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Axiomatic Semantics 

• An axiomatic semantics consists of: 
– a language for stating assertions about programs; 
– rules for establishing the truth of assertions. 

• Some typical kinds of assertions: 
– This program terminates. 
– If this program terminates, the variables x and y have the 

same value throughout the execution of the program. 
– The array accesses are within the array bounds. 

• Some typical languages of assertions 
– First-order logic 
– Other logics (temporal, linear) 
– Special-purpose specification languages (Z, Larch, JML) 



Assertions for IMP 

• The assertions we make about IMP programs are 
of the form: 
  {A} c {B} 
with the meaning that: 
– If A holds in state q and q ! q’ 
– then B holds in q’ 

• A is the pre-condition and B is the post-condition 
• For example: 

 { y ≤ x } z := x; z := z + 1 { y < z } 
is a valid assertion 

• These are called Hoare triples or Hoare assertions 

c 



Semantics of Hoare Triples 

• Now we can define formally the meaning of a partial 
correctness assertion: 
 

² {A} c {B} iff 
 

8q2Q. 8q’2Q. q ² A Æ q ! q’ ) q’ ² B 
• and the meaning of a total correctness assertion: 

 

² [A] c [B] iff 
 

8q2Q. q ² A ) 9q’∈Q. q ! q’ Æ q’ ² B 
 

or even better: 
 

    8q2Q. 8q’∈Q. q ² A Æ q ! q’ ) q’ ² B 
Æ 
    8q2Q. q ² A ) 9q’2Q. q ! q’ Æ q’ ² B 
 

c 

c 

c 

c 



Inference Rules for Hoare Triples 

• We write ` {A} c {B} when we can derive the 
triple using inference rules 

• There is one inference rule for each command 
in the language. 

• Plus, the rule of consequence 
 
 ` A’ ) A     ` {A} c {B}      ` B ) B’ 
                     ` {A’} c {B’} 



Inference Rules for Hoare Logic 

• One rule for each syntactic construct: 

` {A} skip {A} ` {A[e/x]} x:=e {A} 

` {A} if b then c1 else c2 {B} 

` {A Æ b} c1 {B}     ` {A Æ :b} c2 {B} 

` {A} c1; c2 {C} 

` {A} c1 {B}     ` {B} c2 {C} 

` {I} while b do c {I Æ :b} 

` {I Æ b} c {I}  



Example: A Proof in Hoare Logic 

• We want to derive that 

{n ¸ 0}  

p := 0;  

x := 0; 

while x < n do  

  x := x + 1;  

     p := p + m 

{p = n * m} 

 



` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

Only applicable rule (except for rule of consequence): 
 

` {A} c1; c2 {B}  

` {A} c1{C}    ` {C} c2 {B}  

c1 c2 B A 

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}  

Example: A Proof in Hoare Logic 



` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

What is C? 
 

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}  

Look at the next possible matching rules for c2! 

Only applicable rule (except for rule of consequence): 
 

` {I} while b do c {I Æ :b} 

` {I Æ b} c {I}  

We can match {I} with {C}  but we cannot match {I Æ :b} and 
{p = n * m} directly. Need to apply the rule of consequence first! 

c1 c2 B A 

Example: A Proof in Hoare Logic 



` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

What is C? 
 

B’ A’ 

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}  

Look at the next possible matching rules for c2! 

Only applicable rule (except for rule of consequence): 
 

` {I} while b do c {I Æ :b} 

` {I Æ b} c {I}  

` A’ ) A     ` {A} c’ {B}      ` B ) B’ 
` {A’} c’ {B’} 

Rule of consequence: 

c’ 

c’ A B 

I = A = A’ = C 

Example: A Proof in Hoare Logic 



` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

What is I? 
 

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

Let’s keep it as a placeholder for now! 

` I Æ x ¸ n ) p = n * m 

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n} 

`{I Æ x<n} x := x+1; p:=p+m {I} 

Next applicable rule: 
 

` {A} c1; c2 {B}  

` {A} c1{C}    ` {C} c2 {B}  

B A c1 c2 

Example: A Proof in Hoare Logic 



` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

` I Æ x ¸ n ) p = n * m 

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n} 

`{I Æ x<n} x := x+1; p:=p+m {I} 

B A c1 c2 

`{I Æ x<n} x := x+1 {C}  

What is C? 
 

Look at the next possible matching rules for c2! 

Only applicable rule (except for rule of consequence): 
 
` {A[e/x]} x:=e {A} 

`{C} p:=p+m {I} 

Example: A Proof in Hoare Logic 



` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

` I Æ x ¸ n ) p = n * m 

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n} 

What is C? 
 

Look at the next possible matching rules for c2! 

Only applicable rule (except for rule of consequence): 
 
` {A[e/x]} x:=e {A} 

`{I[p+m/p} p:=p+m {I} 

`{I Æ x<n} x:=x+1; p:=p+m {I} 

`{I Æ x<n} x:=x+1 {I[p+m/p]}  

Example: A Proof in Hoare Logic 



` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

` I Æ x ¸ n ) p = n * m 

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n} 

`{I Æ x<n} x:=x+1; p:=p+m {I} 

`{I Æ x<n} x:=x+1 {I[p+m/p]}  

Only applicable rule (except for rule of consequence): 
 
` {A[e/x]} x:=e {A} 

`{I[p+m/p} p:=p+m {I} 

Need rule of consequence to match {I Æ x<n} and {I[x+1/x, p+m/p]}   
 

Example: A Proof in Hoare Logic 



` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

` I Æ x ¸ n ) p = n * m 

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n} 

`{I Æ x<n} x:=x+1; p:=p+m {I} 

`{I Æ x<n} x:=x+1 {I[p+m/p]}  ̀ {I[p+m/p} p:=p+m {I} 

` I Æ x < n ) I[x+1/x, p+m/p] 

`{I[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]}  

Let’s just remember the open proof obligations! 

... 

Example: A Proof in Hoare Logic 



` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

` I Æ x ¸ n ) p = n * m 

` I Æ x < n ) I[x+1/x, p+m/p] 

Let’s just remember the open proof obligations! 

... 
Continue with the remaining part of the proof tree, as before. 

` {I[0/x]} x:=0 {I} 

` {n ¸ 0} p:=0 {I[0/x]} 

` {I[0/p, 0/x]} p:=0 {I[0/x]} 

` n ¸ 0 ) I[0/p, 0/x] Now we only need to solve the  
remaining constraints! 

Example: A Proof in Hoare Logic 



` I Æ x ¸ n ) p = n * m 

` I Æ x < n ) I[x+1/x, p+m/p] 

Find I such that all constraints are simultaneously valid: 

` n ¸ 0 ) I[0/p, 0/x] 

I ´ p = x * m Æ x · n 

` p = x * m Æ x · n Æ x ¸ n ) p = n * m 

` p = x * m Æ x · n Æ x < n ) p+m = (x+1) * m Æ x+1 · n 

` n ¸ 0 ) 0 = 0 * m Æ 0 · n 

All constraints are valid! 

Example: A Proof in Hoare Logic 



Using Hoare Rules 

• Hoare rules are mostly syntax directed 

• There are three obstacles to automation of Hoare logic 
proofs: 
– When to apply the rule of consequence? 

– What invariant to use for while? 

– How do you prove the implications involved in the rule of 
consequence? 

• The last one is how theorem proving gets in the picture 
– This turns out to be doable! 

– The loop invariants turn out to be the hardest problem! 

– Should the programmer give them? 



Hoare Logic: Summary 

• We have a language for asserting properties of programs. 

• We know when such an assertion is true. 

• We also have a symbolic method for deriving assertions. 

A 
{A} P {B} 

² A 
² {A} P {B} 

` A 

` {A} P {B} 

semantics 

soundness 

completeness theorem proving 



Verification Conditions 

• Goal: given a Hoare triple {A} P {B}, derive a single assertion 
VC(A,P,B) such that  ² VC(A,P,B)   iff    ² {A} P {B} 

• VC(A,P,B) is called verification condition. 

• Verification condition generation factors out the hard work 
– Finding loop invariants 

– Finding function specifications 

• Assume programs are annotated with such specifications 
– We will assume that the new form of the while construct includes 

an invariant: 
 {I} while b do c 

– The invariant formula I must hold every time before b is evaluated. 



Verification Condition Generation 

• Idea for VC generation: propagate the post-
condition backwards through the program: 

– From {A} P {B}   

– generate A ) F(P, B) 

• This backwards propagation F(P, B) can be formalized 
in terms of weakest preconditions. 



Weakest Preconditions 

• The weakest precondition WP(c,B) holds for any state 
q whose c-successor states all satisfy B: 
 

q ² WP(c,B)   iff   8q’2Q. q ! q’ ) q’ ² B 

 

 

 

 

 

• Compute WP(P,B) recursively according to the 
structure of the program P. 

B WP(c,B) 

q q’ q’’ 

c 
c 

c 

c 



Loop-Free Guarded Commands 

• Introduce loop-free guarded commands as an 
intermediate representation of the verification 
condition 

• c ::=  assume b 
 | assert b 
 | havoc x 
 | c1 ; c2 
 | c1  c2 



From Programs to Guarded Commands 

• GC(skip) =  
 assume true 

• GC(x := e) =  
 assume tmp = x; havoc x; assume (x = e[tmp/x]) 

• GC(c1 ; c2) =  
 GC(c1) ; GC(c2) 

• GC(if b then c1 else c2) = ? 
 (assume b; GC(c1))  (assume :b; GC(c2)) 

• GC({I} while b do c) = ? 

 

where tmp is fresh 



From Programs to Guarded Commands 

• GC(skip) =  
 assume true 

• GC(x := e) =  
 assume tmp = x; havoc x; assume (x = e[tmp/x]) 

• GC(c1 ; c2) =  
 GC(c1) ; GC(c2) 

• GC(if b then c1 else c2) = 
 (assume b; GC(c1))  (assume :b; GC(c2)) 

• GC({I} while b do c) = ? 

 

where tmp is fresh 



Guarded Commands for Loops 

• GC({I} while b do c) = 
 assert I; 
 havoc x1; ...; havoc xn; 
 assume I; 
 (assume b; GC(c); assert I; assume false)  
 assume :b 
 
where x1, ..., xn are the variables modified in c 

 



Computing Weakest Preconditions 

• WP(assume b, B) = b ) B 

• WP(assert b, B) = b Æ B 

• WP(havoc x, B) = B[a/x]  (a fresh in B) 

• WP(c1;c2, B) = WP(c1, WP(c2, B)) 

• WP(c1  c2,B) = WP(c1, B) Æ WP(c2, B) 



Computing Weakest Preconditions 

• WP(assume b, B) = b ) B 

• WP(assert b, B) = b Æ B 

• WP(havoc x, B) = B[a/x]  (a fresh in B) 

• WP(c1;c2, B) = WP(c1, WP(c2, B)) 

• WP(c1  c2,B) = WP(c1, B) Æ WP(c2, B) 



Putting Everything Together 

• Given a Hoare triple H ´ {A} P {B} 

 

• Compute cH = assume A; GC(P); assert B 

 

• Compute VCH = WP(cH, true) 

 

• Infer ` VCH using a theorem prover. 



Example: VC Generation 

{n ¸ 0}  

p := 0;  

x := 0;  

{p = x * m Æ x · n} 

while x < n do  

  x := x + 1;  

     p := p + m 

{p = n * m} 

 



assume n ¸ 0; 

GC( p := 0;  

 x := 1;  

 {p = x * m Æ x · n} 

 while x < n do  

     x := x + 1;  

        p := p + m  ); 

assert p = n * m 

 

assume n ¸ 0; 

assume p0 = p; havoc p; assume p = 0;  

GC( x := 0;  

 {p = x * m Æ x · n} 

 while x < n do  

     x := x + 1;  

        p := p + m  ); 

assert p = n * m 

 

assume n ¸ 0; 

assume p0 = p; havoc p; assume p = 0;  

assume x0 = x; havoc x; assume x = 0;  

GC( {p = x * m Æ x · n} 

 while x < n do  

     x := x + 1;  

        p := p + m  ); 

assert p = n * m 

assume n ¸ 0; 
assume p0 = p; havoc p; assume p = 0;  
assume x0 = x; havoc x; assume x = 0;  
assert p = x * m Æ x · n; 
havoc x; havoc p; assume p = x * m Æ x · n; 
   (assume x < n;  
    GC( x := x + 1;  
           p := p + m);  
    assert p = x * m Æ x · n; assume false)  
 assume x ¸ n; 
assert p = n * m 
 

assume n ¸ 0; 
assume p0 = p; havoc p; assume p = 0;  
assume x0 = x; havoc x; assume x = 0;  
assert p = x * m Æ x · n; 
havoc x; havoc p; assume p = x * m Æ x · n; 
   (assume x < n;  
    assume x1 = x; havoc x; assume x = x1 + 1;  
    assume p1 = p; havoc p; assume p = p1 + m;  
    assert p = x * m Æ x · n; assume false)  
 assume x ¸ n; 
assert p = n * m 
 

• Computing the guarded command 

Example: VC Generation 



WP ( assume n ¸ 0; 
 assume p0 = p; havoc p; assume p = 0;  
 assume x0 = x; havoc x; assume x = 0;  
 assert p = x * m Æ x · n; 
 havoc x; havoc p; assume p = x * m Æ x · n; 
       (assume x < n;  
         assume x1 = x; havoc x; assume x = x1 + 1;  
         assume p1 = p; havoc p; assume p = p1 + m;  
         assert p = x * m Æ x · n; assert false)  
  assume x ¸ n; 
 assert p = n * m, true) 
 

WP ( assume n ¸ 0; 
 assume p0 = p; havoc p; assume p = 0;  
 assume x0 = x; havoc x; assume x = 0;  
 assert p = x * m Æ x · n; 
 havoc x; havoc p; assume p = x * m Æ x · n; 
       (assume x < n;  
         assume x1 = x; havoc x; assume x = x1 + 1;  
         assume p1 = p; havoc p; assume p = p1 + m;  
         assert p = x * m Æ x · n; assert false)  
  assume x ¸ n,  
 assert p = n * m, true) 
 

• Computing the weakest precondition 

Example: VC Generation 



WP ( assume n ¸ 0; 
 assume p0 = p; havoc p; assume p = 0;  
 assume x0 = x; havoc x; assume x = 0;  
 assert p = x * m Æ x · n; 
 havoc x; havoc p; assume p = x * m Æ x · n; 
       (assume x < n;  
         assume x1 = x; havoc x; assume x = x1 + 1;  
         assume p1 = p; havoc p; assume p = p1 + m;  
         assert p = x * m Æ x · n; assert false)  
  assume x ¸ n; 
 assert p = n * m, true) 
 

WP ( assume n ¸ 0; 
 assume p0 = p; havoc p; assume p = 0;  
 assume x0 = x; havoc x; assume x = 0;  
 assert p = x * m Æ x · n; 
 havoc x; havoc p; assume p = x * m Æ x · n; 
       (assume x < n;  
         assume x1 = x; havoc x; assume x = x1 + 1;  
         assume p1 = p; havoc p; assume p = p1 + m;  
         assert p = x * m Æ x · n; assert false)  
  assume x ¸ n,  
 assert p = n * m, true) 
 

WP ( assume n ¸ 0; 

 assume p0 = p; havoc p; assume p = 0;  

 assume x0 = x; havoc x; assume x = 0;  

 assert p = x * m Æ x · n, 

    WP( havoc x; havoc p; assume p = x * m Æ x · n; 

       (assume x < n;  

         assume x1 = x; havoc x; assume x = x1 + 1;  
         assume p1 = p; havoc p; assume p = p1 + m;  
         assert p = x * m Æ x · n; assume false)  

  assume x ¸ n, p = n * m) 

WP ( assume n ¸ 0; 

 assume p0 = p; havoc p; assume p = 0;  

 assume x0 = x; havoc x; assume x = 0;  

 assert p = x * m Æ x · n, 

    WP( havoc x; havoc p; assume p = x * m Æ x · n; 

       (assume x < n;  

         assume x1 = x; havoc x; assume x = x1 + 1;  
         assume p1 = p; havoc p; assume p = p1 + m;  
         assert p = x * m Æ x · n; assume false)  

  assume x ¸ n, p = n * m) 

• Computing the weakest precondition 

WP ( assume n ¸ 0; 
 assume p0 = p; havoc p; assume p = 0;  
 assume x0 = x; havoc x; assume x = 0;  
 assert p = x * m Æ x · n, 
    WP( havoc x; havoc p; assume p = x * m Æ x · n; 
      (WP( (assume x < n;  
         assume x1 = x; havoc x; assume x = x1 + 1;  
         assume p1 = p; havoc p; assume p = p1 + m;  
         assert p = x * m Æ x · n; assume false)) )  
 p = n * m) 
      Æ (x ¸ n ) p = n * m) 

WP ( assume n ¸ 0; 

 assume p0 = p; havoc p; assume p = 0;  

 assume x0 = x; havoc x; assume x = 0;  

 assert p = x * m Æ x · n, 

    WP( havoc x; havoc p; assume p = x * m Æ x · n; 

      (WP( (assume x < n;  

         assume x1 = x; havoc x; assume x = x1 + 1;  
         assume p1 = p; havoc p; assume p = p1 + m;  
         assert p = x * m Æ x · n), false ) p = n * m) 

      Æ (x ¸ n ) p = n * m) 

WP ( assume n ¸ 0; 

 assume p0 = p; havoc p; assume p = 0;  

 assume x0 = x; havoc x; assume x = 0;  

 assert p = x * m Æ x · n, 

    WP( havoc x; havoc p; assume p = x * m Æ x · n; 

      (WP( (assume x < n;  

         assume x1 = x; havoc x; assume x = x1 + 1;  
         assume p1 = p; havoc p; assume p = p1 + m;  
         assert p = x * m Æ x · n), true) 

      Æ (x ¸ n ) p = n * m) 

WP ( assume n ¸ 0; 

 assume p0 = p; havoc p; assume p = 0;  

 assume x0 = x; havoc x; assume x = 0;  

 assert p = x * m Æ x · n, 

    WP( havoc x; havoc p; assume p = x * m Æ x · n; 

      (WP( (assume x < n;  

         assume x1 = x; havoc x; assume x = x1 + 1;  
         assume p1 = p; havoc p;  

                p = p1 + m ) p = x * m Æ x · n) 

      Æ (x ¸ n ) p = n * m) 

WP ( assume n ¸ 0; 

 assume p0 = p; havoc p; assume p = 0;  

 assume x0 = x; havoc x; assume x = 0;  

 assert p = x * m Æ x · n, 

    WP( havoc x; havoc p; assume p = x * m Æ x · n; 

      (WP( (assume x < n;  

         assume x1 = x; havoc x; assume x = x1 + 1),  
         p1 = p Æ pa1 = p1 + m ) pa1 = x * m Æ x · n) 

      Æ (x ¸ n ) p = n * m) 

WP ( assume n ¸ 0; 

 assume p0 = p; havoc p; assume p = 0;  

 assume x0 = x; havoc x; assume x = 0;  

 assert p = x * m Æ x · n, 

    WP( havoc x; havoc p; assume p = x * m Æ x · n; 

      (WP( assume x < n ), 

         x1 = x Æ xa1 = x1 + 1 Æ  
         p1 = p Æ pa1 = p1 + m ) pa1 = xa1 * m Æ xa1 · n) 

      Æ (x ¸ n ) p = n * m) 

WP ( assume n ¸ 0; 

 assume p0 = p; havoc p; assume p = 0;  

 assume x0 = x; havoc x; assume x = 0;  

 assert p = x * m Æ x · n, 

    WP( havoc x; havoc p; assume p = x * m Æ x · n; 

      ((x < n Æ  x1 = x Æ xa1 = x1 + 1 Æ  
         p1 = p Æ pa1 = p1 + m) ) pa1 = xa1 * m Æ xa1 · n) 

      Æ (x ¸ n ) p = n * m) 

WP ( assume n ¸ 0; 

 assume p0 = p; havoc p; assume p = 0;  

 assume x0 = x; havoc x; assume x = 0;  

 assert p = x * m Æ x · n, 

      pa2 = xa2 * m Æ xa2 · n ) 

         ((xa2 < n Æ  x1 = xa2 Æ xa1 = x1 + 1 Æ  
            p1 = pa2 Æ pa1 = p1 + m) ) pa1 = xa1 * m Æ xa1 · n) 

      Æ (xa2 ¸ n ) pa2 = n * m) 

n ¸ 0 Æ p0 = p Æ pa3 = 0 Æ x0 = x Æ xa3 = 0 ) 

       pa3 = xa3 * m Æ xa3 · n Æ   

       (pa2 = xa2 * m Æ xa2 · n ) 

         ((xa2 < n Æ  x1 = xa2 Æ xa1 = x1 + 1 Æ  
            p1 = pa2 Æ pa1 = p1 + m) ) pa1 = xa1 * m Æ xa1 · n) 

      Æ (xa2 ¸ n ) pa2 = n * m)) 

Example: VC Generation 



• The resulting VC is equivalent to the conjunction of 
the following implications 

Example: VC Generation 

n ¸ 0 Æ p0 = p Æ pa3 = 0 Æ x0 = x Æ xa3 = 0 )  

 pa3 = xa3 * m Æ xa3 · n  
 

n ¸ 0 Æ p0 = p Æ pa3 = 0 Æ x0 = x Æ xa3 = 0 Æ pa2 = xa2 * m Æ 
xa2 · n ) 

 xa2 ¸ n ) pa2 = n * m 
 

n ¸ 0 Æ p0 = p Æ pa3 = 0 Æ x0 = x Æ xa3 = 0 Æ pa2 = xa2 * m Æ 
xa2 < n Æ  x1 = xa2 Æ xa1 = x1 + 1 Æ p1 = pa2 Æ pa1 = p1 + m ) 

  pa1 = xa1 * m Æ xa1 · n 



• simplifying the constraints yields 

 

 

 

 

 

 

• all of these implications are valid, which proves that 
the original Hoare triple was valid, too. 

Example: VC Generation 

n ¸ 0 ) 0 = 0 * m Æ 0 · n  
 

xa2 · n Æ xa2 ¸ n ) xa2 * m = n * m 
 

xa2 < n ) xa2 * m + m = (xa2 + 1) * m Æ xa2 + 1 · n 



The Diamond Problem 

assume A;  
c  d; 
c’  d’; 

assert B 
 
A ) WP (c, WP(c’, B) Æ WP(d’, B)) Æ 

         WP (d, WP(c’, B) Æ WP(d’, B)) 
 
• Number of paths through the program can be 

exponential in the size of the program. 
• Size of weakest precondition can be exponential in the 

size of the program. 
 
 

c 

c’ 

d 

d’ 



Avoiding the Exponential Explosion 

Defer the work of exploring all paths to the theorem prover: 
 
• WP’(assume b, B, C) = (b ) B, C) 
• WP’(assert b, B, C) = (b Æ B, C) 
• WP’(havoc x, B, C) = (B[a/x], C) (a fresh in B) 
• WP’(c1;c2, B, C) =  

 let F2, C2 = WP’(c2, B, C) in WP’(c1, F2, C2) 
• WP’(c1  c2,B, C) = 

 let X = fresh propositional variable in 
 let F1, C1 = WP’(c1, X, true) and F2, C2 = WP’(c2, X, true) in 
 (F1 Æ F2, C Æ C1 Æ C2 Æ (X , B)) 

   
• WP(P, B) = let F, C = WP’(P, B, true) in C ) F 



Translating Method Calls to GCs 

/*@ requires P; 

  @ assignable x1, ..., xn; 

  @ ensures Q; @*/ 

  T m (T1 p1, ..., Tk pk) { ... } 
 

A method call  

  y = x.m(y1, ..., yk); 

is desugared into the guarded command 

  assert P[x/this, y1/p1, ..., yk/pk]; 

     havoc x1; ..., havoc xn; havoc y; 

     assume Q[x/this, y/\result] 



Handling More Complex Program State 

• When is the following Hoare triple valid? 
  {A} x.f = 5 {x.f + y.f = 10} 

• A ought to imply “y.f = 5 Ç x = y” 

• The IMP Hoare rule for assignment would give us: 
  (x.f + y.f = 10) [5/x.f] 
  ´ 5 + y.f = 10 
  ´ y.f = 5 (we lost one case) 

• How come the rule does not work? 



Modeling the Heap 

• We cannot have side-effects in assertions 
– While generating the VC we must remove side-effects! 
– But how to do that when lacking precise aliasing 

information? 

• Important technique: postpone alias analysis to 
the theorem prover 

• Model the state of the heap as a symbolic 
mapping from addresses to values: 
– If e denotes an address and h a heap state then: 
– sel(h,e) denotes the contents of the memory cell 
– upd(h,e,v) denotes a new heap state obtained from h 

by writing v at address e 



Heap Models 

• We allow variables to range over heap states 
– So we can quantify over all possible heap states. 

• Model 1 
– One “heap” for each object 
– One index constant for each field.  

We postulate f1 ≠ f2. 
– r.f1 is sel(r,f1) and r.f1 = e is r := upd(r,f1,e) 

• Model 2 (Burnstall-Bornat) 
– One “heap” for each field 
– The object address is the index 
– r.f1 is sel(f1,r) and r.f1 = e is f1 := upd(f1,r,e) 



Hoare Rule for Field Writes 

• To model writes correctly, we use heap expressions 
– A field write changes the heap of that field 

 

 { B[upd(f, e1, e2)/f] } e1.f = e2 {B} 
 

• Important technique:  
– model heap as a semantic object 
– defer reasoning about heap expressions to the theorem 

prover with inference rules such as (McCarthy): 
 
 

sel(upd(h, e1, e2), e3) = 
e2 if e1 = e3 

sel(h, e3) if e1 ≠ e3 



Example: Hoare Rule for Field Writes 

• Consider again: { A } x.f = 5 { x.f + y.f = 10 } 

• We obtain: 
A ´ (x.f + y.f = 10)[upd(f, x, 5)/f]  
´ (sel(f, x) + sel(f, y) = 10)[upd(f, x, 5)/f] 
´ sel(upd(f x 5) x) + sel(upd(f x 5) y) = 10 
´ 5 + sel(upd(f, x, 5), y) = 10 
´ if x = y then 5 + 5 = 10 else 5 + sel(f, y) = 10 
´ x = y Ç y.f = 5       

• Theorem generation. 

• Theorem proving. 



Modeling new Statements 

• Introduce  
– a new predicate isAllocated(e, t) denoting that object e is 

allocated at allocation time t 
– and a new variable allocTime denoting the current allocation 

time. 
 

• Add background axioms: 
 8x t. isAllocated(x, t) ) isAllocated(x, t+1) 
  

• Translate new x.T() to 
 havoc x; 
 assume :isAllocated(x, allocTime); 
 assume Type(x) = T; 
 assume x  null; 
 assume isAllocated(x, allocTime + 1); 
 allocTime := allocTime + 1; 
 **Translation of call to constructor x.T()** 


