
Rigorous Software Development 
CSCI-GA 3033-009 

 Instructor: Thomas Wies 
 

Spring 2013 
 

Lecture 2 



Alloy Analyzer 

• Analyzes micro models of software 

• Helps to  

– identify key properties of a software design 

– find conceptual errors (not implementation errors) 

• Small scope hypothesis: many properties that 
do not hold have small counterexamples 

• Exhaustively search for errors in all instances 
of bounded size 

 



Example Applications 

• Security protocols 

• Train controllers 

• File systems 

• Databases 

• Network protocols 

• Software design/testing/repair/sketching 

 

Many examples are shipped with Alloy. More 
can be found on the Alloy website. 



Today: The Alloy Language 

Chapters 3 and 4 of Daniel Jackson’s book 



Atoms, Relations, Structures, and Models 

• An Alloy model defines a set of structures 
(instances) 

• A structure is built from atoms and relations 

• An atom is a primitive entity that is 
– indivisible: it can’t be broken down into smaller parts 

– immutable: its properties do not change over time 

– uninterpreted: it does not have any build-in properties, 
unlike, e.g. integer numbers 

• A relation is a mathematical object that relates 
atoms. It consists of a set of tuples, each tuple 
being a sequence of atoms. 



Atoms and Relations: Examples 

• Three unary relations: 

Name = {(N0), (N1), (N2)} 

Addr = {(A0), (A1), (A3)} 

Book = {(B0), (B1)} 

•  A ternary relation: 

addr = {(B0, N0, A1), (B0, N0, A2), (B1, N2, A0)} 

atoms 

tuples 



Size and Arity of Relations 

• The size (also cardinality) of a relation is the 
number of tuples in the relation. 

• The arity of a relation is the number of atoms 
in each tuple of the relation. 

• Examples: 
– A unary relation of size 3: 

Name = {(N0), (N1), (N2)} 

– A ternary relation of size 2: 
addr = {(B0, N0, A1), (B0, N1, A2)} 



Visualizing Structures: Snapshots 

Name = {(N0), (N1), (N2)} 

Addr = {(A0), (A1)} 

address = {(N0, A0), (N1, A0), (N1, A1)} 

N0 N1 

A0 A1 

N2 

address 
address address 



Visualizing Structures: Snapshots 

Name = {(N0), (N1), (N2)} 

Addr = {(A0), (A1), (A3)} 

Book = {(B0), (B1)} 

addr = {(B0, N0, A1), (B0, N0, A2), (B1, N2, A0)} 

B0 B1 

A1 A0 

N0 

addr[N0] addr[N0] addr[N2] 

A2 N1 

N2 



Scalars, Sets, and Relations 

In Alloy, everything is a relation, including scalars 
and sets 

• Sets of atoms are unary relations 
Name = {(N0),(N1),(N2)} 

• Scalars are singleton sets 
n = {(N0)} 

• The following objects are treated as identical: 
x 

(x) 

{x} 

{(x)} 

 



Domain and Range 

• The domain of a relation is the set of atoms in 
the first position of its tuples 

• The range of a relation is the set of atoms in 
the last position of its tuples 

• Example:  

address = {(N0, A0), (N1, A1), (N2, A1)} 

domain(address) = {(N0), (N1), (N2)} 

range(address) = {(A0), (A1)} 



Alloy Specifications 

• Signatures and Fields 
sets and relations defining the model 

• Predicates and Functions 
operations and test predicates 

• Facts  
assumptions about the model 

• Assertions  
properties and conjectures  

• Commands 
simulation, testing, and verification 



Signatures and Fields 

• Signatures 

– define the entities of your model 

• Fields 

– define relations between signatures 

• Signature constraints 

– multiplicity constraints on relations/signatures 

– signature facts 

 



Signatures 

• A signature introduces a set of atoms 

• The declaration  

 sig A {} 

introduces a set named A 

 

• A set can be introduced as a subset of another 
set 

 sig A1 extends A {} 



Signatures 

• Signatures declared independently of each 
other define disjoint sets 

 

sig A {} 

sig B {} 

sig A1 extends A {} 

sig A2 extends A {} 

A 

A1 A2 

B 



Signatures 

• An abstract set only contains the elements of 
its extensions 

 

abstract sig A {} 

sig B {} 

sig A1 extends A {} 

sig A2 extends A {} 

A 

A1 A2 

B 



Signatures 

• Signatures can also be declared as subsets of 
other signatures without being disjoint 

 

abstract sig A {} 

sig B {} 

sig A1 extends A {} 

sig A2 extends A {} 

sig A3 in A {} 

A 
A1 A2 

B 

A3 



Fields 

• Relations are declared as fields of signatures 
– The declaration  

   sig A {f: e}  
introduces a relation f whose domain is A and 
whose range is defined by the expression e. 

• Examples: 
– A binary relation f: A £ A 

sig A {f: A} 

– A ternary relation g: B £ A £ A 
sig B {g: A -> A} 



Multiplicities 

Multiplicities constrain the sizes of sets and relations 
• A multiplicity keyword placed before a signature 

declaration constraints the number of element in the 
signature’s set  
 m sig A {}  

• We can also make multiplicities constraints on fields:  
 sig A {f: m e}  
 sig A {f: e1 m -> n e2}  

• There are four multiplicities  
– set : any number   
– some : one or more  
– lone : zero or one  
– one : exactly one 



Multiplicities 

• Examples 

– RecentlyUsed: set Name 

– senderName: lone Name 

– addr: Alias ->lone Addr 

– f: A ->one B 

– f: A lone->one B 

• The default multiplicity keyword for  
unary relations is one 

r: e    is equivalent to   r: one e 

 

//addr is partial function 

// f is total function 

// f is total and injective function 



Example: Hierarchical Address Book 

Target 

Name Addr 

Group Alias 

addr 
extends 

extends 



Predefined Sets and Relations 

• There are three predefined constants 
– none : empty set 
– univ : universal set 
– iden : identity   

• Example: in the structure 
Name = {(N0), (N1), (N2)} 
Addr = {(A0), (A1)} 

these constants are interpreted as 
none = {} 
univ = {(N0), (N1), (N2), (A0), (A1)} 
iden = {(N0, N0), (N1, N1), (N2, N2), (A0, A0), (A1, A1)} 

 
 
 
 



Set Operators 

Alloy’s set operators are 
 

+   union 
&   intersection 
-   difference 
in  (subset) inclusion 
=   equality 
 
Examples: 
• {(A0),(A1),(A3)} + {(A1),(A2)} = {(A0),(A1),(A2),(A3)} 
• {(N0,A1),(N1,A2)} & {(N1,A2),(N2,A1)} = {(N1,A2)} 



Relational Operators 

Alloy’s relational operators are 
 

->  arrow (product) 
.   dot (join) 
[]  box (join) 
~   transpose 
^   transitive closure 
*   reflexive transitive closure 
<:  domain restriction 
:>  range restriction 
++  override 



Arrow Product 

• p -> q 
– p is n-ary relation, q is m-ary relation 
– p -> q is the (n+m)-ary relation obtained by pairwise 

concatenating all tuples in p and q 
 

p -> q = {(x1,…,xn,y1,…,ym) | (x1,…,xn)2p, (y1,…,ym)2q} 
 

• Examples:  
n = {(N)},  a = {(A0)},  Addr = {(A0),(A1),(A2)}, Book = {(B0),(B1)} 
 

n -> a = {(N, A0)} 
n -> Addr = {(N, A0), (N, A1), (N, A2)} 
Book -> n -> Addr = {(B0,N, A0), (B0,N, A1), (B0,N, A2), 
              (B1,N, A0), (B1,N, A1), (B1,N, A2)} 
 
 
 



Dot Join on Tuples 

• Join of tuples {(x1,…,xn)} and {(y1,…,ym)} is 
– none      if xn  y1 

– {(x1,…,xn-1,y2,…,ym)}   if xn = y1 

 

• Examples: 
– {(A,B)}.{(A,C)} = {} 

– {(A,B)}.{(B,C)} = {(A,C)} 

– {(A)}.{(A,C}) = {(C)} 

– {(A)}.{(A)} = ? 

 

• Dot join is undefined if both n=1 and m=1  

undefined 



Dot Join 
• p.q 

– p is n-ary relation, q is m-ary relation with n>1 or m>1 

– p.q is (n+m-1)-ary relation obtained by taking every  
combination of a tuple from p and a tuple from q and 
adding their join, if it exists. 
p.q = {(x1,…,xn-1,y2,…,ym)|(x1,…,xn)2p, (y1,…,ym)2q, xn=y1} 

 

 

 



Dot Join: Example 

to maps messages to the names of 
the recipients: 

to = {(M0,N0),(M0,N2), 

      (M1,N2),(M2,N3)} 
 

address maps names to addresses: 

address = {(N0,A0),(N0,A1),(N1,A1), 

(N1,A2),(N2,A3),(N4,A3)} 
 

to.address maps messages to 
addresses of recipients: 

to.address = {(M0,A0),(M0,A1),  

      (M0,A3),(M1,A3)} 

 

M0 

M1 

M2 

N0 

N1 

N2 

N3 

N4 

A0 

A1 

A2 

A3 

to.address 

address 

to 



Dot Join: Exercise 

• Given the relations mother and father, how do 
you express the grandfather relation? 
 
grandfather = (mother + father) .father 

 



Box Join 

• e1 [e2] 

– is semantically equivalent to e2.e1 

 

• Dot binds stronger than box 

a.b.c [d] is short for  d.(a.b.c) 

 

• Example: b.addr[n] denotes the addresses 
associated with name n in book b 



Transpose 

• ~ p 
– denotes the mirror image of relation p 

 

~p = {(xn,…,x1) | (x1,…,xn) 2 p} 

• Example: 
 address = {(N0, A0), (N1, A0), (N2, A1)} 
~address = {(A0, N0), (A0, N1), (A1, N2)} 

• some useful facts: 
– ~(~p.~q) is equal to q.p 
– if p is a unary and q binary then p.~q is equal to q.p 
– p.~p relates atoms in the domain of p that are related to 

the same element in the range of p 
– p.~p in iden states that p is injective 



(Reflexive) Transitive Closure 

• ^r  

– r is binary relation 

– transitive closure ^r is smallest transitive relation 
containing r 

^r = r + r.r + r.r.r + ... 
 

• reflexive transitive closure: *r = ^r + iden 



Transitive Closure: Example 

A relation address representing an address book with 
multiple levels (including groups of aliases): 

  address = {(G0,A0),(G0,G1),(A0,D0),(G1,D0),(G1,A1),(A1,D1),(A2,D2)} 

^address = {(G0,A0),(G0,G1),(A0,D0),(G1,D0),(G1,A1),(A1,D1),(A2,D2), 

          (G0,D0),(G0,A1),(G1,D1), 

                     (G0,D1)} 

G0 A0 

G1 A1 

D0 

D1 

A2 D2 ^address 

address 



Transitive Closure: Exercise 

• How would you express the ancestor relation 
in a family tree, given the children relation? 

 

ancestor  =  ^(~children) 

 



Domain and Range Restriction 

• s <: r 
– s is a set and r a relation 

– s <: r is the relation obtained by restricting the 
domain of r to s 

• r :> s 
– r :> s is the relation obtained by restricting the 

range of r to s 

• Example: 
siblings = {(M0,W0),(W0,M0),(W1,W2),(W2,W1)} 

women = {(W0),(W1),(W2)} 

sisters = siblings :> women 

 



Override 

• p ++ q 
– p and q are relations 

– like union, but any tuple in p that starts with the 
same element as a tuple in q is dropped 

• Example: 
homeAddress = {(N0,A1), (N1,A2), (N2,A3)} 

workAddress = {(N0,A0), (N1,A2)} 

homeAddress ++ workAddress = {(N0,A0), (N1,A2), (N2,A3)} 

• Example: insertion of a key k with value v into a 
hashmap m: 
m’ = m ++ k->v 

 



Logical Operators 

Alloy’s logical operators are 
 

not     !    negation 
and     &&   conjunction 
or      ||   disjunction 
implies =>   implication 
else    ,    alternative 
iff     <=>  biimplication 
 
Examples: F implies G else H 
          (F and G) or ((not F) and H) 



Operator Precedence 

||  
<=>  
=>  
&&  
!  
=  !=  in  
+  -  
++  
&  
->  
<:  
:>  
[]  
.  
~  *  

lowest 

highest 



Quantifiers 

• A quantified constraint takes the form 

Q x: e | F 

• The forms of quantification in Alloy are 

– all x: S | F    F holds for every x in S   

– some x: S | F   F holds for some x in S  

– no x: S | F     F fails for every x in S  

– lone x: S | F   F holds for at most 1 x in S  

– one x: S | F    F holds for exactly 1 x in S 



Quantifiers 

• Quantifiers can also be applied to expressions 

– some e   e has some tuple  

– no e     e has no tuples  

– lone e   e has at most one tuple  

– one e    e has exactly one tuple 



Let Expressions 

• let x = e | A  

– let expression can factor out a complicated subexpression 
e by introducing a short hand x 

– let expressions cannot be recursive, i.e., x is not allowed to 
appear in e 

• Example: preferred address of an alias a is the work 
address, if it exists 

all a : Alias | 

 let w = a.workAddress |  

 a.address = some w => w else a.homeAddress 



Comprehensions 

• {x: e | F}   

– the set of values x drawn from set e for which F 
holds 

– general form {x1: e1, …, xn: en | F} 
defines an n-ary relation 

 

• Example: relation mapping names to 
addresses in a multilevel address book 

{n: Name, a: Addr | n->a in ^address} 

 



Facts 

• Facts define additional assumptions about the 
signatures and fields of a model 

• Alloy will only consider instances that also satisfy 
all facts 

• Example: 

fact Biology { 

 no p: Person | p in p.^(mother + father) 

} 



Signature Facts 

• Signature facts express assumptions about 
each element of a signature 

• The declaration 
 sig A { ... } { F } 
is equivalent to 
 sig A { ... } 
 fact {all this: A | F’} 
where F’ is like F but with all appearances of 
fields g of A in F replaced by this.g 
  



Signature Facts: Example 

There are no cycles in the addr relation of an 
address book: 

 

sig Book { addr : Name -> Target } 

{ no n : Name | n in n.^addr } 



Assertions 

• An assertion is a constraint that is intended to follow 
from the facts of the model.  

• Useful to  
– find flaws in the model 

– express properties in different ways 

– act as regression tests 

• The analyzer checks assertions and produces a 
counterexample instance, if an assertion does not hold.   

• If an assertion does not hold, you typically want to  
– move that constraint into a fact or  

– refine your specification until the assertion holds. 



Assertions: Example 

 

 

 

assert addIdempotent  { 

  all b,b',b'' : Book, n : Name, a : Addr |
 add [b, b', n, a] and  

     add [b', b'', n, a] implies  

        b'.addr = b''.addr 

} 



Run Command 

• Used to ask Alloy to generate an instance of the 
model  

• May include conditions 

– Used to guide AA to pick model instances with certain 
characteristics 

– E.g., force certain sets and relations to be nonempty 

– In this case, not part of the “true” specification  

• Alloy only executes the first run command in a file 



Scope 

• Limits the size of instances considered to 
make instance finding feasible  

• Represents the maximum number of tuples in 
each top-level signature  

• Default scope is 3 



Run Command: Examples 

• run {} 
– no condition 
– scope is 3 

 
• run {} for 5 but exactly 2 Book 

– no condition 
– scope is 5 for all signatures except for signature Book, 

which should be of size exactly 2 
 

• run {some Book && some Name} for 2 
– condition forces Book and Name to be nonempty 
– scope is 2 



Functions and Predicates 

• Functions and predicates define short hands that 
package expressions or constraints together. They can be  
– named and reused in different contexts  

(facts, assertions and conditions of run)  

– parameterized  

– used to factor out common patterns  

• Predicates are good for:  
– Constraints that you don’t want to record as facts  

– Constraints that you want to reuse in different contexts  

• Functions are good for  
– Expressions that you want to reuse in different contexts 



Functions 

A function is a named expression with 0 or more 
arguments. 

 

Examples 

• The parent relation  
fun parent [] : Person->Person {~children} 

• The lookup function 
fun lookup [b : Book, n : Name] : set Addr { 
    n.^(b.addr) & Addr 
} 



Predicates 

A predicate is a named constraint with 0 or 
more arguments. 

 

Example: 
pred ownGrandFather [p: Person] { 

    p in p.grandfather 

} 

no person is its own grand father 
no p: Person | ownGrandFather[p] 


