
Rigorous Software Development
CSCI-GA 3033-009

 Instructor: Thomas Wies

Spring 2013

Lecture 11

Semantics of Programming Languages

• Denotational Semantics
– Meaning of a program is defined as the mathematical

object it computes (e.g., partial functions).
– Example: Abstract Interpretation

• Axiomatic Semantics
– Meaning of a program is defined in terms of its effect on

the truth of logical assertions.
– Example: Hoare Logic

• (Structural) Operational Semantics
– Meaning of a program is defined by formalizing the

individual computation steps of the program.
– Example: Labeled Transition Systems

IMP: A Simple Imperative Language

An IMP program:

p := 0;

x := 0;

while x < n do

 x := x + 1;

 p := p + m;

Syntax of IMP Commands

• Commands (Com)
c ::= skip
 | x := e
 | c1 ; c2
 | if b then c1 else c2
 | while b do c

• Notes:
– The typing rules have been embedded in the syntax

definition.
– Other parts are not context-free and need to be checked

separately (e.g., all variables are declared).
– Commands contain all the side-effects in the language.
– Missing: references, function calls, …

Labeled Transition Systems

A labeled transition system (LTS) is a structure
LTS = (Q, Act, !) where

– Q is a set of states,

– Act is a set of actions,

– ! µ Q £ Act £ Q is a transition relation.

We write q ! q’ for (q, a, q’) 2 !.
a

q q ++ {x n} x := e

Operational Semantics of IMP

<e, q> ⇓ n
q q skip

q q’’ c1 ; c2

q q’ c1 q’ q’’ c2

q q’ if b then c1 else c2

<b, q> ⇓ true q q’ c1

q q’ if b then c1 else c2

<b, q> ⇓ false q q’ c2

q q’’ while b do c

<b, q> ⇓ true q q’ c

q q while b do c

<b, q> ⇓ false

q’ q’’ while b do c

Axiomatic Semantics

• An axiomatic semantics consists of:
– a language for stating assertions about programs;
– rules for establishing the truth of assertions.

• Some typical kinds of assertions:
– This program terminates.
– If this program terminates, the variables x and y have the

same value throughout the execution of the program.
– The array accesses are within the array bounds.

• Some typical languages of assertions
– First-order logic
– Other logics (temporal, linear)
– Special-purpose specification languages (Z, Larch, JML)

Assertions for IMP

• The assertions we make about IMP programs are
of the form:
 {A} c {B}
with the meaning that:
– If A holds in state q and q ! q’
– then B holds in q’

• A is the precondition and B is the postcondition
• For example:

 { y ≤ x } z := x; z := z + 1 { y < z }
is a valid assertion

• These are called Hoare triples or Hoare assertions

c

Assertions for IMP

• {A} c {B} is a partial correctness assertion. It does
not imply termination of c.

• [A] c [B] is a total correctness assertion meaning
that
– If A holds in state q
– then there exists q’ such that q ! q’

and B holds in state q’

• Now let’s be more formal
– Formalize the language of assertions, A and B
– Say when an assertion holds in a state
– Give rules for deriving valid Hoare triples

c

The Assertion Language

• We use first-order predicate logic with IMP
expressions

 A :: = true | false | e1 = e2 | e1 ≥ e2
 | A1 Æ A2 | A1 Ç A2 | A1) A2 | ∀x.A | ∃x.A

• Note that we are somewhat sloppy and mix the logical

variables and the program variables.

• Implicitly, all IMP variables range over integers.

• All IMP Boolean expressions are also assertions.

Semantics of Assertions

• We introduced a language of assertions, we need
to assign meanings to assertions.

• Notation q ² A says that assertion A holds in a
given state q.
– This is well-defined when q is defined on all variables

occurring in A.

• The ² judgment is defined inductively on the
structure of assertions.

• It relies on the semantics of arithmetic expressions
from IMP.

Semantics of Assertions

• q ² true always

• q ² e1 = e2 iff <e1,q>⇓ = <e2,q>⇓

• q ² e1 ≥ e2 iff <e1,q>⇓ ≥ <e2,q>⇓

• q ² A1 Æ A2 iff q ² A1 and q ² A2

• q ² A1 Ç A2 iff q ² A1 or q ² A2

• q ² A1) A2 iff q ² A1 implies q ² A2

• q ² ∀x.A iff 8n2Z. q[x:=n] ² A

• q ² ∃x.A iff 9n2Z. q[x:=n] ² A

Semantics of Hoare Triples

• Now we can define formally the meaning of a partial
correctness assertion:

² {A} c {B} iff

8q2Q. 8q’2Q. q ² A Æ q ! q’) q’ ² B
• and the meaning of a total correctness assertion:

² [A] c [B] iff

8q2Q. q ² A) 9q’∈Q. q ! q’ Æ q’ ² B

or even better:

 8q2Q. 8q’∈Q. q ² A Æ q ! q’) q’ ² B
Æ
 8q2Q. q ² A) 9q’2Q. q ! q’ Æ q’ ² B

c

c

c

c

Inferring Validity of Assertions

• Now we have the formal mechanism to decide when
{A} c {B}
– But it is not satisfactory,
– because ² {A} c {B} is defined in terms of the operational

semantics.
– We practically have to run the program to verify an

assertion.
– Also it is impossible to effectively verify the truth of a
∀x. A assertion (by using the definition of validity)

• So we define a symbolic technique for deriving valid
assertions from others that are known to be valid
– We start with validity of first-order formulas

` A[e/x]

Inference Rules

• We write ` A when A can be inferred from basic axioms.

• The inference rules for ` A are the usual ones from first-
order logic with arithmetic.

• Natural deduction style rules:

` A Æ B

` A ` B

` A Ç B

` A

` A Ç B

` B

` 8 x. A

` A[a/x] where
a is fresh

` 8 x. A

` A[e/x]

` 9 x. A ` B

` 9 x. A ` B

` A) B

` B

` B

` A) B ` A

` A[a/x]
...

where
a is fresh

` A
...

Inference Rules for Hoare Triples

• Similarly we write ` {A} c {B} when we can
derive the triple using inference rules

• There is one inference rule for each command
in the language.

• Plus, the rule of consequence

 ` A’) A ` {A} c {B} ` B) B’
 ` {A’} c {B’}

Inference Rules for Hoare Logic

• One rule for each syntactic construct:

` {A} skip {A} ` {A[e/x]} x:=e {A}

` {A} if b then c1 else c2 {B}

` {A Æ b} c1 {B} ` {A Æ :b} c2 {B}

` {A} c1; c2 {C}

` {A} c1 {B} ` {B} c2 {C}

` {I} while b do c {I Æ :b}

` {I Æ b} c {I}

Exercise: Hoare Rules

• Is the following alternative rule for assignment still
correct?

` {true} x:=e {x = e}

Hoare Rules

• For some constructs, multiple rules are possible

alternative “forward axiom” for assignment:

alternative rule for while loops:

• These alternative rules are derivable from the
previous rules, plus the rule of consequence.

` {A} x:=e {9x0. x = e[x0/x] Æ A[x0/x]}

` {I} while b do c {B}

` {C} c {I} ` I Æ b) C ` I Æ :b) B

Example: Conditional

 D1 :: ` {true Æ y ≤ 0} x := 1 {x > 0}
 D2 :: ` {true Æ y > 0} x := y {x > 0}
 ` {true} if y ≤ 0 then x := 1 else x := y {x > 0}

• D1 is obtained by consequence and assignment

` {1 > 0} x := 1 {x > 0}
` true Æ y ≤ 0) 1 > 0
` {true Æ y ≤ 0} x := 1 {x ≥ 0}

• D2 is also obtained by consequence and assignment

` {y > 0} x := y {x > 0}
` true Æ y > 0) y > 0
` {true Æ y > 0} x := y {x > 0}

Example: a simple loop

• We want to infer that
` {x ≤ 0} while x ≤ 5 do x := x + 1 {x = 6}

• Use the rule for while with invariant I ´ x · 6

` x ≤ 6 Æ x ≤ 5) x + 1 ≤ 6 ` {x + 1 ≤ 6} x := x + 1 {x ≤ 6}
 ` {x ≤ 6 Æ x ≤ 5} x := x + 1 {x ≤ 6}
 ` {x ≤ 6} while x ≤ 5 do x := x + 1 { x ≤ 6 Æ x > 5}

• Then finish-off with the rule of consequence
` x ≤ 0) x ≤ 6
` x ≤ 6 Æ x > 5) x = 6 ` {x ≤ 6} while ... {x ≤ 6 Æ x > 5}
 ` {x ≤ 6} while ... { x ≤ 6 Æ x > 5}

Example: a more interesting program

• We want to derive that

{n ¸ 0}

p := 0;

x := 0;

while x < n do

 x := x + 1;

 p := p + m

{p = n * m}

Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

Only applicable rule (except for rule of consequence):

` {A} c1; c2 {B}

` {A} c1{C} ` {C} c2 {B}

c1 c2 B A

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}

Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is C?

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {I} while b do c {I Æ :b}

` {I Æ b} c {I}

We can match {I} with {C} but we cannot match {I Æ :b} and
{p = n * m} directly. Need to apply the rule of consequence first!

c1 c2 B A

Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is C?

B’ A’

`{C} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {C}

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {I} while b do c {I Æ :b}

` {I Æ b} c {I}

` A’) A ` {A} c’ {B} ` B) B’
` {A’} c’ {B’}

Rule of consequence:

c’

c’ A B

I = A = A’ = C

Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is I?

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

Let’s keep it as a placeholder for now!

` I Æ x ¸ n) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n}

`{I Æ x<n} x := x+1; p:=p+m {I}

Next applicable rule:

` {A} c1; c2 {B}

` {A} c1{C} ` {C} c2 {B}

B A c1 c2

Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

` I Æ x ¸ n) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n}

`{I Æ x<n} x := x+1; p:=p+m {I}

B A c1 c2

`{I Æ x<n} x := x+1 {C}

What is C?

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {A[e/x]} x:=e {A}

`{C} p:=p+m {I}

Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

` I Æ x ¸ n) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n}

What is C?

Look at the next possible matching rules for c2!

Only applicable rule (except for rule of consequence):

` {A[e/x]} x:=e {A}

`{I[p+m/p} p:=p+m {I}

`{I Æ x<n} x:=x+1; p:=p+m {I}

`{I Æ x<n} x:=x+1 {I[p+m/p]}

Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

` I Æ x ¸ n) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n}

`{I Æ x<n} x:=x+1; p:=p+m {I}

`{I Æ x<n} x:=x+1 {I[p+m/p]}

Only applicable rule (except for rule of consequence):

` {A[e/x]} x:=e {A}

`{I[p+m/p} p:=p+m {I}

Need rule of consequence to match {I Æ x<n} and {I[x+1/x, p+m/p]}

Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

` I Æ x ¸ n) p = n * m

`{I} while x < n do (x:=x+1; p:=p+m) {I Æ x ¸ n}

`{I Æ x<n} x:=x+1; p:=p+m {I}

`{I Æ x<n} x:=x+1 {I[p+m/p]} ̀ {I[p+m/p} p:=p+m {I}

` I Æ x < n) I[x+1/x, p+m/p]

`{I[x+1/x, p+m/p]} x:=x+1 {I[p+m/p]}

Let’s just remember the open proof obligations!

...

Example: a more interesting program

` {n ¸ 0} p:=0; x:=0; while x < n do (x:=x+1; p:=p+m) {p = n * m}

`{I} while x < n do (x:=x+1; p:=p+m) {p = n * m} ` {n ¸ 0} p:=0; x:=0 {I}

` I Æ x ¸ n) p = n * m

` I Æ x < n) I[x+1/x, p+m/p]

Let’s just remember the open proof obligations!

...
Continue with the remaining part of the proof tree, as before.

` {I[0/x]} x:=0 {I}

` {n ¸ 0} p:=0 {I[0/x]}

` {I[0/p, 0/x]} p:=0 {I[0/x]}

` n ¸ 0) I[0/p, 0/x] Now we only need to solve the
remaining constraints!

Example: a more interesting program

` I Æ x ¸ n) p = n * m

` I Æ x < n) I[x+1/x, p+m/p]

Find I such that all constraints are simultaneously valid:

` n ¸ 0) I[0/p, 0/x]

I ´ p = x * m Æ x · n

` p = x * n Æ x · n Æ x ¸ n) p = n * m

` p = x * m Æ x · n Æ x < n) p+m = (x+1) * m Æ x+1 · n

` n ¸ 0) 0 = 0 * m Æ 0 · n

All constraints are valid!

