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Semantics of Programming Languages 

• Denotational Semantics 
– Meaning of a program is defined as the mathematical 

object it computes (e.g., partial functions). 
– Example: Abstract Interpretation 

• Axiomatic Semantics 
– Meaning of a program is defined in terms of its effect on 

the truth of logical assertions. 
– Example: Hoare Logic 

• (Structural) Operational Semantics 
– Meaning of a program is defined by formalizing the 

individual computation steps of the program. 
– Example: Labeled Transition Systems 



IMP: A Simple Imperative Language 

An IMP program: 
 

p := 0; 

x := 0; 

while x < n do 

 x := x + 1; 

 p := p + m; 



Syntax of IMP Commands 

• Commands (Com) 
c ::=   skip 
 | x := e 
 | c1 ; c2 
 | if b then c1 else c2 
 | while b do c 

• Notes: 
– The typing rules have been embedded in the syntax 

definition. 
– Other parts are not context-free and need to be checked 

separately (e.g., all variables are declared). 
– Commands contain all the side-effects in the language. 
– Missing: references, function calls, … 



Labeled Transition Systems 

A labeled transition system (LTS) is a structure  
LTS = (Q, Act, !) where 

– Q is a set of states, 

– Act is a set of actions, 

–  ! µ Q £ Act £ Q is a transition relation. 

We write  q ! q’  for  (q, a, q’) 2 !. 
a 



q           q ++ {x  n} x := e 

Operational Semantics of IMP 

<e, q> ⇓ n 
q           q skip 

q           q’’ c1 ; c2  

q           q’ c1  q’          q’’ c2  

q                             q’ if b then c1 else c2 

<b, q> ⇓ true q           q’ c1  

q                             q’ if b then c1 else c2 

<b, q> ⇓ false q           q’ c2  

q                             q’’ while b do c 

<b, q> ⇓ true q           q’ c  

q                             q while b do c 

<b, q> ⇓ false 

q’                             q’’ while b do c 



Axiomatic Semantics 

• An axiomatic semantics consists of: 
– a language for stating assertions about programs; 
– rules for establishing the truth of assertions. 

• Some typical kinds of assertions: 
– This program terminates. 
– If this program terminates, the variables x and y have the 

same value throughout the execution of the program. 
– The array accesses are within the array bounds. 

• Some typical languages of assertions 
– First-order logic 
– Other logics (temporal, linear) 
– Special-purpose specification languages (Z, Larch, JML) 



Assertions for IMP 

• The assertions we make about IMP programs are 
of the form: 
  {A} c {B} 
with the meaning that: 
– If A holds in state q and q ! q’ 
– then B holds in q’ 

• A is the precondition and B is the postcondition 
• For example: 

 { y ≤ x } z := x; z := z + 1 { y < z } 
is a valid assertion 

• These are called Hoare triples or Hoare assertions 

c 



Assertions for IMP 

• {A} c {B} is a partial correctness assertion. It does 
not imply termination of c. 

• [A] c [B] is a total correctness assertion meaning 
that 
– If A holds in state q 
– then there exists q’ such that q ! q’ 

and B holds in state q’ 

• Now let’s be more formal 
– Formalize the language of assertions, A and B 
– Say when an assertion holds in a state 
– Give rules for deriving valid Hoare triples 

c 



The Assertion Language 

• We use first-order predicate logic with IMP 
expressions 
 

 A :: = true | false | e1 = e2 | e1 ≥ e2 
        | A1 Æ A2 | A1 Ç A2 | A1 ) A2 | ∀x.A | ∃x.A 

 
• Note that we are somewhat sloppy and mix the logical 

variables and the program variables. 

• Implicitly, all IMP variables range over integers. 

• All IMP Boolean expressions are also assertions. 



Semantics of Assertions 

• We introduced a language of assertions, we need 
to assign meanings to assertions. 

• Notation q ² A says that assertion A holds in a 
given state q. 
– This is well-defined when q is defined on all variables 

occurring in A. 

• The ² judgment is defined inductively on the 
structure of assertions. 

• It relies on the semantics of arithmetic expressions 
from IMP. 



Semantics of Assertions 

• q ² true  always 

• q ² e1 = e2  iff <e1,q>⇓ = <e2,q>⇓ 

• q ² e1 ≥ e2  iff <e1,q>⇓ ≥ <e2,q>⇓ 

• q ² A1 Æ A2  iff q ² A1 and q ² A2 

• q ² A1 Ç A2  iff q ² A1 or q ² A2 

• q ² A1 ) A2  iff q ² A1 implies q ² A2 

• q ² ∀x.A  iff 8n2Z. q[x:=n] ² A 

• q ² ∃x.A   iff 9n2Z. q[x:=n] ² A 



Semantics of Hoare Triples 

• Now we can define formally the meaning of a partial 
correctness assertion: 
 

² {A} c {B} iff 
 

8q2Q. 8q’2Q. q ² A Æ q ! q’ ) q’ ² B 
• and the meaning of a total correctness assertion: 

 

² [A] c [B] iff 
 

8q2Q. q ² A ) 9q’∈Q. q ! q’ Æ q’ ² B 
 

or even better: 
 

    8q2Q. 8q’∈Q. q ² A Æ q ! q’ ) q’ ² B 
Æ 
    8q2Q. q ² A ) 9q’2Q. q ! q’ Æ q’ ² B 
 

c 

c 

c 

c 



Inferring Validity of Assertions 

• Now we have the formal mechanism to decide when 
{A} c {B} 
– But it is not satisfactory, 
– because ² {A} c {B} is defined in terms of the operational 

semantics. 
– We practically have to run the program to verify an 

assertion. 
– Also it is impossible to effectively verify the truth of a 
∀x. A assertion (by using the definition of validity) 

• So we define a symbolic technique for deriving valid 
assertions from others that are known to be valid 
– We start with validity of first-order formulas 



` A[e/x]    

Inference Rules 

• We write ` A when A can be inferred from basic axioms. 

• The inference rules for ` A are the usual ones from first-
order logic with arithmetic. 

• Natural deduction style rules: 

` A Æ B 

` A     ` B 

` A Ç B 

` A 

` A Ç B 

` B 

` 8 x. A 

` A[a/x]    where  
a is fresh 

` 8 x. A 

` A[e/x]    

` 9 x. A ` B 

` 9 x. A     ` B 

` A ) B 

` B 

` B 

` A ) B    ` A 

` A[a/x]    
... 

where  
a is fresh 

` A    
... 



Inference Rules for Hoare Triples 

• Similarly we write ` {A} c {B} when we can 
derive the triple using inference rules 

• There is one inference rule for each command 
in the language. 

• Plus, the rule of consequence 
 
 ` A’ ) A     ` {A} c {B}      ` B ) B’ 
                     ` {A’} c {B’} 



Inference Rules for Hoare Logic 

• One rule for each syntactic construct: 

` {A} skip {A} ` {A[e/x]} x:=e {A} 

` {A} if b then c1 else c2 {B} 

` {A Æ b} c1 {B}     ` {A Æ :b} c2 {B} 

` {A} c1; c2 {C} 

` {A} c1 {B}     ` {B} c2 {C} 

` {I} while b do c {I Æ :b} 

` {I Æ b} c {I}  



Exercise: Hoare Rules 

• Is the following alternative rule for assignment still 
correct? 

` {true} x:=e {x = e} 



Hoare Rules 

• For some constructs, multiple rules are possible 
 

alternative “forward axiom” for assignment: 
 
 
alternative rule for while loops: 

 

 

 

• These alternative rules are derivable from the 
previous rules, plus the rule of consequence. 
 
 

` {A} x:=e {9x0. x = e[x0/x] Æ A[x0/x]} 

` {I} while b do c {B} 

` {C} c {I}  ` I Æ b ) C  ` I Æ :b ) B  



Example: Conditional 

         D1 :: ` {true Æ y ≤ 0} x := 1 {x > 0} 
         D2 :: ` {true Æ y > 0} x := y {x > 0} 
        ` {true} if y ≤ 0 then x := 1 else x := y {x > 0} 
 
• D1 is obtained by consequence and assignment 

 

` {1 > 0} x := 1 {x > 0} 
` true Æ y ≤ 0 ) 1 > 0 
` {true Æ y ≤ 0} x := 1 {x ≥ 0} 
 

• D2 is also obtained by consequence and assignment 
 

` {y > 0} x := y {x > 0} 
` true Æ y > 0 ) y > 0 
` {true Æ y > 0} x := y {x > 0} 



Example: a simple loop  

• We want to infer that 
` {x ≤ 0} while x ≤ 5 do x := x + 1 {x = 6} 

• Use the rule for while with invariant I ´ x · 6 
 

` x ≤ 6 Æ x ≤ 5 ) x + 1 ≤ 6      ` {x + 1 ≤ 6} x := x + 1 {x ≤ 6} 
                    ` {x ≤ 6 Æ x ≤ 5} x := x + 1 {x ≤ 6} 
      ` {x ≤ 6} while x ≤ 5 do x := x + 1 { x ≤ 6 Æ x > 5} 
 

• Then finish-off with the rule of consequence 
` x ≤ 0 ) x ≤ 6  
` x ≤ 6 Æ x > 5 ) x = 6      ` {x ≤ 6} while ... {x ≤ 6 Æ x > 5} 
                   ` {x ≤ 6} while ... { x ≤ 6 Æ x > 5} 
 



Example: a more interesting program 

• We want to derive that 

{n ¸ 0}  

p := 0;  

x := 0; 

while x < n do  

  x := x + 1;  

     p := p + m 

{p = n * m} 

 



Example: a more interesting program 

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

Only applicable rule (except for rule of consequence): 
 

` {A} c1; c2 {B}  

` {A} c1{C}    ` {C} c2 {B}  

c1 c2 B A 

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}  



Example: a more interesting program 

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

What is C? 
 

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}  

Look at the next possible matching rules for c2! 

Only applicable rule (except for rule of consequence): 
 

` {I} while b do c {I Æ :b} 

` {I Æ b} c {I}  

We can match {I} with {C}  but we cannot match {I Æ :b} and 
{p = n * m} directly. Need to apply the rule of consequence first! 

c1 c2 B A 



Example: a more interesting program 

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

What is C? 
 

B’ A’ 

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}  

Look at the next possible matching rules for c2! 

Only applicable rule (except for rule of consequence): 
 

` {I} while b do c {I Æ :b} 

` {I Æ b} c {I}  

` A’ ) A     ` {A} c’ {B}      ` B ) B’ 
` {A’} c’ {B’} 

Rule of consequence: 

c’ 

c’ A B 

I = A = A’ = C 



Example: a more interesting program 

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

What is I? 
 

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

Let’s keep it as a placeholder for now! 

` I Æ x ¸ n ) p = n * m 

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n} 

`{I Æ x<n} x := x+1; p:=p+m {I} 

Next applicable rule: 
 

` {A} c1; c2 {B}  

` {A} c1{C}    ` {C} c2 {B}  

B A c1 c2 



Example: a more interesting program 

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

` I Æ x ¸ n ) p = n * m 

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n} 

`{I Æ x<n} x := x+1; p:=p+m {I} 

B A c1 c2 

`{I Æ x<n} x := x+1 {C}  

What is C? 
 

Look at the next possible matching rules for c2! 

Only applicable rule (except for rule of consequence): 
 
` {A[e/x]} x:=e {A} 

`{C} p:=p+m {I} 



Example: a more interesting program 

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

` I Æ x ¸ n ) p = n * m 

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n} 

What is C? 
 

Look at the next possible matching rules for c2! 

Only applicable rule (except for rule of consequence): 
 
` {A[e/x]} x:=e {A} 

`{I[p+m/p} p:=p+m {I} 

`{I Æ x<n} x:=x+1; p:=p+m {I} 

`{I Æ x<n} x:=x+1 {I[p+m/p]}  



Example: a more interesting program 

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

` I Æ x ¸ n ) p = n * m 

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n} 

`{I Æ x<n} x:=x+1; p:=p+m {I} 

`{I Æ x<n} x:=x+1 {I[p+m/p]}  

Only applicable rule (except for rule of consequence): 
 
` {A[e/x]} x:=e {A} 

`{I[p+m/p} p:=p+m {I} 

Need rule of consequence to match {I Æ x<n} and {I[x+1/x, p+m/p]}   
 



Example: a more interesting program 

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

` I Æ x ¸ n ) p = n * m 

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n} 

`{I Æ x<n} x:=x+1; p:=p+m {I} 

`{I Æ x<n} x:=x+1 {I[p+m/p]}  ̀ {I[p+m/p} p:=p+m {I} 

` I Æ x < n ) I[x+1/x, p+m/p] 

`{I[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]}  

Let’s just remember the open proof obligations! 

... 



Example: a more interesting program 

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}  

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}  

` I Æ x ¸ n ) p = n * m 

` I Æ x < n ) I[x+1/x, p+m/p] 

Let’s just remember the open proof obligations! 

... 
Continue with the remaining part of the proof tree, as before. 

` {I[0/x]} x:=0 {I} 

` {n ¸ 0} p:=0 {I[0/x]} 

` {I[0/p, 0/x]} p:=0 {I[0/x]} 

` n ¸ 0 ) I[0/p, 0/x] Now we only need to solve the  
remaining constraints! 



Example: a more interesting program 

` I Æ x ¸ n ) p = n * m 

` I Æ x < n ) I[x+1/x, p+m/p] 

Find I such that all constraints are simultaneously valid: 

` n ¸ 0 ) I[0/p, 0/x] 

I ´ p = x * m Æ x · n 

` p = x * n Æ x · n Æ x ¸ n ) p = n * m 

` p = x * m Æ x · n Æ x < n ) p+m = (x+1) * m Æ x+1 · n 

` n ¸ 0 ) 0 = 0 * m Æ 0 · n 

All constraints are valid! 


