Rigorous Software Development
CSCI-GA 3033-009

Instructor: Thomas Wies

What does this program print?

class A {

public static int x = B.x + 1;
}
class B {

public static int x = A.x + 1;
}
class C {

public static void main(String[] p) {
System.err.println("A: " + A.x + ", B: " + B.X);

¥
¥

What does this program print?

If we run class C :

8)
9)

main-method of class C first accesses A. X.

Class A is initialized. The lock for A is taken.
Static initializer of A runs and accesses B. Xx.
Class B is initialized. The lock for B is taken.
Static initializer of B runs and accesses A. X.

Class A is still locked by current thread (recursive
initialization). Therefore, initialization returns immediately.

The value of A. X is still © (section 12.3.2 and 4.12.5), so B.x
Is set to 1.

Initialization of B finishes.
The value of A. X is now set to 2.

10) The program prints “A: 2, B: 17,

Formal Semantics of Java Programs

* The Java Language Specification (JLS) 3rd
edition gives semantics to Java programs

— The document has 684 pages.
— 118 pages to define semantics of expression.

— 42 pages to define semantics of method
Invocation.

* Semantics is only defined in prose.
— How can we make the semantics formal?
— We need a mathematical model of computation.

Semantics of Programming Languages

e Denotational Semantics

— Meaning of a program is defined as the mathematical
object it computes (e.g., partial functions).

— Example: Abstract Interpretation

e Axiomatic Semantics

— Meaning of a program is defined in terms of its effect on
the truth of logical assertions.

— Example: Hoare Logic

e (Structural) Operational Semantics

— Meaning of a program is defined by formalizing the
individual computation steps of the program.

— Example: Labeled Transition Systems

IMP: A Simple Imperative Language

Before we move on to Java, we look at a simple
imperative programming language IMP.

An IMP program:

p:=0;

x:=1;

while x <ndo
X =x+1;

p=p+m;

IMP: Syntactic Entities

n ez

— integers

true,false € B — Booleans

X,y el

e c Aexp
b € Bexp
c € Com

— locations (program variables)
— arithmetic expressions

— Boolean expressions

— commands

Syntax of Arithmetic Expressions

* Arithmetic expressions (Aexp)
e :=nforneZ

xforx €L

€,-6

e, * e,

* Notes:
— Variables are not declared before use.
— All variables have integer type.
— Expressions have no side-effects.

Syntax of Boolean Expressions

* Boolean expressions (Bexp)
b ::= true

false

e,=e,fore, e, € Aexp

e,<e,fore, e, € Aexp

- b for b € Bexp

b, A b, for b,, b, € Bexp

b,V b, forb,, b, € Bexp

Syntax of Commands

e Commands (Com)
c:= skip
X:=e
Ci;C
if b thenc,elsec,
whilebdoc

* Notes:

— The typing rules have been embedded in the syntax
definition.

— Other parts are not context-free and need to be checked
separately (e.g., all variables are declared).

— Commands contain all the side-effects in the language.
— Missing: references, function calls, ...

Meaning of IMP Programs

Questions to answer:

What is the “meaning” of a given IMP
expression/command?

How would we evaluate IMP expressions and
commands?

How are the evaluator and the meaning related?
How can we reason about the effect of a command?

Semantics of IMP

The meaning of IMP expressions depends on
the values of variables, i.e. the current state.

A state at a given moment is represented as a
function from L to Z

The set of all statesis Q=L — Z

We shall use g to range over Q

Judgments

* We write <e, g> U n to mean that e evaluates to n in
state gq.

— The formula <e, g> U nis a judgment
(a statement about a relation between e, g and n)

— In this case, we can view U as a function of two arguments
e and g

e This formulation is called natural operational semantics
— or big-step operational semantics
— the judgment relates the expression and its “meaning”

* How can we define<el +e2,g>1..7

Inference Rules

* We express the evaluation rules as inference rules for
our judgments.

* The rules are also called evaluation rules.

An inference rule
F,..F
G
defines a relation between judgments F,,...,F, and G.
* The judgments F,...,F, are the premises of the rule;
 The judgments G is the conclusion of the rule;

e The formula H is called the side condition of the rule.

If n=0 the rule is called an axiom. In this case, the line
separating premises and conclusion may be omitted.

where H

Inference Rules for Aexp

* In general, we have one rule per language construct:
<n,g>Un Axiom <x, > U g(x)

<e,,g>Un, <e,,qg>Un, <e,qg>Un, <e,qg>dn,

<e;+e,,qg>U(n +n,) <e,-e,, g>4(n, -n,)

<e,q>Un,; <e,g>ln,
<e, *e,,g>l(n;-n,)

* This is called structural operational semantics.

— rules are defined based on the structure of the expressions.

Inference Rules for Bexp

<true, g> U true <false, g> U false

<e,,g>Un, <e,,qg>Un, <e,qg>Un, <e,qg>dn,

<e,=e,, q>l(n;,=n,) <e; <e,q>l(n,<n,)

<b, g>Ut, <e,qg>lt,
<b; \b,,g>l(t; N t,)

How to Read Inference Rules?

* Forward, as derivation rules of judgments

— if we know that the judgments in the premise hold
then we can infer that the conclusion judgment
also holds.

— Example:
<2,g>U2 <3,g>03

<2*¥3,g>U6

How to Read Inference Rules?

Backward, as evaluation rules:

— Suppose we want to evaluate e; +e,, i.e,, findns.t.e; +e, U nis
derivable using the previous rules.

— By inspection of the rules we notice that the last step in the
derivation of e, + e, U n must be the addition rule.

— The other rules have conclusions that would not match e; + e, U n.

This is called reasoning by inversion on the derivation rules.

— Thus we must find n,; and n, such thate; 4 n;and e, U n, are
derivable.

— This is done recursively.
Since there is exactly one rule for each kind of expression,
we say that the rules are syntax-directed.

— At each step at most one rule applies.

— This allows a simple evaluation procedure as above.

How to Read Inference Rules?

 Example: evaluation of an arithmetic
expression via reasoning by inversion:

<y, {x—>3,y—>2>12
<2,{x—>3,y—>2>12

<X, {x—=3,y—2>03 2%y x—3,y—>2>014

<x+(2*y),{x—>3,y—>2>17

Semantics of Commands

e The evaluation of a command in Com has side-
effects, but no direct result.

— What is the result of evaluating a command?

* The “result” of a command cin a pre-state g is a
transition from g to a post-state g’
q—>q

* We can formalize this in terms of transition systems.

Labeled Transition Systems

A labeled transition system (LTS) is a structure
LTS = (Q, Act, —) where

— Q is a set of states,

— Act is a set of actions,

— — C Q x Act X Q is a transition relation.

We write g — g’ for (g, a, g’) € —.

Inference Rules for Transitions

] skip 0 <e,qg>Un G- g’ g—2sqg”
q X.=e q++{XHn} q ;6 q//

<b,g>Utrue g—2-q° <b,g>lfalse g—2-q’

q if bthenc,elsec, - if bthenc, elsec, -

q q q

<b, g> | false
q while b do ¢ q

<b, q> U true q _c q’ q’ while b do ¢ q//
q while b do ¢ q//

Operational Semantics of Java (and JML)

Can we give an operational semantics of
Java programs and JML specifications?

What is the state of a Java program?

— We have to take into account the state of the heap.
How can we deal with side-effects in expressions?
How can we handle exceptions?

Operational Semantics of Java

A (labeled) transition system (LTS) is a structure
LTS = (Q, Act, —) where

— Q is a set of states,

— Act is a set of actions,
— — C Q X Act X Qis a transition relation.

* Qreflects the current dynamic state of the program
(heap and local variables).

* Actis the executed code.

* Based on: D. v. Oheimb, T. Nipkow, Machine-checking
the Java specification: Proving type-safety, 1999

Example: State of a Java Program

What is the state after executing this code?

List mylist = new LinkedList();
mylist.add(new Integer(1));

///7 heap

?: LinkedList

e

7: LinkedList.Node

%

0|

!
8: LinkedList.Node
A

\9\Integer 1

mylist:

|cl

N

State of a Java Program

A state of a Java program gives valuations to
local and global (heap) variables.

e Q=Heap x Local

 Heap = Address — Class x seq Value
* local = Identifier — Value

 Value = 7., Address C 7

A state is denoted as (heap, Icl), where
heap : Heap and Icl : Local.

Actions of a Java Program

An action of a Java program is either

e the evaluation of an expression e to a value v,
denoted ase > v, or

* alJava statement, or
e aJava code block.

Note that expressions with side effects can
modify the current state.

Example: Actions of a Java Program

* Post-increment expression
(heap, Icl U {x = 5}) 2X**>>. (heap, Ic] U{x — 6})
* Pre-increment expression
(heap, Icl U {x > 5}) —**>5 (heap, Icl U{x — 6})
* Assignment expression
(heap, Icl U {x > 5}) *=2>*>10
* Assignment statement
(heap, Icl U {x — 5}) X2

(heap, Icl U{x > 10})

(heap, Icl U{x > 10})

Rules for Java Expressions (1)

axiom for evaluating local variables
(heap, Icl) 2=, (heap, Icl)
rule for assignment to local

(heap, Icl) —£=Y (heap’, Icl’)
x=e >V

(heap, Icl) (heap’, Icl’ ++ {x > v})

rule for field access

(heap, Icl) e>v (heap’, Icl’) where idx is the index
of the field fld in the

(heap’ ICI) e.fld > heap’(v)(ldx) (heapl’ IC/l) ObjECt heap’(v)

Rules for Java Expressions (2)

e axiom for evaluating a constant expression ¢
c>cC

(heap, Icl) (heap, Icl)

* rule for multiplication
(heap, Icl) ~$2=Y15 (heap’, Icl’)
(heap’, Icl’) —2 > Ve (heap”, Icl”)
(heap, Icl) &1 & >V1 -V, Mod 2% (honn” o))

* similarly for other binary operators

Example: Derivation for x=2%*x

(heap, Ic U {x = 5}) —X=>2

(heap, Icl U {x — 5})

(heap, Icl U {x — 5}) 2>2

(heap, Icl U {x > 5})

(heap, Ic U {x — 5}) 2X=>10

(heap, Icl U {x > 5})

- X
(heap, Icl U {x > 5}) x=2*x > 10

(heap, Icl U {x — 10})

Rules for Java Statements (1)

e expression statement (assignment or method call)
(heap, Icl) —= >V (heap’, Icl')
(heap, Icl) —— (heap’, Icl’)

e sequence of statements
(heap, Icl) =% (heap’, Icl") (heap’, Icl’) =2 (heap”, Icl”)
(heap, Icl) —22— (heap”’, Icl”’)

Rules for Java Statements (2)

* rules for 1f statement
(heap, Icl) —£=Y— (heap’, Icl’)
(heap’, Icl’) ol (heap”, Icl”)

i (e) {bl,} else {bl) o oy Wherev=0
(heap, Icl) (heap”, Icl”)
(heap, Icl) —£=Y— (heap’, Icl’)
(heap’, Icl’) L (heap”, Icl”)
wherev=0

(heap, Icl) 1T (el bhielse bl (hoqn” [c)”)

Rules for Java Statements (3)

* rules for while statement
(heap, Icl) —£=Y— (heap’, Icl’)
(heap, Icl) —While (@bl (hogpn’ |cr)

wherev =0

(heap, Icl) €=V (heap’, Icl’)
(heap’, Icl’) —2L_, (heap”, Icl”)
(heap”, Icl”) while (e) bl (heap”, Icl””)

(heap, ICI) while (e) {bl} (heap’", IC////)

wherev#0

Rule for Java Method Calls

e >v

(heap, Icl) (heap,, Icl,)

(heap,, Icl,) (heap,, Icl,)

e, >V,

(heap, 4, Icl) (heap,, Icl)

body

(heap,, micl) (heap,.,, micl’)

e.m(e,,...,e,) > micl’(\result)

(heap, Icl) (heap,.,, Icl)
where body is the body of method m in the object heap,,,(v),
and mlcl = {this - v, param, —v,, ... param - v, } where
param,,..., param_are the names of the parameters of m.

Rule for Object Creation

* Object creation is always combined with a call of a
constructor

(heap1’ /C/) na.<init>(e,,....e,) >v (heap’, /C/’)

new Type(e,...,e,) > na (heap’, /C/’)

(heap, Icl)

where
na ¢ dom(heap),
heap, = heap U {na — (Type, (0,...,0)}, and
<init> stands for the internal name of the constructor

Formalizing Exceptions

In order to handle exceptions, a few changes in the
semantics are necessary:

* We extend states by a flow component
Q = Flow x Heap x Local

* Flow ::= Norm | Ret | Exc{(Address))

We use the identifiers flow € Flow, heap € Heap and Icl €
Local in the rules. Also g € Q stands for an arbitrary state.

In an abnormal state, statements are not executed:

(flow, heap, Icl) £=Y- (flow, heap, Icl) where flow = Norm

(flow, heap, Icl) —— (flow, heap, Icl) where flow # Norm

Rules for Expressions with Exceptions

The previously defined rules are valid only if the left-
hand-state is not an abnormal state.

(Norm, heap, lcl) 5= q g -22Y2,

* : 32
(Norm, heap, lcl)-81= 82> Y1 ¥, mod 2%,

(Norm, heap, Icl) > q q-2q’

(Norm, heap, Icl) —%>2— ¢’

Note that exceptions are propagated using the axioms
from the previous slide

(flow, heap, Icl) £=Y (flow, heap, Icl) where flow = Norm

Rules for Throwing Exceptions

e>v

(Norm, heap, Icl) (Norm, heap’, Icl’)

throw e;

(Norm, heap, Icl) (Exc(v), heap’, Icl’)

What happens if the object in a field access is null?

e>0

(Norm, heap’, Icl’)

throw new NullPointerException(); ,

q

(Norm, heap, Icl)

(Norm, heap’, Icl’)

(Norm, heap, Icl) —4=Y s ¢

where v is some arbitrary value

Complete Rules for throw

(Norm, heap, Icl)—E=Y— (Norm, heap’, IcI’)) 20
throw e; , ’ wherev
(Norm, heap, Icl) (Exc(v), heap’, Icl’)
e>0

(Norm, heap’, Icl’)

throw new NullPointerException(); ,

q

(Norm, heap, Icl)
(Norm, heap’, Icl’)

e.fld > v q,

(Norm, heap, Icl)

where v is some arbitrary value

(Norm, heap, Icl) —=< >V (flow’, heap’, Icl') where

(Norm’ heap, ICI) throwe; (fIOW,, heap’, /Cl;) fIOW # Norm

Rules for Catching Exceptions

e Catching an exception
(Norm, heap, Icl) —1> (Exc(v), heap’, Icl’)
(Norm, heap’, Icl’ U {ex — v}) —2> q”

t tch (T 7,
(Norm, heap, Icl)-trY sicatch(iypeex)s,
where v is an instance of Type

* No exception caught

(Norm, heap, Icl) —2> (flow’, heap’, Icl’)
(Norm, heap, Icl) ™Y S1<atch{lypeex sy (g0 heap’, Icl)

where flow’ # Exc(v) or v is not an instance of Type

Rules for return statements

 The return statement stores the return value in
\result and signals Ret in the flow component:

e >V

(Norm, heap, Icl) (Norm, heap’, Icl’)

"EUIE (Ret, heap), Il ++ {\result > v)

(Norm, heap, Icl)

e But evaluating e can also throw an exception

(Norm, heap, Icl) e>Vv (flow’, heap’, Icl’)

returne;

¢ (flow’, heap’, Icl’)

(Norm, heap, Icl)

where flow’ # Norm

Method Call (Normal Case)

(Norm, heap, Icl) —&=" o

e, >V
qo 1 1 ql

g, (flow,, heap,, Icl)
body

(flow,, heap,, micl) (Ret, heap,.,, micl’)

(Norm, heap, lcl) <T(Cx=&) 2> micT{irestly

(Norm, heap,,, Icl)
where body is the body of method m in the object heap,,,(v),
and mlcl = {this - v, param, —v,, ... param - v, } where
param,,..., param_are the names of the parameters of m.

Method Call (Exception Case)

(Norm, heap, Icl) —&=" o

e, >V
qo 1 1 ql

g, (flow,, heap,, Icl)
body

(flow,, heap,, micl) (Exc(v,), heap, .., micl’)

e.m(e,,...,e,) > micl’(\result)

(Norm, heap, Icl) (Exc(v,), heap,., Icl))
where body is the body of method m in the object heap,,,(v),

and mlcl = {this - v, param, —v,, ... param - v, } where
param,,..., param_are the names of the parameters of m.

Semantics of Specifications

/*@ requires x >= 0;
@ ensures \result <= Math.sqgrt(x) & & Math.sqrt(x) < \result + 1;
@*/
public static int isgrt(int x) {
body
}
Whenever the method is called with values that satisfy the
requires clause and the method terminates normally then

the ensures clause holds.

If Icl(x) >=x and
(Norm, heap, Icl) —2°%__ (Ret, heap’, Icl’)

then Icl’(\result) <= Math.sqrt(/cl/(x)) < Ic/’(\result) + 1

What about Exceptions?

/*@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
@ signals (IllegalArgumentException) x < 0;
@ signals_only IllegalArgumentException;
@*/

public static int isqrt(int x) { body }

For all transitions

(Norm, heap, Icl) —2°% . (Exc(v), heap’, Icl’)

where [cl satisfies the precondition and v is an exception, v
must be of type I1legalArgumentException.
Furthermore, Ic/l must satisfy x < 0.

Side Effects

A method can change the heap in an unpredictable way.

The assignable clause restricts changes:

/*@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) & & Math.sgrt(x) < \result + 1;
@*/

public static int isqrt(int x) { body }

If Icl(x) >=x and

(Norm, heap, Icl) —2°%

(Ret, heap’, Icl’)

then Icl/’(\result) <= Math.sqrt(/c/(x)) < Ic/’(\result) + 1
and heap = heap’

What Is the Meaning of a JML Formula?

A formula like x >= 0 is a Boolean Java expression. It
can be evaluated with the operational semantics.

X >= 0 holds in state (Norm, heap, Icl) iff

(Norm, heap, Ic)—==>="2=Y (flow’, heap’, Icl') where v#0

A formula may not have side effects but it can throw an
exception.

For the ensures formula both the pre-state and the
post-state are necessary to evaluate the formula.

Semantics of Specifications (formally)

A method satisfies the specification
requires e;
ensures e,;
iff for all executions
(Norm, heap, Icl) —2°%__, (Ret, heap’, Icl’)
with (Norm, heap, Icl)—S=%

q, Wwherev,#0

the post-condition holds, i.e., there exist v,, g, s.t.
(Norm, heap’, Icl’) —=>=">— q, wherev, #0

* However, we need a new rule for evaluating \old

(Norm, heap, lcl)—=="— q Wheri hfap, écl drefer to the
7~y \old(e) >v state before body was
(Norm, heap’, Icl’) 0 evecuted.

Method Parameters in ensures Clauses

/*@ requires x >= 0;
@ assignable \nothing;
@ ensures \result <= Math.sqrt(x) && Math.sgrt(x) < \result + 1;
@*/
public static int isqrt(int x) {
X = 0;
return 0O;

}

Is this code a correct implementation of the specification?

No, because method parameters are always evaluated in the pre-state, so
\result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;

has the same meaning as
\result <= Math.sqrt(\old(x)) && Math.sqgrt(\old(x)) < \result + 1;

Side Effects in Specifications

In JML side effects in specifications are forbidden: If e is
an expression in a specification and

(Norm, heap, Icl) —=Y— (flow’, heap’, Icl’)

then heap = heap’ and Icl = Icl'. To be more precise,
heap C heap’ since the new heap may contain new

(unreachable) objects.

Also flow’ # Norm is allowed. In that case the value of v
may be unpredictable and the tools should assume the
worst case, i.e., report that code is buggy.

