Programming Paradigms for Concurrency Lecture 2 - Mutual Exclusion

Based on companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

> Modified by Thomas Wies New York University

- We will clarify our understanding of mutual exclusion
- We will also show you how to reason about various properties in an asynchronous concurrent setting

In his 1965 paper E. W. Dijkstra wrote:

"Given in this paper is a solution to a problem which, to the knowledge of the author, has been an open question since at least 1962, irrespective of the solvability. [...] Although the setting of the problem might seem somewhat academic at first, the author trusts that anyone familiar with the logical problems that arise in computer coupling will appreciate the significance of the fact that this problem indeed can be solved."

- Formal problem definitions
- Solutions for 2 threads
- Solutions for n threads
- Fair solutions
- Inherent costs

Warning

- You will never use these protocols

 Get over it
- You are advised to understand them
 The same issues show up everywhere
 - Except hidden and more complex

Why is Concurrent Programming so Hard?

- Try preparing a seven-course banquet
 - By yourself
 - With one friend
 - With twenty-seven friends ...
- Before we can talk about programs
 - Need a language
 - Describing time and concurrency

Time

- "Absolute, true and mathematical time, of itself and from its own nature, flows equably without relation to anything external." (I. Newton, 1689)
- "Time is, like, Nature's way of making sure that everything doesn't happen all at once." (Anonymous, circa 1968)

Events

Threads

- A *thread* A is (formally) a sequence a₀, a₁, ... of events
 - "Trace" model
 - Notation: $a_0 \rightarrow a_1$ indicates order

Example Thread Events

- Assign to shared variable
- Assign to local variable
- Invoke method
- Return from method
- Lots of other things ...

States

- Thread State
 - Program counter
 - Local variables
- System state
 - Object fields (shared variables)
 - Union of thread states

Concurrency

Concurrency

Interleavings

- Events of two or more threads
 - Interleaved
 - Not necessarily independent (why?)

Intervals

An *interval* A₀ = (a₀, a₁) is
 Time between events a₀ and a₁

Intervals may Overlap

Intervals may be Disjoint

Precedence

Interval A₀ precedes interval B₀

Precedence

- Notation: $A_0 \rightarrow B_0$
- Formally,
 - End event of A₀ before start event of B₀
 - Also called "happens before" or "precedes"

Precedence Ordering

- Remark: $A_0 \rightarrow B_0$ is just like saying
 - 1066 AD → 1492 AD,
 - Middle Ages

 Renaissance,
- Oh wait,

– what about this week vs this month?

- Never true that A
 A
- If $A \rightarrow B$ then not true that $B \rightarrow A$
- If $A \rightarrow B \& B \rightarrow C$ then $A \rightarrow C$
- Funny thing: A → B & B → A might both be false!

Strict Partial Orders

(review)

• Irreflexive:

- Never true that $A \rightarrow A$

• Antisymmetric:

- If $A \rightarrow B$ then not true that $B \rightarrow A$

• Transitive:

 $- If A \rightarrow B \& B \rightarrow C then A \rightarrow C$

Strict Total Orders (review)

- Also
 - Irreflexive
 - Antisymmetric
 - Transitive
- Except that for every distinct A, B,
 Either A → B or B → A

Repeated Events

Implementing a Counter

Locks (Mutual Exclusion)

```
public interface Lock {
  public void lock();
  public void unlock();
```

}

Locks (Mutual Exclusion)

Locks (Mutual Exclusion)


```
public class Counter {
  private long value;
  private Lock lock;
  public long getAndIncrement() {
   lock.lock();
   try {
    int temp = value;
    value = value + 1;
   } finally {
     lock.unlock();
   }
   return temp;
  }}
```


Let CS^k be thread i's k-th critical section execution

- Let CS_i^k ⇔ be thread i's k-th critical section execution
- And CS^m (⇒ be thread j's m-th critical section execution

- Let CS^k be thread i's k-th critical section execution
- And CS^m (⇒ be j's m-th execution)
- Then either
 - $\overleftrightarrow \Longleftrightarrow \text{ or } \Longleftrightarrow \diamondsuit$

Mutual Exclusion

- Let CS_i^k ⇔ be thread i's k-th critical section execution
- And CS^m (⇒ be j's m-th execution)
- Then either

$$- \Leftrightarrow \Leftrightarrow \text{ or } \Leftrightarrow \Leftrightarrow$$
$$CS_i^k \rightarrow CS_j^m$$

Mutual Exclusion

- Let CS^k be thread i's k-th critical section execution
- And CS^m (⇒ be j's m-th execution
- Then either

Deadlock-Free

- If some thread calls lock()
 - And never returns
 - Then other threads must complete lock() and unlock() calls infinitely often
- System as a whole makes progress

 Even if individuals starve

Starvation-Free

- If some thread calls lock()
 It will eventually return
- Individual threads make progress

Two-Thread vs *n*-Thread Solutions

- 2-thread solutions first
 - Illustrate most basic ideas
 - Fits on one slide
- Then *n*-thread solutions

Two-Thread Conventions

```
class ... implements Lock {
    ...
    // thread-local index, 0 or 1
    public void lock() {
        int i = ThreadID.get();
        int j = 1 - i;
    ...
    }
}
```

Two-Thread Conventions


```
class LockOne implements Lock {
  private boolean[] flag = new boolean[2];
  public void lock() {
    flag[i] = true;
    while (flag[j]) {}
  }
```

class LockOne implements Lock

private boolean[] flag = new boolean[2];

LockOne Satisfies Mutual Exclusion

- Assume CS_A^j overlaps CS_B^k
- Consider each thread's last (j-th and k-th) read and write in the lock() method before entering
- Derive a contradiction

From the Code

- write_A(flag[A]=true) → read_A(flag[B]==false) →CS_A
- write_B(flag[B]=true) → read_B(flag[A]==false) → CS_B

```
class LockOne implements Lock {
    ...
    public void lock() {
      flag[i] = true;
      while (flag[j]) {}
    }
}
```

From the Assumption

 read_A(flag[B]==false) → write_B(flag[B]=true)

 read_B(flag[A]==false) → write_A(flag[A]=true)

- Assumptions:
 - read_A(flag[B]==false) \rightarrow write_B(flag[B]=true)
 - $\text{read}_B(\text{flag}[A] == \text{false}) \rightarrow \text{write}_A(\text{flag}[A] = \text{true})$
- From the code
 - write_A(flag[A]=true) \rightarrow read_A(flag[B]==false)
 - write_B(flag[B]=true) \rightarrow read_B(flag[A]==false)

- Assumptions:
 - $\operatorname{read}_{A}(\operatorname{flag}[B] == \operatorname{false}) \rightarrow \operatorname{write}_{B}(\operatorname{flag}[B] = \operatorname{true})$
 - read_B(flag[A]==false) \rightarrow write_A(flag[A]=true)
- From the code
 - write_A(flag[A]=true) \rightarrow read_A(flag[B]==false)

- write_B(flag[B]=true) \rightarrow read_B(flag[A]==false)

Cycle!

Deadlock Freedom

LockOne Fails deadlock-freedom
 – Concurrent execution can deadlock

flag[i] = true; flag[j] = true; while (flag[j]){} while (flag[i]){}

- Sequential executions OK

```
public class LockTwo implements Lock {
  private int victim;
  public void lock() {
    victim = i;
    while (victim == i) {};
  }
  public void unlock() {}
```


LockTwo Claims

Satisfies mutual exclusion

- If thread i in CS
- Then victim == j
- Cannot be both 0 and 1
- Not deadlock free
 - Sequential execution deadlocks
 - Concurrent execution does not

```
public void LockTwo() {
   victim = i;
   while (victim == i) {};
}
```

```
public void lock() {
  flag[i] = true;
  victim = i;
  while (flag[j] && victim == i) {};
 }
 public void unlock() {
  flag[i] = false;
 }
```

Peterson's Algorithm Announce I'm interested public void lock flag[i] = true; victim = i; while (flag[j] && victim == i) {}; public void unlock() { flag[i] = false;

Mutual Exclusion

(1) write_B(Flag[B]=true) \rightarrow write_B(victim=B)

From the Code

Also from the Code

(2) write_A(victim=A) → read_A(flag[B]) → read_A(victim)

Assumption

(3) write_B(victim=B) \rightarrow write_A(victim=A)

W.L.O.G. assume A is the last thread to write victim

Combining Observations

(1) write_B(flag[B]=true)→write_B(victim=B)
(3) write_B(victim=B)→write_A(victim=A)
(2) write_A(victim=A)→read_A(flag[B])
→ read_A(victim)

(1) write_B(flag[B]=true)→
(3) write_B(victim=B)→
(2) write_A(victim=A)→read_A(flag[B]) → read_A(victim)

(1) write_B(flag[B]=true) \rightarrow (3) write_B(victim=B) \rightarrow (2) write_A(victim=A) \rightarrow read_A(flag[B]) \rightarrow read_A(victim) A read flag[B] == true and victim == A, so it could not have entered the CS (QED)

Deadlock Free

```
public void lock() {
    ...
    while (flag[j] && victim == i) {};
```

- Thread blocked
 - only at while loop
 - only if other's flag is true
 - only if it is the victim
- Solo: other's flag is false
- Both: one or the other not the victim

Starvation Free

 Thread i blocked only if j repeatedly re-enters so that

flag[j] == true and
victim == i

- When j re-enters
 - it sets victim to j.
 - So i gets in

```
public void lock() {
  flag[i] = true;
  victim = i;
  while (flag[j] && victim == i) {};
}
public void unlock() {
  flag[i] = false;
}
```

The Filter Algorithm for *n* Threads

There are n "waiting rooms" called levels

- At each level
 - At least one enters level
 - At least one blocked if

many try

ncs

Only one thread makes it through


```
class Filter implements Lock {
  ...
  public void lock() {
    for (int L = 1; L < n; L++) {
      level[i] = L;
      victim[L] = i;
      while ((\exists k != i level[k] \ge L) \&\&
              victim[L] == i ) {};
    } }
  public void unlock() {
    level[i] = 0;
  } }
```



```
class Filter implements Lock {
  . . .
  public void lock() {
    f_{or} (int L = 1; L < n; L++) {
      level[i] = L;
      victim[L]
      while ((\exists k != i))
                          Level[k] >= L) \&\&
              victim[L] == i)
                                    Announce
    } }
  public void release(int i) intention to enter
    level[i] = 0;
                                      level L
  } }
```

```
class Filter implements Lock {
  int level[n];
  int victim[n];
 public void lock() {
    for (int L = 1; L < n; L++) {
      level[i] = L;
      victim[L] = i;
      while ((\exists k)
                      i) level[k] >= L) &&
             victim[L
                          i) {};
    } }
                                Give priority to
 public void release(int i)
    level[i] = 0;
                                anyone but me
  } }
```



```
class Filter implements Lock {
  int level[n];
  int victim[n];
 public void lock() {
    for (int L = 1; L < n; L++) {
      level[i] = L;
      victim[L] = i;
      while ((\exists k != i) level[k] \ge L) \&\&
             victim[L] == i) {};
 Thread enters level L when it completes
                   the loop
```

Claim

- Start at level L=0
- At most n-L threads enter level L
- Mutual exclusion at level L=n-1

Induction Hypothesis

- No more than n-(L-1) at level L-1
- Induction step: by contradiction
- Assume all at level L-1 enter level L
- A last to write victim[L]
- B is any other thread at level L

Proof Structure

Show that A must have seen L in level[B] and since victim[L] == A could not have entered

Just Like Peterson

(1) write_B(level[B]=L) \rightarrow write_B(victim[L]=B)

From the Code

From the Code

(2) write_A(victim[L]=A) \rightarrow read_A(level[B]) \rightarrow read_A(victim[L])

By Assumption

(3) write_B(victim[L]=B) \rightarrow write_A(victim[L]=A)

By assumption, A is the last thread to write victim[L]

(1) write_B(level[B]=L)→write_B(victim[L]=B)
(3) write_B(victim[L]=B)→write_A(victim[L]=A)
(2) write_A(victim[L]=A)→read_A(level[B])
→read_A(victim[L])

(1) write_B(level[B]=L)→
(3) write_B(victim[L]=B)→write_A(victim[L]=A)
(2) → read_A(level[B])
→ read_A(victim[L])

(1) write_B(level[B]=L) \rightarrow (3) write_B(victim[L]=B) \rightarrow write_A(victim[L]=A) read_A(level[B]) (2) \rightarrow read_A(victim[L]) A read level[B] \geq L, and victim[L] = A, so it could not have entered level L!

No Starvation

- Filter Lock satisfies properties:
 - Just like Peterson Alg at any level
 - So no one starves
- But what about fairness?
 - Threads can be overtaken by others

Bounded Waiting

- Want stronger fairness guarantees
- Thread not "overtaken" too much
- If A starts before B, then A enters before B?
- But what does "start" mean?
- Need to adjust definitions

Bounded Waiting

- Divide lock() method into 2 parts:
 - Doorway interval:
 - Written **D**_A
 - always finishes in finite steps
 - Waiting interval:
 - Written W_A
 - may take unbounded steps

First-Come-First-Served

• For threads A and B:

- $\lim_{k \to \infty} D_{B}^{j}$
 - A's k-th doorway precedes B's j-th doorway

– Then CS_A^k → CS_B^j

- A's k-th critical section precedes B's j-th critical section
- B cannot overtake A

Fairness Again

- Filter Lock satisfies properties:
 - No one starves
 - But very weak fairness
 - Can be overtaken arbitrary # of times
 - That's pretty lame...

- Provides First-Come-First-Served
- How?
 - Take a "number"
 - Wait until lower numbers have been served
- Lexicographic order
 - -(a,i) > (b,j)
 - If a > b, or a = b and i > j

```
class Bakery implements Lock {
   boolean[] flag;
   Label[] label;
 public Bakery (int n) {
    flag = new boolean[n];
    label = new Label[n];
    for (int i = 0; i < n; i++) {
       flag[i] = false; label[i] = 0;
    }
 ...
```



```
class Bakery implements Lock {
    ...
    public void unlock() {
    flag[i] = false;
    }
}
```

Bakery Algorithm

No Deadlock

- There is always one thread with earliest label
- Ties are impossible (why?)

First-Come-First-Served

class Bakery implements Lock {

label[i] = max(label[0],

public void lock() {
 flag[i] = true;

- If D_A → D_B then
 A's label is smaller
- And:
 - write_A(label[A]) \rightarrow
 - read_B(label[A]) →
- - $\text{ write}_{\mathsf{B}}(\mathsf{label}[\mathsf{B}]) \boldsymbol{\rightarrow} \mathsf{read}_{\mathsf{B}}(\mathsf{flag}[\mathsf{A}])$
- So B sees
 - smaller label for A
 - locked out while flag[A] is true

..., label[n-1])+1;

- Suppose A and B in CS together
- Suppose A has earlier label
- When B entered, it must have seen
 - flag[A] is false, or
 - label[A] > label[B]

```
class Bakery implements Lock {
```

- Labels are strictly increasing so
- B must have seen flag[A] == false

- Labels are strictly increasing so
- B must have seen flag[A] == false
- Labeling_B → read_B(flag[A]) → write_A(flag[A]) → Labeling_A

- Labels are strictly increasing so
- B must have seen flag[A] == false
- Labeling_B → read_B(flag[A]) → write_A(flag[A]) → Labeling_A
- Which contradicts the assumption that A has an earlier label

Bakery Y2³²K Bug

class Bakery implements Lock {

Bakery Y2³²K Bug

Does Overflow Actually Matter?

- Yes
 - Y2K
 - 18 January 2038 (Unix time_t rollover)
 - 16-bit counters
- No
 - 64-bit counters
- Maybe
 - 32-bit counters

Timestamps

- Label variable is really a timestamp
- Need ability to
 - Read others' timestamps
 - Compare them
 - Generate a later timestamp
- Can we do this without overflow?

The Good News

- One can construct a
 - Wait-free (no mutual exclusion)
 - Concurrent
 - Timestamping system
 - That never overflows

- One can construct a
 Wait-free (no mutual exclusion)
 Concurrent
 This part is hard
 Timestamping system
 - That never overflows

Instead ...

- We construct a Sequential timestamping system
 - Same basic idea
 - But simpler
- As if we use mutex to read & write atomically
- No good for building locks
 But useful anyway

Precedence Graphs

- Timestamps form directed graph
- Edge x to y
 - Means x is later timestamp
 - We say x dominates y

Unbounded Counter Precedence Graph

- Timestamping = move tokens on graph
- Atomically
 - read others' tokens
 - move mine
- Ignore tie-breaking for now

Unbounded Counter Precedence Graph

Unbounded Counter Precedence Graph

takes 0 takes 1 takes 2

Two-Thread Bounded Precedence Graph T²

and so on ...

Graph Composition

copy of the graph

Three-Thread Bounded Precedence Graph T³

Three-Thread Bounded Precedence Graph T³

and so on...

Deep Philosophical Question

- The Bakery Algorithm is
 - Succinct,
 - Elegant, and
 - Fair.
- Q: So why isn't it practical?
- A: Well, you have to read N distinct variables

Shared Memory

- Shared read/write memory locations called Registers (historical reasons)
- Come in different flavors
 - Multi-Reader-Single-Writer (Flag[])
 - Multi-Reader-Multi-Writer (Victim[])
 - Not that interesting: SRMW and SRSW

Theorem

At least N MRSW (multi-reader/singlewriter) registers are needed to solve deadlock-free mutual exclusion.

N registers like Flag[]...

Proving Algorithmic Impossibility

- •To show no algorithm exists:
 - assume by way of contradiction one does,
 - show a bad execution that violates properties:
 - in our case assume an alg for deadlock
 free mutual exclusion using < N registers

CS

Proof: Need N-MRSW Registers

Each thread must write to some register

...can't tell whether A is in critical section

Upper Bound

- Bakery algorithm

 Uses 2N MRSW registers
- So the bound is (pretty) tight
- But what if we use MRMW registers?
 Like victim[] ?

Bad News Theorem

At least N MRMW multireader/multi-writer registers are needed to solve deadlock-free mutual exclusion.

(So multiple writers don't help)

Theorem (For 2 Threads)

Theorem: Deadlock-free mutual exclusion for 2 threads requires at least 2 multi-reader multi-writer registers

Proof: assume one register suffices and derive a contradiction

- Threads run, reading and writing R
- Deadlock free so at least one gets in

Covering State for One Register Always Exists

In any protocol B has to write to the register before entering CS, so stop it just before

Proof: Assume Cover of 1

Proof: Assume Cover of 1

Theorem

Deadlock-free mutual exclusion for 3 threads requires at least 3 multi-reader multi-writer registers

Proof: Assume Cover of 2

Run A Solo

Obliterate Traces of A

Mutual Exclusion Fails

Proof Strategy

- Proved: a contradiction starting from a covering state for 2 registers
- Claim: a covering state for 2 registers is reachable from any state where CS is empty

Covering State for Two

 If we run B through CS 3 times, B must return twice to cover some register, say R_B

- Start with B covering register R_B for the 1st time
- Run A until it is about to write to uncovered R_A
- Are we done?

- NO! A could have written to R_B
- So CS no longer looks empty to thread C

- Run B obliterating traces of A in R_B
- Run B again until it is about to write to R_B
- Now we are done

- There is a covering state
 - Where k threads not in CS cover k distinct registers
 - Proof follows when k = N-1

Summary of Lecture

- In the 1960's several incorrect solutions to starvation-free mutual exclusion using RW-registers were published...
- Today we know how to solve FIFO N thread mutual exclusion using 2N RW-Registers

Summary of Lecture

- N RW-Registers inefficient
 - Because writes "cover" older writes
- Need stronger hardware operations

 that do not have the "covering problem"
- In next lectures understand what these operations are...

This work is licensed under a <u>Creative Commons Attribution-</u> <u>ShareAlike 2.5 License</u>.

- You are free:
 - to Share to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions:
 - Attribution. You must attribute the work to "The Art of Multiprocessor Programming" (but not in any way that suggests that the authors endorse you or your use of the work).
 - Share Alike. If you alter, transform, or build upon this work, you
 may distribute the resulting work only under the same, similar or a
 compatible license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.