
Rigorous Software Development
CSCI-GA 3033-009

 Instructor: Thomas Wies

Spring 2013

Lecture 10

What does this program print?

class A {
 public static int x = B.x + 1;
}

class B {
 public static int x = A.x + 1;
}

class C {
 public static void main(String[] p) {
 System.err.println("A: " + A.x + ", B: " + B.x);
 }
}

If we run class C :
1) main-method of class C first accesses A.x.
2) Class A is initialized. The lock for A is taken.
3) Static initializer of A runs and accesses B.x.
4) Class B is initialized. The lock for B is taken.
5) Static initializer of B runs and accesses A.x.
6) Class A is still locked by current thread (recursive

initialization). Therefore, initialization returns immediately.
7) The value of A.x is still 0 (section 12.3.2 and 4.12.5), so B.x

is set to 1.
8) Initialization of B finishes.
9) The value of A.x is now set to 2.
10) The program prints “A: 2, B: 1”.

What does this program print?

Formal Semantics of Java Programs

• The Java Language Specification (JLS) 3rd
edition gives semantics to Java programs

– The document has 684 pages.

– 118 pages to define semantics of expression.

– 42 pages to define semantics of method
invocation.

• Semantics is only defined in prose.

– How can we make the semantics formal?

– We need a mathematical model of computation.

Semantics of Programming Languages

• Denotational Semantics
– Meaning of a program is defined as the mathematical

object it computes (e.g., partial functions).
– Example: Abstract Interpretation

• Axiomatic Semantics
– Meaning of a program is defined in terms of its effect on

the truth of logical assertions.
– Example: Hoare Logic

• (Structural) Operational Semantics
– Meaning of a program is defined by formalizing the

individual computation steps of the program.
– Example: Labeled Transition Systems

IMP: A Simple Imperative Language

Before we move on to Java, we look at a simple
imperative programming language IMP.

An IMP program:

p := 0;
x := 1;
while x · n do
 x := x + 1;
 p := p + m;

IMP: Syntactic Entities

• n 2 Z – integers

• true,false 2 B – Booleans

• x,y 2 L – locations (program variables)

• e 2 Aexp – arithmetic expressions

• b 2 Bexp – Boolean expressions

• c 2 Com – commands

Syntax of Arithmetic Expressions

• Arithmetic expressions (Aexp)
e ::= n for n ∈ Z
 | x for x ∈ L
 | e1 + e2
 | e1 - e2
 | e1 * e2

• Notes:
– Variables are not declared before use.

– All variables have integer type.

– Expressions have no side-effects.

Syntax of Boolean Expressions

• Boolean expressions (Bexp)
b ::= true
 | false
 | e1 = e2 for e1, e2 ∈ Aexp
 | e1 ≤ e2 for e1, e2 ∈ Aexp
 | ¬ b for b ∈ Bexp
 | b1 ∧ b2 for b1, b2 ∈ Bexp
 | b1 ∨ b2 for b1, b2 ∈ Bexp

Syntax of Commands

• Commands (Com)
c ::= skip
 | x := e
 | c1 ; c2
 | if b then c1 else c2
 | while b do c

• Notes:
– The typing rules have been embedded in the syntax

definition.
– Other parts are not context-free and need to be checked

separately (e.g., all variables are declared).
– Commands contain all the side-effects in the language.
– Missing: references, function calls, …

Meaning of IMP Programs

Questions to answer:

• What is the “meaning” of a given IMP
expression/command?

• How would we evaluate IMP expressions and
commands?

• How are the evaluator and the meaning related?

• How can we reason about the effect of a command?

Semantics of IMP

• The meaning of IMP expressions depends on
the values of variables, i.e. the current state.

• A state at a given moment is represented as a
function from L to Z

• The set of all states is Q = L ! Z

• We shall use q to range over Q

Judgments

• We write <e, q> ⇓ n to mean that e evaluates to n in
state q.
– The formula <e, q> ⇓ n is a judgment

(a statement about a relation between e, q and n)

– In this case, we can view ⇓ as a function of two arguments
e and q

• This formulation is called natural operational semantics
– or big-step operational semantics

– the judgment relates the expression and its “meaning”

• How can we define <e1 + e2, q> ⇓ … ?

Inference Rules

• We express the evaluation rules as inference rules for
our judgments.

• The rules are also called evaluation rules.

An inference rule

defines a relation between judgments F1,...,Fn and G.
• The judgments F1,...,Fn are the premises of the rule;
• The judgments G is the conclusion of the rule;
• The formula H is called the side condition of the rule.
If n=0 the rule is called an axiom. In this case, the line
separating premises and conclusion may be omitted.

F1 ... Fn

G
where H

Inference Rules for Aexp

• In general, we have one rule per language construct:

• This is called structural operational semantics.

– rules are defined based on the structure of the expressions.

<n, q> ⇓ n <x, q> ⇓ q(x)

<e1 + e2, q> ⇓ (n1 + n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 - e2, q> ⇓ (n1 - n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 * e2, q> ⇓ (n1 ¢ n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

Axiom

Inference Rules for Bexp

<true, q> ⇓ true <false, q> ⇓ false

<e1 = e2, q> ⇓ (n1 = n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<e1 · e2, q> ⇓ (n1 · n2)

<e1, q> ⇓ n1 <e2, q> ⇓ n2

<b1 Æ b2, q> ⇓ (t1 Æ t2)

<b1, q> ⇓ t1 <e2, q> ⇓ t2

How to Read Inference Rules?

• Forward, as derivation rules of judgments

– if we know that the judgments in the premise hold
then we can infer that the conclusion judgment
also holds.

– Example:

<2 * 3, q> ⇓ 6

<2, q> ⇓ 2 <3, q> ⇓ 3

How to Read Inference Rules?

• Backward, as evaluation rules:
– Suppose we want to evaluate e1 + e2, i.e., find n s.t. e1 + e2 ⇓ n is

derivable using the previous rules.
– By inspection of the rules we notice that the last step in the

derivation of e1 + e2 ⇓ n must be the addition rule.
– The other rules have conclusions that would not match e1 + e2 ⇓ n.

• This is called reasoning by inversion on the derivation rules.
– Thus we must find n1 and n2 such that e1 ⇓ n1 and e2 ⇓ n2 are

derivable.
– This is done recursively.

• Since there is exactly one rule for each kind of expression,
we say that the rules are syntax-directed.
– At each step at most one rule applies.
– This allows a simple evaluation procedure as above.

How to Read Inference Rules?

• Example: evaluation of an arithmetic
expression via reasoning by inversion:

<x + (2 * y), {x  3, y  2> ⇓ ?

<x, {x  3, y  2> ⇓ 3 <2 * y, {x  3, y  2> ⇓ ?

<2, {x  3, y  2> ⇓ 2

<y, {x  3, y  2> ⇓ 2

7

4

Semantics of Commands

• The evaluation of a command in Com has side-
effects, but no direct result.

– What is the result of evaluating a command?

• The “result” of a command c in a pre-state q is a
transition from q to a post-state q’:
q ! q’

• We can formalize this in terms of transition systems.

c

Labeled Transition Systems

A labeled transition system (LTS) is a structure
LTS = (Q, Act, !) where

– Q is a set of states,

– Act is a set of actions,

– ! µ Q £ Act £ Q is a transition relation.

We write q ! q’ for (q, a, q’) 2 !.
a

q q ++ {x  n} x := e

Inference Rules for Transitions

<e, q> ⇓ n
q q skip

q q’’ c1 ; c2

q q’ c1 q’ q’’ c2

q q’ if b then c1 else c2

<b, q> ⇓ true q q’ c1

q q’ if b then c1 else c2

<b, q> ⇓ false q q’ c2

q q’’ while b do c

<b, q> ⇓ true q q’ c

q q while b do c

<b, q> ⇓ false

q’ q’’ while b do c

Operational Semantics of Java (and JML)

• Can we give an operational semantics of
Java programs and JML specifications?

• What is the state of a Java program?

– We have to take into account the state of the heap.

• How can we deal with side-effects in expressions?

• How can we handle exceptions?

Operational Semantics of Java

A (labeled) transition system (LTS) is a structure
LTS = (Q, Act, !) where

– Q is a set of states,

– Act is a set of actions,

– ! µ Q £ Act £ Q is a transition relation.

• Q reflects the current dynamic state of the program
(heap and local variables).

• Act is the executed code.
• Based on: D. v. Oheimb, T. Nipkow, Machine-checking

the Java specification: Proving type-safety, 1999

Example: State of a Java Program

What is the state after executing this code?
 List mylist = new LinkedList();
 mylist.add(new Integer(1));

heap lcl

1 7 1

0 8 8

9 7 7

1

mylist: 6

6: LinkedList

7: LinkedList.Node

8: LinkedList.Node

9: Integer

State of a Java Program

A state of a Java program gives valuations to
local and global (heap) variables.

• Q = Heap £ Local

• Heap = Address ! Class £ seq Value

• Local = Identifier ! Value

• Value = Z, Address µ Z

A state is denoted as (heap, lcl), where
heap : Heap and lcl : Local.

Actions of a Java Program

An action of a Java program is either

• the evaluation of an expression e to a value v,
denoted as e À v, or

• a Java statement, or

• a Java code block.

Note that expressions with side effects can
modify the current state.

Example: Actions of a Java Program

• Post-increment expression

(heap, lcl [{x  5}) (heap, lcl [{x  6})

• Pre-increment expression

(heap, lcl [{x  5}) (heap, lcl [{x  6})

• Assignment expression

(heap, lcl [{x  5}) (heap, lcl [{x  10})

• Assignment statement

(heap, lcl [{x  5}) (heap, lcl [{x  10})

x++ À 5

++x À 6

x=2*x À 10

x=2*x;

Rules for Java Expressions (1)

• axiom for evaluating local variables

(heap, lcl) (heap, lcl)

• rule for assignment to local

 (heap, lcl) (heap’, lcl’)

(heap, lcl) (heap’, lcl’ ++ {x  v})

• rule for field access

 (heap, lcl) (heap’, lcl’)

(heap, lcl) (heap’, lcl’)

x À lcl(x)

e À v

x=e À v

e.fld À heap’(v)(idx)

e À v where idx is the index
of the field fld in the
object heap’(v)

Rules for Java Expressions (2)

• axiom for evaluating a constant expression c

(heap, lcl) (heap, lcl)

• rule for multiplication

 (heap, lcl) (heap’, lcl’)

 (heap’, lcl’) (heap’’, lcl’’)

(heap, lcl) (heap’’, lcl’’)

• similarly for other binary operators

c À c

e1 À v1

e1 * e2 À v1 ¢ v2 mod 232

e2 À v2

Example: Derivation for x=2*x

(heap, lcl [{x  5}) (heap, lcl [{x  5})
x À 5

(heap, lcl [{x  5}) (heap, lcl [{x  5})
2 À 2

(heap, lcl [{x  5}) (heap, lcl [{x  5})
2*x À 10

(heap, lcl [{x  5}) (heap, lcl [{x  10})
x=2*x À 10

Rules for Java Statements (1)

• expression statement (assignment or method call)

(heap, lcl) (heap’, lcl')

(heap, lcl) (heap’, lcl’)

• sequence of statements

(heap, lcl) (heap’, lcl') (heap’, lcl’) (heap’’, lcl‘’)

 (heap, lcl) (heap’’, lcl’’)

e À v

e;

s1 s2

s1 s2

Rules for Java Statements (2)

• rules for if statement

(heap, lcl) (heap’, lcl’)

(heap’, lcl’) (heap’’, lcl’’)

(heap, lcl) (heap’’, lcl’’)

(heap, lcl) (heap’, lcl’)

(heap’, lcl’) (heap’’, lcl’’)

(heap, lcl) (heap’’, lcl’’)

e À v

bl1

if (e) {bl1} else {bl2}
where v  0

e À v

bl2

if (e) {bl1} else {bl2}
where v = 0

Rules for Java Statements (3)

• rules for while statement

(heap, lcl) (heap’, lcl’)

(heap, lcl) (heap’, lcl’)

(heap, lcl) (heap’, lcl’)

(heap’, lcl’) (heap’’, lcl’’)

(heap’’, lcl’’) (heap’’’, lcl’’’)

(heap, lcl) (heap’’’, lcl’’’)

e À v

while (e) {bl}
where v = 0

e À v

bl

 while (e) {bl}
where v  0

 while (e) {bl}

Rule for Java Method Calls

 (heap, lcl) (heap0, lcl0) e À v

e1 À v1 (heap0, lcl0) (heap1, lcl1)

(heapn-1, lcln-1) (heapn, lcln) en À vn

(heap, lcl) (heapn+1, lcln)
e.m(e1,...,en) À mlcl’(\result)

(heapn, mlcl) (heapn+1, mlcl’) body

...

where body is the body of method m in the object heapn+1(v),
and mlcl = {this  v, param1  v1, ... paramn  vn} where
param1,... , paramn are the names of the parameters of m.

Rule for Object Creation

• Object creation is always combined with a call of a
constructor

(heap, lcl) (heap’, lcl’)
new Type(e1,...,en) À na

(heap1, lcl) (heap’, lcl’)
na.<init>(e1,...,en) À v

where
 na  dom(heap),
 heap1 = heap [{na  (Type, h0,...,0i}, and
 <init> stands for the internal name of the constructor

Formalizing Exceptions

In order to handle exceptions, a few changes in the
semantics are necessary:

• We extend states by a flow component
Q = Flow £ Heap £ Local

• Flow ::= Norm | Ret | ExchhAddressii

We use the identifiers flow 2 Flow, heap 2 Heap and lcl 2
Local in the rules. Also q 2 Q stands for an arbitrary state.

In an abnormal state, statements are not executed:

(flow, heap, lcl) (flow, heap, lcl) e À v

(flow, heap, lcl) (flow, heap, lcl) s

where flow  Norm

where flow  Norm

Rules for Expressions with Exceptions

The previously defined rules are valid only if the left-
hand-state is not an abnormal state.

 (Norm, heap, lcl) q q q’

 (Norm, heap, lcl) q’

 (Norm, heap, lcl) q q q’

 (Norm, heap, lcl) q’

Note that exceptions are propagated using the axioms
from the previous slide

e1 À v1

e1 * e2 À v1 ¢ v2 mod 232

e2 À v2

s1 s2

s1 s2

(flow, heap, lcl) (flow, heap, lcl) e À v where flow  Norm

Rules for Throwing Exceptions

What happens if the object in a field access is null?

 (Norm, heap, lcl) (Norm, heap’, lcl’) e À v

 (Norm, heap, lcl) (Exc(v), heap’, lcl’)
 throw e;

 (Norm, heap, lcl) (Norm, heap’, lcl’) e À 0

 (Norm, heap’, lcl’) q’ throw new NullPointerException();

 (Norm, heap, lcl) q’
e.fld À v

where v is some arbitrary value

 (Norm, heap, lcl) (Norm, heap’, lcl’) e À v

 (Norm, heap, lcl) (Exc(v), heap’, lcl’)
 throw e;

 (Norm, heap, lcl) (Norm, heap’, lcl’) e À 0

 (Norm, heap’, lcl’) q’ throw new NullPointerException();

 (Norm, heap, lcl) q’
e.fld À v

where v is some arbitrary value

Complete Rules for throw

where v  0

 (Norm, heap, lcl) (flow’, heap’, lcl’) e À v

 (Norm, heap, lcl) (flow’, heap’, lcl’)
 throw e;

where
flow’  Norm

Rules for Catching Exceptions

• Catching an exception

• No exception caught

 (Norm, heap, lcl) (Exc(v), heap’, lcl’)
 s1

(Norm, heap, lcl) q’’
 try s1 catch (Type ex) s2

(Norm, heap’, lcl’ [{ex  v}) q’’
 s2

where v is an instance of Type

 (Norm, heap, lcl) (flow’, heap’, lcl’)
 s1

(Norm, heap, lcl) (flow’, heap’, lcl’)
 try s1 catch (Type ex) s2

where flow’  Exc(v) or v is not an instance of Type

Rules for return statements

• The return statement stores the return value in
\result and signals Ret in the flow component:

• But evaluating e can also throw an exception

 (Norm, heap, lcl) (Norm, heap’, lcl’) e À v

(Norm, heap, lcl) (Ret, heap’, lcl’ ++ {\result  v)
return e;

 (Norm, heap, lcl) (flow’, heap’, lcl’) e À v

(Norm, heap, lcl) (flow’, heap’, lcl’)
return e;

where flow’  Norm

Method Call (Normal Case)

 (Norm, heap, lcl) q0
e À v

e1 À v1 q0 q1

qn-1 (flown, heapn, lcln) en À vn

(Norm, heap, lcl) (Norm, heapn+1, lcln)
e.m(e1,...,en) À mlcl’(\result)

(flown, heapn, mlcl) (Ret, heapn+1, mlcl’) body

...

where body is the body of method m in the object heapn+1(v),
and mlcl = {this  v, param1  v1, ... paramn  vn} where
param1,... , paramn are the names of the parameters of m.

Method Call (Exception Case)

 (Norm, heap, lcl) q0
e À v

e1 À v1 q0 q1

qn-1 (flown, heapn, lcln) en À vn

(Norm, heap, lcl) (Exc(ve), heapn+1, lcln)
e.m(e1,...,en) À mlcl’(\result)

(flown, heapn, mlcl) (Exc(ve), heapn+1, mlcl’) body

...

where body is the body of method m in the object heapn+1(v),
and mlcl = {this  v, param1  v1, ... paramn  vn} where
param1,... , paramn are the names of the parameters of m.

Semantics of Specifications

/*@ requires x >= 0;

 @ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;

 @*/

public static int isqrt(int x) {

 body

}

Whenever the method is called with values that satisfy the
requires clause and the method terminates normally then
the ensures clause holds.

(Norm, heap, lcl) (Ret, heap’, lcl’) body
If lcl(x) >= x and

then lcl’(\result) <= Math.sqrt(lcl(x)) < lcl’(\result) + 1

What about Exceptions?

/*@ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;

 @ signals (IllegalArgumentException) x < 0;

 @ signals_only IllegalArgumentException;

 @*/

public static int isqrt(int x) { body }

For all transitions

where lcl satisfies the precondition and v is an exception, v
must be of type IllegalArgumentException.
Furthermore, lcl must satisfy x < 0.

(Norm, heap, lcl) (Exc(v), heap’, lcl’) body

Side Effects

A method can change the heap in an unpredictable way.

The assignable clause restricts changes:
/*@ requires x >= 0;

 @ assignable \nothing;

 @ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;

 @*/

public static int isqrt(int x) { body }

(Norm, heap, lcl) (Ret, heap’, lcl’) body
If lcl(x) >= x and

then lcl’(\result) <= Math.sqrt(lcl(x)) < lcl’(\result) + 1
and heap = heap’

What Is the Meaning of a JML Formula?

A formula like x >= 0 is a Boolean Java expression. It
can be evaluated with the operational semantics.

x >= 0 holds in state (Norm, heap, lcl) iff

A formula may not have side effects but it can throw an
exception.

For the ensures formula both the pre-state and the
post-state are necessary to evaluate the formula.

 (Norm, heap, lcl) (flow’, heap’, lcl’) x >= 0 À v
where v  0

Semantics of Specifications (formally)

A method satisfies the specification
 requires e1;
 ensures e2;

iff for all executions

with

the post-condition holds, i.e., there exist v2, q2 s.t.

• However, we need a new rule for evaluating \old

(Norm, heap, lcl) (Ret, heap’, lcl’) body

 (Norm, heap, lcl) q1
e1 À v1 where v1  0

 (Norm, heap’, lcl’) q2
e2 À v2 where v2  0

 (Norm, heap, lcl) q
e À v

 (Norm, heap’, lcl’) q
\old(e) À v

where heap, lcl refer to the
state before body was
executed.

Method Parameters in ensures Clauses

/*@ requires x >= 0;
 @ assignable \nothing;
 @ ensures \result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;
 @*/
public static int isqrt(int x) {
 x = 0;
 return 0;
}

Is this code a correct implementation of the specification?

No, because method parameters are always evaluated in the pre-state, so

\result <= Math.sqrt(x) && Math.sqrt(x) < \result + 1;

has the same meaning as
\result <= Math.sqrt(\old(x)) && Math.sqrt(\old(x)) < \result + 1;

Side Effects in Specifications

In JML side effects in specifications are forbidden: If e is
an expression in a specification and

then heap = heap’ and lcl = lcl’. To be more precise,
heap µ heap’ since the new heap may contain new
(unreachable) objects.

Also flow’  Norm is allowed. In that case the value of v
may be unpredictable and the tools should assume the
worst case, i.e., report that code is buggy.

 (Norm, heap, lcl) (flow’, heap’, lcl’)
e À v

