Rigorous Software Development CSCI-GA 3033-009

Instructor: Thomas Wies

Spring 2013

Lecture 11

Semantics of Programming Languages

• Denotational Semantics

- Meaning of a program is defined as the mathematical object it computes (e.g., partial functions).
- Example: Abstract Interpretation
- Axiomatic Semantics
 - Meaning of a program is defined in terms of its effect on the truth of logical assertions.
 - Example: Hoare Logic
- (Structural) Operational Semantics
 - Meaning of a program is defined by formalizing the individual computation steps of the program.
 - Example: Labeled Transition Systems

IMP: A Simple Imperative Language

An IMP program:

p := 0; x := 0;

while *x* < *n* do

$$x := x + 1;$$

 $p := p + m;$

Syntax of IMP Commands

• Commands (*Com*)

• Notes:

С

- The typing rules have been embedded in the syntax definition.
- Other parts are not context-free and need to be checked separately (e.g., all variables are declared).
- Commands contain all the side-effects in the language.
- Missing: references, function calls, ...

Labeled Transition Systems

- A labeled transition system (LTS) is a structure $LTS = (Q, Act, \rightarrow)$ where
 - -Q is a set of states,
 - Act is a set of actions,
 - $\rightarrow \subseteq Q \times Act \times Q$ is a transition relation.

We write $q \xrightarrow{a} q'$ for $(q, a, q') \in \rightarrow$.

Operational Semantics of IMP

$$q \xrightarrow{\text{skip}} q \qquad \frac{\langle e, q \rangle \Downarrow n}{q \xrightarrow{x := e} q + + \{x \mapsto n\}} \qquad \frac{q \xrightarrow{c_1} q' \quad q' \xrightarrow{c_2} q''}{q \xrightarrow{c_1; c_2} q''}$$

$$\frac{\langle b, q \rangle \Downarrow \text{true } q \xrightarrow{c_1} q'}{q \xrightarrow{\text{if } b \text{ then } c_1 \text{ else } c_2} q'} \qquad \frac{\langle b, q \rangle \Downarrow \text{false } q \xrightarrow{c_2} q'}{q \xrightarrow{\text{if } b \text{ then } c_1 \text{ else } c_2} q'}$$

$$\frac{\langle b, q \rangle \Downarrow \text{false}}{q \xrightarrow{\text{while } b \text{ do } c} q}$$

$$\frac{\langle b, q \rangle \Downarrow \text{true } q \xrightarrow{c} q' \quad q' \xrightarrow{\text{while } b \text{ do } c} q''}{q \xrightarrow{\text{while } b \text{ do } c} q''}$$

Axiomatic Semantics

- An axiomatic semantics consists of:
 - a language for stating assertions about programs;
 - rules for establishing the truth of assertions.
- Some typical kinds of assertions:
 - This program terminates.
 - If this program terminates, the variables x and y have the same value throughout the execution of the program.
 - The array accesses are within the array bounds.
- Some typical languages of assertions
 - First-order logic
 - Other logics (temporal, linear)
 - Special-purpose specification languages (Z, Larch, JML)

Assertions for IMP

• The assertions we make about IMP programs are of the form:

{A} *c* {B}

with the meaning that:

- If A holds in state q and $q \xrightarrow{c} q'$
- then **B** holds in q'
- A is the precondition and B is the postcondition
- For example:

 $\{ y \le x \} z := x; z := z + 1 \{ y < z \}$ is a valid assertion

• These are called Hoare triples or Hoare assertions

Assertions for IMP

- {A} c {B} is a partial correctness assertion. It does not imply termination of c.
- [A] c [B] is a total correctness assertion meaning that
 - If A holds in state q
 - then there exists q' such that $q \xrightarrow{c} q'$ and B holds in state q'
- Now let's be more formal
 - Formalize the language of assertions, A and B
 - Say when an assertion holds in a state
 - Give rules for deriving valid Hoare triples

The Assertion Language

• We use first-order predicate logic with IMP expressions

$$\begin{array}{l} \mathsf{A} ::= \mathsf{true} \mid \mathsf{false} \mid e_1 = e_2 \mid e_1 \geq e_2 \\ \mid \mathsf{A}_1 \land \mathsf{A}_2 \mid \mathsf{A}_1 \lor \mathsf{A}_2 \mid \mathsf{A}_1 \Rightarrow \mathsf{A}_2 \mid \forall x.\mathsf{A} \mid \exists x.\mathsf{A} \end{array}$$

- Note that we are somewhat sloppy and mix the logical variables and the program variables.
- Implicitly, all IMP variables range over integers.
- All IMP Boolean expressions are also assertions.

Semantics of Assertions

- We introduced a language of assertions, we need to assign meanings to assertions.
- Notation q ⊨ A says that assertion A holds in a given state q.
 - This is well-defined when q is defined on all variables occurring in A.
- The ⊨ judgment is defined inductively on the structure of assertions.
- It relies on the semantics of arithmetic expressions from IMP.

Semantics of Assertions

- $q \models$ true always
- $q \models e_1 = e_2$
- $q \models e_1 \ge e_2$
- $q \vDash A_1 \land A_2$
- $q \vDash A_1 \lor A_2$
- $q \vDash A_1 \Rightarrow A_2$
- $q \models \forall x.A$
- $q \models \exists x. A$

iff $\langle e_1, q \rangle \Downarrow = \langle e_2, q \rangle \Downarrow$ iff $\langle e_1, q \rangle \Downarrow \geq \langle e_2, q \rangle \Downarrow$ iff $q \models A_1$ and $q \models A_2$ iff $q \models A_1$ or $q \models A_2$ iff $q \models A_1$ implies $q \models A_2$ iff $\forall n \in \mathbb{Z}$. $q[x:=n] \models A$ iff $\exists n \in \mathbb{Z}$. $q[x:=n] \models A$

Semantics of Hoare Triples

• Now we can define formally the meaning of a partial correctness assertion:

 \models {A} *c* {B} iff

 $\forall q \in Q. \ \forall q' \in Q. \ q \vDash \mathsf{A} \land q \xrightarrow{c} q' \Rightarrow q' \vDash \mathsf{B}$

• and the meaning of a total correctness assertion: $\models [A] c [B] \text{ iff}$ $\forall q \in Q. \ q \models A \Rightarrow \exists q' \in Q. \ q \xrightarrow{c} q' \land q' \models B$

or even better:

 $\forall q \in Q. \ \forall q' \in Q. \ q \models A \land q \xrightarrow{c} q' \Rightarrow q' \models B$ $\land \forall q \in Q. \ q \models A \Rightarrow \exists q' \in Q. \ q \xrightarrow{c} q' \land q' \models B$

Inferring Validity of Assertions

- Now we have the formal mechanism to decide when {A} c {B}
 - But it is not satisfactory,
 - because \= {A} c {B} is defined in terms of the operational semantics.
 - We practically have to run the program to verify an assertion.
 - Also it is impossible to effectively verify the truth of a $\forall x$. A assertion (by using the definition of validity)
- So we define a symbolic technique for deriving valid assertions from others that are known to be valid

We start with validity of first-order formulas

Inference Rules

- We write \vdash A when A can be inferred from basic axioms.
- The inference rules for ⊢ A are the usual ones from firstorder logic with arithmetic.
- Natural deduction style rules:

Inference Rules for Hoare Triples

- Similarly we write ⊢ {A} c {B} when we can derive the triple using inference rules
- There is one inference rule for each command in the language.
- Plus, the rule of consequence

$$\begin{array}{c|c} \vdash \mathsf{A}' \Rightarrow \mathsf{A} & \vdash \{\mathsf{A}\} c \{\mathsf{B}\} & \vdash \mathsf{B} \Rightarrow \mathsf{B}' \\ & \vdash \{\mathsf{A}'\} c \{\mathsf{B}'\} \end{array} \end{array}$$

Inference Rules for Hoare Logic

• One rule for each syntactic construct:

Exercise: Hoare Rules

• Is the following alternative rule for assignment still correct?

 $\vdash \{\mathsf{true}\} x := e \{x = e\}$

Hoare Rules

• For some constructs, multiple rules are possible alternative "forward axiom" for assignment: $\vdash \{A\} x := e \{ \exists x_0, x = e[x_0/x] \land A[x_0/x] \}$

alternative rule for while loops:

$$\begin{array}{ccc} \vdash \mathbf{I} \land b \Rightarrow \mathbf{C} & \vdash \{\mathbf{C}\} c \{\mathbf{I}\} & \vdash \mathbf{I} \land \neg b \Rightarrow \mathbf{B} \\ & \vdash \{\mathbf{I}\} \text{ while } b \text{ do } c \{\mathbf{B}\} \end{array}$$

• These alternative rules are derivable from the previous rules, plus the rule of consequence.

Example: Conditional

 \vdash {true} if y ≤ 0 then x := 1 else x := y {x > 0}

Example: a simple loop

- We want to infer that $\vdash \{x \le 0\}$ while $x \le 5$ do x := x + 1 $\{x = 6\}$
- Use the rule for while with invariant $I \equiv x \le 6$

- We want to derive that
- ${n \ge 0}$ *p* := 0; *x* := 0; while *x* < *n* do x := x + 1;p := p + m ${p = n * m}$

Only applicable rule (except for rule of consequence):

 $\frac{\vdash \{A\} c_1\{C\} \vdash \{C\} c_2 \{B\}}{\vdash \{A\} c_1; c_2 \{B\}}$

What is C? Look at the next possible matching rules for c_2 !

Only applicable rule (except for rule of consequence):

 $\vdash \{ I \land b \} c \{ I \}$

 \vdash {I} while *b* do *c* {I $\land \neg b$ }

We can match $\{I\}$ with $\{C\}$ but we cannot match $\{I \land \neg b\}$ and $\{p = n * m\}$ directly. Need to apply the rule of consequence first!

What is C? Look at the next possible matching rules for $c_2!$

Only applicable rule (except for rule of consequence):

 \vdash {I \land b} c {I}

 $\begin{array}{c} \vdash \{\mathbf{I}\} \text{ while } b \text{ do } c \{\mathbf{I} \land \neg b\} \\ A & c' & B \end{array} \qquad \text{Rule of consequence:} \\ \mathbf{I} = A = A' = C \qquad \qquad \begin{array}{c} \vdash A' \Rightarrow A & \vdash \{A\} c' \{B\} & \vdash B \Rightarrow B' \\ \vdash \{A'\} c' \{B'\} \end{array} \\ \hline \left\{A' & c' \\ A' & c' \\ \vdash \{A'\} c' \{B'\} \end{array} \\ \hline \left\{n \ge 0\} \text{ p:=0; x:=0 } \{C\} & \vdash \{C\} \text{ while } x < n \text{ do } (x:=x+1; \text{ p:=p+m}) \text{ } \{p = n * m\} \end{array} \\ \hline \left\{n \ge 0\} \text{ p:=0; x:=0; while } x < n \text{ do } (x:=x+1; \text{ p:=p+m}) \text{ } \{p = n * m\} \end{array} \right\}$

What is I? Let's keep it as a placeholder for now!

Next applicable rule:

 $\frac{\vdash \{A\} c_1\{C\} \vdash \{C\} c_2 \{B\}}{\vdash \{A\} c_1; c_2 \{B\}}$

$$\begin{array}{c} A & c_1 & c_2 & B \\ \hline \left\{ I \land x < n \right\} x := x+1; p := p+m \{I\} \end{array}$$

 \vdash {I} while x < n do (x:=x+1; p:=p+m) {I $\land x \ge n$ }

$$\vdash I \land x \ge n \Rightarrow p = n * m$$

 \vdash {n \geq 0} p:=0; x:=0 {I} \vdash {I} while x < n do (x:=x+1; p:=p+m) {p = n * m}

What is C? Look at the next possible matching rules for c_2 ! Only applicable rule (except for rule of consequence):

 $\vdash \{\mathsf{A}[e/x]\} x := e \{\mathsf{A}\}$

$$\begin{array}{c} A \quad c_1 \\ \vdash \{I \land x < n\} x := x+1 \{C\} \quad \vdash \{C\} p := p+m \{I\} \\ \hline \vdash \{I \land x < n\} x := x+1; p := p+m \{I\} \\ \hline \vdash \{I\} \text{ while } x < n \text{ do } (x := x+1; p := p+m) \{I \land x \ge n\} \\ \hline \vdash I \land x \ge n \Rightarrow p = n * m \\ \hline \vdash \{n \ge 0\} p := 0; x := 0 \{I\} \quad \vdash \{I\} \text{ while } x < n \text{ do } (x := x+1; p := p+m) \{p = n * m\} \end{array}$$

What is C? Look at the next possible matching rules for c₂! Only applicable rule (except for rule of consequence):

 $\vdash \{\mathsf{A}[e/x]\} x := e \{\mathsf{A}\}$

 $\vdash \{ \texttt{I} \land \texttt{x} < \texttt{n} \} \texttt{x} := \texttt{x} + \texttt{1} \{ \texttt{I}[\texttt{p} + \texttt{m}/\texttt{p}] \} \vdash \{ \texttt{I}[\texttt{p} + \texttt{m}/\texttt{p} \} \texttt{p} := \texttt{p} + \texttt{m} \{ \texttt{I} \}$

 \vdash {I \land x < n} x:=x+1; p:=p+m {I}

 \vdash {I} while x < n do (x:=x+1; p:=p+m) {I $\land x \ge n$ }

 $\vdash I \land x \ge n \Rightarrow p = n * m$

 \vdash {n \geq 0} p:=0; x:=0 {I} \vdash {I} while x < n do (x:=x+1; p:=p+m) {p = n * m}

Only applicable rule (except for rule of consequence):

 $\vdash \{\mathsf{A}[e/x]\} x := e \{\mathsf{A}\}\$

Need rule of consequence to match $\{I \land x < n\}$ and $\{I[x+1/x, p+m/p]\}$

 $\vdash \{ \texttt{I} \land \texttt{x} < \texttt{n} \} \texttt{x} := \texttt{x} + \texttt{1} \{ \texttt{I}[\texttt{p} + \texttt{m}/\texttt{p}] \} \vdash \{ \texttt{I}[\texttt{p} + \texttt{m}/\texttt{p} \} \texttt{p} := \texttt{p} + \texttt{m} \{ \texttt{I} \}$

 \vdash {I \land x < n} x:=x+1; p:=p+m {I}

 \vdash {I} while x < n do (x:=x+1; p:=p+m) {I $\land x \ge n$ }

 $\vdash I \land x \ge n \Rightarrow p = n * m$

 \vdash {n \geq 0} p:=0; x:=0 {I} \vdash {I} while x < n do (x:=x+1; p:=p+m) {p = n * m}

Let's just remember the open proof obligations!

 $\left\{ I[x+1/x, p+m/p] \right\} x := x+1 \{I[p+m/p]\} \\ \begin{array}{c} \vdash I \land x < n \Rightarrow I[x+1/x, p+m/p] \\ \hline \vdash \{I \land x < n\} x := x+1 \{I[p+m/p]\} \vdash \{I[p+m/p\} p := p+m \{I\} \\ \hline \hline \vdash \{I \land x < n\} x := x+1; p := p+m \{I\} \\ \hline \hline \vdash \{I\} \text{ while } x < n \text{ do } (x := x+1; p := p+m) \{I \land x \ge n\} \\ \hline \vdash I \land x \ge n \stackrel{i}{\Rightarrow} p = n * m \\ \hline \vdash \{N \ge 0\} p := 0; x := 0 \{I\} \\ \hline \vdash \{I\} \text{ while } x < n \text{ do } (x := x+1; p := p+m) \{p = n * m\} \end{array}$

Let's just remember the open proof obligations!

 $\vdash I \land x < n \Rightarrow I[x+1/x, p+m/p]$

 $\vdash I \land x \ge n \Rightarrow p = n * m$

Continue with the remaining part of the proof tree, as before.

Now we only need to solve the \vdash n > 0 \Rightarrow I[0/p, 0/x] remaining constraints! \vdash {I[0/p, 0/x]} p:=0 {I[0/x]}

 \vdash {n > 0} p:=0 {I[0/x]}

 \vdash {I[0/x]} x:=0 {I}

 \vdash {n \geq 0} p:=0; x:=0 {I} \vdash {I} while x < n do (x:=x+1; p:=p+m) {p = n * m}

Find I such that all constraints are simultaneously valid:

- \vdash n \geq 0 \Rightarrow I[0/p, 0/x]
- $\vdash I \land x < n \Rightarrow I[x+1/x, p+m/p]$
- $\vdash \texttt{I} \land \texttt{x} \geq \texttt{n} \Rightarrow \texttt{p} \texttt{=} \texttt{n} \texttt{*} \texttt{m}$
- $\textbf{I} \equiv \textbf{p} = \textbf{x} * \textbf{m} \land \textbf{x} \leq \textbf{n}$
- \vdash n \geq 0 \Rightarrow 0 = 0 * m \land 0 \leq n
- $\vdash p = x * m \land x \le n \land x < n \Rightarrow p+m = (x+1) * m \land x+1 \le n$
- $\vdash p = x * n \land x \le n \land x \ge n \Rightarrow p = n * m$

All constraints are valid!