
Programming Paradigms for Concurrency
Lecture 8 – Transactional Memory

Based on companion slides for
The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

Modified by
Thomas Wies

New York University

TexPoint fonts used in EMF.

Read the TexPoint manual before you
delete this box.: AAAA

2

Beyond the State of the Art

So far, we covered...

Best practices …

New and clever ideas …

And common-sense observations.

3

So far, we covered ...

Best practices …

New and clever ideas …

And common-sense observations.

Nevertheless …

Concurrent programming is still too hard …

Next, we explore why this is ….

and what we can do about it.

Beyond the State of the Art

4

Locking

5

Coarse-Grained Locking

Easily made correct …

But not scalable.

6

Fine-Grained Locking

Can be tricky …

7

Locks are not Robust

If a thread holding

a lock is delayed …

No one else can

make progress

Locking Relies on Conventions

• Relation between

– Lock bit and object bits

– Exists only in programmer’s mind

/*

 * When a locked buffer is visible to the I/O layer

 * BH_Launder is set. This means before unlocking

 * we must clear BH_Launder,mb() on alpha and then

 * clear BH_Lock, so no reader can see BH_Launder set

 * on an unlocked buffer and then risk to deadlock.

 */

Actual comment

from Linux Kernel
(hat tip: Bradley Kuszmaul)

9

Simple Problems are hard

enq(x) enq(y)
double-ended queue

No interference if

ends “far apart”
Interference OK if

queue is small
Clean solution is

publishable result:
[Michael & Scott PODC 97]

10

Locks Not Composable

Transfer item from one

queue to another
Must be atomic :

No duplicate or missing items

11

Locks Not Composable

Lock source

Lock target

Unlock source

& target

12

Locks Not Composable

Lock source

Lock target

Unlock source &

target

Methods cannot provide

internal synchronization
Objects must expose

locking protocols to clients

Clients must devise and

follow protocols
Abstraction broken!

13

Monitor Wait and Signal

zzz

Empty

buffer
Yes!

If buffer is empty,

 wait for item to show up

14

Wait and Signal do not Compose

empty

empty zzz… Wait for either?

15 15

The Transactional Manifesto

• Current practice inadequate

– to meet the multicore challenge

• Alternative Programming Paradigm

– Replace locking with a transactional API

– Design languages or libraries

– Implement efficient run-times

16 16

Transactions

Block of code ….

Atomic: appears to happen

instantaneously

Serializable: all appear to

happen in one-at-a-time

order Commit: takes effect

(atomically)

Abort: has no effect

(typically restarted)

17 17

atomic {
 x.remove(3);
 y.add(3);
}

atomic {
 y = null;
}

Atomic Blocks

18 18

atomic {
 x.remove(3);
 y.add(3);
}

atomic {
 y = null;
}

Atomic Blocks

No data race

19 19

public void LeftEnq(item x) {
 Qnode q = new Qnode(x);
 q.left = this.left;
 this.left.right = q;
 this.left = q;
}

A Double-Ended Queue

Write sequential Code

20 20

public void LeftEnq(item x)
 atomic {
 Qnode q = new Qnode(x);
 q.left = this.left;
 this.left.right = q;
 this.left = q;
 }
}

A Double-Ended Queue

21 21

public void LeftEnq(item x) {
 atomic {
 Qnode q = new Qnode(x);
 q.left = this.left;
 this.left.right = q;
 this.left = q;
 }
}

A Double-Ended Queue

Enclose in atomic block

22 22

Warning

• Not always this simple

– Conditional waits

– Enhanced concurrency

– Complex patterns

• But often it is…

23

Composition?

24

Composition?

public void Transfer(Queue<T> q1, q2)
{
 atomic {
 T x = q1.deq();
 q2.enq(x);
 }
}

Trivial or what?

25 25

public T LeftDeq() {
 atomic {
 if (this.left == null)
 retry;
 …

 }
}

Conditional Waiting

Roll back transaction

and restart when

something changes

26 26

Composable Conditional Waiting

atomic {
 x = q1.deq();
} orElse {
 x = q2.deq();
}

Run 1st method. If it retries …
Run 2nd method. If it retries …

Entire statement retries

27

Simple Lock-Based STM

• STMs come in different forms

– Lock-based

– Lock-free

• Here : a simple lock-based STM

28

Synchronization

• Transaction keeps

– Read set: locations & values read

– Write set: locations & values to be written

• Deferred update

– Changes installed at commit

• Lazy conflict detection

– Conflicts detected at commit

29 29

STM: Transactional Locking

 Map

Application

Memory

V#

V#

V#

Array of

version #s &

locks

30 30

Reading an Object
Mem

Locks

V#

V#

V#

V#

V#

Add version numbers

& values to read set

31 31

To Write an Object
Mem

Locks

V#

V#

V#

V#

V#

Add version numbers &

new values to write set

32 32

To Commit
Mem

Locks

V#

V#

V#

V#

V#

X

Y

V#+1

V#+1

Acquire write locks

Check version numbers

unchanged
Install new values

Increment version numbers

Unlock.

Problem: Internal

Inconsistency

• A Zombie is an active transaction destined to

abort.

• If Zombies see inconsistent states bad things

can happen

34

Internal Consistency

x

y

4

2

8

4

Invariant: x = 2y

Transaction A: reads x = 4

Transaction B: writes

8 to x, 4 to y, aborts A)

Transaction A: (zombie)

reads y = 4

computes 1/(x-y)

Divide by zero FAIL!

35

Solution: The Global Clock

• Have one shared global clock

• Incremented by (small subset of) writing

transactions

• Read by all transactions

• Used to validate that state worked on is

always consistent

100

36 36

Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version

Clock

Private Read

Version (RV)

Copy version clock to local

read version clock

100

37 37

Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version

Clock

Private Read

Version (RV)

Copy version clock to local

read version clock
Read lock, version #, and

memory

100

38 38

Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version

Clock

Private Read

Version (RV)

Copy version clock to local

read version clock
Read lock, version #, and

memory On Commit:

check unlocked &

version # unchanged

39 39

Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version

Clock

Private Read

Version (RV)

Copy version clock to local

read version clock
Read lock, version #, and

memory On Commit:

check unlocked &

version # unchanged

Check that version #s less than

local read clock

100

40 40

Read-Only Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version

Clock

Private Read

Version (RV)

Copy version clock to local

read version clock
Read lock, version #, and

memory On Commit:

check unlocked &

version # unchanged

Check that version #s less than

local read clock

100

We have taken a snapshot without

keeping an explicit read set!

100

41 41

Regular Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version

Clock

Private Read

Version (RV)

Copy version clock to local

read version clock

100

42 42

Regular Transactions
Mem

Locks

12

32

56

19

17

100

Shared Version

Clock

Private Read

Version (RV)

Copy version clock to local

read version clock
On read/write, check:

Unlocked & version # < RV

Add to R/W set

43 43

On Commit
Mem

Locks

100

Shared Version

Clock

100

12

32

56

19

17 Private Read

Version (RV)

Acquire write locks

44 44

On Commit
Mem

Locks

100

Shared Version

Clock

100 101

12

32

56

19

17 Private Read

Version (RV)

Acquire write locks

Increment Version Clock

45 45

On Commit
Mem

Locks

100

Shared Version

Clock

100 101

12

32

56

19

17 Private Read

Version (RV)

Acquire write locks

Increment Version Clock

Check version numbers ≤ RV

46 46

On Commit
Mem

Locks

100

Shared Version

Clock

100 101

12

32

56

19

17 Private Read

Version (RV)

Acquire write locks

Increment Version Clock

Check version numbers ≤ RV
Update memory x

y

47 47

On Commit
Mem

Locks

100

Shared Version

Clock

100 101

12

32

56

19

17 Private Read

Version (RV)

Acquire write locks

Increment Version Clock

Check version numbers ≤ RV
Update memory

Update write version #s

x

y

100

100

48

TM Design Issues

• Implementation

choices

• Language design

issues

• Semantic issues

49

Granularity

• Object

– managed languages, Java, C#, Scala, …

– Easy to control interactions between

transactional & non-trans threads

• Word

– C, C++, …

– Hard to control interactions between

transactional & non-trans threads

50

Direct/Deferred Update

• Deferred

– modify private copies & install on commit

– Commit requires work

– Consistency easier

• Direct

– Modify in place, roll back on abort

– Makes commit efficient

– Consistency harder

51

Conflict Detection

• Eager

– Detect before conflict arises

– “Contention manager” module resolves

• Lazy

– Detect on commit/abort

• Mixed

– Eager write/write, lazy read/write …

52

Conflict Detection

• Eager detection may abort transactions

that could have committed.

• Lazy detection discards more

computation.

53

Contention Management &

Scheduling

• How to resolve

conflicts?

• Who moves forward

and who rolls back?

• Lots of empirical

work but formal

work in infancy

54

Contention Manager Strategies

• Exponential backoff

• Priority to

– Oldest?

– Most work?

– Non-waiting?

• None Dominates

• But needed anyway
Judgment of Solomon

55

I/O & System Calls?

• Some I/O revocable

– Provide transaction-

safe libraries

– Undoable file

system/DB calls

• Some not

– Opening cash

drawer

– Firing missile

56

I/O & System Calls

• One solution: make transaction
irrevocable

– If transaction tries I/O, switch to irrevocable
mode.

• There can be only one …

– Requires serial execution

• No explicit aborts

– In irrevocable transactions

57

Exceptions

int i = 0;

try {

 atomic {

 i++;

 node = new Node();

 }

} catch (Exception e) {

 print(i);

}

58

Exceptions

int i = 0;
try {
 atomic {
 i++;
 node = new Node();
 }
} catch (Exception e) {
 print(i);
}

Throws OutOfMemoryException!

59

Exceptions

int i = 0;

try {

 atomic {

 i++;

 node = new Node();

 }

} catch (Exception e) {

 print(i);

}

Throws OutOfMemoryException!

What is

printed?

60

Unhandled Exceptions

• Aborts transaction

– Preserves invariants

– Safer

• Commits transaction

– Like locking semantics

– What if exception object refers to values

modified in transaction?

61

Nested Transactions

atomic void foo() {

 bar();

}

atomic void bar() {

 …

}

62

Nested Transactions

• Needed for modularity

– Who knew that cosine() contained a
transaction?

• Flat nesting

– If child aborts, so does parent

• First-class nesting

– If child aborts, partial rollback of child only

