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Moore’s Law 

Clock speed 
flattening 

sharply 

Transistor 
count still 

rising 



Moore’s Law (in practice) 
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Nearly Extinct: the Uniprocesor 

memory 

cpu 
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Endangered:  
The Shared Memory Multiprocessor 

(SMP) 

cache 

Bus Bus 

shared memory 

cache cache 
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The New Boss:  
The Multicore Processor 

(CMP)  

cache 

Bus Bus 

shared memory 

cache cache 
All on the  
same chip 

NVidia Tegra 4 
with 
ARM Cortex-
A15 
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Why is Mooly Eden Smiling? 
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Traditional Scaling Process 

User code 

Traditional 
Uniprocessor  

Speedup 
1.8x 

7x 

3.6x 

Time: Moore’s law 



Ideal Scaling Process 
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User code 

Multicore 

Speedup 1.8x 

7x 

3.6x 

Unfortunately, not so simple… 



Actual Scaling Process 
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1.8x 2x 2.9x 

User code 

Multicore 

Speedup 

Parallelization and Synchronization  
require great care…  
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Course Overview 

• Fundamentals 
– models, algorithms, impossibility 

• Real-World programming 
– architectures 

– synchronization primitives 
• spin-locks, monitors, barriers 

– paradigms and techniques 
• shared memory concurrency 

• transactional memories 

• message passing 

 



Languages Used 

• Java 

– shared memory concurrency 

 

 

• Scala 

– software transactional memory 

– message passing (actors) 
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Administrative Issues 

• Office Hours: Tue 3-4pm, or by appointment 

• Office: CIWW 407 

• Course web site: 
http://cs.nyu.edu/wies/teaching/ppc-14 

• Mailing list:   
csci_ga_3033_014_sp14@cs.nyu.edu 
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Grading 

 

• Weekly Assignments: 30% 

 

• Term Project: 30% 

 

• Final Exam: 40% 
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Sequential Computation 

memory 

object object 

thread 
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Concurrent Computation 

memory 

object object 
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Asynchrony 

• Sudden unpredictable delays 

– Cache misses (short) 

– Page faults (long) 

– Scheduling quantum used up (really long) 
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Model Summary 

• Multiple threads 

– Sometimes called processes 

• Single shared memory 

• Objects live in memory 

• Unpredictable asynchronous delays 
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Road Map 

• We are going to focus on principles first, then 
practice 

– Start with idealized models 

– Look at simplistic problems 

– Emphasize correctness over pragmatism 

– “Correctness may be theoretical, but 
incorrectness has practical impact” 



Toyota Unintended Acceleration 
Incidents (2009-2010) 

• at least one fatal accident 

• more than 9 million vehicles recalled 

• In a 2013 court case, unprotected critical 
variables in Toyota’s real-time OS were linked to 
the incidents 
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Concurrency Jargon 

• Hardware 

– Processors 

• Software 

– Threads, processes 

• Sometimes OK to confuse them, sometimes 
not. 
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Parallel Primality Testing 

• Challenge 

– Print primes from 1 to 1010 

• Given 

– Ten-processor multiprocessor 

– One thread per processor 

• Goal 

– Get ten-fold speedup (or close) 
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Load Balancing 

• Split the work evenly 

• Each thread tests range of 109 

… 

… 109 1010 2·109 1 

P0 P1 P9 
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Procedure for Thread i 

void primePrint { 

  int i = ThreadID.get(); // IDs in {0..9} 

  for (j = i*109+1, j<(i+1)*109; j++) { 

    if (isPrime(j)) 

      print(j); 

  } 

} 
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Issues 

• Higher ranges have fewer primes 

• Yet larger numbers harder to test 

• Thread workloads 

– Uneven 

– Hard to predict 
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Issues 

• Higher ranges have fewer primes 

• Yet larger numbers harder to test 

• Thread workloads 

– Uneven 

– Hard to predict 

• Need dynamic load balancing 
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17 

18 

19 

Shared Counter 

each thread takes 
a number 
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Procedure for Thread i 

int counter = new Counter(1); 

     

void primePrint { 

  long j = 0; 

  while (j < 1010) { 

    j = counter.getAndIncrement(); 

    if (isPrime(j)) 

      print(j); 

  } 

} 
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Counter counter = new Counter(1); 

     

void primePrint { 

  long j = 0; 

  while (j < 1010) { 

    j = counter.getAndIncrement(); 

    if (isPrime(j)) 

      print(j); 

  } 

} 

Procedure for Thread i 

Shared counter 
object 
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Where Things Reside 

cache 

Bus Bus 

cache cache 

1 

shared counter 

shared  
memory 

void primePrint { 

  int i = 

ThreadID.get(); // IDs 

in {0..9} 

  for (j = i*109+1, 

j<(i+1)*109; j++) { 

    if (isPrime(j)) 

      print(j); 

  } 

} 

code 

Local  
variables 
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Procedure for Thread i 

Counter counter = new Counter(1); 

     

void primePrint { 

  long j = 0; 

  while (j < 1010) { 

    j = counter.getAndIncrement(); 

    if (isPrime(j)) 

      print(j); 

  } 

} 

Stop when every 
value taken 
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Counter counter = new Counter(1); 

     

void primePrint { 

  long j = 0; 

  while (j < 1010) { 

    j = counter.getAndIncrement(); 

    if (isPrime(j)) 

      print(j); 

  } 

} 

Procedure for Thread i 

Increment & return each 
new value 
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Counter Implementation 

public class Counter { 

  private long value; 

 

  public long getAndIncrement() { 

    return value++; 

  } 

} 
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Counter Implementation 

public class Counter { 

  private long value; 

 

  public long getAndIncrement() { 

    return value++; 

  } 

} 
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What It Means 

public class Counter { 

  private long value; 

 

  public long getAndIncrement() { 

    return value++; 

  } 

} 
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What It Means 

public class Counter { 

  private long value; 

 

  public long getAndIncrement() { 

    return value++; 

  } 

} 

 temp  = value; 

 value = temp + 1; 

 return temp; 
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time 

Not so good… 

Value… 1 

read  
1 

read  
1 

write  
2 

read  
2 

write  
3 

write  
2 

2 3 2 
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Is this problem inherent? 

If we could only glue reads and writes 
together…  

read 

write read 

write 

!! !! 
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Challenge 

public class Counter { 

  private long value; 

 

  public long getAndIncrement() { 

    temp  = value; 

    value = temp + 1; 

    return temp; 

  } 

} 
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Challenge 

public class Counter { 

  private long value; 

 

  public long getAndIncrement() { 

    temp  = value; 

    value = temp + 1; 

    return temp; 

  } 

} 

Make these steps 
atomic (indivisible) 
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Hardware Solution 

public class Counter { 

  private long value; 

 

  public long getAndIncrement() { 

    temp  = value; 

    value = temp + 1; 

    return temp; 

  } 

} ReadModifyWrite() 
instruction 
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An Aside: Java™ 

public class Counter { 

  private long value; 

 

  public long getAndIncrement() { 

    synchronized { 

      temp  = value; 

      value = temp + 1; 

      } 

    return temp; 

  } 

} 
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An Aside: Java™ 

public class Counter { 

  private long value; 

 

  public long getAndIncrement() { 

    synchronized { 

      temp  = value; 

      value = temp + 1; 

      } 

    return temp; 

  } 

} 
Synchronized block 
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An Aside: Java™ 

public class Counter { 

  private long value; 

 

  public long getAndIncrement() { 

    synchronized { 

      temp  = value; 

      value = temp + 1; 

      } 

    return temp; 

  } 

} 

Mutual Exclusion 
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Mutual Exclusion, 
or “Alice & Bob share a pond” 

A B 
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Alice has a pet 

A B 
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Bob has a pet 

A B 
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The Problem 

A B 

The pets don’t 
get along 
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Formalizing the Problem 

• Two types of formal properties in 
asynchronous computation:  

• Safety Properties 

– Nothing bad happens ever 

• Liveness Properties  

– Something good happens eventually 
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Formalizing our Problem 

• Mutual Exclusion 

– Both pets never in pond simultaneously 

– This is a safety property 

• No Deadlock 

– if only one wants in, it gets in 

– if both want in, one gets in. 

– This is a liveness property 
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Simple Protocol 

• Idea 

– Just look at the pond 

• Gotcha 

– Not atomic 

– Trees obscure the view 
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Interpretation 

• Threads can’t “see” what other threads are 
doing 

• Explicit communication required for 
coordination 
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Cell Phone Protocol 

• Idea 

– Bob calls Alice (or vice-versa) 

• Gotcha 

– Bob takes shower 

– Alice recharges battery 

– Bob out shopping for pet food … 
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Interpretation 

• Message-passing doesn’t work 

• Recipient might not be 

– Listening 

– There at all 

• Communication must be 

– Persistent (like writing) 

– Not transient (like speaking) 
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Can Protocol 

co
la

 

co
la
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Bob conveys a bit 

A B 

co
la
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Bob conveys a bit 

A B 
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Can Protocol 

• Idea 

– Cans on Alice’s windowsill 

– Strings lead to Bob’s house 

– Bob pulls strings, knocks over cans 

• Gotcha 

– Cans cannot be reused 

– Bob runs out of cans 
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Interpretation 

• Cannot solve mutual exclusion with interrupts 

– Sender sets fixed bit in receiver’s space 

– Receiver resets bit when ready 

– Requires unbounded number of interrupt bits 
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Flag Protocol 

A B 
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Alice’s Protocol (sort of) 

A B 
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Bob’s Protocol (sort of) 

A B 
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Alice’s Protocol 

 

• Raise flag 

• Wait until Bob’s flag is down 

• Unleash pet 

• Lower flag when pet returns 
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Bob’s Protocol 

 

• Raise flag 

• Wait until Alice’s flag is down 

• Unleash pet 

• Lower flag when pet returns 
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Bob’s Protocol (2nd try) 

 

• Raise flag 

• While Alice’s flag is up 
– Lower flag 

– Wait for Alice’s flag to go down 

– Raise flag 

• Unleash pet 

• Lower flag when pet returns 
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Bob’s Protocol 

 

• Raise flag 

• While Alice’s flag is up 
– Lower flag 

– Wait for Alice’s flag to go down 

– Raise flag 

• Unleash pet 

• Lower flag when pet returns 

Bob defers to 
Alice 
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The Flag Principle 

• Raise the flag 

• Look at other’s flag 

• Flag Principle: 

– If each raises and looks, then 

– Last to look must see both flags up 
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Proof of Mutual Exclusion 

• Assume both pets in pond 

– Derive a contradiction 

– By reasoning backwards 

• Consider the last time Alice and Bob each 
looked before letting the pets in 

• Without loss of generality assume Alice was 
the last to look…  



70 

Proof 

time 

Alice’s last look 

Alice last raised her flag 

Bob’s last look 

Alice must have seen Bob’s Flag. A Contradiction 

Bob last raised flag 
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Proof of No Deadlock 

• If only one pet wants in, it gets in. 
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Proof of No Deadlock 

• If only one pet wants in, it gets in. 

• Deadlock requires both continually trying to 
get in. 
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Proof of No Deadlock 

• If only one pet wants in, it gets in. 

• Deadlock requires both continually trying to 
get in. 

• If Bob sees Alice’s flag, he gives her priority (a 

gentleman…) 
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Remarks 

• Protocol is unfair 

– Bob’s pet might never get in 

• Protocol uses waiting 

– If Bob is eaten by his pet, Alice’s pet might never 
get in 
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Moral of Story 

•Mutual Exclusion cannot be solved by 
– transient communication (cell phones) 

– interrupts (cans) 

•It can be solved by 
–  one-bit shared variables  

–  that can be read or written  
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The Arbiter Problem (an aside) 

Pick a 
point 

Pick a 
point 
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The Fable Continues 

• Alice and Bob fall in love & marry 
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The Fable Continues 

• Alice and Bob fall in love & marry 

• Then they fall out of love & divorce 

– She gets the pets 

– He has to feed them 
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The Fable Continues 

• Alice and Bob fall in love & marry 

• Then they fall out of love & divorce 

– She gets the pets 

– He has to feed them 

• Leading to a new coordination problem: 
Producer-Consumer  
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Bob Puts Food in the Pond 

A 
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mmm… 

Alice releases her pets to Feed 

B 
mmm… 
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Producer/Consumer 

• Alice and Bob can’t meet 

– Each has restraining order on other 

– So he puts food in the pond 

– And later, she releases the pets 

• Avoid 

– Releasing pets when there’s no food 

– Putting out food if uneaten food remains 
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Producer/Consumer 

• Need a mechanism so that 

– Bob lets Alice know when food has been put out 

– Alice lets Bob know when to put out more food 
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Surprise Solution 

A B 

co
la
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Bob puts food in Pond 

A B 

co
la
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Bob knocks over Can 

A B 
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Alice Releases Pets 

A B yum… B 
yum… 
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Alice Resets Can when Pets are Fed 

A B 

co
la
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Pseudocode 

while (true) { 

  while (can.isUp()){}; 

  pet.release(); 

  pet.recapture(); 

  can.reset(); 

}   

Alice’s code 
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Pseudocode 

while (true) { 

  while (can.isUp()){}; 

  pet.release(); 

  pet.recapture(); 

  can.reset(); 

}   

Alice’s code 

while (true) { 

  while (can.isDown()){}; 

  pond.stockWithFood(); 

  can.knockOver(); 

}   

Bob’s code 
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Correctness 

• Mutual Exclusion 

– Pets and Bob never together in pond 
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Correctness 

• Mutual Exclusion 

– Pets and Bob never together in pond 

• No Starvation 

if Bob always willing to feed, and pets always 
famished, then pets eat infinitely often. 
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Correctness 

• Mutual Exclusion 
– Pets and Bob never together in pond 

• No Starvation 
if Bob always willing to feed, and pets always 

famished, then pets eat infinitely often. 

• Producer/Consumer 
The pets never enter pond unless there is food, 

and Bob never provides food if there is 
unconsumed food. 

safety 

liveness 

safety 
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Could Also Solve Using Flags 

A B 
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Waiting 

• Both solutions use waiting 
– while(mumble){} 

• In some cases waiting is problematic 

– If one participant is delayed 

– So is everyone else 

– But delays are common & unpredictable 
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The Fable drags on … 

• Bob and Alice still have issues 
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The Fable drags on … 

• Bob and Alice still have issues 

• So they need to communicate 
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The Fable drags on … 

• Bob and Alice still have issues 

• So they need to communicate 

• They agree to use billboards … 
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E 
1 

D 
2 

C 
3 

Billboards are Large 

B 
3 A 

1 

Letter 
Tiles 

From Scrabble™ box 
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E 
1 

D 
2 

C 
3 

Write One Letter at a Time … 

B 
3 A 

1 

W 
4 
A 

1 
S 

1 

H 
4 
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To post a message 

W 
4 
A 

1 
S 

1 
H 

4 
A 

1 
C 

3 
R 

1 
T 

1 
H 

4 
E 

1 

whew 
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S 
1 

Let’s send another message 

S 
1 
E 

1 
L 

1 
L 

1 
L 

1 
V 

4 

L 
1 A 

1 

M 
3 

A 
1 

A 
1 

P 
3 
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Uh-Oh 

A 
1 

C 
3 

R 
1 

T 
1 
H 

4 
E 

1 
S 

1 
E 

1 
L 

1 
L 

1 

L 
1 

OK 
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Readers/Writers 

• Devise a protocol so that 

– Writer writes one letter at a time 

– Reader reads one letter at a time 

– Reader sees “snapshot” 

• Old message or new message 

• No mixed messages 
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Readers/Writers (continued) 
• Easy with mutual exclusion 

• But mutual exclusion requires waiting 

– One waits for the other 

– Everyone executes sequentially 

• Remarkably 

– We can solve R/W without mutual exclusion 
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Esoteric? 

• Java container size() method 

• Single shared counter? 

– incremented with each add() and 

– decremented with each remove() 

• Threads wait to exclusively access counter 
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Readers/Writers Solution 

• Each thread i has size[i] counter  

– only it increments or decrements.   

• To get object’s size, a thread reads a 
“snapshot” of all counters 

• This eliminates the bottleneck 
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Why do we care? 

• We want as much of the code as possible to 
execute concurrently (in parallel) 

• A larger sequential part implies reduced 
performance   

• Amdahl’s law: this relation is not linear… 
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Amdahl’s Law 

Speedup= 
1-thread execution time 

n-thread execution time 
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Amdahl’s Law 

Speedup= 
1

1¡ p+ p

n



1

1¡ p+ p

n
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Amdahl’s Law 

Speedup= 

Parallel 
fraction 



1

1¡ p+ p

n
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Amdahl’s Law 

Speedup= 

Parallel 
fraction 

Sequential 
fraction 



1

1¡ p+ p

n

113 

Amdahl’s Law 

Speedup= 

Parallel 
fraction 

Sequential 
fraction 

Number of 
threads 



Amdahl’s Law (in practice) 

114 
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Example 

• Ten processors 

• 60% concurrent, 40% sequential 

• How close to 10-fold speedup? 
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Example 

• Ten processors 

• 60% concurrent, 40% sequential 

• How close to 10-fold speedup? 

10

6.0
6.01

1


Speedup = 2.17= 
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Example 

• Ten processors 

• 80% concurrent, 20% sequential 

• How close to 10-fold speedup? 
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Example 

• Ten processors 

• 80% concurrent, 20% sequential 

• How close to 10-fold speedup? 

10

8.0
8.01

1


Speedup = 3.57= 
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Example 

• Ten processors 

• 90% concurrent, 10% sequential 

• How close to 10-fold speedup? 
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Example 

• Ten processors 

• 90% concurrent, 10% sequential 

• How close to 10-fold speedup? 

10

9.0
9.01

1


Speedup = 5.26= 
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Example 

• Ten processors 

• 99% concurrent, 01% sequential 

• How close to 10-fold speedup? 
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Example 

• Ten processors 

• 99% concurrent, 01% sequential 

• How close to 10-fold speedup? 

10

99.0
99.01

1



Speedup = 9.17= 



Back to Real-World Multicore 
Scaling 

1.8x 2x 2.9x 

User code 

Multicore 

Speedup 

Not reducing sequential % 
of code  
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Shared Data Structures 

75% 
Unshared 

25% 
Shared 

Coarse 
Grained 

Fine 
Grained 

75% 
Unshared 

25% 
Shared 
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Shared Data Structures 

75% 
Unshared 

25% 
Shared 

Coarse 
Grained 

Fine 
Grained 

Why only 2.9 speedup 

75% 
Unshared 

25% 
Shared 

Honk! 
Honk! 

Honk! 
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Shared Data Structures 

75% 
Unshared 

25% 
Shared 

Coarse 
Grained 

Fine 
Grained 

Why fine-grained 
parallelism maters 

75% 
Unshared 

25% 
Shared 

Honk! 
Honk! 

Honk! 
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This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.  

• You are free: 

– to Share — to copy, distribute and transmit the work  

– to Remix — to adapt the work  

• Under the following conditions: 

– Attribution. You must attribute the work to “The Art of 
Multiprocessor Programming” (but not in any way that suggests that 
the authors endorse you or your use of the work).  

– Share Alike. If you alter, transform, or build upon this work, you 
may distribute the resulting work only under the same, similar or a 
compatible license.  

• For any reuse or distribution, you must make clear to others the license 
terms of this work. The best way to do this is with a link to 

– http://creativecommons.org/licenses/by-sa/3.0/.  

• Any of the above conditions can be waived if you get permission from 
the copyright holder.  

• Nothing in this license impairs or restricts the author's moral rights.  
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