Rigorous Software Development
CSCI-GA 3033-009

Instructor: Thomas Wies



Alloy Analyzer

Analyzes micro models of software
Helps to

— identify key properties of a software design

— find conceptual errors (not implementation errors)

Small scope hypothesis: many properties that
do not hold have small counterexamples

Exhaustively search for errors in all instances
of bounded size



Example Applications

e Security protocols

* Train controllers

* File systems

* Databases

 Network protocols

» Software design/testing/repair/sketching

Many examples are shipped with Alloy. More
can be found on the Alloy website.



Today: The Alloy Language

Chapters 3 and 4 of Daniel Jackson’s book

. Software Abstractions




Atoms, Relations, Structures, and Models

 An Alloy model defines a set of structures
(instances)

e A structure is built from atoms and relations

 An atom is a primitive entity that is
— indivisible: it can’t be broken down into smaller parts
— immutable: its properties do not change over time
— uninterpreted: it does not have any build-in properties,

unlike, e.g. integer numbers

* Arelation is a mathematical object that relates
atoms. It consists of a set of tuples, each tuple
being a sequence of atoms.



Atoms and Relations: Examples

 Three unary relations:
Name = {(Ng), (N;), (N,)}
Addr = {(A), (A;), (A3)}—
Book = {(B,), (B]ll
. atoms
 Aternary relation: ] |
addr = {(BO’ NO’ Al)’ (B()r NOI Az)) (Bll NZ' AO)}

tuples




Size and Arity of Relations

 The size (also cardinality) of a relation is the
number of tuples in the relation.

* The arity of a relation is the number of atoms
in each tuple of the relation.

 Examples:

— A unary relation of size 3:
Name = {(Np), (N;), (N,)}

— A ternary relation of size 2:
addr = {(BOI No; A]_)I (BOI N1) Az)}



Visualizing Structures: Snapshots
Name = {(Ny), (N;), (N,)}

Addr = {(Ao)r (Al)}
address = {(Ny, A,), (N5, Ay), (N, A,)}

address

address



Visualizing Structures: Snapshots

Name = {(No), (N,), (N,)}

Addr = {(A), (A,), (A3)}

Book = {(B,), (B,)}

addr = {(By, Ny, Ay), (By, N, A;), (B, Ny, Ap)}

n

addr[N,] addr[N,] addr[N,]




Scalars, Sets, and Relations

In Alloy, everything is a relation, including scalars
and sets
* Sets of atoms are unary relations
Name = {(No)r(Nl);(Nz)}
e Scalars are singleton sets
n= {(No)}
* The following objects are treated as identical:
X
(x)
{x}
{(x)}



Domain and Range

e The domain of a relation is the set of atoms in
the first position of its tuples

* The range of a relation is the set of atoms in
the last position of its tuples

 Example:
address = {(NO' Ao)z (N1r Al)/ (Nzr Al)}
domain(address) = {(N,), (N;), (N,)}
range(address) = {(A,), (A,)}



Alloy Specifications

Signatures and Fields
sets and relations defining the model

Predicates and Functions
operations and test predicates

Facts
assumptions about the model

Assertions
properties and conjectures

Commands
simulation, testing, and verification



Signatures and Fields

* Signhatures

— define the entities of your model
* Fields

— define relations between signatures

* Signhature constraints
— multiplicity constraints on relations/signatures
— signature facts



Signatures

* Asignature introduces a set of atoms
* The declaration

sig A {}
introduces a set named A

e A setcan beintroduced as a subset of another
set

sig Al extends A {}



Signatures

* Signatures declared independently of each
other define disjoint sets

sig A {}
sig B {} Al
sig Al extends A {}

sig A2 extends A {}




Signatures

* An abstract set only contains the elements of
Its extensions

abstract sig A {} A
Sig B {} Al A2
sig Al extends A {}

sig A2 extends A {}




Signatures

* Signatures can also be declared as subsets of

other signatures without being disjoint

abstract sig A {} A
sig B {}

sig Al extends A {}

sig A2 extends A {}

sig A3 in A {}

Al

A2

A3




Fields

* Relations are declared as fields of signatures

— The declaration
sig A {f: e}
introduces a relation ¥ whose domain is A and
whose range is defined by the expression e.

 Examples:
— A binary relation f: A x A
sig A {f: A}
— Aternaryrelationg: B x A XA
sig B {g: A -> A}



Multiplicities

Multiplicities constrain the sizes of sets and relations

* A multiplicity keyword placed before a signature
declaration constraints the number of element in the
signature’s set

m sig A {}
* We can also make multiplicities constraints on fields:
sig A {f: m e}
sig A {f: el m -> n e2}
 There are four multiplicities
— set : any number
— Ssome : one or more
— lone : zero or one
— one : exactly one



Multiplicities

 Examples
— RecentlyUsed: set Name
— senderName: lone Name
—addr: Alias ->lone Addr //addris partial function
—f: A ->one B //fistotal function
—f: A lone->one B //fistotal and injective function

* The default multiplicity keyword for
unary relations is one

r: e isequivalentto r: one e



Example: Hierarchical Address Book

a N
Target
/
addr /- Y .
,,,,,,, extends T
- e ) ™
Addr
- /
,,,,, extends
. ‘ N )
Group Alias




Predefined Sets and Relations

* There are three predefined constants
— none : empty set
— unilv : universal set
— iden : identity
 Example: in the structure
Name = {(Ny), (N;), (N,)}
Addr = {(A,), (A)}
these constants are interpreted as
none = {}

UniV = {(NO), (Nl)i (Nz)l (AO)I (Al)}
iden = {(Ng, Ng), (N3, Ny), (N3, N,), (Aq, Ag), (Ay, A}



Set Operators

Alloy’s set operators are

+ union

& intersection

- difference

in (subset) inclusion
= equality
Examples:

° {(AO)l(Al)l(A3)} + {(Al)i(AZ)} = {(AO)I(Al)I(AZ)I(AB)}
* {(NOIAl)l(NllAz)} & {(N]_IAZ)I(NZIA]_)} = {(NliAz)}



Relational Operators

Alloy’s relational operators are

-> arrow (product)
dot (join)

[] box(join)

~  transpose

A transitive closure

*

<

reflexive transitive closure
domain restriction

:> range restriction

++ override



Arrow Product

° p -> q
— p is n-ary relation, g is m-ary relation

— p ->qis the (n+m)-ary relation obtained by pairwise
concatenating all tuples in p and g

P->d={(Xy, XYoo ¥Ym) | (XpeeX)EP, (Vo) Y ) €QL

* Examples:
n={(N)}, a=1{(Ap)}, Addr={(Ag),(A;),(A;)}, Book ={(B,),(B,)}

n->a={(N, A}

n ->Addr={(N, A,), (N, A)), (N, A,)}

Book -> n -> Addr = {(B,,N, A,), (By,N, A,), (By,N, A,),
(B;,N, A,), (B,N, A,), (BN, A,)}



Dot Join on Tuples

* Join of tuples {(x,,...,x,,)} and {(y4,...,y,)} IS
— none if x, =y,
_ {(Xli"-;Xn-llyz;"-;ym)} If Xn = y1

 Examples:
— {(A,B)}{(A,C)} = {}
— {(A,B)}.{(B,C)} = {(A,C)}

— {(A)1(A,CH =1(C)}
— {(A)}.{(A)}=? undefined

* Dot join is undefined if both n=1 and m=1



Dot Join
* p.q

— p is n-ary relation, g is m-ary relation with n>1 or m>1

— p.qis (n+m-1)-ary relation obtained by taking every
combination of a tuple from p and a tuple from g and
adding their join, if it exists.
D.q = {(Xy X 1Yo Ym) | (X0 X ) ER, (Voo Vi) €Dy X, =Y1 )



Dot Join: Example

——————————————
’/
4

to maps messages to the names of
the recipients:

to = {(Mg,N,),(M,,N,),
(erNz)l(M2/N3)}

address maps names to addresses:
address = {(N,,Ay),(Ng,A,),(NLA,),
(N1)A2))(N2;A3)1(N41A3)}

to.address maps messages to
addresses of recipients:

to.address = {(M,,A.),(My,A,), address
(M01A3)1(M11A3)} to.address

e el 3

>



Dot Join: Exercise

* Given the relations mother and father, how do
you express the grandfather relation?

grandfather =



Box Join

e el [e2]

— is semantically equivalent to e2.el

* Dot binds stronger than box
a.b.c [d] isshortfor d.(a.b.c)

 Example: b.addr[n] denotes the addresses
associated with name n in book b



Transpose

*~P

— denotes the mirror image of relation p

~p ={(X,,.Xq) | (Xg,-X,) € P}
 Example:
address = {(N,, Ay), (N, Ay), (N,, A))}

~address = {(A,, N,), (A, N;), (A, N,)}
* some useful facts:

— ~(~p.~q) isequaltoqg.p

— if pisaunary and g binary then p.~q isequaltoqg.p

— p.~p relates atoms in the domain of p that are related to
the same element in the range of p

— p.~p 1n iden statesthat pisinjective



(Reflexive) Transitive Closure

° /\r\
— ris binary relation

— transitive closure ”r is smallest transitive relation
containing r
r =P + r.r+ r.r.r+ ...

e reflexive transitive closure: *r = “r + iden



Transitive Closure: Example

A relation address representing an address book with
multiple levels (including groups of aliases):

address = {(Gy,A;),(Gy,G1),(Ay,Dy),(G1,D,),(G1,A,),(A,,D,),(A,,D,)}

Aaddress = {(G,,A),(Go,G1),(Ag,Dy),(G1,Dy),(G1,A,),(A,D,),(A,,D,),
(GoyDo),(Gg,A1),(G4,D,),

(Go,Dy)}

address

>
Maddress Q———-»Q




Transitive Closure: Exercise

* How would you express the ancestor relation
in a family tree, given the children relation?

ancestor =



Domain and Range Restriction

e S K.
— s isaset and r a relation

— S <: r isthe relation obtained by restricting the
domainof rto s

*r > S

— r :> s isthe relation obtained by restricting the
rangeof rtos

 Example:
siblings = {(My,W,),(W,,M,),(W,,W,),(W,,W,)}
women = {(W,),(W,),(W,)}
sisters = siblings : > women



Override

°p ++ ¢

— p and g are relations

— like union, but any tuple in p that starts with the

same element as a tuple in g is dropped

 Example:

homeAddress = {(N,,A;), (N,,A,), (N,,A;)}

workAddress = {(N,,A,), (N,A,)}

homeAddress ++ workAddress = {(N,,A,), (N, A,), (N,,A;)}
* Example: insertion of a key k with value v into a

hashmap m:

m’ = m ++ k->v



Logical Operators

Alloy’s logical operators are

not ! negation
and &%  conjunction
or ||  disjunction
implies =>  implication
else 5 alternative
iff <=> biimplication

Examples: F implies G else H
(F and G) or ((not F) and H)



Operator Precedence

|| lowest
<=>

=>

&&

!

= = 1in

+

++

&

->

<:

:>

[]

o« v highest



Quantifiers

* A quantified constraint takes the form

Q x: e | F

* The forms of quantification in Alloy are

—all x: S | F
—some x: S | F
—no x: S | F

—1lone x: S | F
—one x: S | F

F ho
F ho
F fai
F ho
F ho

ds for every xin S

ds for some xin S

s for every xin S

ds forat most 1 xin S
ds for exactly 1 xin S



Quantifiers

* Quantifiers can also be applied to expressions
— some e e has some tuple

—no e nas no tuples

e
— lone e e has at most one tuple
e

—onhe e nas exactly one tuple



Let Expressions

clJet x = e | A
— let expression can factor out a complicated subexpression
e by introducing a short hand x

— let expressions cannot be recursive, i.e., X is not allowed to
appearin e

 Example: preferred address of an alias a is the work
address, if it exists
all a : Alias |
let w = a.workAddress |
a.address = some w => w else a.homeAddress



Comprehensions

e {x: e | F}
— the set of values x drawn from set e for which F
holds

— general form {x,: e;, .., x,: e, | F}
defines an n-ary relation

 Example: relation mapping names to
addresses in a multilevel address book
{n: Name, a: Addr | n->a in ~address}



Facts

* Facts define additional assumptions about the
signatures and fields of a model

* Alloy will only consider instances that also satisfy
all facts

 Example:

fact Biology {
no p: Person | p in p.~(mother + father)



Signature Facts

* Signature facts express assumptions about
each element of a sighature

e The declaration

sig A{ ... } { F }
is equivalent to

sig A { ... }

fact {all this: A | F’}
where F~ is like F but with all appearances of
fields g of Ain F replaced by this.g



Signature Facts: Example

There are no cycles in the addr relation of an
address book:

sig Book { addr : Name -> Target }
{ non : Name | n in n.”addr }



Assertions

An assertion is a constraint that is intended to follow
from the facts of the model.

Useful to

— find flaws in the model

— express properties in different ways

— act as regression tests
The analyzer checks assertions and produces a
counterexample instance, if an assertion does not hold.
If an assertion does not hold, you typically want to
— move that constraint into a fact or

— refine your specification until the assertion holds.



Assertions: Example

assert addIdempotent {

all b,b',b"'" : Book, n : Name, a : Addr |
add [b, b', n, a] and

add [b', b"', n, a] implies
b'.addr = b''.addr



Run Command

* Used to ask Alloy to generate an instance of the
model

 May include conditions

— Used to guide AA to pick model instances with certain
characteristics

— E.g., force certain sets and relations to be nonempty
— In this case, not part of the “true” specification

* Alloy only executes the first run command in a file



Scope

e Limits the size of instances considered to
make instance finding feasible

* Represents the maximum number of tuples in
each top-level signature

e Default scopeis 3



Run Command: Examples

* run {}
— no condition
— scopeis 3

* run {} for 5 but exactly 2 Book

— no condition

— scope is 5 for all signatures except for signature Book,
which should be of size exactly 2

* run {some Book && some Name} for 2
— condition forces Book and Name to be nonempty
— scope is 2



Functions and Predicates

* Functions and predicates define short hands that
package expressions or constraints together. They can be

— named and reused in different contexts
(facts, assertions and conditions of run)

— parameterized

— used to factor out common patterns
* Predicates are good for:

— Constraints that you don’t want to record as facts

— Constraints that you want to reuse in different contexts
* Functions are good for

— Expressions that you want to reuse in different contexts



Functions

A function is a named expression with O or more
arguments.

Examples

* The parent relation
fun parent [] : Person->Person {~children}

* The lookup function

fun lookup [b : Book, n : Name] : set Addr {
n.~(b.addr) & Addr
}



Predicates

A predicate is a named constraint with O or
more arguments.

Example:

pred ownGrandFather [p: Person] {
p in p.grandfather

¥

no person is its own grand father
no p: Person | ownGrandFather[p]



