Rigorous Software Development CSCI-GA 3033-009

Instructor: Thomas Wies

Spring 2013

Lecture 2

Alloy Analyzer

- Analyzes micro models of software
- Helps to
- identify key properties of a software design
- find conceptual errors (not implementation errors)
- Small scope hypothesis: many properties that do not hold have small counterexamples
- Exhaustively search for errors in all instances of bounded size

Example Applications

- Security protocols
- Train controllers
- File systems
- Databases
- Network protocols
- Software design/testing/repair/sketching

Many examples are shipped with Alloy. More can be found on the Alloy website.

Today: The Alloy Language

Chapters 3 and 4 of Daniel Jackson's book

Atoms, Relations, Structures, and Models

- An Alloy model defines a set of structures (instances)
- A structure is built from atoms and relations
- An atom is a primitive entity that is
- indivisible: it can't be broken down into smaller parts
- immutable: its properties do not change over time
- uninterpreted: it does not have any build-in properties, unlike, e.g. integer numbers
- A relation is a mathematical object that relates atoms. It consists of a set of tuples, each tuple being a sequence of atoms.

Atoms and Relations: Examples

- Three unary relations:

Name $=\left\{\left(\mathrm{N}_{0}\right),\left(\mathrm{N}_{1}\right),\left(\mathrm{N}_{2}\right)\right\}$
Addr $=\left\{\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{3}\right)\right\}$
Book $=\left\{\left(B_{0}\right),\left(B_{1}\right)\right\}$

- A ternary relation:
atoms
addr $=\left\{\left(\mathrm{B}_{0}, \mathrm{~N}_{0}, \mathrm{~A}_{1}\right),\left(\mathrm{B}_{0}, \mathrm{~N}_{0}, \mathrm{~A}_{2}\right),\left(\mathrm{B}_{1}, \mathrm{~N}_{2}, \mathrm{~A}_{0}\right)\right\}$

Size and Arity of Relations

- The size (also cardinality) of a relation is the number of tuples in the relation.
- The arity of a relation is the number of atoms in each tuple of the relation.
- Examples:
- A unary relation of size 3:

Name $=\left\{\left(\mathrm{N}_{0}\right),\left(\mathrm{N}_{1}\right),\left(\mathrm{N}_{2}\right)\right\}$

- A ternary relation of size 2:
addr $=\left\{\left(\mathrm{B}_{0}, \mathrm{~N}_{0}, \mathrm{~A}_{1}\right),\left(\mathrm{B}_{0}, \mathrm{~N}_{1}, \mathrm{~A}_{2}\right)\right\}$

Visualizing Structures: Snapshots

Name $=\left\{\left(\mathrm{N}_{0}\right),\left(\mathrm{N}_{1}\right),\left(\mathrm{N}_{2}\right)\right\}$
Addr $=\left\{\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right)\right\}$
address $=\left\{\left(\mathrm{N}_{0}, \mathrm{~A}_{0}\right),\left(\mathrm{N}_{1}, \mathrm{~A}_{0}\right),\left(\mathrm{N}_{1}, \mathrm{~A}_{1}\right)\right\}$

Visualizing Structures: Snapshots

```
Name \(=\left\{\left(\mathrm{N}_{0}\right),\left(\mathrm{N}_{1}\right),\left(\mathrm{N}_{2}\right)\right\}\)
Addr \(=\left\{\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{3}\right)\right\}\)
Book \(=\left\{\left(\mathrm{B}_{0}\right),\left(\mathrm{B}_{1}\right)\right\}\)
\(\operatorname{addr}=\left\{\left(\mathrm{B}_{0}, \mathrm{~N}_{0}, \mathrm{~A}_{1}\right),\left(\mathrm{B}_{0}, \mathrm{~N}_{0}, \mathrm{~A}_{2}\right),\left(\mathrm{B}_{1}, \mathrm{~N}_{2}, \mathrm{~A}_{0}\right)\right\}\)
```


N_{2}

Scalars, Sets, and Relations

In Alloy, everything is a relation, including scalars and sets

- Sets of atoms are unary relations Name $=\left\{\left(\mathrm{N}_{0}\right),\left(\mathrm{N}_{1}\right),\left(\mathrm{N}_{2}\right)\right\}$
- Scalars are singleton sets

$$
\mathrm{n}=\left\{\left(\mathrm{N}_{0}\right)\right\}
$$

- The following objects are treated as identical:

x

(x)
$\{x\}$
$\{(x)\}$

Domain and Range

- The domain of a relation is the set of atoms in the first position of its tuples
- The range of a relation is the set of atoms in the last position of its tuples
- Example:

$$
\begin{aligned}
& \text { address }=\left\{\left(N_{0}, A_{0}\right),\left(N_{1}, A_{1}\right),\left(N_{2}, A_{1}\right)\right\} \\
& \text { domain(address) })=\left\{\left(N_{0}\right),\left(N_{1}\right),\left(N_{2}\right)\right\} \\
& \text { range(address })=\left\{\left(A_{0}\right),\left(A_{1}\right)\right\}
\end{aligned}
$$

Alloy Specifications

- Signatures and Fields sets and relations defining the model
- Predicates and Functions operations and test predicates
- Facts
assumptions about the model
- Assertions
properties and conjectures
- Commands
simulation, testing, and verification

Signatures and Fields

- Signatures
- define the entities of your model
- Fields
- define relations between signatures
- Signature constraints
- multiplicity constraints on relations/signatures
- signature facts

Signatures

- A signature introduces a set of atoms
- The declaration

$$
\operatorname{sig} A\}
$$

introduces a set named A

- A set can be introduced as a subset of another set

$$
\text { sig A1 extends A \{\} }
$$

Signatures

- Signatures declared independently of each other define disjoint sets
sig A \{\}
sig B \{\}
sig A1 extends A \{\}
sig A2 extends A \{\}

Signatures

- An abstract set only contains the elements of its extensions
abstract sig A \{\}
sig B \{\}
sig A1 extends A \{\} sig A2 extends A \{\}

\square

Signatures

- Signatures can also be declared as subsets of other signatures without being disjoint
abstract sig A \{\} sig $B \quad\}$ sig A1 extends A \{\} sig A2 extends $A\}$ sig A3 in $A\}$

Fields

- Relations are declared as fields of signatures
- The declaration

$$
\operatorname{sig} A\{f: e\}
$$

introduces a relation f whose domain is A and whose range is defined by the expression e.

- Examples:
$-A$ binary relation $f: A \times A$

$$
\operatorname{sig} A\{f: A\}
$$

- A ternary relation $g: B \times A \times A$
sig B \{g: A -> A\}

Multiplicities

Multiplicities constrain the sizes of sets and relations

- A multiplicity keyword placed before a signature declaration constraints the number of element in the signature's set

$$
m \text { sig } A\}
$$

- We can also make multiplicities constraints on fields:

$$
\begin{aligned}
& \operatorname{sig} A\{f: m e\} \\
& \operatorname{sig} A\{f: e 1 m->n e 2\}
\end{aligned}
$$

- There are four multiplicities
- set : any number
- some : one or more
- lone : zero or one
- one : exactly one

Multiplicities

- Examples
-RecentlyUsed: set Name
- senderName: lone Name
- addr: Alias ->lone Addr //addr is partial function
$-f$: A ->one B // f is total function
$-f$: A lone->one B // f is total and injective function
- The default multiplicity keyword for unary relations is one
r : e is equivalent to r : one e

Example: Hierarchical Address Book

Predefined Sets and Relations

- There are three predefined constants
- none : empty set
- univ : universal set
- iden : identity
- Example: in the structure

Name $=\left\{\left(\mathrm{N}_{0}\right),\left(\mathrm{N}_{1}\right),\left(\mathrm{N}_{2}\right)\right\}$
Addr $=\left\{\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right)\right\}$
these constants are interpreted as
none $=\{ \}$
univ $=\left\{\left(\mathrm{N}_{0}\right),\left(\mathrm{N}_{1}\right),\left(\mathrm{N}_{2}\right),\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right)\right\}$
iden $=\left\{\left(N_{0}, N_{0}\right),\left(N_{1}, N_{1}\right),\left(N_{2}, N_{2}\right),\left(A_{0}, A_{0}\right),\left(A_{1}, A_{1}\right)\right\}$

Set Operators

Alloy's set operators are

+ union
\& intersection
- difference
in (subset) inclusion
$=$ equality

Examples:

- $\left\{\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{3}\right)\right\}+\left\{\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)\right\}=\left\{\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right),\left(\mathrm{A}_{3}\right)\right\}$
- $\left\{\left(\mathrm{N}_{0}, \mathrm{~A}_{1}\right),\left(\mathrm{N}_{1}, \mathrm{~A}_{2}\right)\right\} \&\left\{\left(\mathrm{~N}_{1}, \mathrm{~A}_{2}\right),\left(\mathrm{N}_{2}, \mathrm{~A}_{1}\right)\right\}=\left\{\left(\mathrm{N}_{1}, \mathrm{~A}_{2}\right)\right\}$

Relational Operators

Alloy's relational operators are
-> arrow (product)

- dot (join)
[] box (join)
~ transpose
\wedge transitive closure
* reflexive transitive closure
<: domain restriction
: > range restriction
++ override

Arrow Product

- p-> q
- p is n-ary relation, q is m-ary relation
$-p->q$ is the $(n+m)$-ary relation obtained by pairwise concatenating all tuples in p and q

$$
p->q=\left\{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in p,\left(y_{1}, \ldots, y_{m}\right) \in q\right\}
$$

- Examples:

$$
\begin{aligned}
& \mathrm{n}=\{(\mathrm{N})\}, \mathrm{a}=\left\{\left(\mathrm{A}_{0}\right)\right\}, \text { Addr }=\left\{\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)\right\}, \text { Book }=\left\{\left(\mathrm{B}_{0}\right),\left(\mathrm{B}_{1}\right)\right\} \\
& \mathrm{n}->\mathrm{a}=\left\{\left(\mathrm{N}, \mathrm{~A}_{0}\right)\right\} \\
& \mathrm{n}->\text { Addr }=\left\{\left(\mathrm{N}, \mathrm{~A}_{0}\right),\left(\mathrm{N}, \mathrm{~A}_{1}\right),\left(\mathrm{N}, \mathrm{~A}_{2}\right)\right\} \\
& \text { Book }->\mathrm{n}->\text { Addr }=\left\{\left(\mathrm{B}_{0}, \mathrm{~N}, \mathrm{~A}_{0}\right),\left(\mathrm{B}_{0}, \mathrm{~N}, \mathrm{~A}_{1}\right),\left(\mathrm{B}_{0}, \mathrm{~N}, \mathrm{~A}_{2}\right),\right. \\
& \\
& \left.\qquad\left(\mathrm{B}_{1}, \mathrm{~N}, \mathrm{~A}_{0}\right),\left(\mathrm{B}_{1}, \mathrm{~N}, \mathrm{~A}_{1}\right),\left(\mathrm{B}_{1}, \mathrm{~N}, \mathrm{~A}_{2}\right)\right\}
\end{aligned}
$$

Dot Join on Tuples

- Join of tuples $\left\{\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right\}$ and $\left\{\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}\right)\right\}$ is
- none if $x_{n} \neq y_{1}$
$-\left\{\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}-1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{m}\right)\right\} \quad$ if $\mathrm{x}_{\mathrm{n}}=\mathrm{y}_{1}$
- Examples:
$-\{(\mathrm{A}, \mathrm{B})\} .\{(\mathrm{A}, \mathrm{C})\}=\{ \}$
$-\{(\mathrm{A}, \mathrm{B})\} \cdot\{(\mathrm{B}, \mathrm{C})\}=\{(\mathrm{A}, \mathrm{C})\}$
$-\{(A)\} .\{(A, C\})=\{(C)\}$
$-\{(\mathrm{A})\} .\{(\mathrm{A})\}=$? undefined
- Dot join is undefined if both $\mathrm{n}=1$ and $\mathrm{m}=1$

Dot Join

p.q
$-p$ is n-ary relation, q is m-ary relation with $n>1$ or $m>1$
$-p . q$ is ($n+m-1$)-ary relation obtained by taking every combination of a tuple from p and a tuple from q and adding their join, if it exists.
$p . q=\left\{\left(x_{1}, \ldots, x_{n-1}, y_{2}, \ldots, y_{m}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in p,\left(y_{1}, \ldots, y_{m}\right) \in q, x_{n}=y_{1}\right\}$

Dot Join: Example

to maps messages to the names of the recipients:

$$
\begin{gathered}
\text { to }=\left\{\left(\mathrm{M}_{0}, \mathrm{~N}_{0}\right),\left(\mathrm{M}_{0}, \mathrm{~N}_{2}\right),\right. \\
\left.\left(\mathrm{M}_{1}, \mathrm{~N}_{2}\right),\left(\mathrm{M}_{2}, \mathrm{~N}_{3}\right)\right\}
\end{gathered}
$$

address maps names to addresses: address $=\left\{\left(\mathrm{N}_{0}, \mathrm{~A}_{0}\right),\left(\mathrm{N}_{0}, \mathrm{~A}_{1}\right),\left(\mathrm{N}_{1}, \mathrm{~A}_{1}\right)\right.$,

$$
\left.\left(\mathrm{N}_{1}, \mathrm{~A}_{2}\right),\left(\mathrm{N}_{2}, \mathrm{~A}_{3}\right),\left(\mathrm{N}_{4}, \mathrm{~A}_{3}\right)\right\}
$$

to.address maps messages to addresses of recipients:
to.address $=\left\{\left(\mathrm{M}_{0}, \mathrm{~A}_{0}\right),\left(\mathrm{M}_{0}, \mathrm{~A}_{1}\right)\right.$,

$$
\left.\left(\mathrm{M}_{0}, \mathrm{~A}_{3}\right),\left(\mathrm{M}_{1}, \mathrm{~A}_{3}\right)\right\}
$$

Dot Join: Exercise

- Given the relations mother and father, how do you express the grandfather relation?

grandfather =

Box Join

- e1 [e2]
- is semantically equivalent to e2.e1
- Dot binds stronger than box a.b.c [d] is short for d.(a.b.c)
- Example: b.addr[n] denotes the addresses associated with name n in book b

Transpose

- ~ p
- denotes the mirror image of relation p

$$
\sim p=\left\{\left(x_{n}, \ldots, x_{1}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in p\right\}
$$

- Example:

$$
\begin{aligned}
\text { address } & =\left\{\left(\mathrm{N}_{0}, \mathrm{~A}_{0}\right),\left(\mathrm{N}_{1}, \mathrm{~A}_{0}\right),\left(\mathrm{N}_{2}, \mathrm{~A}_{1}\right)\right\} \\
\text { ~address } & =\left\{\left(\mathrm{A}_{0}, \mathrm{~N}_{0}\right),\left(\mathrm{A}_{0}, \mathrm{~N}_{1}\right),\left(\mathrm{A}_{1}, \mathrm{~N}_{2}\right)\right\}
\end{aligned}
$$

- some useful facts:
$-\sim(\sim p . \sim q)$ is equal to $q \cdot p$
- if p is a unary and q binary then $p . \sim q$ is equal to $q \cdot p$
$-p . \sim p$ relates atoms in the domain of p that are related to the same element in the range of p
- p.~p in iden states that p is injective

(Reflexive) Transitive Closure

- ^r
$-r$ is binary relation
- transitive closure $\wedge r$ is smallest transitive relation containing r

$$
\wedge r=r+r \cdot r+r . r \cdot r+
$$

- reflexive transitive closure: ${ }^{*} r={ }^{\wedge} r+$ iden

Transitive Closure: Example

A relation address representing an address book with multiple levels (including groups of aliases):
address $=\left\{\left(G_{0}, A_{0}\right),\left(G_{0}, G_{1}\right),\left(A_{0}, D_{0}\right),\left(G_{1}, D_{0}\right),\left(G_{1}, A_{1}\right),\left(A_{1}, D_{1}\right),\left(A_{2}, D_{2}\right)\right\}$
^address $=\left\{\left(\mathrm{G}_{0}, \mathrm{~A}_{0}\right),\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right),\left(\mathrm{A}_{0}, \mathrm{D}_{0}\right),\left(\mathrm{G}_{1}, \mathrm{D}_{0}\right),\left(\mathrm{G}_{1}, \mathrm{~A}_{1}\right),\left(\mathrm{A}_{1}, \mathrm{D}_{1}\right),\left(\mathrm{A}_{2}, \mathrm{D}_{2}\right)\right.$, $\left(G_{0}, D_{0}\right),\left(G_{0}, A_{1}\right),\left(G_{1}, D_{1}\right)$,
$\left.\left(G_{0}, D_{1}\right)\right\}$

Transitive Closure: Exercise

- How would you express the ancestor relation in a family tree, given the children relation?
ancestor =

Domain and Range Restriction

- $S<: r$
$-s$ is a set and r a relation
$-s<: r$ is the relation obtained by restricting the domain of r to s
- $r:>S$
$-r:>s$ is the relation obtained by restricting the range of r to s
- Example:
siblings $=\left\{\left(\mathrm{M}_{0}, \mathrm{~W}_{0}\right),\left(\mathrm{W}_{0}, \mathrm{M}_{0}\right),\left(\mathrm{W}_{1}, \mathrm{~W}_{2}\right),\left(\mathrm{W}_{2}, \mathrm{~W}_{1}\right)\right\}$
women $=\left\{\left(W_{0}\right),\left(W_{1}\right),\left(W_{2}\right)\right\}$
sisters $=$ siblings $:>$ women

Override

- p ++ q
- p and q are relations
- like union, but any tuple in p that starts with the same element as a tuple in q is dropped
- Example:
homeAddress $=\left\{\left(\mathrm{N}_{0}, \mathrm{~A}_{1}\right),\left(\mathrm{N}_{1}, \mathrm{~A}_{2}\right),\left(\mathrm{N}_{2}, \mathrm{~A}_{3}\right)\right\}$
workAddress $=\left\{\left(\mathrm{N}_{0}, \mathrm{~A}_{0}\right),\left(\mathrm{N}_{1}, \mathrm{~A}_{2}\right)\right\}$
homeAddress ++ workAddress $=\left\{\left(\mathrm{N}_{0}, \mathrm{~A}_{0}\right),\left(\mathrm{N}_{1}, \mathrm{~A}_{2}\right),\left(\mathrm{N}_{2}, \mathrm{~A}_{3}\right)\right\}$
- Example: insertion of a key k with value v into a hashmap m:

$$
m^{\prime}=m++k->v
$$

Logical Operators

Alloy's logical operators are

not	$!$	negation	
and	$\& \&$	conjunction	
or	$\\|$	disjunction	
implies	$=>$	implication	
else	,	alternative	
rf	<s	biimplication	

Examples: F implies G else H (F and G) or ((not F) and H)

Operator Precedence

\downarrow| lowest |
| :--- |
| |
| |
| |
| highest |

Quantifiers

- A quantified constraint takes the form

$$
\mathrm{Q} x: \mathrm{e} \mid \mathrm{F}
$$

- The forms of quantification in Alloy are
-all x: S | F F holds for every x in S
- some x: S | $F \quad F$ holds for some x in S
- no x: S | F F fails for every x in S
- lone x: S | F F holds for at most 1 x in S
- one x: S | F F holds for exactly 1 x in S

Quantifiers

- Quantifiers can also be applied to expressions
- some e e has some tuple
- no e e has no tuples
- lone e e has at most one tuple
- one e e has exactly one tuple

Let Expressions

- let $x=e \mid A$
- let expression can factor out a complicated subexpression e by introducing a short hand x
- let expressions cannot be recursive, i.e., x is not allowed to appear in e
- Example: preferred address of an alias a is the work address, if it exists

```
all a : Alias
```

let $w=$ a.workAddress |
a.address = some w => w else a.homeAddress

Comprehensions

- $\{x: e \mid F\}$
- the set of values x drawn from set e for which F holds
- general form $\left\{x_{1}: e_{1}, \ldots, x_{n}: e_{n} \mid F\right\}$ defines an n -ary relation
- Example: relation mapping names to addresses in a multilevel address book
\{ n : Name, a : Addr | n ->a in ${ }^{\text {^address }\}}$

Facts

- Facts define additional assumptions about the signatures and fields of a model
- Alloy will only consider instances that also satisfy all facts
- Example:
fact Biology \{
no p: Person | p in p.^(mother + father)
\}

Signature Facts

- Signature facts express assumptions about each element of a signature
- The declaration

$$
\operatorname{sig} A\{\ldots\}\{F\}
$$

is equivalent to
$\operatorname{sig} A\{\ldots\}$
fact \{all this: A | $\left.F^{\prime}\right\}$
where F^{\prime} is like F but with all appearances of fields g of A in F replaced by this.g

Signature Facts: Example

There are no cycles in the addr relation of an address book:
sig Book \{ addr : Name -> Target \}
\{ no n : Name | n in $\mathrm{n} .{ }^{\wedge}$ addr \}

Assertions

- An assertion is a constraint that is intended to follow from the facts of the model.
- Useful to
- find flaws in the model
- express properties in different ways
- act as regression tests
- The analyzer checks assertions and produces a counterexample instance, if an assertion does not hold.
- If an assertion does not hold, you typically want to
- move that constraint into a fact or
- refine your specification until the assertion holds.

Assertions: Example

assert addIdempotent \{
all b,b',b'' : Book, n : Name, a : Addr add [b, b', $n, a]$ and
add [b', b'', n, a] implies
b'.addr = b''.addr
\}

Run Command

- Used to ask Alloy to generate an instance of the model
- May include conditions
- Used to guide AA to pick model instances with certain characteristics
- E.g., force certain sets and relations to be nonempty
- In this case, not part of the "true" specification
- Alloy only executes the first run command in a file

Scope

- Limits the size of instances considered to make instance finding feasible
- Represents the maximum number of tuples in each top-level signature
- Default scope is 3

Run Command: Examples

- run \{\}
- no condition
- scope is 3
- run \{\} for 5 but exactly 2 Book
- no condition
- scope is 5 for all signatures except for signature Book, which should be of size exactly 2
- run \{some Book \&\& some Name\} for 2
- condition forces Book and Name to be nonempty
- scope is 2

Functions and Predicates

- Functions and predicates define short hands that package expressions or constraints together. They can be
- named and reused in different contexts (facts, assertions and conditions of run)
- parameterized
- used to factor out common patterns
- Predicates are good for:
- Constraints that you don't want to record as facts
- Constraints that you want to reuse in different contexts
- Functions are good for
- Expressions that you want to reuse in different contexts

Functions

A function is a named expression with 0 or more arguments.

Examples

- The parent relation fun parent [] : Person->Person \{~children\}
- The lookup function
fun lookup [b:Book, n : Name] : set Addr \{ n.^(b.addr) \& Addr \}

Predicates

A predicate is a named constraint with 0 or more arguments.

Example:
pred ownGrandFather [p: Person] \{
p in p.grandfather
\}
no person is its own grand father
no p: Person | ownGrandFather[p]

