Programming Paradigms for Concurrency Lecture 2 - Mutual Exclusion

The Art of Multiprocessor Programming by Maurice Herlihy \& Nir Shavit

Mutual Exclusion

- We will clarify our understanding of mutual exclusion
- We will also show you how to reason about various properties in an asynchronous concurrent setting

Mutual Exclusion

In his 1965 paper E. W. Dijkstra wrote:

"Given in this paper is a solution to a problem which, to the knowledge of the author, has been an open question since at least 1962, irrespective of the solvability. [...] Although the setting of the problem might seem somewhat academic at first, the author trusts that anyone familiar with the logical problems that arise in computer coupling will appreciate the significance of the fact that this problem indeed can be solved."

Mutual Exclusion

- Formal problem definitions
- Solutions for 2 threads
- Solutions for n threads
- Fair solutions
- Inherent costs

Warning

- You will never use these protocols
- Get over it
- You are advised to understand them - The same issues show up everywhere - Except hidden and more complex

Why is Concurrent Programming so Hard?

- Try preparing a seven-course banquet
- By yourself
- With one friend
- With twenty-seven friends ...
- Before we can talk about programs
- Need a language
- Describing time and concurrency

Time

- "Absolute, true and mathematical time, of itself and from its own nature, flows equably without relation to anything external." (I. Newton, 1689)
- "Time is, like, Nature's way of making sure that everything doesn't happen all at once." (Anonymous, circa 1968)

Events

- An event a_{0} of thread A is
- Instantaneous
- No simultaneous events (break ties)
time

Threads

- A thread A is (formally) a sequence a_{0}, a_{1}, \ldots of events
- "Trace" model
- Notation: $\mathrm{a}_{0} \rightarrow \mathrm{a}_{1}$ indicates order

Example Thread Events

- Assign to shared variable
- Assign to local variable
- Invoke method
- Return from method
- Lots of other things ...

Threads are State Machines

States

- Thread State
- Program counter
- Local variables
- System state
- Object fields (shared variables)
- Union of thread states

Concurrency

- Thread A time

Concurrency

- Thread A time
- Thread B
time

Interleavings

- Events of two or more threads
- Interleaved
- Not necessarily independent (why?)

Intervals

- An interval $A_{0}=\left(a_{0}, a_{1}\right)$ is
- Time between events a_{0} and a_{1}

Intervals may Overlap

Intervals may be Disjoint

Precedence

Interval A_{0} precedes interval B_{0}

Precedence

- Notation: $\mathrm{A}_{0} \rightarrow \mathrm{~B}_{0}$
- Formally,
- End event of A_{0} before start event of B_{0}
- Also called "happens before" or "precedes"

Precedence Ordering

- Remark: $A_{0} \rightarrow B_{0}$ is just like saying
- 1066 AD $\rightarrow 1492$ AD,
- Middle Ages \rightarrow Renaissance,
- Oh wait,
- what about this week vs this month?

Precedence Ordering

- Never true that $A \rightarrow A$
- If $A \rightarrow B$ then not true that $B \rightarrow A$
- If $A \rightarrow B \& B \rightarrow C$ then $A \rightarrow C$
- Funny thing: $A \rightarrow B$ \& $B \rightarrow A$ might both be false!

Strict Partial Orders (review)

- Irreflexive:
- Never true that $A \rightarrow A$
- Antisymmetric:
- If $A \rightarrow B$ then not true that $B \rightarrow A$
- Transitive:
- If $A \rightarrow B \& B \rightarrow C$ then $A \rightarrow C$

Strict Total Orders (review)

- Also
- Irreflexive
- Antisymmetric
- Transitive
- Except that for every distinct A, B,
- Either A \rightarrow B or B \rightarrow A

Repeated Events

while (mumble) \{

$$
a_{0} ; a_{1} ;
$$

\}
k-th occurrence of event a_{0}
$a_{0}^{k} A_{0}^{k}$
k-th occurrence of interval $\mathrm{A}_{0}=\left(\mathrm{a}_{0}, \mathrm{a}_{1}\right)$

Implementing a Counter

public class Counter private long value;

public long getAndIncrement() \{

Locks (Mutual Exclusion)

public interface Lock \{

public void lock();
public void unlock();
\}

Locks (Mutual Exclusion)

public interface Lock

public void lock(); acquire lock
public void unlock();
\}

Locks (Mutual Exclusion)

public interface Lock

 public void lock();acquire lock
public void unlock(); release lock

USinO LOCKS

```
public class Counter {
        private long value;
        private Lock lock;
        public long getAndIncrement() {
            lock.lock();
        try {
            int temp = value;
            value = value + 1;
        } finally {
                lock.unlock();
    }
    return temp;
    } }
```


Using Locks

```
public class Counter {
    private long value;
    private Lock lock;
    public long oetAndIncrement() {
    lock.lock();
        int temp = value;
        value = value + 1;
    } finally {
        lock.unlock();
    }
    return temp;
} }
```


Using Locks

```
public class Counter {
    private long value;
    Private Lock lock;
    public long getAndIncrement() {
    lock.lock();
    try {
        int temp = value;
    value = value + 1;
    } finally {}\begin{array}{l}{\mathrm{ lock.unlock(); }}
    }
    return temp;
    } }
```


Using Locks

```
public class Counter {
    private long value;
    private Lock lock;
    public long getAndIncrement() {
    lock.lock();
    try f
    int temp = value;
    value = value + 1;
        lock.unlock();
    }
    return temp;
    } }
```


Mutual Exclusion

- Let $C_{i}{ }^{k} \Leftrightarrow$ be thread i's k-th critical section execution

Mutual Exclusion

- Let CS $_{i}{ }^{k} \Leftrightarrow$ be thread i's k-th critical section execution
- And CS ${ }_{j}^{m} \Leftrightarrow$ be thread j's m-th critical section execution

Mutual Exclusion

- Let CS $_{i}{ }^{k} \Leftrightarrow$ be thread i's k-th critical section execution
- And CS ${ }^{m} \Leftrightarrow$ be j's m-th execution
- Then either
$-\Leftrightarrow \Leftrightarrow$ or $\Leftrightarrow \Leftrightarrow$

Mutual Exclusion

- Let CS $_{i}{ }^{k} \Leftrightarrow$ be thread i's k-th critical section execution
- And CS ${ }^{m} \Leftrightarrow$ be j's m-th execution
- Then either

Mutual Exclusion

- Let CS $_{\mathrm{i}}{ }^{k} \Leftrightarrow$ be thread i's k-th critical section execution
- And CS ${ }^{m} \Leftrightarrow$ be j's m-th execution
- Then either

$\mathrm{CS}_{\mathrm{j}}{ }^{\mathrm{m}} \rightarrow \mathrm{CS}_{\mathrm{i}}{ }^{\mathrm{k}}$

Deadlock-Free

- If some thread calls lock()
- And never returns
- Then other threads must complete lock() and unlock() calls infinitely often
- System as a whole makes progress
- Even if individuals starve

Starvation-Free

- If some thread calls lock()
- It will eventually return
- Individual threads make progress

Two-Thread vs n-Thread Solutions

- 2-thread solutions first
- Illustrate most basic ideas
- Fits on one slide
- Then n-thread solutions

Two-Thread Conventions

```
class ... implements Lock {
    // thread-local index, 0 or 1
    public void lock() {
        int i = ThreadID.get();
        int j = 1 - i;
    }
}
```


Two-Thread Conventions

```
class ... implements Lock {
```

// thread-local index, 0 or 1
public void lock() \{

LockOne

class LockOne implements Lock \{
private boolean[] flag = new boolean[2]; public void lock() \{
flag[i] = true;
while (flag[j]) \{\}
\}

LockOne

class LockOne implements Lock private boolean[] flag = new boolean[2]; public void lock() flag[i] = true; while (flag[j]) \{\}
 Each thread has flag

LockOne

```
class LockOne implements Lock {
private boolean[] flag = new boolean[2];
public void lock()
    flag[i] = true;
    while (flag[j])
                            Set my flag
```


LockOne

```
class LockOne implements Lock {
private boolean[] flag = new boolean[2];
public void lock() {
    flag[i] = true;
```



```
Wait for other flag to become false
```


LockOne Satisfies Mutual Exclusion

- Assume CS $_{A}{ }^{\mathrm{j}}$ overlaps $\mathrm{CS}_{\mathrm{B}}{ }^{\mathrm{k}}$
- Consider each thread's last (j-th and k-th) read and write in the lock() method before entering
- Derive a contradiction

From the Code

- write $_{A}(f l a g[A]=$ true $) \rightarrow$ $\operatorname{read}_{A}($ flag $[B]==$ false $) \rightarrow$ CS $_{A}$
- write $_{\mathrm{B}}$ (flag[B]=true) \rightarrow $\operatorname{read}_{\mathrm{B}}($ flag $[\mathrm{A}]==\mathrm{false}) \rightarrow \mathrm{CS}_{\mathrm{B}}$

```
class LockOne implements Lock {
public void lock() {
    flag[i] = true;
    while (flag[j]) {}
    }
```


From the Assumption

- $\operatorname{read}_{A}(f l a g[B]==f a l s e) \rightarrow$ write $_{\mathrm{B}}($ flag[B]=true)
- $\operatorname{read}_{B}($ flag $[A]==$ false $) \rightarrow$ write $_{\mathrm{A}}($ flag $[\mathrm{A}]=$ true)

Combining

- Assumptions:
$-\operatorname{read}_{A}($ flag $[B]==$ false $) \rightarrow$ write $_{B}$ (flag[B]=true)
$-\operatorname{read}_{B}(f l a g[A]==$ false $) \rightarrow$ write $_{A}(f l a g[A]=t r u e)$
- From the code
- write $_{A}(f l a g[A]=t r u e) \rightarrow \operatorname{read}_{A}(f l a g[B]==f a l s e)$
- write $_{\mathrm{B}}(\mathrm{flag}[B]=$ true $) \rightarrow \operatorname{read}_{\mathrm{B}}(\mathrm{flag}[\mathrm{A}]==\mathrm{false})$

Combining

- Assumptions:
$-\operatorname{read}_{A}($ flag $[B]==$ false $) \rightarrow$ write $_{B}$ (flag[B]=true)
$-\operatorname{read}_{\mathrm{B}}(\mathrm{flag}[\mathrm{A}]==$ false $) \rightarrow$ wrilte $_{\mathrm{A}}(\mathrm{flag} g[\mathrm{~A}]=$ true $)$
- From the code
- wrill $_{A}(f l a g[A]=$ true $) \rightarrow$ read $_{A}(f l a g[B]==$ false $)$
- write $_{\mathrm{B}}(\mathrm{flag}[B]=$ true $) \rightarrow \operatorname{read}_{\mathrm{B}}(\mathrm{flag}[\mathrm{A}]==\mathrm{false})$

Combining

- Assumptions:
$-\operatorname{read}_{A}(f l a g[B]==$ false $) \rightarrow$ write $_{B}$ (flag[B]=true) $\operatorname{read}_{\mathrm{B}}(\mathrm{flag}[\mathrm{A}]==$ false $) \rightarrow$ write $_{\mathrm{A}}\left(\right.$ flag $^{2}[\mathrm{~A}]=$ true $)$
From the code
- writ $_{A}($ flag $[A]=t r u e) ~ \rightarrow$ read $_{A}(f l a g[B]==f a l s e)$
- write $_{\mathrm{B}}(\mathrm{flag}[B]=$ true $) \rightarrow \operatorname{read}_{\mathrm{B}}(\mathrm{flag}[\mathrm{A}]==\mathrm{false})$

Combining

- Assumptions:
$-\operatorname{read}_{\mathrm{A}}($ flag $[B]==$ false $) \rightarrow$ write $_{\mathrm{B}}$ (flag[B]=true)

Combining

Combining

Cycle!

Deadlock Freedom

- LockOne Fails deadlock-freedom
- Concurrent execution can deadlock

```
    flag[i] = true; flag[j] = true;
    while (flag[j]){} while (flag[i]){}
```

- Sequential executions OK

LockTwo

```
public class LockTwo implements Lock {
    private int victim;
    public void lock() {
        victim = i;
        while (victim == i) {};
    }
    public void unlock() {}
}
```


LockTwo

```
public class LockTwo implements Lock {
private int victim; Let other go
    public void lock()
    victim = i; 
    }
    public void unlock() {}
}
```


LockTwo

```
public class LockTwo implements Lock
    private int victim;
    public void lock() { permission
    while (victim == i) {};
    public void unlock() {}
}
```


LockTwo

LockTwo Claims

- Satisfies mutual exclusion
- If thread i in CS

```
public void LockTwo() {
```

```
    while (victim == i) {};
```

 while (victim == i) {};
 }
    ```
- Then victim == j victim = i;
- Cannot be both 0 and 1
- Not deadlock free
- Sequential execution deadlocks
- Concurrent execution does not

\section*{Peterson's Algorithm}
public void lock() \{
```

flag[i] = true;
victim = i;
while (flag[j] \&\& victim == i) \{\};

```
\}
public void unlock() \{
flag[i] = false;
\}

\section*{Peterson's Algorithm}
```

 Announce l'm
 public void lecr interested
flag[i] = true;
victim = i;
while (flag[j] \&\& victim == i) {};
}
public void unlock() {
flag[i] = false;
}

```

\section*{Peterson's Algorithm}
```

 Announce l'm
 public void lecr interested
flag[i] = true; D Defer to other
while (flag[j] \&\& victim == i) {};
}
public void unlock() {
flag[i] = false;
}

```

\section*{Peterson's Algorithm}


\section*{Peterson's Algorithm}


\section*{Mutual Exclusion}

\section*{(1) write \(_{\mathrm{B}}(\) Flag \([\mathrm{B}]=\) true \() \rightarrow\) write \(_{\mathrm{B}}(\) victim=B)}
```

public void lock()
flag[i] = true;
victim = i;
while (flag[j] \&\& victim == i) {};
}

```

From the Code

\section*{Also from the Code}

\section*{(2) write \(_{A}(\) victim \(=A) \rightarrow \operatorname{read}_{A}(\) flag \([B])\) \\ \(\rightarrow\) read \(_{\mathrm{A}}\) (victim)}
```

public void lock() {
flag[i] = true:
victim = i;
while (flag[j] \&\& victim == i) {};

```

\section*{Assumption}
(3) write \(_{\mathrm{B}}(\) victim \(=\mathrm{B}) \rightarrow\) write \(_{\mathrm{A}}(\) victim \(=\mathrm{A})\)

\author{
W.L.O.G. assume A is the last thread to write victim
}

\section*{Combining Observations}
(1) write \(_{\mathrm{B}}(\) flag \([\mathrm{B}]=\) true \() \rightarrow\) write \(_{\mathrm{B}}(\) victim \(=\mathrm{B})\)
(3) write \(_{B}(\) victim \(=B) \rightarrow\) write \(_{A}(\) victim \(=A)\)
(2) write \(_{A}(\operatorname{victim}=A) \rightarrow \operatorname{read}_{A}(f l a g[B])\) \(\Rightarrow \operatorname{read}_{A}(\) victim \()\)

\section*{Combining Observations}
(1) write \(_{B}(\) flag \([B]=\) true \() ~->\)
(3) write \(_{B}(\) victim \(=B) \rightarrow\)
(2) write \(_{A}(\operatorname{victim}=A) \rightarrow \operatorname{read}_{A}(f l a g[B])\) \(\Rightarrow \operatorname{read}_{A}(\) victim \()\)

\section*{Combining Observations}
(1) write \(_{B}(\) flag \([B]=\) true \() \rightarrow\)
(3) write \(_{\mathrm{B}}(\) victim \(=\mathrm{B}) \rightarrow\)
(2) write \(_{A}(\) victim \(=A)=\operatorname{read}_{A}(\) flag \([B])\)
\(\rightarrow\) read \(_{A}(\) victim \()\)

A read flag \([B]==\) true and victim \(==A\), so it could not have entered the CS (QED)

\section*{Deadlock Free}

\section*{public void lock() \{}
```

while (flag[j] \&\& victim == i) {};

```
- Thread blocked
- only at while loop
- only if other's flag is true
- only if it is the victim
- Solo: other's flag is false
- Both: one or the other not the victim

\section*{Starvation Free}
- Thread i blocked only if j repeatedly re-enters so that
```

flag[j] == true and
victim == i

```
- When j re-enters
```

public void unlock() {
flag[i] = false;

```
- it sets victim to \(\mathbf{j}\).
- So i gets in

\section*{The Filter Algorithm for \(n\) Threads}

There are n "waiting rooms" called levels
- At each level
- At least one enters level
- At least one blocked if many try
- Only one thread makes it throuycs

\section*{Filter}


\section*{Filter}

\section*{class Filter implements Lock \{}
```

public void lock() {
for (int L = 1; L < n; L++) {
level[i] = L;
victim[L] = i;
while ((\exists k != i level[k] >= L) \&\&
victim[L] == i) {};
} }
public void unlock() {
level[i] = 0;
} }

```

\section*{Filter}
```

class Filter implements Lock {

```
for (int \(\mathrm{L}=1 ; \mathrm{L}<\mathrm{n} ; \mathrm{L}++\) ) \{
    victim[L] = i;
    while \(((\exists \mathrm{k}!=\mathrm{i})\) ledel[k \(>=\mathrm{L})\) \& \&
        victim[L] == i)
    \} \}
public void release(int i)
    level[i] \(=0\);
\} \}
One level at a time

\section*{Filter}
```

class Filter implements Lock {

```
```

public void lock() {
for (int L = 1; L < n; L+t) {
level[i] = L;
while ((\exists\textrm{k}!=\textrm{i})
victim[L] == i) Announce
} }
public void release(int i) intention to enter
level[i] = 0;
\} \}

Filter

```
class Filter implements Lock {
    int level[n];
    int victim[n];
    public void lock() {
        for (int L = 1; L < n; L++) {
            level[i] = L;
            victim[L] = i;
        } }
    public void release(int i)
        level[i] = 0;
    }}
```


Give priority to anyone but me

Filter

Wait as long as someone else is at same or higher level, and l'm designated victim

```
publ
```

public void release(int i) \{
level[i] $=0$;
\} \}

Filter

```
class Filter implements Lock {
    int level[n];
    int victim[n];
    public void lock() {
        for (int L = 1; L < n; L++) {
            level[i] = L;
            victim[L] = i;
            while ((\existsk != i) level[k] >= L) &&
                                victim[L] == i) {};
    Thread enters level L when it completes the loop
```


Claim

- Start at level L=0
- At most n-L threads enter level L
- Mutual exclusion at level $\mathrm{L}=\mathrm{n}-1$

Induction Hypothesis

- No more than n-(L-1) at level L-1
- Induction step: by contradiction
- Assume all at level

L-1 enter level L

- A last to write victim[L]
- B is any other thread at level L

Proof Structure

Show that A must have seen
L in level[B] and since victim[L] == A could not have entered

Just Like Peterson

(1) write $_{B}($ level $[B]=\mathrm{L}) \rightarrow$ write $_{\mathrm{B}}\left(\right.$ victim $^{[L]=B)}$

```
public void lock()
    for (int I_ = 1; I_ < n; L++) {
    level[i] = L;
    victim[L] = i;
    while ((\exists k != i) level[k] >= L)
    && victim[L] == i) {};
    } }
```


From the Code

From the Code

(2) write $_{A}($ victim $[L]=A) \rightarrow$ read $_{A}($ level $[B])$ $\rightarrow \operatorname{read}_{\mathrm{A}}\left(\right.$ victim $\left.\left.^{\mathrm{L}} \mathrm{L}\right]\right)$

```
public void lock()
    for (int L = 1; L < n; L++) {
        level[i] = L;
        while ((\existsk != i) level[k] >= L)
            && victim[L] == i) {};
```


By Assumption

(3) write $_{\mathrm{B}}($ victim $[\mathrm{L}]=\mathrm{B}) \rightarrow$ write $_{\mathrm{A}}($ victim $[\mathrm{L}]=\mathrm{A})$

By assumption, A is the last thread to write victim[L]

Combining Observations

(1) write $_{B}($ level $[B]=\mathrm{L}) \rightarrow$ write $_{B}($ victim $[L]=B)$
(3) write $_{B}($ victim $[\mathrm{L}]=\mathrm{B}) \rightarrow$ write $_{A}($ victim $[\mathrm{L}]=A)$
(2) write $_{A}($ victim $[\mathrm{L}]=A) \rightarrow$ read $_{A}($ level $[B])$ $\rightarrow \operatorname{read}_{\mathrm{A}}($ victim $[\mathrm{L}])$

Combining Observations

(1) write $_{B}($ level[B]=L) \rightarrow
(3) write $_{\mathrm{B}}($ victim $[\mathrm{L}]=\mathrm{B}) \rightarrow$ write $_{\mathrm{A}}($ victim $[\mathrm{L}]=\mathrm{A})$
(2)
\rightarrow read $_{A}($ level $[B])$
\rightarrow read $_{\mathrm{A}}($ victim $[\mathrm{L}])$

Combining Observations

(1) write $_{\mathrm{B}}($ level $[\mathrm{B}]=\mathrm{L}) \rightarrow$
(3) write $_{B}($ victim $[\mathrm{L}]=\mathrm{B}) \rightarrow$ write $_{A}($ victim $[\mathrm{L}]=A)$
(2)

\rightarrow read $_{A}$ (level[B])

 $\Rightarrow \operatorname{read}_{A}\left(\right.$ victim $\left.\left.^{2}\right]\right)$A read level[B] $\geq \mathrm{L}$, and victim[$[\mathrm{L}]=A$, so it could not have entered level L!

No Starvation

- Filter Lock satisfies properties:
- Just like Peterson Alg at any level
- So no one starves
- But what about fairness?
- Threads can be overtaken by others

Bounded Waiting

- Want stronger fairness guarantees
- Thread not "overtaken" too much
- If A starts before B, then A enters before B ?
- But what does "start" mean?
- Need to adjust definitions

Bounded Waiting

- Divide lock () method into 2 parts:
- Doorway interval:
- Written D $_{\text {A }}$
- always finishes in finite steps
- Waiting interval:
- Written \mathbf{W}_{A}
- may take unbounded steps

First-Come-First-Served

- For threads A and B :
- If $D_{A}{ }^{k} \rightarrow D_{B}{ }^{j}$
- A's k-th doorway precedes B's j-th doorway
- Then $\mathbf{C S}_{\mathbf{A}}{ }^{\mathbf{k}} \rightarrow \mathbf{C S}_{\mathbf{B}}{ }^{\mathbf{j}}$
- A's k-th critical section precedes B's j-th critical section
- B cannot overtake A

Fairness Again

- Filter Lock satisfies properties:
- No one starves
- But very weak fairness
- Can be overtaken arbitrary \# of times
- That's pretty lame...

Bakery Algorithm

- Provides First-Come-First-Served
- How?
- Take a "number"
- Wait until lower numbers have been served
- Lexicographic order
$-(a, i)>(b, j)$
- If $a>b$, or $a=b$ and $i>j$

Bakery Algorithm

```
class Bakery implements Lock {
        boolean[] flag;
    Label[] label;
public Bakery (int n) {
    flag = new boolean[n];
    label = new Label[n];
    for (int i = 0; i < n; i++) {
        flag[i] = false; label[i] = 0;
    }
}
```


Bakery Algorithm

Bakery Algorithm

```
class Bakery implements Lock {
public void lock() {
    flag[i] = true;
    label[i] = max(label[0], ...,label[n-1])+1;
    while (\existsk flag[k]
        && (label[i],i) > (label[k],k));
    }
```


Bakery Algorithm

```
class Bakery implements Lock {
                                    Doorway
public void lock()
    flag[i] = true;
    label[i] = max(label[0], ...,label[n-1])+1;
```

while ($\ddagger \mathrm{k}$ flag[k]
\&\& (label[i],i) > (label[k],k));

Bakery Algorithm

```
class Bakery implements Lock {
I'm interested
prblic void [i] = true;
label[i] = max(label[0], ...,label[n-1])+1;
while (\existsk flag[k]
    && (label[i],i) > (label[k],k));
```


Bakery Algorithm

Take increasing
label (read labels in some arbitrary

```
public void lock() {
    label[i] = max(label[0], ...,label[n-1])+1;
    while (\existsk flag[k]
    && (label[i],i) > (label[k],k));
```


Bakery Algorithm

```
class Bakery implements Lock { Someone is
public void lock() { interested
    flag[i] = true;
    label[i] = mavelabl[0], ...,label[n-1])+1;
    while (\existsk flag[k]
    && (label[i],i) > (label[k],k));
```


Bakery Algorithm

```
class Bakery implements Lock {
    boolean flag[n];
    int label[n];
                            Someone is
                            interested ...
public void lock()
    flag[i] = true;
    label[i] = max(vobl[0], .., label[n-1])+1;
    while (\existsk flaq[k]
                                    && (label[i],i) > (label[k],k));
... whose (label[k],k) in lexicographic order is lower
```


Bakery Algorithm

class Bakery implements Lock \{

```
public void unlock() {
    flag[i] = false;
    }
}
```


Bakery Algorithm

labels are always increasing

No Deadlock

- There is always one thread with earliest label
- Ties are impossible (why?)

First-Come-First-Served

- If $D_{A} \rightarrow D_{B}$ then
- A's label is smaller
- And:
- write $_{\mathrm{A}}($ label $[\mathrm{A}]) \rightarrow$
$-\operatorname{read}_{\mathrm{B}}(\operatorname{label}[\mathrm{A}]) \rightarrow$
- write $_{\mathrm{B}}(\operatorname{label}[\mathrm{B}]) \rightarrow \operatorname{read}_{\mathrm{B}}(\mathrm{flag}[\mathrm{A}])$
- So B sees
- smaller label for A
- locked out while flag[A] is true

Mutual Exclusion

- Suppose A and B in CS together
- Suppose A has earlier label
- When B entered, it must have seen
- flag[A] is false, or
- label[A] > label[B]

```
class Bakery implements Lock {
public void lock() {
    flag[i] = true;
    label[i] = max(label[0],
        ...,label[n-1]) +1 ;
    while (\existsk flag[k]
        && (label[i],i) >
    (label[k],k));
    }
```


Mutual Exclusion

- Labels are strictly increasing so
- B must have seen flag $[A]==$ false

Mutual Exclusion

- Labels are strictly increasing so
- B must have seen flag[A] == false
- Labeling ${ }_{B} \rightarrow \operatorname{read}_{B}($ flag $[A]) \rightarrow$ write $_{A}(f l a g[A]) \rightarrow$ Labeling $_{A}$

Mutual Exclusion

- Labels are strictly increasing so
- B must have seen flag[A] == false
- Labeling ${ }_{B} \rightarrow \operatorname{read}_{B}(f \operatorname{flag}[A]) \rightarrow$ write $_{A}(f l a g[A]) \rightarrow$ Labeling $_{A}$
- Which contradicts the assumption that A has an earlier label

Bakery $\mathrm{Y}^{32} \mathrm{~K}$ Bug

class Bakery implements Lock \{

```
public void lock() {
    flag[i] = true;
    label[i] = max(label[0], ...label[n-1])+1;
    while (\existsk flag[k]
        && (label[i],i) > (label[k],k));
}
```


Bakery $\mathrm{Y}^{32}{ }^{32} \mathrm{~K}$ Bug

```
class Bakery implements Lock { Mutex breaks if label[i] overflows
```

```
public void lock() {
```

public void lock() {
flao[i] = true
flao[i] = true
label[i] = max(label[0], ...,label[n-1])+1;
label[i] = max(label[0], ...,label[n-1])+1;
while (\sqsupsetk flag[k]
\&\& (label[i],i) > (label[k],k));
}

```

\section*{Does Overflow Actually Matter?}
- Yes
- Y2K
- 18 January 2038 (Unix time_t rollover)
- 16-bit counters
- No
- 64-bit counters
- Maybe
- 32-bit counters

\section*{Timestamps}
- Label variable is really a timestamp
- Need ability to
- Read others' timestamps
- Compare them
- Generate a later timestamp
- Can we do this without overflow?

\section*{The Good News}
- One can construct a
- Wait-free (no mutual exclusion)
- Concurrent
- Timestamping system
- That never overflows

\section*{The Gady News}
- One can construct a

Wait-free (no mutual exclusion)
-Concurrent
This part is hard
- Timestamping system
- That never overflows

\section*{Instead ...}
- We construct a Sequential timestamping system
- Same basic idea
- But simpler
- As if we use mutex to read \& write atomically
- No good for building locks
- But useful anyway

\section*{Precedence Graphs}

- Timestamps form directed graph
- Edge x to y
- Means x is later timestamp
- We say x dominates y

\section*{Unbounded Counter Precedence Graph}

- Timestamping = move tokens on graph
- Atomically
- read others' tokens
- move mine
- Ignore tie-breaking for now

\section*{Unbounded Counter Precedence Graph}


\section*{Unbounded Counter Precedence Graph}


\section*{Two-Thread Bounded Precedence Graph \({ }^{2}\)}

and so on ...

\section*{Three-Thread Bounded Precedence Graph?}


\section*{Three-Thread Bounded Precedence Graph?}


\section*{Graph Composition}


\section*{Three-Thread Bounded Precedence Graph \(T^{3}\)}


Three-Thread Bounded Precedence Graph \(T^{3}\)


\section*{Three-Thread Bounded Precedence Graph \(T^{3}\)}


\section*{In General}


\section*{Deep Philosophical Question}
- The Bakery Algorithm is
- Succinct,
- Elegant, and
- Fair.
- Q: So why isn't it practical?
- A: Well, you have to read N distinct variables

\section*{Shared Memory}
- Shared read/write memory locations called Registers (historical reasons)
- Come in different flavors
- Multi-Reader-Single-Writer (Flag [])
- Multi-Reader-Multi-Writer (Victim [])
- Not that interesting: SRMW and SRSW

\section*{Theorem}

At least N MRSW (multi-reader/singlewriter) registers are needed to solve deadlock-free mutual exclusion.

N registers like Flag[]...

\section*{Proving Algorithmic Impossibility}
-To show no algorithm exists:
- assume by way of contradiction one does,
- show a bad execution that

CS violates properties:
- in our case assume an alg for deadlock free mutual exclusion using < N registers

\section*{Proof: Need N-MRSW Registers}

\section*{Each thread must write to some register}


CS


08


08
...can't tell whether A is in critical section

\section*{Upper Bound}
- Bakery algorithm
- Uses 2N MRSW registers
- So the bound is (pretty) tight
- But what if we use MRMW registers?
- Like victim[]?

\section*{Bad News Theorem}

At least N MRMW multi-reader/multi-writer registers are needed to solve deadlock-free mutual exclusion.
(So multiple writers don't help)

\section*{Theorem (For 2 Threads)}

Theorem: Deadlock-free mutual exclusion for 2 threads requires at least 2 multi-reader multi-writer registers

Proof: assume one register suffices and derive a contradiction

\section*{Two Thread Execution}

- Threads run, reading and writing R
- Deadlock free so at least one gets in

\section*{Covering State for One Register Always Exists}


In any protocol B has to write to the register before entering CS, so stop it just before

\section*{Proof: Assume Cover of 1}


A runs, possibly writes to the register, enters CS

\section*{Proof: Assume Cover of 1}


\section*{Theorem}

Deadlock-free mutual exclusion for 3 threads requires at least 3 multi-reader multi-writer registers

\section*{Proof: Assume Cover of 2}


Only 2 registers

\section*{Run A Solo}


\section*{Obliterate Traces of A}


\section*{Mutual Exclusion Fails}


\section*{Proof Strategy}
- Proved: a contradiction starting from a covering state for 2 registers
- Claim: a covering state for 2 registers is reachable from any state where CS is empty

\section*{Covering State for Two}

- If we run B through CS 3 times, B must return twice to cover some register, say \(R_{B}\)

\section*{Covering State for Two}

- Start with \(B\) covering register \(R_{B}\) for the \(1^{\text {st }}\) time
- Run \(A\) until it is about to write to uncovered \(R_{A}\)
- Are we done?

\section*{Covering State for Two}

- NO! A could have written to \(\mathrm{R}_{\mathrm{B}}\)
- So CS no longer looks empty to thread C

\section*{Covering State for Two}

- Run \(\mathbf{B}\) obliterating traces of \(\mathbf{A}\) in \(\mathbf{R}_{\mathbf{B}}\)
- Run \(\mathbf{B}\) again until it is about to write to \(\mathbf{R}_{\mathbf{B}}\)
- Now we are done

\section*{Inductively We Can Show}

- There is a covering state
- Where \(\mathbf{k}\) threads not in CS cover \(\mathbf{k}\) distinct registers
- Proof follows when \(\mathbf{k}=\mathbf{N}-\mathbf{1}\)

\section*{Summary of Lecture}
- In the 1960's several incorrect solutions to starvation-free mutual exclusion using RW-registers were published...
- Today we know how to solve FIFO N thread mutual exclusion using 2N RWRegisters

\section*{Summary of Lecture}
- N RW-Registers inefficient
- Because writes "cover" older writes
- Need stronger hardware operations
- that do not have the "covering problem"
- In next lectures - understand what these operations are...

\section*{This work is licensed under a}
\(\square\)
ShareAlike 2.5 License.
- You are free:
- to Share - to copy, distribute and transmit the work
- to Remix - to adapt the work
- Under the following conditions:
- Attribution. You must attribute the work to "The Art of Multiprocessor Programming" (but not in any way that suggests that the authors endorse you or your use of the work).
- Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
- http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.```

