
Notes on Syntax and Parsing

When we describe a programming language, we distinguish between the syntax
and the semantics of the language. The syntax describes the structure of a
program (e.g., that code blocks can be nested and are enclosed by braces, that
infix operators have a certain precedence and associativity, etc.). On the other
hand, the semantics describes a program’s meaning (i.e., what the program
computes). In order to understand programming languages, it is important not
to confuse these two concepts.

When we talk about the syntax of a programming language, we further
distinguish between its concrete syntax and its abstract syntax. The concrete
syntax defines which sequences of characters represent programs. The abstract
syntax describes the structure of a program as an abstract syntax tree. Such a
tree abstracts from some of the specifics of the concrete syntax, such as paren-
thesis in expressions, semicolons after statements, etc. The abstract syntax also
makes the precedence and associativity of operators explicit.

The parsing problem is the problem of converting the program source code
represented as sequences of characters (i.e., concrete syntax) into abstract syn-
tax trees. You can learn more about this topic in a compiler course. Neverthe-
less, it is useful to have a basic understanding of how the concrete syntax of
a programming language can be described and what the typical problems are
when writing parsers for programming languages.

1 Formal Languages

In computer science, we formally describe languages as sets of words. Each word
is a finite sequence of symbols drawn from a set that we call the alphabet of the
language. For example, we can describe an arithmetic expression “3 + 5 * 8“ as
a word that is given by the sequence of symbols ’3’, ’+’, ’5’, ’*’, and ’8’.

To describe languages in a compact form, we use grammars. A grammar is
given by a set of rules, called productions. Productions tell us how the words of
the language can be constructed from the symbols in the alphabet. For example,
the following grammar describes the language of all arithmetic expressions:

E → EOE

E → (E)

E → x where x ∈ Z
O → +

O → −
O → *

O → /

Note that the third rule actually stands for an infinite set of productions (one
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for each x ∈ Z):

. . .

E → −2

E → −1

E → 0

E → 1

E → 2

. . .

We call the uppercase symbols that occur on the left-hand sides of productions,
such as E and O, nonterminal symbols. The remaining symbols that are drawn
from the alphabet of the language such as + and 3 are called terminal symbols.

Each grammar has an associated (nonterminal) starting symbol. In our
example grammar, this is the symbol E. Starting from this symbol we apply
the productions one by one until we obtain a word that consists only of terminal
symbols. In each step, we pick one nonterminal in the current working word,
choose a production in which this nonterminal occurs on the left-hand side, and
replace the chosen nonterminal in the working word by the right-hand side of
the chosen production. We call this process derivation.

Using the above productions, we can derive words such as

1
3 + 5 * 8
−14 /(42 +(0− 1))

Here is a derivation of the word 3 + 5 * 8:

E ⇒ EOE

⇒ 3OE

⇒ 3 +E

⇒ 3 +EOE

⇒ 3 + 5OE

⇒ 3 + 5 *E

⇒ 3 + 5 * 8

Alternatively, we can represent this derivation by its parse tree:

E

E

3

O

+

E

E

5

O

*

E

8
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The problem of constructing a parse tree for a given word in a language is the
parsing problem. This problem can be solved automatically for the important
class of context-free languages, which are the languages described by context-
free grammars. In a context-free grammar, the left-hand sides of all productions
consists of a single non-terminal symbol, as in our example above. Consequently,
each derivation step rewrites a single nonterminal symbol in the working word
irregardless of the context in which this nonterminal occurs. The concrete syntax
of most programming languages is context-free. So called parser generators can
automatically construct parsers for context-free languages from a description
of their grammar. We next define this class of languages and their associated
grammars formally.

2 Context-Free Languages and Grammars

A context-free grammar is a tuple G = (Σ, N, P, S) where

� Σ is a finite set of terminal symbols,

� N is a finite set of nonterminal symbols disjoint from Σ,

� P ⊆ (N, (Σ ∪N)∗) is a finite set of productions, and

� S ∈ N is the starting symbol.

We denote a production (X,w) ∈ P by X → w.
Let G = (Σ, N, P, S) be a context-free grammar. For any two words, u, v ∈

(Σ ∪ N)∗, we say v directly derives from u, written u ⇒ v, if there exists a
production X → w in P and u1, u2 ∈ (Σ ∪ N)∗ such that u = u1Xu2 and
v = u1wu2. That is, v is the result of applying X → w to u. We denote by ⇒∗

the reflexive and transitive closure of the relation ⇒ and we say that v derives
from u if u⇒∗ v.

The language of G, denoted L(G), is the set of all terminal words that can
be derived from S:

L(G) = {w ∈ Σ∗ | S ⇒∗ w }

A language L ⊆ Σ∗ is called context-free if it is the language of some context-free
grammar G.

Note that the grammar for arithmetic expressions that we gave above is
technically not a context-free grammar because the set of productions (as well
as the set of terminal symbols) is infinite. For now, we will skim over this
technicality. We will see later how we obtain a proper context-free grammar for
arithmetic expressions.

3 Backus-Naur-Form

Often, context-free grammars are given in so-called Backus-Naur-Form (BNF).
In this form, we use the symbol ::= instead of → to separate the two sides of
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a production. Moreover, in a BNF, productions X → w1, . . . , X → wn for the
same nonterminal symbol X can be summarized by a single rule X ::= w1 | · · · |
wn. For example, here is our grammar of arithmetic expressions in BNF:

x ∈ Z
E ::= EOE | (E) | x
O ::= + | − | * | /

4 Eliminating Ambiguity

Let us reconsider our grammar for arithmetic expressions and the derivation of
the expression “3 + 5 * 8“ given by the following parse tree:

E

E
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E

E

5

O

*

E

8

This is not the only possible derivation of “3 + 5 * 8“. Another one is given by
the following parse tree:

E

E
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We call a grammar in which a word has more than one derivation ambiguous.
Ambiguity is a problem because the semantics of programs is given in terms of
their abstract syntax trees, which are derived from parse trees. Typically, the
semantics of a program depends on the structure of its parse tree. For example,
with the canonical semantics of arithmetic expressions, the first parse tree of
the expression “3 + 5 * 8“ would evaluate to 43 whereas the second parse tree
would evaluate to 64. Ideally, we would like to change our grammar so that the
second parse tree no longer represents a valid derivation. This can be done by
augmenting the grammar with additional disambiguation rules.

The problem of detecting whether a given context-free grammar is ambiguous
is undecidable. Consequently, there does not exist a general algorithm that turns
an ambiguous grammar into an unambiguous one. We therefore have to make
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do with ad hoc techniques for resolving ambiguities. Fortunately, for grammars
that describe programming languages, there exist some general recipes that
work well in practice.

The ambiguity in our arithmetic expression grammar that we have observed
for the expression “3 + 5 * 8” stems from the fact that the grammar does not
distinguish between the additive operators, ’+’ and ’-’, and the multiplicative
operators, ’*’ and ’/’. We would like the multiplicative operators to bind stronger
than the additive operators. We also say that the multiplicative operators have
higher precedence. We can encode operator precedence by grouping expressions
based on the types of operators and changing the productions so that expressions
are expanded in the right order:

E ::= E AE | T
A ::= + | -
T ::= T M T | F
M ::= * | /
F ::= x | (E)

Now the only valid parse tree for the expression “3 + 5 * 8” is the tree:
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Our grammar is still ambiguous, though. For example, consider the expres-
sion “3 + 5 + 8”. Here are two possible parse trees for this expression:
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It seems that this ambiguity does not matter from a semantic point of view
because addition on the integers is associative. That is, both trees would eval-
uate to 16. However, in computer programs we are normally working with
bounded representations of integers. In this case, the arithmetic operations are
often not associative due to potential arithmetic overflow. We would therefore
like the operations to be parsed in a specific order. For example, arithmetic oper-
ators are usually defined as left-associative rather than right-associative, which
means that the expression “3 + 5 + 8” should be parsed similar to “(3 + 5) + 8”
rather than “3 +(5 + 8)”.

To encode left-associativity of operators in our grammar, we can replace the
right side of each binary expression by the base case of that expression type.
This will force the repetitive matches of subexpressions onto the left side:

E ::= E AT | T
A ::= + | -
T ::= T M F | F
M ::= * | /
F ::= x | (E)

5 Regular Languages

Finally, let us modify our grammar for arithmetic expressions so that it is ac-
tually context-free, i.e., so that the terminal symbols and productions are finite
sets. We do this in two steps. First, we define a context-free grammar that
describes integer numbers in decimal representation:

Z ::= -H | H
H ::= 0 | 1D | · · · | 9D
D ::= ε | 0D | · · · | 9D

The starting symbol of this grammar is Z and the terminal symbols are Σ =
{-, 0, . . . , 9}.

Next, we combine this grammar with the grammar:

E ::= E AT | T
A ::= + | -
T ::= T M F | F
M ::= * | /
F ::= Z | (E)

to obtain a context-free grammar for arithmetic expressions.

6



The productions of our grammar for integer numbers have a special form.
They all match one of the following shapes:

X ::= ε

X ::= a

X ::= Y

X ::= aY

where X,Y are nonterminals and a is a terminal symbol. Grammars in which all
productions are of these shapes form a special subclass of context-free grammars,
called regular grammars. The languages of these grammar are correspondingly
called regular languages. Another way to describe such languages are regular
expressions, which you may already be familiar with.

Regular languages can be parsed more efficiently than general context-free
languages. Compilers therefore split the parsing of the input program into two
phases: a so-called lexing phase in which the character sequence representing the
input program is converted into a token sequence, and the actual parsing phase
in which the token sequence is converted into a parse tree. The tokens in the
token sequence are subsequences of characters in the input program that have
been grouped together, e.g., to form keywords of the language or numbers (as
in the example of our arithmetic expression language). The program that takes
care of the lexing phase is called lexer or tokenizer. The lexer is typically auto-
generated from regular expressions, whereas the actual parser is auto-generated
from a general context-free grammar.
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