Rigorous Software Development CSCI-GA 3033-009

Instructor: Thomas Wies

Spring 2013

Lecture 2

Alloy Analyzer

- Analyzes micro models of software
- Helps to
 - identify key properties of a software design
 - find conceptual errors (not implementation errors)
- Small scope hypothesis: many properties that do not hold have small counterexamples
- Exhaustively search for errors in all instances of bounded size

Example Applications

- Security protocols
- Train controllers
- File systems
- Databases
- Network protocols
- Software design/testing/repair/sketching

Many examples are shipped with Alloy. More can be found on the Alloy website.

Today: The Alloy Language

Chapters 3 and 4 of Daniel Jackson's book

Atoms, Relations, Structures, and Models

- An Alloy model defines a set of structures (instances)
- A structure is built from atoms and relations
- An atom is a primitive entity that is
 - *indivisible*: it can't be broken down into smaller parts
 - *immutable*: its properties do not change over time
 - *uninterpreted*: it does not have any build-in properties, unlike, e.g. integer numbers
- A relation is a mathematical object that relates atoms. It consists of a set of tuples, each tuple being a sequence of atoms.

Atoms and Relations: Examples

Three unary relations: Name = {(N₀), (N₁), (N₂)} Addr = {(A₀), (A₁), (A₃)} Book = {(B₀), (B₁)} A ternary relation: addr = {(B₀, N₀, A₁), (B₀, N₀, A₂), (B₁, N₂, A₀)}

Size and Arity of Relations

- The size (also cardinality) of a relation is the number of tuples in the relation.
- The arity of a relation is the number of atoms in each tuple of the relation.
- Examples:
 - A unary relation of size 3: Name = $\{(N_0), (N_1), (N_2)\}$
 - A ternary relation of size 2: addr = { $(B_0, N_0, A_1), (B_0, N_1, A_2)$ }

Visualizing Structures: Snapshots

Name = {(N₀), (N₁), (N₂)} Addr = {(A₀), (A₁)} address = {(N₀, A₀), (N₁, A₀), (N₁, A₁)}

Visualizing Structures: Snapshots

Name = {(N₀), (N₁), (N₂)} Addr = {(A₀), (A₁), (A₃)} Book = {(B₀), (B₁)} addr = {(B₀, N₀, A₁), (B₀, N₀, A₂), (B₁, N₂, A₀)}

Scalars, Sets, and Relations

In Alloy, everything is a relation, including scalars and sets

- Sets of atoms are unary relations
 Name = {(N₀), (N₁), (N₂)}
- Scalars are singleton sets
 n = {(N₀)}
- The following objects are treated as identical:
 x

 (x)

Domain and Range

- The domain of a relation is the set of atoms in the first position of its tuples
- The range of a relation is the set of atoms in the last position of its tuples
- Example:

address = {(N_0 , A_0), (N_1 , A_1), (N_2 , A_1)} domain(address) = {(N_0), (N_1), (N_2)} range(address) = {(A_0), (A_1)}

Alloy Specifications

- Signatures and Fields sets and relations defining the model
- Predicates and Functions operations and test predicates
- Facts assumptions about the model
- Assertions *properties and conjectures*
- Commands *simulation, testing, and verification*

Signatures and Fields

• Signatures

- define the entities of your model

- Fields
 - define relations between signatures
- Signature constraints
 - multiplicity constraints on relations/signatures
 - signature facts

- A signature introduces a set of atoms
- The declaration

sig A {} introduces a set named A

A set can be introduced as a subset of another set

sig A1 extends A {}

Signatures declared independently of each other define disjoint sets

```
sig A {}
sig B {}
sig A1 extends A {}
sig A2 extends A {}
```


 An abstract set only contains the elements of its extensions

abstract sig A {}
sig B {}
sig A1 extends A {}
sig A2 extends A {}

 Signatures can also be declared as subsets of other signatures without being disjoint

abstract sig A {}
sig B {}
sig A1 extends A {}
sig A2 extends A {}
sig A3 in A {}

Fields

- Relations are declared as fields of signatures
 - The declaration
 sig A {f: e}
 introduces a relation f whose domain is A and whose range is defined by the expression e.
- Examples:
 - A binary relation f: A × A
 sig A {f: A}
 - A ternary relation g: $\mathbf{B} \times \mathbf{A} \times \mathbf{A}$

sig B {g: A -> A}

Multiplicities

Multiplicities constrain the sizes of sets and relations

 A multiplicity keyword placed before a signature declaration constraints the number of element in the signature's set

m sig A {}

- We can also make multiplicities constraints on fields: sig A {f: m e} sig A {f: e1 m -> n e2}
- There are four multiplicities
 - set : any number
 - some : one or more
 - lone : zero or one
 - one : exactly one

Multiplicities

- Examples
 - RecentlyUsed: set Name
 - senderName: lone Name
 - addr: Alias ->lone Addr //addr is partial function
 - -f: A ->one B // f is total function
 - -f: A lone->one B // f is total and injective function
- The default multiplicity keyword for unary relations is **one**
 - r: e is equivalent to r: one e

Example: Hierarchical Address Book

Predefined Sets and Relations

- There are three predefined constants
 - none : empty set
 - univ : universal set
 - iden : identity
- Example: in the structure

 Name = {(N₀), (N₁), (N₂)}
 Addr = {(A₀), (A₁)}
 these constants are interpreted as
 none = {}
 univ = {(N₀), (N₁), (N₂), (A₀), (A₁)}
 iden = {(N₀, N₀), (N₁, N₁), (N₂, N₂), (A₀, A₀), (A₁, A₁)}

Set Operators

- Alloy's set operators are
- + union
- & intersection
- difference
- in (subset) inclusion
- = equality

Examples:

- {(A₀),(A₁),(A₃)} + {(A₁),(A₂)} = {(A₀),(A₁),(A₂),(A₃)}
- {(N₀,A₁),(N₁,A₂)} & {(N₁,A₂),(N₂,A₁)} = {(N₁,A₂)}

Relational Operators

Alloy's relational operators are

- -> arrow (product)
- . dot (join)
- [] box (join)
- ~ transpose
- ^ transitive closure
- reflexive transitive closure
- <: domain restriction
- :> range restriction
- ++ override

Arrow Product

- p -> q
 - p is n-ary relation, q is m-ary relation
 - p -> q is the (n+m)-ary relation obtained by pairwise concatenating all tuples in p and q

 $p \rightarrow q = \{(x_1, ..., x_n, y_1, ..., y_m) \mid (x_1, ..., x_n) \in p, (y_1, ..., y_m) \in q\}$

• Examples: $n = \{(N)\}, a = \{(A_0)\}, Addr = \{(A_0), (A_1), (A_2)\}, Book = \{(B_0), (B_1)\}$

$$\begin{split} n & -> a = \{(N, A_0)\} \\ n & -> Addr = \{(N, A_0), (N, A_1), (N, A_2)\} \\ Book & -> n & -> Addr = \{(B_0, N, A_0), (B_0, N, A_1), (B_0, N, A_2), \\ & (B_1, N, A_0), (B_1, N, A_1), (B_1, N, A_2)\} \end{split}$$

Dot Join on Tuples

- Join of tuples $\{(x_1,...,x_n)\}$ and $\{(y_1,...,y_m)\}$ is - none if $x_n \neq y_1$
 - $\{(x_1,...,x_{n-1},y_2,...,y_m)\}$ if $x_n = y_1$
- Examples:
 - $\{(A,B)\}.\{(A,C)\} = \{\}$
 - $\{(A,B)\}.\{(B,C)\} = \{(A,C)\}$
 - $\{(A)\}.\{(A,C\}) = \{(C)\}$
 - $\{(A)\}.\{(A)\} = ?$ undefined
- Dot join is undefined if **both** n=1 and m=1

Dot Join

- p.q
 - p is n-ary relation, q is m-ary relation with n>1 or m>1
 - p.q is (n+m-1)-ary relation obtained by taking every combination of a tuple from p and a tuple from q and adding their join, if it exists.

 $p.q = \{(x_1, ..., x_{n-1}, y_2, ..., y_m) | (x_1, ..., x_n) \in p, (y_1, ..., y_m) \in q, x_n = y_1 \}$

Dot Join: Example

to maps messages to the names of the recipients:

to = {
$$(M_0, N_0), (M_0, N_2),$$

 $(M_1, N_2), (M_2, N_3)$ }

address maps names to addresses: address = $\{(N_0, A_0), (N_0, A_1), (N_1, A_1), (N_1, A_2), (N_2, A_3), (N_4, A_3)\}$

to.address maps messages to addresses of recipients: to.address = $\{(M_0, A_0), (M_0, A_1), (M_0, A_3), (M_1, A_3)\}$

Dot Join: Exercise

• Given the relations mother and father, how do you express the grandfather relation?

grandfather =

Box Join

• e1 [e2]

is semantically equivalent to e2.e1

- Dot binds stronger than box
 a.b.c [d] is short for d.(a.b.c)
- Example: b.addr[n] denotes the addresses associated with name n in book b

Transpose

• ~ p

denotes the mirror image of relation p

 ${\thicksim}p \ = \{(x_n,...,x_1) \ | \ (x_1,...,x_n) \in p\}$

• Example:

address = {(N_0, A_0), (N_1, A_0), (N_2, A_1)} ~address = {(A_0, N_0), (A_0, N_1), (A_1, N_2)}

- some useful facts:
 - $\sim (\sim p \cdot \sim q)$ is equal to $q \cdot p$
 - if p is a unary and q binary then $p \cdot q$ is equal to $q \cdot p$
 - p.~p relates atoms in the domain of p that are related to the same element in the range of p
 - p.~p in iden states that p is injective

(Reflexive) Transitive Closure

• ^r

- r is binary relation
- transitive closure ^r is smallest transitive relation containing r

 $^{r} = r + r.r + r.r.r + ...$

• reflexive transitive closure: *r = ^r + iden

Transitive Closure: Example

A relation address representing an address book with multiple levels (including groups of aliases):

address = {(G_0, A_0), (G_0, G_1), (A_0, D_0), (G_1, D_0), (G_1, A_1), (A_1, D_1), (A_2, D_2)} ^address = {(G_0, A_0), (G_0, G_1), (A_0, D_0), (G_1, D_0), (G_1, A_1), (A_1, D_1), (A_2, D_2), (G_0, D_0), (G_0, A_1), (G_1, D_1),

 (G_0, D_1)

Transitive Closure: Exercise

• How would you express the ancestor relation in a family tree, given the children relation?

ancestor =

Domain and Range Restriction

- s <: r
 - s is a set and r a relation
 - s <: r is the relation obtained by restricting the domain of r to s
- r :> s
 - r :> s is the relation obtained by restricting the range of r to s
- Example:

siblings = $\{(M_0, W_0), (W_0, M_0), (W_1, W_2), (W_2, W_1)\}$ women = $\{(W_0), (W_1), (W_2)\}$ sisters = siblings :> women

Override

• p ++ q

- p and q are relations
- like union, but any tuple in p that starts with the same element as a tuple in q is dropped
- Example:

homeAddress = {(N_0, A_1), (N_1, A_2), (N_2, A_3)} workAddress = {(N_0, A_0), (N_1, A_2)} homeAddress ++ workAddress = {(N_0, A_0), (N_1, A_2), (N_2, A_3)}

Example: insertion of a key k with value v into a hashmap m:

m' = m ++ k->v

Logical Operators

Alloy's logical operators are

- not ! negation and && conjunction or || disjunction implies => implication else , alternative
- iff <=> biimplication

Examples: F implies G else H (F and G) or ((not F) and H)

Operator Precedence

Quantifiers

- A quantified constraint takes the form Q x: e | F
- The forms of quantification in Alloy are
 - **all** x: S | F

 - **no** x: S | F

 - -one x: S F

- F holds for every x in S
- **some** x: S | F F holds for some x in S
 - F fails for every x in S
- -lone x: S | F F F holds for at most 1 x in S
 - F holds for exactly 1 x in S

Quantifiers

- Quantifiers can also be applied to expressions
 - **some** e has some tuple
 - no e e has no tuples
 - -lone e has at most one tuple
 - one e has exactly one tuple

Let Expressions

• let x = e | A

- let expression can factor out a complicated subexpression
 e by introducing a short hand x
- let expressions cannot be recursive, i.e., x is not allowed to appear in e
- Example: preferred address of an alias a is the work address, if it exists

```
all a : Alias |
```

let w = a.workAddress

a.address = **some** w => w **else** a.homeAddress

Comprehensions

- {x: e | F}
 - the set of values x drawn from set e for which F holds
 - general form { x_1 : e_1 , ..., x_n : e_n | F} defines an n-ary relation
- Example: relation mapping names to addresses in a multilevel address book

{n: Name, a: Addr | n->a in ^address}

Facts

- Facts define additional assumptions about the signatures and fields of a model
- Alloy will only consider instances that also satisfy all facts
- Example:

```
fact Biology {
    no p: Person | p in p.^(mother + father)
}
```

Signature Facts

- Signature facts express assumptions about each element of a signature
- The declaration

 sig A { ... } { F }
 is equivalent to

 sig A { ... }
 fact {all this: A | F'}

 where F' is like F but with all appearances of fields g of A in F replaced by this.g

Signature Facts: Example

There are no cycles in the addr relation of an address book:

sig Book { addr : Name -> Target }
{ no n : Name | n in n.^addr }

Assertions

- An assertion is a constraint that is intended to follow from the facts of the model.
- Useful to
 - find flaws in the model
 - express properties in different ways
 - act as regression tests
- The analyzer checks assertions and produces a counterexample instance, if an assertion does not hold.
- If an assertion does not hold, you typically want to
 - move that constraint into a fact or
 - refine your specification until the assertion holds.

Assertions: Example

```
assert addIdempotent {
  all b,b',b'' : Book, n : Name, a : Addr |
  add [b, b', n, a] and
  add [b', b'', n, a] implies
    b'.addr = b''.addr
```

Run Command

- Used to ask Alloy to generate an instance of the model
- May include conditions
 - Used to guide AA to pick model instances with certain characteristics
 - E.g., force certain sets and relations to be nonempty
 - In this case, not part of the "true" specification
- Alloy only executes the first run command in a file

Scope

- Limits the size of instances considered to make instance finding feasible
- Represents the maximum number of tuples in each top-level signature
- Default scope is 3

Run Command: Examples

- run {}
 - no condition
 - scope is 3
- run {} for 5 but exactly 2 Book
 - no condition
 - scope is 5 for all signatures except for signature Book, which should be of size exactly 2
- run {some Book && some Name} for 2
 - condition forces Book and Name to be nonempty
 - scope is 2

Functions and Predicates

- Functions and predicates define short hands that package expressions or constraints together. They can be
 - named and reused in different contexts (facts, assertions and conditions of run)
 - parameterized
 - used to factor out common patterns
- Predicates are good for:
 - Constraints that you don't want to record as facts
 - Constraints that you want to reuse in different contexts
- Functions are good for
 - Expressions that you want to reuse in different contexts

Functions

A function is a named expression with 0 or more arguments.

Examples

- The parent relation
 fun parent [] : Person->Person {~children}

Predicates

A predicate is a named constraint with 0 or more arguments.

```
Example:
pred ownGrandFather [p: Person] {
    p in p.grandfather
}
no person is its own grand father
no p: Person | ownGrandFather[p]
```