a complex mathematical stragsurch as sets, graphs or matrices), together
with algorithms to support certain querying or updatingragiens. For instance, to implement recursive
algorithms such as Merge Sort above, we will need the use stiaeK” to organize the recursive calls.
A stack is an example of a basic data structure. The followiega list of such basic data structures.

(a) Linked lists: each list stores a sequence of objects together with opasator (i) accessing the
first object, (ii) accessing the next object, (iii) insegtia new object after a given object, and (iv)
deleting any object.

(b) LIFO, FIFO queues: each queue stores a set of objects under operations fotiamsand deletion
of objects. The queue discipline specifies which object ibaaleleted. There are tWwasic
disciplines: last-in first-out (LIFO) or first-in first-ouE(FO). Note that recursion is intimately
related to LIFO.

7 A discipline of a different sort is called GIGO, or, garbagegarbage-out. This is really a law of nature.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§6. ANALYSIS Lecture | Page 19

(c) Binary search trees: each tree stores a set of elements from a linear orderinghegeith the
operations to determine the smallest element in the setfdingn a given element. A dynamic
binary search tree supports, in addition, the insertiondsietion of elements.

(d) Dictionaries: each dictionary stores a set of elements and supports thatapes of (i) inserting a
new element into the set, (ii) deleting an element, andtéa}ing if a given element is a member
of the set.

(e) Priority queues: each queue stores a set of elements from a linear orderiethimgwith the oper-
ations to (i) insert a new element, (ii) delete the minimuemadnt, and (iii) return the minimum
element (without removing it from the set).

EXERCISES

Exercise 5.1: (a) Design an incremental sorting algorithm based on tHeviirhg principle: assuming
that the firstn elements have been sorted, try to add (“insert"ythe- 1st element into the first
m elements to extend the inductive hypothesis. Moreoveuyasthat you do all these operations
using only the space in the original input array.

(b) If the numbem of elements to be sorted is small (say< C), this approach can lead to a
sorting algorithm that is faster than Merge Sort. Intuipieis because Merge Sort uses recursion
that has non-trivial overhead cost. So a practical impleateamn of Merge Sort might switch an
incremental sorting method as in part(a) when< C. Design such a hybrid algorithm that
combines the Merge Sort algorithm with your solution in (a).

(c) Implement the Merge Sort Algorithm, your incrementattisg algorithm of part(a), and the
hybrid algorithm in part(b). Try to see if you can experinalytverify our remarks in (b), and
determine the constant. O

END EXERCISES

66. Analysis: How to estimate complexity

We have now a measufg, of the complexity of our algorithmi, relative to some complexity
model. Unfortunately, the functiofi4 is generally too complex to admit a simple description, dne¢o
expressed in terms of familiar mathematical functionstdad, we aim to give upper and lower bounds
onT4. This constitutes the subject afgorithmic analysis which is a major part of this book. The
tools for this analysis depends to a large extent on the ighgoic paradigm or data structure used by
A. We give two examples.

917. Example (D1) Divide-and-Conquer. If we use divide-and-conquer then it is likely we need to
solve some recurrence equations. In our Merge Sort algorilssuming: is a power of2, we obtain
the following recurrence:

T(n)=2T(n/2)+ Cn

forn > 2and7T(1) = 1, andC > 1 is some constant determined by the complexity of merging.
HereT(n) = Ta(n) is the (worst case) number of comparisons needed by ourithigod to sortn
elements. The solution iB(n) = ©(nlogn). In the next chapter, we study techniques to obtain such
solutions.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. ASYMPTOPIA Lecture | Page 20

918. Example (D2) Amortization. If we employ certain data-structures that might be desdrimee
“lazy” then amortization analysis might be needed. Letlusitate this with the problem of maintaining
a binary search tree under repeated insertion and deldtielerments. Ideally, we want the binary tree
to have heigh(log n) if there aren elements in the tree. There are a number of known solutians fo
this problem (see Chapter 3). Such a solution achieves ttimapogarithmic complexity foreach
insertion/deletion operation. But it may be advantageousetlazy about maintaining this logarithmic
depth property: such laziness may be rewarded by a simptingor programming effort. The price
for laziness is that our complexity may be linear for indivéd operations, but we may still hope to
achieve logarithmic cost in an “amortized” sense (thoudlasoa kind of averaging). To illustrate this
idea, suppose we allow the tree to grow to non-logarithmitlilas long as it does not cost us anything
(i.e., there are no queries on a leaf with big depth). But when we haanswer a query on a “deep
leaf”, we take this opportunity to restructure the tree s the depth of this leaf is now reduced (say
halved). Thus repeated queries to this leaf will make itlslaal The cost of a single query could be
linear time, but we hope that over a long sequence of suchegjehe cost is amortized (averaged)
to something small (say logarithmic). This technique pnés@n adversary from repeated querying of
a “deep leaf”. But how do we account for the first few querigs isome “deep leaves” which have
linear costs? To anticipate such expenses, the idea iseecimarge” those initial insertions that lead to
this inordinate depth. Using a financial paradigm, we puptteepaid charges into some bank account.
Then the “deep queries” can be paid off by withdrawing frons #iccount. Amortization is both an
algorithmic paradigm as well as an analysis technique. Whidbe treated in Chapter 6.

7. Asymptotics: How robust is the model?

‘ This section contains important definitions for the reshefibook. ‘

Take note!

Let us review what we have done so far: we started with a pnolitg§2), selected an appropriate
computational modek@) and an associated complexity modgt), and finally designed an algorithm
A for P in our model §5). These decisions yield an implicit complexity functibn of our algorithm.
We could analyzd’4 in order to understand how good (or efficient) is our algonitiBut looking back
at this process, we are bound to find many arbitrary choio@sinEtance, would a simple change in the
set of primitive operations drastically change the comipyef your solution? Or what if we charge two
units of time for some of the operations? Of course, ther@ismd to such revisionist afterthoughts.
What we are really seeking is a certain robustness or invegin our results. This section addresses
this important concern.

919. Partial and total functions. Let f : D — R be a function, wher@® is called thedomain andR

therange. In ordinary discourse, this is understood to mean thatfener € D, the functionf returns

avaluef(z) € R. We are now going to consider a slightly more general cond#ptcallf : D — R

a partial function if for all € D, either f(z) is eitherdefined in which casef(x) represents an 1 could be viewed as a
element ofR, or elsef (x) is undefined and does not represent anything. We shall write wfite) =1 special value, buf

if f(z) is undefined, and writg¢ () =/ if it is defined. The partial functiorf is said to be dotal cannot be viewed this
function if for all € D, f(z) is defined (and hencg(x) € R). In other words, total functions are the way: it is a surrogate
kind of functions we ordinarily assume. But in the presérafepartial functions, we need to give it a for all other values
name.

8 We remark that the literature sometimes use the notatiorD - R to indicate thatf is a partial function. However, we
shall not use this “->" notation.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. ASYMPTOPIA Lecture | Page 21

920. What is a complexity function? In this book, we call a partial function of the form
f:R"=R

a complexity function. Usually, we haver = 1. We use complexity functions to quantify the com-
plexity of algorithms. Why do we consideartial functions for complexity functions? For one thing,
many functions of interest are only defined on positive iateg For example, the running tir& (n)

of an algorithmA that takes discrete inputs is a partial real function (ndlsndefined only whem: is

a natural number). Of course, if the domairiof is taken to beN, thenT'4 (n) might perhaps be total.
So we prefer to usk as the domain df'4 (n). This is because we often use functions sfi¢h) = n /2

or f(n) = y/n, to bound our complexity functions, and these are natudfjned on the real domain;
all the tools of analysis and calculus becomes available&tyae such functions. Many common real
functions such ag(n) = 1/n or f(n) = logn are partial functions becausén is undefined at = 0
andlog n is undefined fon < 0.

We have to be careful about operations on partial functiang,when they are used to define predi-
cates. We have a general rule for composition of two pauiatfionsf, g : R — R:

g(x) =1 implies f(g(z)) =T . (12)

More generally, if any argument of a function is undefinedntkthe value of the function is undefined.

921. Partial Predicates. For any setD, a partial functionP : D — {0,1} is called apartial
predicate over D. We say the predicat® holds atz € D if P(z) = 1. Sol is the “true” value and
0 is the “false” value. The partial predicateis valid if for all = € D, eitherP(z) =1 or P(x) = 1.

If P(z) =1 forall z € D, then we sayP is vacuouslyvalid. Partial predicates arise naturally from
relations among partial functions. ff g are complexity functions, then the relatiofi < ¢” represents
the partial predicaté® : R — {0,1} whereP(z) =1if f(x) =71 or g(x) =7, otherwise,P(z) =.
Naturally, whenP(x) =/, we haveP(z) = 1iff f(z) < g(z).

If P, : D — {0, 1} are partial predicate§ = 0, 1), then so are-P;, Py V P, andPy A Py (recall
our general rulel2) about composition of partial functions).

How to quantify over

Quantification over partial predicates is defined as foltowse sentence(Vz) P(x)” holds iff for . ;
partial predicates

all x € D, eitherP(z) =t or P(x) = 1. Similarly “(3x)P(z)” holds iff there is some: € D such
that P(x) =] andP(z) = 1. E.g., if P is the always undefined predicate, thé) P(x) is false. De
Morgan'’s law for quantifiers say that

ER
<
=
3
=
I

(3z)—P(x).
(¥2)~P(). } (13)

Itis not hard to see thafl @) holds even whet® is a partial predicate.

q22. Designated variable and Anonymous functions. In general, we will write 12" and “log «” to
refer to the functiong (n) = n? or g(x) = log z, respectively. Thus, the functions denotedor log
areanonymous(or, perhaps more accurately, “self-naming”). This corianis very convenient, but

it relies on an understanding that™in »n? or “2” in log z is thedesignated variablein the expression.
For instance, the anonymous complexity functén is a linear function ifx is the designated variable,
but an exponential function if: is the designated variableThe designated variable in complexity
functions, by definition, range over real numbefhis may be a bit confusing when the designated

variable is *h” since in mathematical literature, is usually a natural number. n might be a real

variable!

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. ASYMPTOPIA Lecture | Page 22

923. Robustness or Invariance issue. Let us return to the robustness issue which motivated this
section. The motivation was to state complexity results tizae general validity, or independent of
many apparently arbitrary choices in the process of degiur results. There are many ways to achieve
this: for instance, we can specify complexity functions aggolynomial smearing”. More precisely,
two real functionsf, g are said to b@olynomially equivalent if for somec > 0, f(n) < cg(n)® and
g(n) < cf(n)¢ for all n large enough. Thus,/n andn?® are polynomially equivalent according to this
definition. This isextremelyrobust but alas, too coarse for most purposes. The mostyédekpted

procedure is to take two smaller steps: two steps towards

invariance

e Step 1: We are interested in the eventual behavior of funsti&.g., ifT’(n) = 2™ for n < 1000
andT'(n) = n for n > 1000, then we want to regarfi(n) as a linear function.

e Step 2: We distinguish functions only up to multiplicativenstants. E.gxn/2, n and10n are
indistinguishable,

These two decisions give us most of the robustness proparéelesire, and are captured in the foIIow—Where Is Asymptopia’
Itis a far, far away

ing language of asymptotics. land, where everything
is BIG.

924. Eventuality. This is Step 1 in our search for invariance. et R — {0,1} be a (partial) real
predicate. We say holdseventually, denoted P (ev.”, if P(x) holds for allx large enough. More
precisely:
(Fzo) (V) [z > z9 = P(x)]. (14)
Instead of ‘P (ev.)”, we may also write
P(z) (ev.x).

to explicitly show the role of the variable According to our rules for quantifying over partial predi-
cates, {Vx)” in (14) really says “{z such thatP(z) =|)".

Atypical example is whe®(x) is the predicatef(z) < g(x)” defined by two complexity functions
f.g. Thenwe say f < g (ev)"if f(x) < g(z) holds for allz large enough. More precisely,

(3zo)(Va)[x > zo = f(x) < g(x)].
The “(Vx)” in this statement really saysV(such thatf () =] andg(x) =])".

By not caring about the behavior of complexity function ogeme initial values, our complexity
bounds becomes robust against the followtalgie-lookup trick . If A is any algorithm, relative to to
any given finite sef of inputs, we can modifyl so that ifz € S, then the answer for is obtained by a
table lookup; otherwise, the answer is computed by rundimmm z. The modified algorithmd’ might
be much faster thad for all x € S, but it will have the same “eventual” complexity ds Thus, the
complexity of A and A’ are indistinguishable using our eventuality criterion.

The concept of eventuality is intimately connected with ¢tbacept ofinfinitely often (“i.0.” for
short). Given a real predicaf®(x), we sayP holdsinfinitely often, written

P(z) (i.0.x) (15)

(or, P (i.0.) if

(Vo) (3z)[(z > o) A P(a)].
For instance, for complexity functiorjsandg, we say f < g (i.0.)” if for all z, there exists: > x¢
such thatf(z) =] andg(z) =] and f(z) < g(z). Note that an “infinitely often” (i.0.) statement is
equivalent to the negation of an “eventually” statement:

=[P(z) (ev.z)] = [=P(z)] (i.0. z) (16)

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. ASYMPTOPIA Lecture | Page 23

Most natural functiong in complexity satisfy some rather natural properties:

e fis eventually definedf(xz) =] (ev.).

e fis eventually non-negativg, > 0 (ev.).

When these properties fail, our intuitions about compieftinctions may go wrong.

925. Domination. We now take Step 2 towards invariance. We gajominatesg, written

[=g,

if there exista” > 0 suchthaC - f > g (ev.)). The symbol %’ is intended to evoke the*’ connection.
In particular, it should suggest the transitivity property= g andg = h implies f = h. Of course, the
reflexivity property holds:f > f. We can also write < f” instead off = ¢g. If f = gandg > f
then we write

f=g-

Clearly < is an equivalence relation. The equivalence classesisf(essentially) thé-order of f;
more on this below. Iff > g but notg > f then we write

f=g

ans say thaf strictly dominates g. E.g.,n? = n = 1+ % Thus the triplet of notations , >, < for
real functions correspond to the binary relations>, = for real numbers.

Domination provides “implementation platform indepenckehfor our complexity results: it does
not matter whether you implement a given algorithm in a higtel program language likéava or
in assembly language. The complexity of your algorithm iestlhimplementations (if done correctly) One form of Moore’s
will be dominated by each other (i.e., sameorder). This also insulates our complexity results agains law predicts that the
Moore’s Law: over a limited time period, the timing of our afghms keeps the sante-order. Of speed of hardware will
course, Moore’s law cannot hold indefinitely because of aydimits, but the end is not in sight yet. keep doubling every 18
months.

926. The Big-Oh Notation. We write
o(/f)

(and readbrder of f or big-Oh of f) to denote the set of all complexity functiopsuch that The key asymptotic

notation to know!
0=xg=/.

Note that each function i@ (f) dominated, i.e, is eventually non-negative. Thus, restricted to func-
tions that are eventually non-negative, the big-Oh notafieewed as a binary relation) is equivalent to

domination. big-Oh is almost the

same as domination

We can unroll the big-Oh notation as follows: To praye= O(f), you
need to show somé > 0 andz, such that for allx > xy, if g(z) =|
and f(z) =} then0 < g(z) < Cf(x). Remember your epsilon-delta
argumentin Calculus? Well, the Computer Science analogtreeC'-z
argument.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. ASYMPTOPIA Lecture | Page 24

E.g., The selO(1) comprises all functiong that is bounded and eventually non-negative. The
function1 + 1 is a member o®(1).

The simplest usage of thi8-notation is as follows: we write

g=0(f)

(and read ¢ is big-Oh of f* or * ¢ is order of f’) to meang is a member of the s€?(/). The equality
symbol ‘=" here is “uni-directional”.g = O(f) does not mean the same thing@a&f) = g. Below, we
will see how to interpret the latter expression. The equaliimbol in this context is called @ne-way
equality. Why not just use¢’ for the one-way equality? A partial explanation is that @eenmon use
of the equality symbol has a uni-directional flavor where rm@s$form a formula from an unknown form
into a known form, separated by an equality symbol. Our oag-@&guality symbol foD-expressions
lends itself to a similar manipulation. For example, thédwing sequence of one-way equalities

fln)=> (i+ %) = (Z z) - (Z %) = 0(n*) + O(nlogn) = O(n?)

i=1 =1 =1

may be viewed as a derivation to shgvis at most quadratic.

9* 27. Big-Oh Expressions. The expression®(f(n))’ is an example of ar0-expression, which
we now define. In any-expression, there is designated variablewhich is the real variable that
goes to infinity. For instance, thé-expressiorO(n*) would be ambiguous were it not for the tacit
convention that#’ is normally the designated variable. Hencés assumed to be constant. We shall
defineO-expressionsas follows:

(Basis) If f is the symbol for a function, thepiis anO-expression. I is the designated variable for
O-expressions anda real constant, then both™and ‘¢’ are alsoO-expressions.

(Induction) If E, F are O-expressions and is a symbol denoting a complexity function then the
following areO-expressions:

O(E), f(E), E+F, FEF, —E, 1/E, EF.

EachO-expressiorty denotes a set of partial real functions in the obvious manner: in the basise,
a function symbolf denotes the singleton sgt= { f}. Inductively, the expressiof + F' (for instance)

denotes the sm of all functionsf + g wheref € E andg € F. Similarly for

—

[(E), EF, —E, EF

The setl7E is defined a{l/g 1g € E) &0 = g} . The most interesting case is the expressigi),
called a “simple big-Oh expression”. In this case,

O(E)={f:(Bge B0 < f =g)}.

Examples of0-expressions:

2" — O(n?logn), prtOUogn) J(+0(1/n)) - g(n).

9More generally, we can considerapproaching some other limit, suchs

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

0 :

i)

§7. ASYMPTOPIA Lecture | Page 25

Note that in general, the set of functions denoted byaexpression need not dominatelf £, F
are twoO-expressions, we may write
E=F

to denoteF C F, i.e, the equality symbol stands for set inclusion! This gerieealour earlier f =
O(g)" interpretation. Some examples of this usage:

O(TLQ) _ 5(’)(logn) _ (9(nlogn)7 n 4+ (1ogn)(9(\/ﬁ) _ nloglogn’ on — O(l)nf(?(l).

An ambiguity arises from the fact that@ does not occur in atD-expression, it is indistinguishable
from an ordinary expression. We must be explicit about oterition, or else rely on the context in
such cases. Normally, at least one side of the one-sidediequ&d = " contains an occurrence of
‘O, in which case, the other side is automatically assumedetaO-expression. Some common
O-expressions are:

O(1), the bounded functions.

1 + O(1/n), a set of functions that tends t&.

O(n), the linearly bounded functions.

n®M) the functions bounded by polynomials.

e O(1)™ or2°(, the functions bounded by simple exponentials.

O(logn), the functions bounded by some multiple of the logarithm.

9* 28. Extensions of Big-Oh Notations. We note some simple extensions of tAenotation:

(1) Inequality interpretation: For O-expressiond’, F', we may writeE # F' to mean that the set of
functions denoted by is not contained in the set denoted By For instancef(n) # O(n?) means
that for allC' > 0, there are infinitely many such thatf (n) > Cn?.

(2) Subscripting convention: We can subscript the big-Oh’s in &@texpression. For example,

Oa(n), O1(n*) + Oz(nlogn). a7)

The intent is that each subscript,(1, 2) picks out a specific but anonymous function in (the set de-
noted by) the unsubscripte@-notation. Furthermore, within a given context, two oceages of an
identically subscripted-notation are meant to refer to the same function. For suyiiscrexpressions,

it now makes sense to use inequalities, asfi’* O 4(g)" or“ f < O1(g)".

For instance, ifA is a linear time algorithm, we may say that ‘tuns in timeO 4 (n)” to indicate
that the choice of the functiof? 4 (n) depends omd. Further, all occurrences o4 (n)” in the same
discussion will refer to the same anonymous function. Agammay write

n2% = Ok(n), n2%=0,(2%)

depending on one’s viewpoint. Especially useful is theightb do “in-line calculations”. As an
example, we may write
g(n) = O1(nlogn) = O2(n?)

where, it should be noted, the equalities here are true iiggalf functions.

(3) Another possible extension is to multivariate real tiots. For instance consider the notation
“f(z,y) = O(g(x,y))” where we view bothr andy are designated variables. I.e., there exist constants
C > 0,9, yo such that for ale > xg,y > vo, f(z,y) < Cg(x,y). In practice, such an extension is
seldom needed.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. ASYMPTOPIA Lecture | Page 26

9 29. Related Asymptotic Notations. In addition to our big-OlO(f), we now introduce four other
asymptotic notations: big-OmegH /), Theta®(f), small-oho(f), and small-omega(f). To provide
an initial intuition behind these notations, compare calsré and 3 in the following table:

Name lg\l(itag(()}w) MRe(;ungiJ:g Definition of ©(f) Ilgo]:r);
big-Oh Gg=00) | 97 (EC>0)C-J =g = 0(ev)] 9=7
big-Omega || g=Q(f) | 9>/ (3C > 0)[C g > | > 0(ev)] =
Theta 9=0(f)| g=f [BC>0)[C* - f>C-g>f>0v)]]| g=f
small-oh g=o(f) | 9« f (VC > 0)[C - f>g>0(ev.)] g=<f
small-omega| g =w(f) | 9> f (VC > 0)[C-g> f>0(ev)] g f

Column 4 of the table contains the formal definitions. We wolw unpack these definitions in a
leisurely manner;

Big-Omega notation: Q(f) is the set of all complexity functionssuch that for some constafit> 0,
C-g>f>0(ev).

Of course, this can be compactly written@s- f = 0. Note thatQ(f) is empty unless it is
eventually non-negative. Clearly, big-Omega is just theerse of the big-Oh relationg is in

Q(f) iff f = O(g).
Theta notation: O(f) is the intersection of the set3(f) andQ(f). Sogisin©(f)iff g < f.

Small-oh notation: o(f) is the set of all complexity functiongssuch that for all”" > 0, SoC can be arbitrarily

small!
C-f>g>0(ev).
As usual, we writegy = o(f) to meang € o(f). For instance, withf (z) = 1 andg(z) = 1/,
we conclude that /= = o(1). Also, we have the relation(f) C O(f). Itis sometimes useful
to have a binary relation symbol for Small-oh that is the agals to< for Big-Oh. Thus, we
define
fg
to mean that foralC' > 0, C - f > g (ev.). We sayf super-dominatesg. = is like >’

An alternative definition of small-oh found in the literaguis this: ‘¢ = o(f)” (in quotes) if
g(z)/ f(x) — 0 asz — oo. This definition is equivalent to ours ff(z) > 0 (ev.). Our definition
avoids the use of limits and seems easier to use. A relatadioois this: we say

f~g (18)

if f=g+o0(g)orf(x)=g(x)[l=+o(1)]. This says thaf andg approximates each other with

relative error ob(1). Son ~n +lgn but

n 4 2n.
Small-omega notation: w(f) is the set of all functiong such that for allC' > 0,

C-g>f>0((ev).

Clearlyw(f) C Q(f). Again, the usual limit-based definition of = w(f)” (in quotes) is that
g(x)/ f(x) = oo asz — oc.

For each of these notations, we can again define:tlexpressions® € {2, 0,0,w}), use the
one-way equality instead of set-membership or set-inciysand employ the subscripting convention.
Thus, we write § = Q(f)” instead of saying § is in Q(f)”. We call the seto(f) the ®-order of f.
Here are some immediate relationships among these natation

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. ASYMPTOPIA Lecture | Page 27

o [=0(g)iff g =Q(f).

o [=0(g)iff f=0(g)andf =Q(g).
o [=0(f)andO(O(f)) = O(f).

o f+o(f)=0(f).

o g=w(f)iff f=o(g).

9* 30. Varieties of Lower Bounds. It is instructive to explore the notions of a lower bound — one
motivation is that lower bounds concepts are often misusetthe literature. In the following, it is
simpler if we assume that, g > 1 (ev.). How can we express lower bounds on a complexity foncti

f?

e One way is to say thatis a lower bound orf is f = Q(g). This translates into

(3C > 0)(Ino)(Vn > no)[C f(n) > g(n)]. (19)

But we could also negate the upper bound statenfieatO(g). Thus the statement # O(g)
gives another kind of lower bound gh

(VC > 0)(¥no)(In > ng)[Cf(n) > g(n)]. (20)

Using the small-omega and small-oh notations, we have tWeratays to state lower bounds.
Thusf = w(g) translates into

(VC > 0)(Fno)(Yn > no)[f(n) > Cy(n)]. (21)

And finally f # o(g) translates into
(3C > 0)(Vno)(3n > no)[f(n) > Cy(n)]. (22)

Notice that the matrix['f(n) > Cg(n)]’ is common to all four lower bound statements9—(22).

Of these, two are direct application of our notatioasQ(¢) andw(g)) but two arenegationsof our

notations ¢ O(g) and+# o(g)). It can be seen from the above translations that the foueddaunds
are related by the following four implications:

f=9Q(g)
N N\
[=w(g) f#o(9) (23)
N\ N
f# O(g)

Likewise, we could introduce four ways of stating upper bdsin

Let us see how these notations are used in practice. For éxaletpus prove that for alt < %/,
n* £ 0nk).

Suppose*” = O(n*). Thenthereis & > 0 such that*" < Cn* (ev.). That means* —* < C (ev.).
This is a contradiction becaugé is unbounded for any > 0.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

f#0(9)

§7. ASYMPTOPIA Lecture | Page 28

9* 31. Discussion of asymptotic notations. There is some debate over the best way to define the
asymptotic concepts in computer science. So it is not singrithat there is considerable divergence
on the details in the literature (be warned!). Here we natetjuo alternatives:

e Perhaps the most common definition follows Knuthf. 104] who defines¢' = O(f)” to mean
there is some&” > 0 such that| f(z)| dominatesC|g(z)|. Using this definition, bottO(— f)
and—O(f) would mean the same thing &¥ f). But our definition allows us to distingui$h
betweenl + O(1/n) andl — O(1/n). Note thaty = 1 — O(f) amountstd —C'f < f <1 (ev.).
When an big-Oh expression appears in negated form aglifl /n), it is really a lower bound

e Again, we could have defined?(f)” more simply, as comprising thosg such thaty < f.
That is, we omit the requiremefit< g from our original definition. This alternative definition
is attractive for its simplicity. But the drawback of thiggilified “O(f)” is that it contains
arbitrarily negative functions. The expressiba O(1/n) is useful as an upper and lower bound
under our official notation. But with the simplified definiticche expressionl“— O(1/n)” has no
value as an upper bound. Our official definition opted for sihing that is intermediate between
this simplified version and Knuth’s.

We are following Cormen et all] in restricting the elements @(/) to complexity functions that
dominate). This approach has its own burden: thus whenever we gay O(f)", we have to check
thatg dominates) (cf. exercise 1 below). In practice, this requirement ismath of a burden, and is
silently passed over.

A common abuse is to use hig-Oh notations in conjunction thighinequality symbol<). Itis very
tempting to write *f (n) < O(g)” instead of the correctf'(n) = O(g)". At best, this is redundant. The
problem is that, once this notation is admitted, one may éndburse of a long derivation eventually
write “f(n) > O(FE)” which is not very meaningful. Hence we regard any usecajr > symbols in
O-notations as illegitimate (but this is legitimate agaimlanthe subscripting conventioh?)).

Perhaps most confusion (and abuse) in the literature dfigasthe variant definitions of the-
notation. For instance, one may have only shown a lower baoditide form f £ O(g) or f # o(g)
result, but this this viewed as a proof ff= Q(g) or g = w(g). We see fromZ3) that these are quite
different.

Evidently, these asymptotic notations can be intermixed.,B(n®°¢™) — Q(n). However, they
can be tricky to understand and there seems to be little raethém. Another generalization with
some applications are multivariate complexity functionstsasf (z,y). They do arise in discussing
tradeoffs between two or more computational resources asigpace-time, area-time, etc. In recently
years, the study of “parametrized complexity” has givernepie of multivariate complexity functions
where some of the size variables controls the “parametéitsieqproblem.

EXERCISES

Exercise 7.1: (a) Suppose that for all' > 0, we havef > Cyg infinitely often (i.0.). Please express
this using our asymptotic notations (like dominance, etc).
(b) Please restate the conditipn< ¢ (f is not super-dominated lay using the “infinitely often”
terminology. &

10 On the other hand, there is no easy way to recover Knuth'sitiefiusing our definitions. It may be useful to retain Knsth’
definition by introducing a special notatioh®|(f(n))”, etc.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§7. ASYMPTOPIA Lecture | Page 29

Exercise 7.2: Our asymptotic notations falls under two grous; 2, © ando,w. In the first group,
we haved(f) = O(f) N Q(f). This suggests the “small-theta” analogue for the secondmgr
“O(f) = o(f) Nw(f)". Why was this not done? O

Exercise 7.3:Let P : D — {0, 1} be a partial predicate over some dom&inWhen we do quantifica-
tion, Vo anddz it is assumed that range overD. Show that the following equivalences (called
“de Morgan’s laws for quantifiers”) hold:
(a) ~(Vx)P(x) is equivalent tq3z)—P(z)
(b) ~(3z) P(x) is equivalent tqVa)—~P(x) O

Exercise 7.4: To do this problem, we introduce some common mathematigakssions:
() “ f is unbounded” means that for ady > 0 and anyzg, there is some: > xy such that
flz)=landf(z) > C.
(i) “ f > ¢ infinitely often” means that there are arbitrarily largeues ofz wheref(z) > g(x)
holds.
(iii) “ f is bounded away fror” means there exists > 0 such that for alle, f(x) > e.
(a) Condition is ‘f == 1”. Show anf that is unbounded but does not satisfy this condition.
(b) Conditionis “f £ 1" (i.e., “Itis not the case that < 1”). Give an English expression for this
condition.
(c) Condition is “f » 1”. Give an English expression for this condition.
(d) Clearly, Condition (a) implies Condition (b). Give a cuier example for the converse.

Exercise 7.5: Assumef(n) > 1 (ev.,).
(a) Show thatf (n) = n©M) iff there existsk > 0 such thatf(n) = O(n*). This is mainly an
exercise in unraveling our notations!
(b) Show a counter example to (a) in cgde) > 1 (ev,) is false. &

Exercise 7.6: Prove or disprovef = O(1)" iff f = 20(n) &

Exercise 7.7:1f P, : D — {0, 1} are partial predicate§ = 0, 1) over some domai®, then so are
—-P;, Py P, andPy A P, where we use the rule thatPy (z), Po(z)V Py (x), Py(z) APy (x) are all
undefined wherPy(x) =1. Show that-(Vx)P(x) is equivalent toJz)—P(x) and—(3x)P(x)
is equivalent toVz)—P(x). NOTE: these are called De Morgan’s law for quantifiers, Wwh&
well-known whenP is a total predicate. &

Exercise 7.8: Unravel the meaning of th@-expression:l — O(1/n) + O(1/n?) — O(1/n?). Does
the O-expression have any meaning if we extend this into an iefiexipression with alternating
signs? %

Exercise 7.9: For basic properties of the logarithm and exponential fionst see the appendix in the
next lecture. Show the following (remember thiaits the designated variable). In each case, you
must explicitly specify the constantsg, C, etc, implicit in the asymptotic notations.

(@) (n + ¢)* = ©(n*). Note thatr, k can be negative.

(b) log(n!) = ©(nlogn).

() n! = o(n™).

(d) [logn]! = Q(n*) for anyk > 0.

(e) [loglogn]! < n (ev.). o

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§*8. Two DICTUMS Lecture | Page 30

Exercise 7.10: Provide either a counter-example when false or a proof when The basé of loga-
rithms is arbitrary but fixed, andl > 1. Assume the functiong, ¢ are arbitrary (do not assume
that f andg are> 0 eventually).

(2) f = O(g) impliesg = O(f).

(b) max{f, g} = O(f +g).

(©)If g > 1andf = O(g) thenln f = O(ln g). HINT: careful!

(d) f = O(g) implies f o log = O(g o log). Assume thay o log and f o log are complexity
functions.

(e) f = O(g) implies2f = O(29).

(f) f = o(g) implies2f = O(29).

@) f =0O(f?).
(h) f(n) = ©(f(n/2)). o
Exercise 7.11: Re-solve the previous exercise, assuming that> 2 (ev.). &

Exercise 7.12:Let f(x) = sinx andg(x) = 1.
(i) Prove f < g or its negation.
(ii) Proveg < f or its negation.
HINT: To prove thatf £ g, you need to show that fall choices ofC' > 0 andzy > 0, some
relationship betweeyf andg fails. &

Exercise 7.13: This exercise shows three (increasingly strong) notionfower bounds. Suppose
Ta(n) is the running time of an algorithm.
(a) Suppose you have constructed an infinite sequence dbifpus, . . . of sizesn; < ngy < ---
such thatA on I; takes time more thafi(n;). How can you express this lower bound result using
our asymptotic notations?
(b) In the spirit of (a), what would it take to prove a lower Ingiof the formT4 (n) # O(f(n))?
What must you show about of your constructed inplytds,
(c) What does it take to prove a lower bound of the fafa(n) = Q(f(n))? O

Exercise 7.14:Provide four ways of stating upper bounds on complexity fioms, in analogy to the
four ways of stating lower bounds. Describe their logicédtiens. &

Exercise 7.15: Show some examples where you might want to use “mixed” asyticpexpressions.

Exercise 7.16: SupposeP(z, y) is a partial predicate, ar@(y) is (Vx)P(z, y). Using our definitions,
Q(y) is now a total predicate. Should we modify our treatment @frgifiers to allow(y) to be
a partial predicates?

Exercise 7.17:Discuss the meaning of the expressians O(logn) andn + O(log n) under (1) our
definition, (2) Knuth's definition and (3) the “simplified defion” in the discussion. &

END EXERCISES

6*8. Conclusion: Two Dictums of Algorithmics

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§*8. Two DICTUMS Lecture | Page 31

To conclude this overview of algorithmics, we state two pifttes in algorithmics. They justify
many of our procedures and motivate some of the fundameméstipns we ask.

(A) Complexity functions are determined only ugtarder. This recalls our motivation for intro-
ducing asymptotic notations, namely, concern for robustfexity results. For instance, we might
prove a theorem that the running tirfi&n) of an algorithm is “linear time”T'(n) = ©(n). Then
simple and local modifications to the algorithm, or reastemabplementations on different platforms,
should not affect the validity of this theorem.

There are many important caveats. We conclude from thisigi¢hat it is important to design new
algorithms with bette®-complexity (such algorithms attain new “records” in thegdowards opti-
mality). While this attitude is good in itself, the conveetéitude can be counter productive: we must
not infer that only algorithms that achieve new records amgartant. Often, an asymptotically supe-
rior algorithm may be much slower than a slower algorithm mhen on inputs of realistic sizes. For
some problems, we might be interested in the constant rficéttjve factors hidden by th@-notation.
We also know that our ability to capture the simultaneousperity of more than one computational
resource is very limited. Finally, there are non-compleissues that may matter. Simplicity of an
algorithm is always appealing, in a non-quantifiable waysezaf-implementation might trump a purely
complexity-based criterion. In short, we need a holistewof algorithmics.

(B) Problems with complexity that are polynomial-boundeel feasible. Moreover, there is an
unbridgeable gap between polynomial-bounded problemglamsk that are not polynomial-bounded.
This principle goes back to Cobham and Edmonds in the latesiand relates to the versusN P
guestion. Hence, the first question we ask concerning anglgmois whether it is polynomially-
bounded. The answer may depend on the particular complexiigel. E.g., a problem may be
polynomial-bounded in space-resource but not in timeresg although at this moment it is unknown
if this possibility can arise. Of course, polynomial-boedccomplexityT’(n) = n€ is not practical
except for smalk (typically less thar6). In many applications, even = 2 is not practical. So the
“practically feasible class” is a rather small slicefof

Despite caveats, these two dictums turn out to be extrenseliul The landscape of computational
problems is thereby simplified and made “understandabléie quest for asymptotically good algo-
rithms helps us understand the nature of the problem. O#fter a complicated but asymptotically
good algorithm has been discovered, we find ways to achievedme asymptotic result in a simpler
(practical) way.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 32

SA. APPENDIX: General Notations

We gather some general notations used throughout this bdsé&.this as reference. If there is a Bookmark this
notation you do not understand from elsewhere in the bodkigta first place to look. appendix to come back
often!

§A.0 Definitions.
We use the symbol= to indicate the definition of a term: we will writ&:=...Y ... when defining a
term X interms of... Y For example, we define the sign function as follows:

1 iff >0
sign(z):=1¢ 0 iff x=0
-1 iff x<0

Or, to define the special symbol for logarithm to baseve writelg z:= log, .

8A.1 Numbers.
Denote the set of natural numb&rdy N = {0,1,2,...}, integers byZ = {0,+1,+2,...}, rational
numbers bYQ = {p/q : p,q € Z, q # 0}, the realR and complex numberS. Thus we have

NCZCQCcRcC

The positive and non-negative reals are denéted andR >, respectively. The set of integefs i +
1,...,5— 1,7} wherei, j € Nis denoted:..j]. So the size ofi..j] ismax{0,j — i + 1}. If risareal
number, let itxeiling [r] be the smallest integer greater than or equal ®imilarly, itsfloor || is the
largest integer less than or equabtoClearly,|r] < r < [r]. Forinstance|0.5] =0, |-0.5| = —1
and[—-2.3] = —2.

8A.2 Sets.
The sizeor cardinality of a setS is the number of elements it and denotedS|. The empty set is
(). A set of size one is called singleton The disjoint union of two sets is denotédw Y. Thus,
X = X, WX, - X, to denote a partition ok into n subsets. 1fX is a set, theX denotes the
set of all subsets oK. TheCartesian product X; x --- x X,, of the setsX;, ..., X,, is the set of all
n-tuples of the form(xy, ..., z,) wherez; € X;. If X; = --. = X,, then we simply write this aX ™.
If n € N then an-set refers to one with cardinality, and(f) denotes the set of-subsets ofX .

Sometimes, we need to considaultisets. These are sets whose elements need not be distinct.
E.g., the multisetS = {a,qa,b,c,c,c} has6 elements but only three of them are distinct. There are
two copies ofu and three copies afin S. Note thatS is distinct from the sefa, b, ¢}, and we use set
notations for multisets. Alternatively, a multiset can iewed as a functiop. : S — N whose domain
is a standard sef. Intuitively, u(a) is the multiplicity of eachu € S.

§A.3 Relations and Order.
An n-ary relation on a seX is a set of the fornR C X™. The most important casesis= 2, when we
have binary relations. Instead of sayifigb) € R, we like to writeaRb, read as & is R-related toh”.

Leta,b,c € X. A binary relationR is reflexive if aRa, transitive if aRb andbRc impliesaRc,
symmetric if aRb impliesbRa, anti-symmetric if aRb andbRa impliesa = b. A pre-order R is a
reflexive and transitive binary relation. A pre-ordethat is alsssymmetric is anequivalencerelation.
Equivalence relations is extremely important concept imfamathematics, and it induces a partition
of X into disjoint subsets, called equivalence classes. A pderdr that isanti-symmetric (aRb and
bRa impliesa = b) is anpartial order relation.

11 7ero is considered natural here, although the ancients teomsider it so. The symb@l comes from the German ‘zahlen’,
to count.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 33

LEMMA 2. LetR C X2 be a preorder.
() The setX:= {7 : z € X} wherez = {y € X : xRy, yRz} forms a partition ofX.

(i) The relation® C X~ wherez Ry if Ry is a partial order onX.

Proof. (i) Supposer N 3 is non-empty for some,y € X. Then thereisa € z N7y. We prove
thatz C 7. for u € T impliesuRz. ButzRz andz Ry, so by transitivityu Rz Rz Ry or uRy. \We can
similarly showyRu. Thusu € 7. This provest C 3. Again by symmetry, we can show thatC 7.
Thusz = 7. This proves that the seisin X are pairwise disjoint. Moreover, everyc X belongs to
7 € X. This concludes our proof tha is a partition ofX.

(i) We must prove reflexivity, antisymmetry and transitywof R. Reflexivity comes fronkRZ since
xRz holds in a pre-order. Antisymmetry comes framky andy Rz impliesy € 7 and hencgj = 7.
Transitivity of R follows easily from the transitivity of. Q.E.D.

§A.4 Functions.
If f: X — Y is a partial function, then writ¢(x) =71 if f(z) is undefined and'(z) =| otherwise. If
forall z, f(z) |, thenf atotal function. Some authors uge X -->Y to indicate partial functions, and
reserve 'f : X — Y for total functions. Function composition will be denotga g : X — Z where
g: X —=>Yandf:Y — Z. Thus(f o g)(z) = f(g(x)). We need the special rule that whefx) =1
then f(g(x)) =1. We say a total functiorf is injective or 1 — 1if f(x) = f(y) impliesz = y; itis
surjective orontoif f(X) =Y itis bijective if it is both injective and surjective.

The special functions of exponentiatietp, (z:) and logarithmog, (z) to baseh > 0 are more fully
described in the Appendix of Chapter 2. Although these fonstcan be viewed as complex functions,
we will exclusively treat them as real functions in this botrkparticular, it meankg, (x) is undefined
for x < 0. When the basé is not explicitly specified, it is assumed to be some condtantl. Two
special basés$ deserve their own notationg = andln z refer to logarithms to base = 2 and base
b= e = 2.718..., respectively. In computer sciendg is immensely useful. For any real we write
log® z as short hand foflog z)*. E.g.,log? = = (log z)2. For any natural number letlog(” = denote
thei-fold application of thdog-function. E.g.Jog® z = log(log z)) = loglog z andlog® & = z. In
fact, this notation can be extended to any inteégemhere; < 0 indicates théi|-fold application ofexp.

8A.5 Logic.
We assume the student is familiar with Boolean (or propmsdt) logic. In Boolean logic, each variable
A, B stands for a proposition that is either true or false. Bawolegic deals with Boolean combinations
of such variables=A, A v B, A A B. Note thatA = B is logical implication, and is equivalent to
-AV B.

But mathematical facts go beyond propositional logic. Heran exampl€ of a mathematical
assertionP(z, y) wherex, y are real variables:

P(z,y) : There exists a real such that either > yorz < z < y. (24)

The student should know how to parse such assertions. Theiass”(z,y) happens to be true. This
is logically equivalent to
(Vz,y € R)[P(z,y)]. (25)

All mathematical assertions are of this nature. Note thahewe passed from propositional logic to
quantifier (first order) logic. It is said that mathematicaths are universal: truthhood does not allow
exceptions. If an assertioR(z,y) has exceptions, and we can explicitly characterize theptiares
E(z,y): then the new statemeit(x, y) V FE(x,y) constitute a true assertion.

12 Of courseln z has the (well-deserved) appellation “natural logarithmitlg = has no special name. But it could be called
the “computer science logarithm”.
13 When we formalize the logical language of discussion, whatlled “assertion” here is often called “formula”.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 34

Assertions contain variables: for example(z, y) in (24) containsz, y, 2. Each variable has an
implied or explicit range £, y, z range over “real numbers”), and each variable is eithentified
(either by “for all” or “there exists”) ounquantified. Alternatively, they are eithdsounded or free.

In our exampleP(x, y), z is bounded whilex, y are free. Itis conventional to display the free variables
as functional parameters of an assertion. The symilsdands for “for all” and is called theniversal
quantifier. Likewise, the symboB stands for “there exists” and is called thgistential quantifier.
Assertions with no free variables are callgiétements We can always convert an assertion into a
statement by adding some prefix to quantify each of the freables. ThusP(z,y) can be converted
into statements such as ig5) or as in(3z € R)(Vy € R)[P(z,y)]. In general, ifA and B are
statements, so is any Boolean combinationd ehd B, such asA A B and—A or AV B. However, all
statements can be transformed into the form

(Q1)(Q2) - (Qn) [...predicate . . |

where(); is theith quantifier part. Such a form, where all the quantifiers appefore the predicate
part, is said to be iprenex form.

In the above discussion, we make the conventional assumihizd when the variables in an asser-
tions are instantiated, then the assertion is either tré@®e. But in our discussion of partial functions,
we need to generalize this to the setting that for some instafz, y, the assertio®(z, y) might be
undefined (neither true nor false). We cBlla partial assertion (or partial predicate). The quantified
form (Va) P(x) is then true if for allz in the domain, eitheP(z) is undefined o (x) is true; similarly,
(3z)P(x) is true if there is some: in the domain such thaP(z) is defined and true. This extends
naturally to predicates with more than one free variable.

8A.6 Proofs and Induction.
Constructing proofs or providing counter examples to mathtecal statements is a basic skill to culti-
vate. Three kinds of proofs are widely used: (i) case amglyi) induction, and (iii) contradiction.

A proof by case analysis is often a matter of patience. Butetiones a straightforward enumeration
of the possibilities will yield too many cases; clever irggmay be needed to compress the argument.
Induction is sometimes mechanical as well but very comfditénductions may also arise (Chapter 2
treats induction). Proofs by contradiction usually haseative element: you need to find an assertion
to be contradicted!

In proofs by contradiction, you will need to routinely negatlogical statement. Let us first consider
the simple case of propositional logic. Here, you basicatlgly what is called De Morgan’s Law: #
are B are truth values, then(A v B) = (=A) A (-B) and—(A A B) = (-A) V (=B). For instance
suppose you want to contradict the propositibes B. You need to first know thal = B is the same
as(—A) v B. Negating this by de Morgan’s law gives dsh (—B).

Next consider the case of quantified logic. De Morgan’s lawooees the following=((Vx)P) is
equivalent to(3z)(—P); —((3z)P) is equivalent tqVz)(—P). Note that these laws remain valid even
whenP is a partial predicate. A useful place to exercise thesesiigleo do some proofs involving the
asymptotic notation (big-Oh, big-Omega, etc). See Exercis

A proofII can be organized in a variety of ways, but perhaps the siimnfdesat is a sequence of
assertions[I = (A, As, ..., A,) where eachd; is either known to be true or can be deduced from
Ay, ..., A;_1 sound rules of deduction. We can indicate this progression a

(- (true=41)=>Ay) = = A1) = A))

where =’ should be read as ‘implies’. We usually regadigl as the conclusion of the proof. This
is the normal direction of proof, where we proceed from kndamew or unknown assertions. But

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 35

sometimes, it is easier to reverse the direction of proafjvgr
(An = (An—l == (An = (Al @true))---))

where =’ should be read as ‘provided’. The advantage of the reversgéenis that you begin from
what you know to be required, and reduce it is (hopefully) en@lementary assertions to be verified.
We illustrate this approach in Lecturegll3 (orders of growth).

§A.7 Formal Languages.
An alphabetis a finite set: of symbols. A finite sequence = xzixs - - -, of symbols fromX is
called aword or string over ¥; the length of this string isn. and denotetf |w|. Whenn = 0, this is
called theempty string or word and denoted with the special symholThe set of all strings ovex. is
denoted-*. A languageovery. is a subset oE*.

8A.8 Graphs.
A hypergraph is a pairG = (V, E) whereV is any set andz C 2V. We call elements of vertices
and elements of’ hyper-edges In caseE’ C (‘;) we callG a k-graph. The casg = 2 is important
and is called aigraph (or more commonlyundirected graph). A digraph or directed graph is
G = (V,E) whereE C V2 =V x V. For any digraplz = (V, E), its reverseis the digrapHV, E’)
where(u,v) € E iff (v,u) € E’. In this book, the word “graph” shall refer to a bigraph orrdigh;
the context should make the intent clear. The edges of graghsften written (u, v)’ or ‘uv’ where
u, v are vertices. We will prefér to denote edge-hood by the notatierv. Of course, in the case of
bigraphsu—v = v—u.

Often a graph? = (V, E) comes with auxiliary data, say , d», etc. In this case we denote the
graph by
G=(V,E;dy,dos,...)

using the semi-colon to mark the presence of auxiliary detaexample:

(i) Often one or two vertices iV are distinguished. 1§,¢t € V are distinguished, we might write
G = (V, E; s,t). This notation might be used in shortest path problems whésehe source antlis
the target for the class of paths under consideration.

(i) A “weight” function W : V. — R, and we denote the corresponding weighted grapld-by:
(V, E;W).

(iii) Another kind of auxiliary data ivertex coloring of G, i.e., a functionC : V' — S whereS is any
set. TherC'(v) is called thecolor of v € V. If |S| = k, we callC ak-coloring. Thechromatic graph
is therefore given by the triple = (V, E; C'). An edge coloringis similarly defined(' : £ — S.

We introduce terminology for some special graphsVlis the empty set, A grapty = (V, E)
is called theempty graph. If F is the empty setG = (V, E) is called thetrivial graph . Hence
empty graphs are necessarily trivial but not vice-vefsa.= (V, (‘;)) denotes theomplete graphon
n = |V| vertices. Abipartite graph G = (V, E) is adigraph such that = V; w15 andE C V; x Va.
It is common to writeG = (V4, Vs, E) in this case. Thusk,,, = (V41,V2,V1 x V2) denotes the
complete bipartite graph wherem = |V;| andn = |V4].

Two graphsz = (V, E), G’ = (V’, E') areisomorphic if there is some bijectiog : V' — V' such
thato(E) = E’ (the notationp(E) has the obvious meaning).

If G =(V,E),G' = (V',E") whereV’ C V andE’ C E then we callG’ asubgraph of G. In
caseF’ is the restriction ofZ to the edgesiv’,i.e, ' = ENV’' x V’/, then we say+’ is the subgraph
of G induced by V', or G’ is therestriction of G to V. We may writeG|V” for G’.

14 This notation should not be confused with the absolute vafieenumber or the size of a set. The context will make this
clear.
15 When we writeu—w, it is really an assertion that ti{e, v) is an edge. So it is redundant to say-“v is an edge”.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

SA. APPENDIX: GENERAL NOTATIONS Lecture | Page 36

A path (from v; to vg) is a sequencévy, ve, ..., v) Of vertices such thafv;, v;+1) is an edge.
Thus, we may also denote this path(ags—vo—--- —vi). A path isclosedif v; = v, andk > 1.
Two closed paths areyclic equivalentif the sequence of edges they pass through are the same up to
cyclic reordering. A cyclic equivalence class of closechgas called aycle The length of a cycle is
just the length of any of its representative closed pathsblgpaphswe further require cycles to have
representative closed paths of the fofta—ve—v3— - - - —v1) wherevy , vo, v3 are all distinct. Without
this requirement, every edge-v in a bigraph would give us a cycle whose representativés, is,).
A graphisacyclicif it has no cycles. Sometimes acyclic bigraphs are cdtiegsts and acyclic digraph
are calleddags(“directed acyclic graph”).

Two verticesu, v areconnectedif there is a path from: to v, and a path from to «. (Note that
in the case of bigraphs, there is a path frarto v iff there is a path fromv to u.) We shall say is
adjacent to u if u—v. Connectivity is a symmetric binary relation for all graphsljacency is also a
symmetric binary relation for bigraphs. It is easily seeat tonnectivity is also reflexive and transitive.
This relation partitions the set of vertices irtonnected components

In a digraph,out-degreeandin-degreeof a vertex is the number of edges issuing (respectively)
from and into that vertex. Theut-degree(resp.,in-degreé of a digraph is the maximum of the out-
degrees (resp., in-degrees) of its vertices. The vertiteatedegred) are calledsinks and the vertices
of in-degred) are calledsources Thedegreeof a vertex in a bigraph is the number of adjacent vertices;
thedegreeof a bigraph is the maximum of degrees of its vertices.

See Chapter 4 for further details on graph-related matters.

8A.9 Trees.
A connected acyclic bigraph is calledrae tree. A digraph such that there is a unique source vertex
(called theroot) and all the other vertices have in-degreeis called® a tree. The sinks in a tree
are calledeavesor external nodesand non-leaves are calléaternal nodes In general, we prefer a
terminology in which the vertices of trees are caltesties Thus there is a unique path from the root
to each node in a tree. If, v are nodes i7" thenwu is adescendantof v if there is a path from to
u. Every nodev is a descendant of itself, called tmeproper descendantof v. All other descendants
of v are calledoroper. We may speak of thehild or grandchild of any node in the obvious manner.
The reverse of the descendant binary relation isatheestorrelation; thus we havproper ancestors
parent andgrandparent of a node.

Thesubtreeat any node: of T is the subgraph df’ obtained by restricting to the descendants of
Thedepth of a nodeu in a treeT is the length of the path from the rootio So the root is the unique
node of depth). Thedepth of T" is the maximum depth of a node i Theheight of a nodeu is just
the depth of the subtree af alternatively, it is the length of the longest path frano its descendants.
Thesizeof T' is the number of nodes ifi. Thusu has heigho iff « is a leaf iffu has no children. The
collection of all nodes at depthis also called théth level of the tree. Thus level zero is comprised of
just the root. Theth level isfull if it has 2¢ nodes (clearly it cannot have more nodes). We normally
draw a tree with the root at the top of the figure, and edgeswapéditly direction from top to bottom.

See Chapter 3 for further details on binary search trees.
8A.10 Programs.

In this book, we present algorithms in an informal unspegifieogramming language that combines
mathematical notations with standard programming languamstructs. For lack of better name, we

16 One can also define trees in which the sense of the edges arsa@vthe root is a sink and all the leaves are sources. We
will often go back and forth between these two view point$witt much warning. E.g., we might speak of the “path from aenod
to the root”. While it is clear what is meant here, but to béntecally correct, we ought to speak awkwardly of the pathhia t
“reverse of the tree”.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 37

call this languag@seudo-PL The basic goal in the presentation of pseudo-PL programasdgpose pseudo-PL s
the underlying algorithmic logic. It is not to produce cotiattcan compile in any conventional pro- appropriately
gramming language! And yet, it is often easy to transcriteigs-PL into compilable code in languages @morphous by design
such asC++ orJava. There are two good reasons why we stop short of writing ctahfa code — first,

it is easier to understand, and second, it would be progragtanguage-dependent.

Here

Programming languages are harder to understand becasisgdtided for machine consumption,
and that could get in the way of human understanding. A majeauatage of writing compilable code
is that it could be given to a computer for execution. Unfoatiely, the “half-life” of programming
languages tend to be rather short compared to that of ndamgliages. Informally, say the half-life
of a programming language is the average time it takes befos programs in the language will
no longer compile; similarly, the half-life of a natural Gurage or pseudo-code is the average time it
takes before most people find hard to understand algoritbescriptions. | would guess the former
half-life at 1 year, and the latter half-life &0 years. Therein lies the advantage of pseudo code.

is the quick run-down on pseudo-PL:

We use standard programming constructs such as if-thenveltéle-loop, return statements, etc.
no clutter language

To reduce clutter, we indicate the structure of programnbiogks by indentation and newlines
only. In particular, we avoid explicit block markers such'bsgin...end”, “...”, etc.

Single line comments in a program are indicated in two ways:

> This is a forward comment

< This is a backward commerThese comments either precede (in case of forward comment)
or follows (in case of backward comment) the code that it dees. We have little need for
multiline comments in pseudo-PL because all code is supaiéea by off-line explanations that
serve the same purpose.

Programming variables are undeclared, and implicitlyodtrced through their first use. They
are not explicitly typed, but the context should make thesacl This is in the spirit of modern
scripting languages such Ber | , and consistent with our clutter-free spirit.

Normally, each line is a command, so we need not end it withtrdmitional semicolon (;) or

a full stop. (We use both semicolon and full stops — if the arption is more “Englishy” we

prefer full stops.) But if we put two or commands on one line,eould still separate them with

semicolons. What if a command needs more than one line? liy c@nputer languages, the

continuation symbol i§. But in our effort to produce more human friendly programs,aguld

use ellipsis *..” at the end of a line to indicate its continuation to the néx¢| But if the line is

an English sentence, we can even drop the ellipsis and itideisbntinuation line appropriately. programmers use="

Informally, the equality symbol="is often overloaded to indicate the assignment operator gas for assignment and

well as the equality test. We will use- for assignment operator, and preserve for equality . [oF equality test.
test. We opt to preserve the

equality meaning of
In the style ofC or Java, we write “z++” (resp., “++z”) to indicate the increment of an integer “="
variablex. The value of this expression is the valuerdiefore (resp., after) incrementing. There

is an analogous notation for decrementing; and- - x.

Here is a recursive program written in pseudo-PL to comphéd-actorial function:

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 38

FiB(n):
Input: natural numben.
Output: n!
> Base Case
1. If n < 1 Return(n)
> General Case
2. Return(n - FIB(n — 1)) < Thisis a recursive call

§A.11 How to answer algorithmic exercises.

In our exercises, whenever we ask you to give an algorithiis, liest to write in pseudo code. We
suggest you emulate our pseudo-PL form of presentatiordests invariably ask about what level of
detail is sufficient. The general answeras much detail as one needs to know how to reduce it to
compilable programs in a conventional programming langaidgdere is a checklist you can use:

Rule 0 Specify your input and outputThis cannot be emphasized enough. We cannot judge your

algorithm if we do not know what to expect from its output!

Rule 1 Take advantage of well-known algorithmBor instance, if you need to to sort, you should

generally be able to justinvoke a suitable sorting routine.

Rule 2 Reduce all operations t0(1) time operationsDo this when Rule 1 does not apply. Sometimes,

achievingO(1) time may depend on a suitable choice of data structures, Heseure to explain
this.

Rule 3 Use progressive algorithm developmeBten pseudo code may be incomprehensible without

a suitable orientation — it is never wrong to precede youug@geeode with some English expla-
nation of what the basic idea is. In more complicated situresti do this in 3 steps: explain basic
ideas, give pseudo code, further explain certain detatlsérpseudo code.

Rule 4 Use standard algorithmic paradigm this book, we will see well-known paradigms such as

divide-and-conquer, greedy methods, dynamic programyeteg Another important paradigm is
the notion of shell-programming (see tree and graph tral®rkectures Ill and V).

Rule 5 Explain and initialize all variables and data structureglost non-trivial algorithms has some

data structures, possibly the humble array. Critical \@eis (counters, coloring schemes) ought
to be explained too. You must show how to initialize them.

Rule 6 The control structure of your algorithms should be evideAtl the algorithms you design

should have simple control structures — typically a simptaplor a doubly-nested loops. Triply-
nested loops do arise (e.g., dynamic programming) but deegsting is seldom needed. Each
loop should use standard programming constructs (for;ladyle-loop, do-loop, etc). It is an
axiom'® that if a problem can be solved, then it is solvable by cleap tructures.

Rule 7 Correctness.This is an implicit requirement of all algorithms. All thegalrithms we study

requires that the algorithm halts on all inputs. Corredridsuch algorithms is traditionally split
into two distinct requirements:

(1) The algorithm halts.

(2) The output is correct when it halts. This part is somesiwedledpartial correctness

Even when we do not ask you to explicitly prove correctness,should check this yourself. A
simple method to prove partial correctness is this: at thggnméng of each iteration of a loop,

171n computing, this is known as “code reuse”. Others call thist reinventing the wheel”.
18 There are theorems about the universality of loop-progrdvieyer and McCreight) and the possibility of avoiding “gm-t
statements.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

sine qua noh

§A. APPENDIX: GENERAL NOTATIONS Lecture | Page 39

you should be able to attach a suitalbleariant (called assertionin standard programming
languages). Partial correctness follows easily if the appate invariants hold.

Rule 8 Analysis and Efficiencylhis is considered a more advance requirement. But sinséstihat
algorithmics is about, we view it as part and parcel of anypatgm in this book. You should
always be able to give a big-Oh analysis of your algorithmmbrst cases, non-polynomial time
solutions are regarded as unnecessarily inefficient.

EXERCISES

Exercise A.1: The following is a useful result about iterated floors andirngs.
(a) Letn,b be positive integers. LeWy:=n and fori > 0, N;1:=|N;/b]. Show thatN; =
|n/b'|. Similarly for ceilings. HINT: use the fact tha{; ., < N;/b+ (b—1)/b.
(b) Letuy = 1 andwu;11 = |5u;/2] for i > 0. Show that fori > 4, 0.76(5/2)" < wu; <
0.768(5/2)*. HINT: r;:=u;(2/5)" is non-increasing; give a lower bound en(i > 4) based on
T4. <>

Exercise A.2: Let z, a, b be positive real numbers. Show that
lz/ab] = |[x/a] /b]. (26)

When is this an equality? &

Exercise A.3: Consider the following sentence:
(Vx € Z)(Fy € R)(3z € R) [(m S0 = (y<ae<y HAz<z<2)A(y< z))] 27)

Note that the range of variableis Z, notR. This is called auniversal sentencebecause the
leading quantifier is the universal quantifie).(Similarly, we haveexistential sentence

(i) Negate the sentence(), and then apply De Morgan’s law to rewrite the result as astential
sentence.

(i) Give a counter example t@7).
(i) By changing the clausef > 0)”, make the sentence true. Indicate why it would be true.

O

Exercise A.4: Suppose you want to prove that
f(n) #O(f(n/2))

wheref(n) = (logn)'o&™.
(a) Using de Morgan'’s law, show that this amounts to sayiagfibr all C' > 0, ng there exists
such that

(n>ng) A f(n) > Cf(n/2).

(b) Complete the proof by finding a suitabidor any givenC, ng. &

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§B. APPENDIX: RAM MODEL Lecture | Page 40

Exercise A.5: The following statement is a fack planar graph om vertices has at most. — 6 edges.
Let us restate it as follows:

(G is a planar graph and hasvertices = (G has< 3n — 6 edge$.

(i) State the contra-positive of this statement.
(i) The complete graph oh vertices is denoted b¥s. Using the contra-positive statement in
part (i), prove thats is not planar. &

Exercise A.6: Let P : D — {0, 1} be a partial predicate over some dom&inWhen we do quantifi-
cation,¥z and3z it is assumed that range oveD. Show that the following equivalences (called Complete grapts
“de Morgan’s laws for quantifiers”) hold:
(a) ~(Vx)P(x) is equivalent tq3z)—P(x)
(b) ~(3z) P(x) is equivalent tqVa)—~P(x) O

Exercise A.7: Prove these basic facts about binary trees: assumd.
(a) A full binary tree om leaves has — 1 internal nodes.
(b) Show that every binary tree onnodes has height at leadg;(1 +n)] — 1. HINT: define
M (h) to be the maximum number of nodes in a binary tree of hdight
(c) Show that the bound in (b) is tight for each
(d) Show that a binary tree om > 1 leaves has height at lea8gn|. HINT: use a modified
version of M (h).
(e) Show that the bound in (d) is tight for each &

Exercise A.8: (Erdds-Rado) Show that in any 2-coloring of the edges ottiraplete grapli,,, there
is a monochromatic spanning treelsf,. HINT: use induction. &

Exercise A.9: LetT" be a binary tree on nodes.
(a) What is the minimum possible number of leave%'th
(b) Show by strong induction on the structurelothat T has at most 2t | leaves. This is an
exercise in case analysis, so proceed as follows: first ket odd (sayp = 2N + 1) and assume
T hask = 2K + 1 children in the left subtree. There are 3 other cases.
(c) Give an alternative proof of part (b): show the result/idry a weaker induction on — 1 and

n— 2.
(d) Show that the bound in part (b) is the best possible byrdesg a7 with | 2! | leaves.
HINT: first show it whemn = 2¢ — 1. Alternatively, consider binary heaps. &

Exercise A.10:
(a) A binary tree with a key associated to each node is a bsgaych tree iff the in-order listing
of these keys is in non-decreasing order.
(b) Givenboththe post-order and in-order listing of the nodes of a bingeg,twe can reconstruct
the tree. &

END EXERCISES

6B. APPENDIX: The RAM Model

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§B. APPENDIX: RAM MODEL Lecture | Page 41

Decision tree models are somewhat special because theypayeniform. We now present a uni-
form computational model called tiRandom Access Memory mode{(RAM model, for short). It is
basically an abstract version of an assembly language. P\ Rodel can be regarded as a gener-
alization of an even simpler model called tRegister model So we shall begin by describing such
“register machines”.

(a) Data objects. We assume infinitely mafsforage) registers each indexed by an integer

0,%1,+2,£3,.... Register0 is special and is known as tleecumulator. Each register can store This is not your64-bit
an integer. The integer can be arbitrarily large. or evenl28-bit
machine...

(b) Primitive Operations. In the simplest form, each operehbas 2 fields:
(OPERATOR){ARG)

There is one argumerid RG) whose nature is determined by the PERATOR): (ARG) is either
an integer (denoted below) or a label (denotefibelow). But in general, an operation can have up to
4 fields:

[(LABEL) :}(OPERATOR)(ARG)[(COMMENTS)]

where(LABEL) and(COM M ENTS) are arbitrary non-empty alphabetic strings — the squaiekbra
ets indicate that these are optional fields. The contentsgistern is a number, denotetn). Thus the
contents functionhas the fornt : Z — Z. The operators, their arguments and actions are specified in
Tablel.

Most of these operations
have the obvious meaning. For
the DIV operation, we assume

Operator Argument| Semantics |

GET n c(0) ¢ c(n). that the integer quotient is put
PUT n c(n) () into ¢(0) and any remainder is
ZERO n c(n) < discarded.
INC n c(n) « c(n)
ADD n ¢(0) = ¢(0) + C(") (c) Semantics. Aregister
SuB n ¢(0) = ¢(0) = ¢(n). program P is any finite se-
MUL n ¢(0) = ¢(0) x ¢(n). quence of such primitive oper-
DIV n c(0) ¢ c(0) =+ ¢(n), errorife(n) = 0. ations. There is also #abel
JUMP ¢ Go to label. function A which, for any label
JPOS £ If ¢(0) > 0 then go tof. ¢, returns the index\(¢) of the
INEG ¢ If ¢(0) < 0 then go tof. instruction in this sequence.
HALT The computation halts. Now we can define aomputa-

] .) tion in which at each instance,

Table 1: Instruction Set for Register Machines we have aprogram counter

whose value is the index of the (current) instructiorPilbeing executed. When we execute the current
instruction, this results in a transformation of the cotgdanction. This transformation is specified by
the last column of Tabl&. For instance, “GET” will put update the value of(0) to be the value(4),

but no other register contents are changed. Subsequeathgférmations are defined by successive
instructions of the program (this means that the programtsus simply incremented). The exception
is when there is a successful jump to some ldbil which case the program counter is updated(t9.

The computation halts on encountering the HALT operationyleen there is no “next” instruction, or
upon jumping to some non-existent label.

(d) Input/Output conventions. We assume that a finite nunobeegisters is initialized with an
encoding of the input, while the rest of the registers argaiiy zero. The convention for the output
is some simple function of the final contents function. Elge, output may be defined to b€)). As
an exercise, the reader may write a RAM program to computendneémum of three numbers. Use

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§B. APPENDIX: RAM MODEL Lecture | Page 42

the convention that the input numbers are in registe?s3 and the maximum value must be output in
registero).

932. Random Access Feature. It is a very small step to turn the above Register Model intcAVIR
Model. First notice that a register program can only accdssd set of registers. In order to allow a
program to access an arbitrary number of registers, wednt® “indirect addressing”, a concept from
computer architecture. We allow another form of integeuargnt, denotedn wheren € N. This
means we are using the valug:(n)) instead ofc(n) as the actual argument for the operation. Thus
c(n) is interpreted as the address of the actual argument. Wedeakn “indirect argument”. For
instance, “GETa4” results in the assignment0) < c(c(4)). If register4 contains256, and register
256 contains—1, this meang:(0) is assigned the valuel. Similarly, “PUT @4” will place the value
¢(0) into registe56. Thus, aRAM program is basically a register program in which we allow indirect
addressing.

933. Extensions. By design, the instruction set of our RAM is parsimonious aatther primitive.
There are many possible extensions where we enrich thaiatistin set; these makes programming
convenient, but do not extend the power of the model. Foais, we can allow another kind of
integer argument denotee="n". This means that the value itself is being used — we never have to
access the contents functionThis is called diteral argument. Literal arguments are useful for GET
and the arithmetic instructions, but meaningless for PUstruction.

The above model may be called arieger RAM model. This can be generalized to ttreal
RAM model where where the registers can store an arbitrary real nyrabdrpossibly augmenting
the primitive operations with other real functions (suchcamputing square roots). When we use a
registern for indirect addressingdn), we need to have some convention for handling the case where
its contents:(n) is not an integer.

We can also augment the model with new primitive operatidits.instance, to write programs in
the Tape Model (se$§6), we just have to add operations corresponding toRBAD, WRI TE, RESET
in (4), and theEOT test.

934. Higher Level Languages and Universality. In practice, we may write our program using a
more abstract language or a “higher level” language. Thesnay use well-known constructs such as
for-loops and if-then-else, and even allow recursion. Mésatess, such extensions of the model can
be translated into a standard RAM program. In this senseR#&kid model is universal in the sense
that there is no computational model that is more powerfal.cdmplexity theory, this claim about
“universality” is calledthe Church-Turing Thesis.

EXERCISES

Exercise B.1: Recall the Merge Algorithm described48. Please convert it into a RAM program. In
other words, you must use the instruction set in Tdble &

Exercise B.2: Write RAM algorithms for the following problems:
(a) Sort a sequence of input numbers.
(b) Compute the GCD of two integers.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

§B. APPENDIX: RAM MODEL Lecture | Page 43

(c) Solve the ranking problem 3. You need two algorithms, for preprocessing and for answer-
ing queries.

(d) Solve the dynamic ranking problem 3. You need four algorithms here: to initialize an
empty data structure, to insert, to delete, and to answé&rqaeries.

Be sure to state your input/output conventions. Also, desany data structures you use. <

Exercise B.3: Reduce the number of primitive operators (listed in tableva) for our RAM model to
a minimum. In particular, show that we only need the follogrin

GET,PUT,ZERO,INC, JPOSHALT

Show that a RAM model with this set of instructions can sinteitzur original RAM model. <

Exercise B.4: Show how to implement higher level language constructs aséir-loops, if-then-else,
case-statements our RAM model. &

END EXERCISES

References

[1] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stditroduction to Algorithms The MIT
Press and McGraw-Hill Book Company, Cambridge, Massadtsiard New York, second edition,
2001.

[2] D. G. Kirkpatrick and R. Seidel. The ultimate planar cerwhull algorithm? SIAM J. Compuf.
15:287-299, 1986.

[3] D. E. Knuth. The Art of Computer Programming: Sorting and Searchivgume 3. Addison-
Wesley, Boston, 1972.

[4] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithrume 1. Addison-
Wesley, Boston, 2nd edition edition, 1975.

© Chee Yap Fundamental Algorithms, Fall 2011: Basic Version ©tober 31, 2011

	 OUTLINE OF ALGORITHMICS
	 What is Algorithmics?
	 What are Computational Problems?
	 Computational Model: How do we solve problems?
	 Complexity Model: How to assess algorithms?
	 Algorithmic Techniques: How to design efficient algorithms
	 Analysis: How to estimate complexity
	 Asymptotics: How robust is the model?
	 Conclusion: Two Dictums of Algorithmics
	 APPENDIX: General Notations
	 APPENDIX: The RAM Model

