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Beyond the State of the Art 

So far, we covered... 

Best practices … 

New and clever ideas … 

And common-sense observations. 
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So far, we covered ... 

Best practices … 

New and clever ideas … 

And common-sense observations. 

Nevertheless … 

Concurrent programming is still too hard … 

Next, we explore why this is …. 

and what we can do about it. 

Beyond the State of the Art 
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Locking 
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Coarse-Grained Locking 

Easily made correct … 

But not scalable. 
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Fine-Grained Locking 

Can be tricky … 
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Locks are not Robust 

If a thread holding 

a lock is delayed … 

No one else can 

make progress 



Locking Relies on Conventions 

• Relation between 

– Lock bit and object bits 

– Exists only in programmer’s mind 

 

 

 

 

 

/*  

 * When a locked buffer is visible to the I/O layer 

 * BH_Launder is set. This means before unlocking 

 * we must clear BH_Launder,mb() on alpha and then 

 * clear BH_Lock, so no reader can see BH_Launder set 

 * on an unlocked buffer and then risk to deadlock.  

 */  

Actual comment 

from Linux Kernel 
(hat tip: Bradley Kuszmaul) 
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Simple Problems are hard 

enq(x) enq(y) 
double-ended queue 

No interference if 

ends “far apart” 
Interference OK if 

queue is small 
Clean solution is 

publishable result: 
[Michael & Scott PODC 97] 
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Locks Not Composable 

Transfer item from one 

queue to another 
Must be atomic : 

No duplicate or missing items 
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Locks Not Composable 

Lock source 

Lock target 

Unlock source 

& target 
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Locks Not Composable 

Lock source 

Lock target 

Unlock source & 

target 

Methods cannot provide 

internal synchronization 
Objects must expose 

locking protocols to clients 

Clients must devise and 

follow protocols 
Abstraction broken! 
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Monitor Wait and Signal 

zzz 

Empty 

buffer 
Yes! 

If buffer is empty, 

  wait for item to show up 
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Wait and Signal do not Compose 

empty 

empty zzz… Wait for either? 
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The Transactional Manifesto 

• Current practice inadequate 

– to meet the multicore challenge 

• Alternative Programming Paradigm 

– Replace locking with a transactional API  

– Design languages or libraries 

– Implement efficient run-times 
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Transactions 

Block of code …. 

Atomic: appears to happen 

instantaneously 

Serializable: all appear to 

happen in one-at-a-time 

order Commit: takes effect 

(atomically) 

Abort: has no effect 

(typically restarted) 
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atomic { 
 x.remove(3); 
 y.add(3); 
} 
 
atomic { 
 y = null; 
}  

Atomic Blocks 
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atomic { 
 x.remove(3); 
 y.add(3); 
} 
 
atomic { 
 y = null; 
}  

Atomic Blocks 

No data race 
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public void LeftEnq(item x) { 
  Qnode q = new Qnode(x); 
  q.left = this.left; 
  this.left.right = q; 
  this.left = q; 
} 

A Double-Ended Queue 

Write sequential Code 
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public void LeftEnq(item x)  
 atomic { 
  Qnode q = new Qnode(x); 
  q.left = this.left; 
  this.left.right = q; 
  this.left = q; 
 } 
} 

A Double-Ended Queue 
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public void LeftEnq(item x) { 
 atomic { 
  Qnode q = new Qnode(x); 
  q.left = this.left; 
  this.left.right = q; 
  this.left = q; 
 } 
} 

A Double-Ended Queue 

Enclose in atomic block 
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Warning 

• Not always this simple 

– Conditional waits 

– Enhanced concurrency 

– Complex patterns 

• But often it is… 
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Composition? 
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Composition? 

public void Transfer(Queue<T> q1, q2) 
{ 
 atomic { 
  T x = q1.deq(); 
  q2.enq(x); 
 } 
} 

Trivial or what? 
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public T LeftDeq() { 
 atomic { 
  if (this.left == null) 
    retry; 
  … 
  
 } 
} 

Conditional Waiting 

Roll back transaction 

and restart when 

something changes 
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Composable Conditional Waiting 

atomic { 
 x = q1.deq();  
} orElse { 
 x = q2.deq(); 
} 

Run 1st method. If it retries … 
Run 2nd method. If it retries … 

Entire statement retries 
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Simple Lock-Based STM 

• STMs come in different forms 

– Lock-based 

– Lock-free 

• Here : a simple lock-based STM 
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Synchronization 

• Transaction keeps 

– Read set: locations & values read 

– Write set: locations & values to be written 

• Deferred update 

– Changes installed at commit 

• Lazy conflict detection 

– Conflicts detected at commit 
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STM: Transactional Locking 

 Map 

Application  

Memory 

V# 

V# 

V# 

Array of 

version #s & 

locks  
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Reading an Object 
Mem 

Locks 

V# 

V# 

V# 

V# 

V# 

Add version numbers 

& values to read set  
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To Write an Object 
Mem 

Locks 

V# 

V# 

V# 

V# 

V# 

Add version numbers & 

new values to write set  
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To Commit 
Mem 

Locks 

V# 

V# 

V# 

V# 

V# 

X 

Y 

V#+1 

V#+1 

Acquire write locks 

Check version numbers 

unchanged 
Install new values 

Increment version numbers 

Unlock. 



Problem: Internal 

Inconsistency 

• A Zombie is an active transaction destined to 

abort. 

• If Zombies see inconsistent states bad things 

can happen 
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Internal Consistency 

x 

y 

4 

2 

8 

4 

Invariant: x = 2y 

Transaction A: reads x = 4 

Transaction B: writes 

8 to x, 4 to y, aborts A ) 

Transaction A: (zombie) 

reads y = 4 

computes 1/(x-y) 

Divide by zero FAIL! 
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Solution: The Global Clock 

• Have one shared global clock 

• Incremented by (small subset of) writing 

transactions 

• Read by all transactions 

• Used to validate that state worked on is 

always consistent 

 



100 
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Read-Only Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
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Read-Only Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
Read lock, version #, and 

memory 
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Read-Only Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
Read lock, version #, and 

memory On Commit: 

check unlocked & 

version # unchanged 



39 39 

Read-Only Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
Read lock, version #, and 

memory On Commit: 

check unlocked & 

version # unchanged 

Check that version #s less than 

local read clock 

100 
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Read-Only Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
Read lock, version #, and 

memory On Commit: 

check unlocked & 

version # unchanged 

Check that version #s less than 

local read clock 

100 

We have taken a snapshot without 

keeping an explicit read set! 
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Regular Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
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Regular Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
On read/write, check: 

Unlocked & version # < RV 

Add to R/W set 



43 43 

On Commit 
Mem 

Locks 

100 

Shared Version 

Clock 

100 

12 

32 

56 

19 

17 Private Read 

Version (RV) 

Acquire write locks 
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On Commit 
Mem 

Locks 

100 

Shared Version 

Clock 

100 101 

12 

32 

56 

19 

17 Private Read 

Version (RV) 

Acquire write locks 

Increment Version Clock 
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On Commit 
Mem 

Locks 

100 

Shared Version 

Clock 

100 101 

12 

32 

56 

19 

17 Private Read 

Version (RV) 

Acquire write locks 

Increment Version Clock 

Check version numbers ≤ RV 
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On Commit 
Mem 

Locks 

100 

Shared Version 

Clock 

100 101 

12 

32 

56 

19 

17 Private Read 

Version (RV) 

Acquire write locks 

Increment Version Clock 

Check version numbers ≤ RV 
Update memory x 

y 
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On Commit 
Mem 

Locks 

100 

Shared Version 

Clock 

100 101 

12 

32 

56 

19 

17 Private Read 

Version (RV) 

Acquire write locks 

Increment Version Clock 

Check version numbers ≤ RV 
Update memory 

Update write version #s 

x 

y 

100 

100 
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TM Design Issues 

• Implementation 

choices 

• Language design 

issues 

• Semantic issues 
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Granularity 

• Object 

– managed languages, Java, C#, Scala, … 

– Easy to control interactions between 

transactional & non-trans threads 

• Word 

– C, C++, … 

– Hard to control interactions between 

transactional & non-trans threads 
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Direct/Deferred Update 

• Deferred  

– modify private copies & install on commit 

– Commit requires work 

– Consistency easier 

• Direct  

– Modify in place, roll back on abort 

– Makes commit efficient 

– Consistency harder 
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Conflict Detection 

• Eager 

– Detect before conflict arises 

– “Contention manager” module resolves 

• Lazy 

– Detect on commit/abort 

• Mixed 

– Eager write/write, lazy read/write … 
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Conflict Detection 

• Eager detection may abort transactions 

that could have committed. 

• Lazy detection discards more 

computation.  
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Contention Management & 

Scheduling 

• How to resolve 

conflicts? 

• Who moves forward 

and who rolls back? 

• Lots of empirical 

work but formal 

work in infancy 
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Contention Manager Strategies 

• Exponential backoff 

• Priority to 

– Oldest? 

– Most work? 

– Non-waiting? 

• None Dominates 

• But needed anyway 
Judgment of Solomon 
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I/O & System Calls? 

• Some I/O revocable 

– Provide transaction-

safe libraries 

– Undoable file 

system/DB calls 

• Some not 

– Opening cash 

drawer 

– Firing missile 
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I/O & System Calls 

• One solution: make transaction 
irrevocable 

– If transaction tries I/O, switch to irrevocable 
mode. 

• There can be only one … 

– Requires serial execution 

• No explicit aborts 

– In irrevocable transactions 
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Exceptions 

int i = 0; 

try { 

  atomic { 

    i++; 

    node = new Node(); 

  } 

} catch (Exception e) { 

  print(i); 

} 
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Exceptions 

int i = 0; 
try { 
  atomic { 
    i++; 
    node = new Node(); 
  } 
} catch (Exception e) { 
  print(i); 
} 

Throws OutOfMemoryException! 
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Exceptions 

int i = 0; 

try { 

  atomic { 

    i++; 

    node = new Node(); 

  } 

} catch (Exception e) { 

  print(i); 

} 

Throws OutOfMemoryException! 

What is 

printed? 
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Unhandled Exceptions 

• Aborts transaction 

– Preserves invariants 

– Safer 

• Commits transaction 

– Like locking semantics 

– What if exception object refers to values 

modified in transaction? 



61 

Nested Transactions 

atomic void foo() { 

  bar(); 

} 

 

atomic void bar() { 

 … 

} 
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Nested Transactions 

• Needed for modularity 

– Who knew that cosine() contained a 
transaction? 

• Flat nesting 

– If child aborts, so does parent 

• First-class nesting 

– If child aborts, partial rollback of child only 


