Rigorous Software Development CSCI-GA 3033-009

Instructor: Thomas Wies

Spring 2013

Lecture 11

Semantics of Programming Languages

- Denotational Semantics
- Meaning of a program is defined as the mathematical object it computes (e.g., partial functions).
- Example: Abstract Interpretation
- Axiomatic Semantics
- Meaning of a program is defined in terms of its effect on the truth of logical assertions.
- Example: Hoare Logic
- (Structural) Operational Semantics
- Meaning of a program is defined by formalizing the individual computation steps of the program.
- Example: Labeled Transition Systems

IMP: A Simple Imperative Language

An IMP program:
$p:=0 ;$
$x:=0 ;$
while $x<n$ do

$$
\begin{aligned}
& x:=x+1 \\
& p:=p+m
\end{aligned}
$$

Syntax of IMP Commands

- Commands (Com)
$c::=$ skip $x:=e$
$c_{1} ; c_{2}$
if b then c_{1} else c_{2} while b do c
- Notes:
- The typing rules have been embedded in the syntax definition.
- Other parts are not context-free and need to be checked separately (e.g., all variables are declared).
- Commands contain all the side-effects in the language.
- Missing: references, function calls, ...

Labeled Transition Systems

A labeled transition system (LTS) is a structure $L T S=(Q, A c t, \rightarrow)$ where
$-Q$ is a set of states,

- Act is a set of actions,
$-\rightarrow \subseteq Q \times$ Act $\times Q$ is a transition relation.

We write $q \xrightarrow{a} q^{\prime}$ for $\left(q, a, q^{\prime}\right) \in \rightarrow$.

Operational Semantics of IMP

$$
q \xrightarrow{\text { skip }} q \quad \underset{\sim}{q \xrightarrow{x:=e} q++\{x \mapsto n\}} \quad \frac{e, q\rangle \Downarrow n}{q \xrightarrow{c_{1}} q^{\prime} q^{\prime} \xrightarrow{c_{2}} q^{\prime \prime}}
$$

$\langle b, q\rangle \Downarrow$ true $\left.q \xrightarrow{c_{1}} q^{\prime} \quad<b, q\right\rangle \Downarrow$ false $q \xrightarrow{c_{2}} q^{\prime}$ $q \xrightarrow{\text { if } b \text { then } c_{1} \text { else } c_{2}} q^{\prime} \xrightarrow{\text { if } b \text { then } c_{1} \text { else } c_{2}} q^{\prime}$
$\xrightarrow[{q \xrightarrow[\text { while } b \text { do } c]{ } \stackrel{\langle b, q\rangle \Downarrow \text { false }}{\longrightarrow}} q]{ }$
$\frac{\langle b, q\rangle \Downarrow \text { true } q \xrightarrow{c} q^{\prime} q^{\prime} \xrightarrow{\text { while } b \text { do } c} q^{\prime \prime}}{q \xrightarrow[\text { while } b \text { do } c]{\longrightarrow \prime} q^{\prime \prime}}$

Axiomatic Semantics

- An axiomatic semantics consists of:
- a language for stating assertions about programs;
- rules for establishing the truth of assertions.
- Some typical kinds of assertions:
- This program terminates.
- If this program terminates, the variables x and y have the same value throughout the execution of the program.
- The array accesses are within the array bounds.
- Some typical languages of assertions
- First-order logic
- Other logics (temporal, linear)
- Special-purpose specification languages (Z, Larch, JML)

Assertions for IMP

- The assertions we make about IMP programs are of the form:

$$
\{A\} \subset\{B\}
$$

with the meaning that:

- If A holds in state q and $q \xrightarrow{c} q^{\prime}$
- then B holds in q^{\prime}
- A is the precondition and B is the postcondition
- For example:

$$
\{y \leq x\} z:=x ; z:=z+1\{y<z\}
$$ is a valid assertion

- These are called Hoare triples or Hoare assertions

Assertions for IMP

- $\{A\} c\{B\}$ is a partial correctness assertion. It does not imply termination of c.
- $[\mathrm{A}] \mathrm{c}[\mathrm{B}]$ is a total correctness assertion meaning that
- If A holds in state q
- then there exists q^{\prime} such that $q \xrightarrow{c} q^{\prime}$ and B holds in state q^{\prime}
- Now let's be more formal
- Formalize the language of assertions, A and B
- Say when an assertion holds in a state
- Give rules for deriving valid Hoare triples

The Assertion Language

- We use first-order predicate logic with IMP expressions

$$
\begin{aligned}
\mathrm{A}:: & =\text { true | false }\left|e_{1}=e_{2}\right| e_{1} \geq e_{2} \\
& \left|\mathrm{~A}_{1} \wedge \mathrm{~A}_{2}\right| \mathrm{A}_{1} \vee \mathrm{~A}_{2}\left|\mathrm{~A}_{1} \stackrel{\text { A }}{\Rightarrow}\right| \forall x . \mathrm{A} \mid \exists x . \mathrm{A}
\end{aligned}
$$

- Note that we are somewhat sloppy and mix the logical variables and the program variables.
- Implicitly, all IMP variables range over integers.
- All IMP Boolean expressions are also assertions.

Semantics of Assertions

- We introduced a language of assertions, we need to assign meanings to assertions.
- Notation $q \vDash$ A says that assertion A holds in a given state q.
- This is well-defined when q is defined on all variables occurring in A.
- The \vDash judgment is defined inductively on the structure of assertions.
- It relies on the semantics of arithmetic expressions from IMP.

Semantics of Assertions

- $q \vDash$ true
- $q \vDash e_{1}=e_{2}$
- $q \vDash e_{1} \geq e_{2}$
- $q \vDash A_{1} \wedge A_{2}$
- $q \vDash A_{1} \vee A_{2}$
- $q \vDash A_{1} \Rightarrow A_{2}$
- $q \vDash \forall x$. A
- $q \vDash \exists x . \mathrm{A}$
always
iff $\left\langle e_{1}, q\right\rangle \Downarrow=<e_{2}, q>\Downarrow$
iff $\left.\left\langle e_{1}, q\right\rangle \Downarrow \geq<e_{2}, q\right\rangle \Downarrow$
iff $q \vDash \mathrm{~A}_{1}$ and $q \vDash \mathrm{~A}_{2}$
iff $q \vDash A_{1}$ or $q \vDash A_{2}$
iff $q \vDash \mathrm{~A}_{1}$ implies $q \vDash \mathrm{~A}_{2}$
iff $\forall n \in \mathbb{Z} . q[x:=n] \vDash A$
iff $\exists n \in \mathbb{Z} . q[x:=n] \vDash A$

Semantics of Hoare Triples

- Now we can define formally the meaning of a partial correctness assertion:
$\vDash\{\mathrm{A}\} \mathrm{c}\{\mathrm{B}\}$ iff
$\forall q \in Q . \forall q^{\prime} \in Q . q \vDash \mathrm{~A} \wedge q \xrightarrow{c} q^{\prime} \Rightarrow q^{\prime} \vDash \mathrm{B}$
- and the meaning of a total correctness assertion:
$\vDash[A] c[B]$ iff
$\forall q \in Q . q \vDash \mathrm{~A} \Rightarrow \exists q^{\prime} \in Q . q \xrightarrow{c} q^{\prime} \wedge q^{\prime} \vDash \mathrm{B}$
or even better:

$$
\begin{aligned}
& \forall q \in Q . \forall q^{\prime} \in Q . q \vDash \mathrm{~A} \wedge q \xrightarrow{c} q^{\prime} \Rightarrow q^{\prime} \vDash \mathrm{B} \\
& \forall q \in Q . q \vDash \mathrm{~A} \Rightarrow \exists q^{\prime} \in Q . q \xrightarrow{c} q^{\prime} \wedge q^{\prime} \vDash \mathrm{B}
\end{aligned}
$$

Inferring Validity of Assertions

- Now we have the formal mechanism to decide when $\{A\} c\{B\}$
- But it is not satisfactory,
- because $\vDash\{A\} \subset\{B\}$ is defined in terms of the operational semantics.
- We practically have to run the program to verify an assertion.
- Also it is impossible to effectively verify the truth of a $\forall x$. A assertion (by using the definition of validity)
- So we define a symbolic technique for deriving valid assertions from others that are known to be valid
- We start with validity of first-order formulas

Inference Rules

- We write \vdash A when A can be inferred from basic axioms.
- The inference rules for $\vdash \mathrm{A}$ are the usual ones from firstorder logic with arithmetic.
- Natural deduction style rules:

$$
\begin{aligned}
& \frac{\vdash \mathrm{A} \vdash \mathrm{~B}}{\vdash \mathrm{~A} \wedge \mathrm{~B}} \frac{\vdash \mathrm{~A}[a / x]}{\vdash \forall x \cdot \mathrm{~A}} \operatorname{wa}_{a \text { is fresh }}^{\text {where }} \frac{\vdash \forall x \cdot \mathrm{~A}}{\vdash \mathrm{~A}[e / x]} \\
& \frac{\vdash \mathrm{A}}{\vdash \mathrm{~A} \vee \mathrm{~B}} \frac{\vdash \mathrm{~B}}{\vdash \mathrm{~A} \vee \mathrm{~B}} \quad \vdash \mathrm{~A}[a / \mathrm{x}]
\end{aligned}
$$

Inference Rules for Hoare Triples

- Similarly we write $\vdash\{A\} c\{B\}$ when we can derive the triple using inference rules
- There is one inference rule for each command in the language.
- Plus, the rule of consequence

$$
\begin{array}{ll}
\vdash A^{\prime} \Rightarrow A \quad \vdash\{\mathrm{~A}\} c\{\mathrm{~B}\} \quad \vdash \mathrm{B} \Rightarrow \mathrm{~B}^{\prime} \\
& \vdash\left\{\mathrm{A}^{\prime}\right\} c\left\{\mathrm{~B}^{\prime}\right\}
\end{array}
$$

Inference Rules for Hoare Logic

- One rule for each syntactic construct:

$$
\begin{aligned}
& \vdash\{\mathrm{A}\} \text { skip }\{\mathrm{A}\} \\
& \qquad \begin{array}{l}
\vdash\{\mathrm{A}\} C_{1}\{\mathrm{~B}\} \quad \vdash\{\mathrm{B}\} \mathrm{C}_{2}\{\mathrm{C}\} \\
\vdash\{\mathrm{A}\} \mathrm{C}_{1} ; \mathrm{C}_{2}\{\mathrm{C}\}
\end{array}
\end{aligned}
$$

Exercise: Hoare Rules

- Is the following alternative rule for assignment still correct?

$$
\vdash\{\text { true }\} x:=e\{x=e\}
$$

Hoare Rules

- For some constructs, multiple rules are possible alternative "forward axiom" for assignment:

$$
\vdash\{\mathrm{A}\} x:=e\left\{\exists x_{0} \cdot x=e\left[\mathrm{x}_{0} / \mathrm{x}\right] \wedge \mathrm{A}\left[x_{0} / x\right]\right\}
$$

alternative rule for while loops:

$$
\frac{\vdash \mathrm{I} \wedge b \Rightarrow \mathrm{C} \quad \vdash\{\mathrm{C}\} \subset\{\mathrm{I}\} \quad \vdash \mathrm{I} \wedge \neg b \Rightarrow \mathrm{~B}}{\vdash\{\mathrm{I}\} \text { while } b \text { do } c\{\mathrm{~B}\}}
$$

- These alternative rules are derivable from the previous rules, plus the rule of consequence.

Example: Conditional

$\vdash\{$ true $\}$ if $y \leq 0$ then $x:=1$ el se $x:=y\{x>0\}$

Example: a simple loop

- We want to infer that

$$
\vdash\{x \leq 0\} \text { while } x \leq 5 \text { do } x:=x+1\{x=6\}
$$

- Use the rule for while with invariant $\mathrm{I} \equiv x \leq 6$

$$
\frac{\vdash x \leq 6 \wedge x \leq 5 \Rightarrow x+1 \leq 6 \quad \vdash\{x+1 \leq 6\} x:=x+1\{x \leq 6\}}{\vdash\{x \leq 6 \wedge x \leq 5\} x:=x+1\{x \leq 6\}}
$$

Example: a more interesting program

- We want to derive that $\{\mathrm{n} \geq 0\}$
$p:=0 ;$
$x:=0$;
while $x<n$ do

$$
\begin{aligned}
& x:=x+1 ; \\
& p:=p+m \\
&\left\{p=n^{*} m\right\}
\end{aligned}
$$

Example: a more interesting program

Only applicable rule (except for rule of consequence):

$$
\frac{\vdash\{\mathrm{A}\} \mathrm{c}_{1}\{\mathrm{C}\} \vdash\{\mathrm{C}\} \mathrm{C}_{2}\{\mathrm{~B}\}}{\vdash\{\mathrm{A}\} \mathrm{c}_{1} ; \mathrm{C}_{2}\{\mathrm{~B}\}}
$$

$\vdash\{n \geq 0\} p:=0 ; x:=0\{C\} \quad \vdash\{C\}$ while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$
$\vdash \underbrace{\{\mathrm{n} \geq 0\}}_{\mathrm{A}} \underbrace{\mathrm{p}:=0 ; \mathrm{x}:=0 ;}_{\mathrm{C}_{1}} \underbrace{\text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{p}:=\mathrm{p}+\mathrm{m})}_{\mathrm{C}_{2}} \underbrace{\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\}}_{\underbrace{}_{\mathrm{B}}}$

Example: a more interesting program

What is C? Look at the next possible matching rules for C_{2} ! Only applicable rule (except for rule of consequence):
$\vdash\{I \wedge b\} c\{I\}$
$\vdash\{I\}$ while b do $c\{I \wedge \neg b\}$
We can match $\{I\}$ with $\{C\}$ but we cannot match $\{I \wedge \neg$ b $\}$ and $\{p=n * m\}$ directly. Need to apply the rule of consequence first!
$\vdash\{n \geq 0\} p:=0 ; x:=0\{C\} \quad \vdash\{C\}$ while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$
$\vdash \underbrace{\{\mathrm{n} \geq 0\}}_{\mathrm{A}} \underbrace{\mathrm{p}:=0 ; \mathrm{x}:=0 ;}_{\mathrm{C}_{1}} \underbrace{\text { while } \mathrm{x}<\mathrm{n} \text { do }(\mathrm{x}:=\mathrm{x+1} ; \mathrm{p}:=\mathrm{p}+\mathrm{m})}_{\mathrm{C}_{2}} \underbrace{\{\mathrm{p}=\mathrm{n} * \mathrm{~m}\}}_{\mathrm{B}}$

Example: a more interesting program

What is C? Look at the next possible matching rules for C_{2} ! Only applicable rule (except for rule of consequence):

$$
\begin{aligned}
& \vdash\{I \wedge b\} c\{I\} \\
& \vdash \underbrace{\{I\}}_{\mathrm{A}} \underbrace{\text { while } b \text { do } c}_{c^{\prime}} \underbrace{\{I \wedge \neg b\}}_{B} \\
& \text { Rule of consequence: } \\
& I=A=A^{\prime}=C \\
& \frac{\vdash A^{\prime} \Rightarrow A \quad \vdash\{A\} C^{\prime}\{B\} \quad \vdash B \Rightarrow B^{\prime}}{\vdash\left\{A^{\prime}\right\} C^{\prime}\left\{B^{\prime}\right\}} \\
& \vdash\{n \geq 0\} p:=0 ; x:=0\{C\} \quad \vdash\{C\} \text { while } x<n \text { do }(x:=x+1 ; p:=p+m)\{p=n * m\} \\
& \vdash\{n \geq 0\} p:=0 ; x:=0 ; \text { while } x<n \text { do }(x:=x+1 ; p:=p+m)\{p=n * m\}
\end{aligned}
$$

Example: a more interesting program

What is I? Let's keep it as a placeholder for now!
Next applicable rule:

$$
\frac{\vdash\{\mathrm{A}\} \mathrm{c}_{1}\{\mathrm{C}\} \quad \vdash\{\mathrm{C}\} \mathrm{c}_{2}\{\mathrm{~B}\}}{\vdash\{\mathrm{A}\} \mathrm{c}_{1} ; \mathrm{C}_{2}\{\mathrm{~B}\}}
$$

$$
\vdash \mathrm{I} \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow \mathrm{p}=\mathrm{n}^{*} \mathrm{~m}
$$

$\vdash\{n \geq 0\} p:=0 ; x:=0\{I\} \quad \vdash\{I\}$ while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$
$\vdash\{n \geq 0\} p:=0 ; x:=0 ;$ while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$

Example: a more interesting program

What is C? Look at the next possible matching rules for C_{2} ! Only applicable rule (except for rule of consequence):
$\vdash\{\mathrm{A}[e / x]\} x:=e\{\mathrm{~A}\}$

$$
\vdash \mathrm{I} \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow \mathrm{p}=\mathrm{n}^{*} \mathrm{~m}
$$

$\vdash\{n \geq 0\} p:=0 ; x:=0\{I\} \quad \vdash\{I\}$ while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$
$\vdash\{n \geq 0\} p:=0 ; x:=0$; while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$

Example: a more interesting program

What is C? Look at the next possible matching rules for C_{2} ! Only applicable rule (except for rule of consequence):
$\vdash\{\mathrm{A}[e / x]\} x:=e\{\mathrm{~A}\}$

$$
\frac{\vdash\{I \wedge x<n\} x:=x+1\{I[p+m / p]\} \vdash\{I[p+m / p\} p:=p+m\{I\}}{\vdash\{I \wedge x<n\} x:=x+1 ; p:=p+m\{I\}} \frac{\vdash\{I\} \text { while } x<n \text { do }(x:=x+1 ; p:=p+m)\{I \wedge x \geq n\}}{\vdash}
$$

$$
\vdash \mathrm{I} \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow \mathrm{p}=\mathrm{n}^{*} \mathrm{~m}
$$

$\vdash\{n \geq 0\} p:=0 ; x:=0\{I\} \quad \vdash\{I\}$ while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$
$\vdash\{n \geq 0\} p:=0 ; x:=0 ;$ while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$

Example: a more interesting program

Only applicable rule (except for rule of consequence):
$\vdash\{\mathrm{A}[\mathrm{e} / x]\} x:=e\{\mathrm{~A}\}$
Need rule of consequence to match $\{I \wedge x<n\}$ and $\{I[x+1 / x, p+m / p]\}$

$$
\begin{aligned}
& \vdash\{I \wedge x<n\} x:=x+1\{I[p+m / p]\} \vdash\{I[p+m / p\} p:=p+m\{I\} \\
& \vdash\{I \wedge x<n\} x:=x+1 ; p:=p+m\{I\} \\
& \vdash\{I\} \text { while } x<n \text { do }(x:=x+1 ; p:=p+m)\{I \wedge x \geq n\} \\
& \vdash \mathrm{I} \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow \mathrm{p}=\mathrm{n} \text { * } \mathrm{m} \\
& \vdash\{n \geq 0\} p:=0 ; x:=0\{I\} \quad \vdash\{I\} \text { while } x<n \text { do }(x:=x+1 ; p:=p+m)\{p=n * m\}
\end{aligned}
$$

$\vdash\{n \geq 0\} p:=0 ; x:=0 ;$ while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$

Example: a more interesting program

Let's just remember the open proof obligations!

$$
\begin{aligned}
& \qquad\{I[x+1 / x, p+m / p]\} x:=x+1\{I[p+m / p]\} \\
& \\
& \frac{\vdash I \wedge x<n \Rightarrow I[x+1 / x, p+m / p]}{\vdash\{I \wedge x<n\} x:=x+1\{I[p+m / p]\} \vdash\{I[p+m / p\} p:=p+m\{I\}} \\
& \frac{\vdash\{I \wedge x<n\} x:=x+1 ; p:=p+m\{I\}}{\vdash\{I\} \text { while } x<n d o(x:=x+1 ; p:=p+m)\{I \wedge x \geq n\}} \\
& \vdash\{n \geq 0\} p:=0 ; x:=0\{I\} \quad \frac{\vdash I \wedge x \geq n: \Rightarrow p=n * m}{\vdash\{I\} \text { while } x<n \text { do }(x:=x+1 ; p:=p+m)\{p=n * m\}}
\end{aligned}
$$

$\vdash\{n \geq 0\} p:=0 ; x:=0$; while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$

Example: a more interesting program

Let's just remember the open proof obligations!

$$
\begin{aligned}
& \vdash \mathrm{I} \wedge \mathrm{x}<\mathrm{n} \Rightarrow \mathrm{I}[\mathrm{x}+1 / \mathrm{x}, \mathrm{p}+\mathrm{m} / \mathrm{p}] \\
& \vdash \mathrm{I} \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow \mathrm{p}=\mathrm{n} * \mathrm{~m}
\end{aligned}
$$

Continue with the remaining part of the proof tree, as before.
$\vdash \mathrm{n} \geq 0 \Rightarrow \mathrm{I}[0 / \mathrm{p}, 0 / \mathrm{x}]$
$\vdash\{I[0 / p, 0 / x]\} p:=0\{I[0 / x]\}$
$\vdash\{n \geq 0\} p:=0\{I[0 / x]\}$
$\vdash\{I[0 / x]\} x:=0\{I\}$
$\overline{\vdash\{n \geq 0\} p:=0 ; x:=0\{I\}} \vdash\{I\}$ while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$
$\vdash\{n \geq 0\} p:=0 ; x:=0 ;$ while $x<n$ do $(x:=x+1 ; p:=p+m)\{p=n * m\}$

Now we only need to solve the remaining constraints!

Example: a more interesting program

Find I such that all constraints are simultaneously valid:

$$
\begin{aligned}
& \vdash \mathrm{n} \geq 0 \Rightarrow I[0 / \mathrm{p}, 0 / \mathrm{x}] \\
& \vdash \mathrm{I} \wedge \mathrm{x}<\mathrm{n} \Rightarrow \mathrm{I}[\mathrm{x}+1 / \mathrm{x}, \mathrm{p}+\mathrm{m} / \mathrm{p}] \\
& \vdash \mathrm{I} \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow \mathrm{p}=\mathrm{n} * \mathrm{~m} \\
& \mathrm{I} \equiv \mathrm{p}=\mathrm{x}^{*} \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n} \\
& \vdash \mathrm{n} \geq 0 \Rightarrow 0=0 * \mathrm{~m} \wedge 0 \leq \mathrm{n} \\
& \vdash \mathrm{p}=\mathrm{x}^{*} \mathrm{~m} \wedge \mathrm{x} \leq \mathrm{n} \wedge \mathrm{x}<\mathrm{n} \Rightarrow \mathrm{p}+\mathrm{m}=(\mathrm{x}+1)^{*} \mathrm{~m} \wedge \mathrm{x}+1 \leq \mathrm{n} \\
& \vdash \mathrm{p}=\mathrm{x}^{*} \mathrm{n} \wedge \mathrm{x} \leq \mathrm{n} \wedge \mathrm{x} \geq \mathrm{n} \Rightarrow \mathrm{p}=\mathrm{n}^{*} \mathrm{~m}
\end{aligned}
$$

All constraints are valid!

