
Programming Paradigms for Concurrency
Introduction

Based on companion slides for
The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

Modified by
Thomas Wies

New York University

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAA

2

Moore’s Law

Clock speed
flattening

sharply

Transistor
count still

rising

Moore’s Law (in practice)

3

4

Nearly Extinct: the Uniprocesor

memory

cpu

5

Endangered:
The Shared Memory Multiprocessor

(SMP)

cache

Bus Bus

shared memory

cache cache

6

The New Boss:
The Multicore Processor

(CMP)

cache

Bus Bus

shared memory

cache cache
All on the
same chip

NVidia Tegra 4
with
ARM Cortex-
A15

7

Why is Mooly Eden Smiling?

9

Traditional Scaling Process

User code

Traditional
Uniprocessor

Speedup
1.8x

7x

3.6x

Time: Moore’s law

Ideal Scaling Process

10

User code

Multicore

Speedup 1.8x

7x

3.6x

Unfortunately, not so simple…

Actual Scaling Process

11

1.8x 2x 2.9x

User code

Multicore

Speedup

Parallelization and Synchronization
require great care…

12

Course Overview

• Fundamentals
– models, algorithms, impossibility

• Real-World programming
– architectures

– synchronization primitives
• spin-locks, monitors, barriers

– paradigms and techniques
• shared memory concurrency

• transactional memories

• message passing

Languages Used

• Java

– shared memory concurrency

• Scala

– software transactional memory

– message passing (actors)

13

Administrative Issues

• Office Hours: Tue 3-4pm, or by appointment

• Office: CIWW 407

• Course web site:
http://cs.nyu.edu/wies/teaching/ppc-14

• Mailing list:
csci_ga_3033_014_sp14@cs.nyu.edu

14

Grading

• Weekly Assignments: 30%

• Term Project: 30%

• Final Exam: 40%

15

16

Sequential Computation

memory

object object

thread

17

Concurrent Computation

memory

object object

18

Asynchrony

• Sudden unpredictable delays

– Cache misses (short)

– Page faults (long)

– Scheduling quantum used up (really long)

19

Model Summary

• Multiple threads

– Sometimes called processes

• Single shared memory

• Objects live in memory

• Unpredictable asynchronous delays

20

Road Map

• We are going to focus on principles first, then
practice

– Start with idealized models

– Look at simplistic problems

– Emphasize correctness over pragmatism

– “Correctness may be theoretical, but
incorrectness has practical impact”

Toyota Unintended Acceleration
Incidents (2009-2010)

• at least one fatal accident

• more than 9 million vehicles recalled

• In a 2013 court case, unprotected critical
variables in Toyota’s real-time OS were linked to
the incidents

21

22

Concurrency Jargon

• Hardware

– Processors

• Software

– Threads, processes

• Sometimes OK to confuse them, sometimes
not.

23

Parallel Primality Testing

• Challenge

– Print primes from 1 to 1010

• Given

– Ten-processor multiprocessor

– One thread per processor

• Goal

– Get ten-fold speedup (or close)

24

Load Balancing

• Split the work evenly

• Each thread tests range of 109

…

… 109 1010 2·109 1

P0 P1 P9

25

Procedure for Thread i

void primePrint {

 int i = ThreadID.get(); // IDs in {0..9}

 for (j = i*109+1, j<(i+1)*109; j++) {

 if (isPrime(j))

 print(j);

 }

}

26

Issues

• Higher ranges have fewer primes

• Yet larger numbers harder to test

• Thread workloads

– Uneven

– Hard to predict

27

Issues

• Higher ranges have fewer primes

• Yet larger numbers harder to test

• Thread workloads

– Uneven

– Hard to predict

• Need dynamic load balancing

28

17

18

19

Shared Counter

each thread takes
a number

29

Procedure for Thread i

int counter = new Counter(1);

void primePrint {

 long j = 0;

 while (j < 1010) {

 j = counter.getAndIncrement();

 if (isPrime(j))

 print(j);

 }

}

30

Counter counter = new Counter(1);

void primePrint {

 long j = 0;

 while (j < 1010) {

 j = counter.getAndIncrement();

 if (isPrime(j))

 print(j);

 }

}

Procedure for Thread i

Shared counter
object

31

Where Things Reside

cache

Bus Bus

cache cache

1

shared counter

shared
memory

void primePrint {

 int i =

ThreadID.get(); // IDs

in {0..9}

 for (j = i*109+1,

j<(i+1)*109; j++) {

 if (isPrime(j))

 print(j);

 }

}

code

Local
variables

32

Procedure for Thread i

Counter counter = new Counter(1);

void primePrint {

 long j = 0;

 while (j < 1010) {

 j = counter.getAndIncrement();

 if (isPrime(j))

 print(j);

 }

}

Stop when every
value taken

33

Counter counter = new Counter(1);

void primePrint {

 long j = 0;

 while (j < 1010) {

 j = counter.getAndIncrement();

 if (isPrime(j))

 print(j);

 }

}

Procedure for Thread i

Increment & return each
new value

34

Counter Implementation

public class Counter {

 private long value;

 public long getAndIncrement() {

 return value++;

 }

}

35

Counter Implementation

public class Counter {

 private long value;

 public long getAndIncrement() {

 return value++;

 }

}

36

What It Means

public class Counter {

 private long value;

 public long getAndIncrement() {

 return value++;

 }

}

37

What It Means

public class Counter {

 private long value;

 public long getAndIncrement() {

 return value++;

 }

}

 temp = value;

 value = temp + 1;

 return temp;

38

time

Not so good…

Value… 1

read
1

read
1

write
2

read
2

write
3

write
2

2 3 2

39

Is this problem inherent?

If we could only glue reads and writes
together…

read

write read

write

!! !!

40

Challenge

public class Counter {

 private long value;

 public long getAndIncrement() {

 temp = value;

 value = temp + 1;

 return temp;

 }

}

41

Challenge

public class Counter {

 private long value;

 public long getAndIncrement() {

 temp = value;

 value = temp + 1;

 return temp;

 }

}

Make these steps
atomic (indivisible)

42

Hardware Solution

public class Counter {

 private long value;

 public long getAndIncrement() {

 temp = value;

 value = temp + 1;

 return temp;

 }

} ReadModifyWrite()
instruction

43

An Aside: Java™

public class Counter {

 private long value;

 public long getAndIncrement() {

 synchronized {

 temp = value;

 value = temp + 1;

 }

 return temp;

 }

}

44

An Aside: Java™

public class Counter {

 private long value;

 public long getAndIncrement() {

 synchronized {

 temp = value;

 value = temp + 1;

 }

 return temp;

 }

}
Synchronized block

45

An Aside: Java™

public class Counter {

 private long value;

 public long getAndIncrement() {

 synchronized {

 temp = value;

 value = temp + 1;

 }

 return temp;

 }

}

Mutual Exclusion

46

Mutual Exclusion,
or “Alice & Bob share a pond”

A B

47

Alice has a pet

A B

48

Bob has a pet

A B

49

The Problem

A B

The pets don’t
get along

50

Formalizing the Problem

• Two types of formal properties in
asynchronous computation:

• Safety Properties

– Nothing bad happens ever

• Liveness Properties

– Something good happens eventually

51

Formalizing our Problem

• Mutual Exclusion

– Both pets never in pond simultaneously

– This is a safety property

• No Deadlock

– if only one wants in, it gets in

– if both want in, one gets in.

– This is a liveness property

52

Simple Protocol

• Idea

– Just look at the pond

• Gotcha

– Not atomic

– Trees obscure the view

53

Interpretation

• Threads can’t “see” what other threads are
doing

• Explicit communication required for
coordination

54

Cell Phone Protocol

• Idea

– Bob calls Alice (or vice-versa)

• Gotcha

– Bob takes shower

– Alice recharges battery

– Bob out shopping for pet food …

55

Interpretation

• Message-passing doesn’t work

• Recipient might not be

– Listening

– There at all

• Communication must be

– Persistent (like writing)

– Not transient (like speaking)

56

Can Protocol

co
la

co
la

57

Bob conveys a bit

A B

co
la

58

Bob conveys a bit

A B

59

Can Protocol

• Idea

– Cans on Alice’s windowsill

– Strings lead to Bob’s house

– Bob pulls strings, knocks over cans

• Gotcha

– Cans cannot be reused

– Bob runs out of cans

60

Interpretation

• Cannot solve mutual exclusion with interrupts

– Sender sets fixed bit in receiver’s space

– Receiver resets bit when ready

– Requires unbounded number of interrupt bits

61

Flag Protocol

A B

62

Alice’s Protocol (sort of)

A B

63

Bob’s Protocol (sort of)

A B

64

Alice’s Protocol

• Raise flag

• Wait until Bob’s flag is down

• Unleash pet

• Lower flag when pet returns

65

Bob’s Protocol

• Raise flag

• Wait until Alice’s flag is down

• Unleash pet

• Lower flag when pet returns

66

Bob’s Protocol (2nd try)

• Raise flag

• While Alice’s flag is up
– Lower flag

– Wait for Alice’s flag to go down

– Raise flag

• Unleash pet

• Lower flag when pet returns

67

Bob’s Protocol

• Raise flag

• While Alice’s flag is up
– Lower flag

– Wait for Alice’s flag to go down

– Raise flag

• Unleash pet

• Lower flag when pet returns

Bob defers to
Alice

68

The Flag Principle

• Raise the flag

• Look at other’s flag

• Flag Principle:

– If each raises and looks, then

– Last to look must see both flags up

69

Proof of Mutual Exclusion

• Assume both pets in pond

– Derive a contradiction

– By reasoning backwards

• Consider the last time Alice and Bob each
looked before letting the pets in

• Without loss of generality assume Alice was
the last to look…

70

Proof

time

Alice’s last look

Alice last raised her flag

Bob’s last look

Alice must have seen Bob’s Flag. A Contradiction

Bob last raised flag

71

Proof of No Deadlock

• If only one pet wants in, it gets in.

72

Proof of No Deadlock

• If only one pet wants in, it gets in.

• Deadlock requires both continually trying to
get in.

73

Proof of No Deadlock

• If only one pet wants in, it gets in.

• Deadlock requires both continually trying to
get in.

• If Bob sees Alice’s flag, he gives her priority (a

gentleman…)

74

Remarks

• Protocol is unfair

– Bob’s pet might never get in

• Protocol uses waiting

– If Bob is eaten by his pet, Alice’s pet might never
get in

75

Moral of Story

•Mutual Exclusion cannot be solved by
– transient communication (cell phones)

– interrupts (cans)

•It can be solved by
– one-bit shared variables

– that can be read or written

76

The Arbiter Problem (an aside)

Pick a
point

Pick a
point

77

The Fable Continues

• Alice and Bob fall in love & marry

78

The Fable Continues

• Alice and Bob fall in love & marry

• Then they fall out of love & divorce

– She gets the pets

– He has to feed them

79

The Fable Continues

• Alice and Bob fall in love & marry

• Then they fall out of love & divorce

– She gets the pets

– He has to feed them

• Leading to a new coordination problem:
Producer-Consumer

80

Bob Puts Food in the Pond

A

81

mmm…

Alice releases her pets to Feed

B
mmm…

82

Producer/Consumer

• Alice and Bob can’t meet

– Each has restraining order on other

– So he puts food in the pond

– And later, she releases the pets

• Avoid

– Releasing pets when there’s no food

– Putting out food if uneaten food remains

83

Producer/Consumer

• Need a mechanism so that

– Bob lets Alice know when food has been put out

– Alice lets Bob know when to put out more food

84

Surprise Solution

A B

co
la

85

Bob puts food in Pond

A B

co
la

86

Bob knocks over Can

A B

87

Alice Releases Pets

A B yum… B
yum…

88

Alice Resets Can when Pets are Fed

A B

co
la

89

Pseudocode

while (true) {

 while (can.isUp()){};

 pet.release();

 pet.recapture();

 can.reset();

}

Alice’s code

90

Pseudocode

while (true) {

 while (can.isUp()){};

 pet.release();

 pet.recapture();

 can.reset();

}

Alice’s code

while (true) {

 while (can.isDown()){};

 pond.stockWithFood();

 can.knockOver();

}

Bob’s code

91

Correctness

• Mutual Exclusion

– Pets and Bob never together in pond

92

Correctness

• Mutual Exclusion

– Pets and Bob never together in pond

• No Starvation

if Bob always willing to feed, and pets always
famished, then pets eat infinitely often.

93

Correctness

• Mutual Exclusion
– Pets and Bob never together in pond

• No Starvation
if Bob always willing to feed, and pets always

famished, then pets eat infinitely often.

• Producer/Consumer
The pets never enter pond unless there is food,

and Bob never provides food if there is
unconsumed food.

safety

liveness

safety

94

Could Also Solve Using Flags

A B

95

Waiting

• Both solutions use waiting
– while(mumble){}

• In some cases waiting is problematic

– If one participant is delayed

– So is everyone else

– But delays are common & unpredictable

96

The Fable drags on …

• Bob and Alice still have issues

97

The Fable drags on …

• Bob and Alice still have issues

• So they need to communicate

98

The Fable drags on …

• Bob and Alice still have issues

• So they need to communicate

• They agree to use billboards …

99

E
1

D
2

C
3

Billboards are Large

B
3 A

1

Letter
Tiles

From Scrabble™ box

100

E
1

D
2

C
3

Write One Letter at a Time …

B
3 A

1

W
4
A

1
S

1

H
4

101

To post a message

W
4
A

1
S

1
H

4
A

1
C

3
R

1
T

1
H

4
E

1

whew

102

S
1

Let’s send another message

S
1
E

1
L

1
L

1
L

1
V

4

L
1 A

1

M
3

A
1

A
1

P
3

103

Uh-Oh

A
1

C
3

R
1

T
1
H

4
E

1
S

1
E

1
L

1
L

1

L
1

OK

104

Readers/Writers

• Devise a protocol so that

– Writer writes one letter at a time

– Reader reads one letter at a time

– Reader sees “snapshot”

• Old message or new message

• No mixed messages

105

Readers/Writers (continued)
• Easy with mutual exclusion

• But mutual exclusion requires waiting

– One waits for the other

– Everyone executes sequentially

• Remarkably

– We can solve R/W without mutual exclusion

106

Esoteric?

• Java container size() method

• Single shared counter?

– incremented with each add() and

– decremented with each remove()

• Threads wait to exclusively access counter

107

Readers/Writers Solution

• Each thread i has size[i] counter

– only it increments or decrements.

• To get object’s size, a thread reads a
“snapshot” of all counters

• This eliminates the bottleneck

108

Why do we care?

• We want as much of the code as possible to
execute concurrently (in parallel)

• A larger sequential part implies reduced
performance

• Amdahl’s law: this relation is not linear…

109

Amdahl’s Law

Speedup=
1-thread execution time

n-thread execution time

110

Amdahl’s Law

Speedup=
1

1¡ p+ p

n

1

1¡ p+ p

n

111

Amdahl’s Law

Speedup=

Parallel
fraction

1

1¡ p+ p

n

112

Amdahl’s Law

Speedup=

Parallel
fraction

Sequential
fraction

1

1¡ p+ p

n

113

Amdahl’s Law

Speedup=

Parallel
fraction

Sequential
fraction

Number of
threads

Amdahl’s Law (in practice)

114

115

Example

• Ten processors

• 60% concurrent, 40% sequential

• How close to 10-fold speedup?

116

Example

• Ten processors

• 60% concurrent, 40% sequential

• How close to 10-fold speedup?

10

6.0
6.01

1

Speedup = 2.17=

117

Example

• Ten processors

• 80% concurrent, 20% sequential

• How close to 10-fold speedup?

118

Example

• Ten processors

• 80% concurrent, 20% sequential

• How close to 10-fold speedup?

10

8.0
8.01

1

Speedup = 3.57=

119

Example

• Ten processors

• 90% concurrent, 10% sequential

• How close to 10-fold speedup?

120

Example

• Ten processors

• 90% concurrent, 10% sequential

• How close to 10-fold speedup?

10

9.0
9.01

1

Speedup = 5.26=

121

Example

• Ten processors

• 99% concurrent, 01% sequential

• How close to 10-fold speedup?

122

Example

• Ten processors

• 99% concurrent, 01% sequential

• How close to 10-fold speedup?

10

99.0
99.01

1

Speedup = 9.17=

Back to Real-World Multicore
Scaling

1.8x 2x 2.9x

User code

Multicore

Speedup

Not reducing sequential %
of code

123

Shared Data Structures

75%
Unshared

25%
Shared

Coarse
Grained

Fine
Grained

75%
Unshared

25%
Shared

124

Shared Data Structures

75%
Unshared

25%
Shared

Coarse
Grained

Fine
Grained

Why only 2.9 speedup

75%
Unshared

25%
Shared

Honk!
Honk!

Honk!

125

Shared Data Structures

75%
Unshared

25%
Shared

Coarse
Grained

Fine
Grained

Why fine-grained
parallelism maters

75%
Unshared

25%
Shared

Honk!
Honk!

Honk!

126

127

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:

– to Share — to copy, distribute and transmit the work

– to Remix — to adapt the work

• Under the following conditions:

– Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from
the copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

