Rigorous Software Development
CSCI-GA 3033-009

Instructor: Thomas Wies

Semantics of Programming Languages

e Denotational Semantics

— Meaning of a program is defined as the mathematical
object it computes (e.g., partial functions).

— Example: Abstract Interpretation

e Axiomatic Semantics

— Meaning of a program is defined in terms of its effect on
the truth of logical assertions.

— Example: Hoare Logic

e (Structural) Operational Semantics

— Meaning of a program is defined by formalizing the
individual computation steps of the program.

— Example: Labeled Transition Systems

IMP: A Simple Imperative Language

An IMP program:

p:=0;

x :=0;

while x<ndo
X:=x+1;

p:=p+m;

Syntax of IMP Commands

e Commands (Com)
c:= skip
X:=e
Ci;C
if b thenc,elsec,
whilebdoc

* Notes:

— The typing rules have been embedded in the syntax
definition.

— Other parts are not context-free and need to be checked
separately (e.g., all variables are declared).

— Commands contain all the side-effects in the language.
— Missing: references, function calls, ...

Labeled Transition Systems

A labeled transition system (LTS) is a structure
LTS = (Q, Act, —) where

— Q is a set of states,

— Act is a set of actions,

— — C Q x Act X Q is a transition relation.

We write g — g’ for (g, a, g’) € —.

Operational Semantics of IMP

] skip] <e,qg>Un G- g’ g—2sqg”
q X.=e q++{XHn} q ;6 q//

<b,g>Utrue g—2-q° <b,g>lfalse g—2-q’

q if bthenc,elsec, - if bthenc, elsec, -

q q q

<b, g> | false
q while b do ¢ q

<b, q> U true q _c q’ q’ while b do ¢ q//
q while b do ¢ q//

Axiomatic Semantics

e An axiomatic semantics consists of:
— a language for stating assertions about programs;
— rules for establishing the truth of assertions.

* Some typical kinds of assertions:
— This program terminates.

— If this program terminates, the variables x and y have the
same value throughout the execution of the program.

— The array accesses are within the array bounds.
 Some typical languages of assertions

— First-order logic

— Other logics (temporal, linear)

— Special-purpose specification languages (Z, Larch, JML)

Assertions for IMP

The assertions we make about IMP programs are
of the form:

1A} c 1B}

with the meaning that:

— If A holds in state g and g — ¢’
— then B holds in g’

A is the precondition and B is the postcondition

For example:
{y<x}zi=xz=z+1{y<z}
is a valid assertion

These are called Hoare triples or Hoare assertions

Assertions for IMP

* {A} c{B}is a partial correctness assertion. It does
not imply termination of c.

* |A] c [B] is a total correctness assertion meaning
that
— If A holds in state g

— then there exists g” such that g = g’
and B holds in state g’

* Now let’s be more formal
— Formalize the language of assertions, A and B
— Say when an assertion holds in a state
— Give rules for deriving valid Hoare triples

The Assertion Language

We use first-order predicate logic with IMP
expressions
A:=true | false | e;=e, | e, 2¢,
| A, NA, | A, VA, | A, = A, | Vx.A| Ix.A

Note that we are somewhat sloppy and mix the logical
variables and the program variables.

Implicitly, all IMP variables range over integers.
All IMP Boolean expressions are also assertions.

Semantics of Assertions

We introduced a language of assertions, we need
to assign meanings to assertions.

Notation g = A says that assertion A holds in a
given state g.

— This is well-defined when g is defined on all variables
occurring in A.

The F judgment is defined inductively on the
structure of assertions.

It relies on the semantics of arithmetic expressions
from IMP.

QO O OO0 00 O O O O

Semantics of Assertions

= true
~e,=e,
~e,2e,
= A, ANA,
= A, VA,
= A, = A,
= VXx.A

= dx.A

always
iff <e,,g>l =<e,,g>l
iff <e,;,g>l > <e,,g>l

iff g
iff g
iff g

= A, andqFEA,
= A, orgFA,

= A, implies g F A,

iff VneZ. g[x:=n] F A
iff dneZ. q[x:=n] F A

Semantics of Hoare Triples

* Now we can define formally the meaning of a partial
correctness assertion:

F {A} c {B} iff
VgeQ. Vg’ ceQ.gEANG g = q FB
* and the meaning of a total correctness assertion:
~ [A] c [B] iff
VgeQ. gEA=39’€Q.g > g’ Nq’EB
or even better:

VqEQ.Vq’EQ.th/\q%q’:Mﬂ:B
A\
VgeQ.gEA=39’cQ.9g > g’ A g’ EB

Inferring Validity of Assertions

* Now we have the formal mechanism to decide when
{A} c {B}
— But it is not satisfactory,

— because = {A} c {B} is defined in terms of the operational
semantics.

— We practically have to run the program to verify an
assertion.

— Also it is impossible to effectively verify the truth of a
Vx. A assertion (by using the definition of validity)

* So we define a symbolic technique for deriving valid
assertions from others that are known to be valid

— We start with validity of first-order formulas

Inference Rules

e We write — A when A can be inferred from basic axioms.

e The inference rules for — A are the usual ones from first-
order logic with arithmetic.

* Natural deduction style rules:

FA FB - Ala/x] where VX A

~AAB -V x. A a is fresh ~ Ale/x]

= A - B

~FAVB FAVB - Ala/x] = A
- Ale/x] —Fdx.A FB where FA=B FA - B

- 3Jx. A - B a'is fresh - B -A=B

Inference Rules for Hoare Triples

e Similarly we write - {A} c {B} when we can
derive the triple using inference rules

e There is one inference rule for each command
in the language.

* Plus, the rule of consequence

A=A F{Alc{B} FB=P
- {A'}c B’}

Inference Rules for Hoare Logic

* One rule for each syntactic construct:

—{A} skip {A} — {Ale/x]} x:=e {A}

~{A}c,{B} F{B}c,{C}
~ {A}cy; ¢, {C}

Exercise: Hoare Rules

* |s the following alternative rule for assignment still
correct?

- {true} x:=e {x = e}

Hoare Rules

* For some constructs, multiple rules are possible

alternative “forward axiom” for assignment:
= {A} x:=e {3x,. x = e[x,/x] N Alxy/x]}

alternative rule for while loops:

FIAb=C F{Clc{I} FIA-b=B
~{I}while b do c {B}

e These alternative rules are derivable from the
previous rules, plus the rule of consequence.

Example: Conditional

~ {true} ify<Othenx:=1elsex:=y {x> 0}

Example: a simple loop

e We want to infer that
F{x<0}whilex<5dox:=x+1{x=6}

e Use the rule for while with invariant I =x <6

FX<O6AXS5=x+1<6 FH{x+1<6}x:=x+1{x<6}
F{x<6 AXx<5}x:=x+1{x<6}
F{x<6}whilex<5dox:=x+1{x<6Ax>5}

Example: a more interesting program

 We want to derive that
{n >0}
p:=0;
x:=0;
while x<ndo
X =x+1;
p:=p+m

{p=n%*m}

Example: a more interesting program

Only applicable rule (except for rule of consequence):
= {A}c,{C} F{C}c,{B}
= {A}cy; ¢, {B}

—{n > 0} p:=0; x:=0 {C} HF{C} while x< ndo (x:=x+1; p:=p+m) {p = n * m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}
|)\ J\ J | J

Y Y Y Y
A Cq C, B

Example: a more interesting program

What is C? Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):
- {I A b} c {I}
—F{I}while bdoc{I N —b}

We can match {I} with {C} but we cannot match {I A\ —b} and
{p =n * m}directly. Need to apply the rule of consequence first!

—{n > 0} p:=0; x:=0 {C} HF{C} while x< ndo (x:=x+1; p:=p+m) {p = n * m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}
|)\ J\ J | J

Y Y Y Y
A Cq C, B

Example: a more interesting program

What is C? Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):
- {I A b} c {I}
- \{I}l\\/\lhile bdoc{I N b}

Rule of consequence:

A c’ B
FA'=A F{A}c’{B} FB=D"H
I:A:A’:C l_{Ai}C/{B;}
A c’ B
- : | L

[
—{n > 0} p:=0; x:=0 {C} HF{C} while x< ndo (x:=x+1; p:=p+m) {p = n * m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: a more interesting program

What is I? Let’s keep it as a placeholder for now!

Next applicable rule:
~{A}c,{C} F{C}c,{B}
= {A} cy; ¢, {B}

A Cq C, B
A 1 1]

I—{{I A X< n\}'x = x+1;'p:=p+m‘ {I}
H{I}while x < ndo (x:=x+1; p:=p+m) {I A x > n}
FIAX>n=p=n*m
~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: a more interesting program

What is C? Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):

- {Ale/x]} x:=e {A}

; ‘1 “ B
(| f \ r y
H{I A x<n}x:=x+1 {C} —{C} p:=p+m {I}
H{I A x<n}x:=x+1; p:=p+m {I}
H{I}while x < ndo (x:=x+1; p:=p+m) {I A x > n}
FIAX>n=p=n*m

~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: a more interesting program

What is C? Look at the next possible matching rules for c,!

Only applicable rule (except for rule of consequence):

- {Ale/x]} x:=e {A}

H{I A x<n}x:=x+1 {I[p+m/p]} H{I[p+m/p} p:=p+m {1}
H{I A x<n}x:=x+1; p:=p+m {I}

H{I}while x < ndo (x:=x+1; p:=p+m) {I A x > n}
FIAX>n=p=n*m
~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: a more interesting program

Only applicable rule (except for rule of consequence):
- {Ale/x]} x:=e {A}

Need rule of consequence to match {I A x<n}and {I[x+1/x, p+m/p]}

H{I A x<n}x:=x+1 {I[p+m/p]} H{I[p+m/p} p:=p+m {1}
H{I A x<n}x:=x+1; p:=p+m {I}

H{I}while x < ndo (x:=x+1; p:=p+m) {I A x > n}
FIAX>n=p=n*m
~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: a more interesting program

Let’s just remember the open proof obligations!

H{I[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]}
FIAXx<n= I[x+1/x, p+m/p]
H{I A x<n}x:=x+1 {I[p+m/p]} H{I[p+m/p} p:=p+m {1}
H{I A x<n}x:=x+1; p:=p+m {I}

H{I}while x < ndo (x:=x+1; p:=p+m) {I A x > n}
FIAX>n=p=n*m
~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: a more interesting program

Let’s just remember the open proof obligations!
FIAXx<n= I[x+1/x, p+m/p]

FIAX>n=p=n*m

Continue with the remaining part of the proof tree, as before.

- n > 0= I[0/p, 0/X] Now we only need to solve the
- {1[0/p, 0/x]} p:=0 {I[0/x]} remaining constraints!

= {n > 0} p:=0 {I[0/x]}
~{I[0/x]} x:=0 {1}
~{n > 0} p:=0; x:=0 {I} H{I}whilex<ndo (x:=x+1; p:=p+m){p=n* m}

- {n > 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Example: a more interesting program

Find I such that all constraints are simultaneously valid:
=n>0= I[0/p, 0/x]

FIAXx<n= I[x+1/x, p+m/p]
FIAX>n=p=n*m

I=p=x*mAx<n

FNn>0=0=0*mMA0<n
Fp=x*mAX<nAX<n= ptm=(x+1) * m A x+1 <n
Fp=x*nAX<nAxXx>n=p=n*m

All constraints are valid!

